JP5630262B2 - Curable resin composition, cured product, laminate, multilayer circuit board, and electronic device - Google Patents

Curable resin composition, cured product, laminate, multilayer circuit board, and electronic device Download PDF

Info

Publication number
JP5630262B2
JP5630262B2 JP2010290449A JP2010290449A JP5630262B2 JP 5630262 B2 JP5630262 B2 JP 5630262B2 JP 2010290449 A JP2010290449 A JP 2010290449A JP 2010290449 A JP2010290449 A JP 2010290449A JP 5630262 B2 JP5630262 B2 JP 5630262B2
Authority
JP
Japan
Prior art keywords
alicyclic olefin
resin composition
curable resin
olefin polymer
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010290449A
Other languages
Japanese (ja)
Other versions
JP2012136646A (en
Inventor
川崎 雅史
雅史 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Zeon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corp filed Critical Zeon Corp
Priority to JP2010290449A priority Critical patent/JP5630262B2/en
Publication of JP2012136646A publication Critical patent/JP2012136646A/en
Application granted granted Critical
Publication of JP5630262B2 publication Critical patent/JP5630262B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

本発明は、硬化性樹脂組成物、硬化物、積層体、多層回路基板、及び電子機器に関する。   The present invention relates to a curable resin composition, a cured product, a laminate, a multilayer circuit board, and an electronic device.

電子機器の小型化、多機能化、通信高速化などの追求に伴い、電子機器に用いられる回路基板のさらなる高密度化が要求されており、このような高密度化の要求に応えるために、回路基板の多層化が図られている。このような多層回路基板は、例えば、電気絶縁層とその表面に形成された導体層とからなる内層基板の上に、電気絶縁層を積層し、この電気絶縁層の上に導体層を形成させ、さらに、これら電気絶縁層の積層と、導体層の形成と、を繰り返し行なうことにより形成される。このような多層回路基板の導体層が高密度のパターンである場合、電気絶縁層を形成するために用いられる絶縁膜には、誘電率が低いなどの良好な電気特性と優れた埋め込み平坦性が求められる。   With the pursuit of downsizing, multi-functionalization, high-speed communication, etc. of electronic devices, there is a need for higher density circuit boards used in electronic devices. To meet such demands for higher density, Circuit boards are being made multilayered. In such a multilayer circuit board, for example, an electrical insulation layer is laminated on an inner layer substrate composed of an electrical insulation layer and a conductor layer formed on the surface thereof, and a conductor layer is formed on the electrical insulation layer. Further, it is formed by repeatedly stacking these electrical insulating layers and forming the conductor layer. When the conductor layer of such a multilayer circuit board has a high-density pattern, the insulating film used to form the electrical insulating layer has good electrical characteristics such as low dielectric constant and excellent embedded flatness. Desired.

このような電気絶縁層を形成するために用いられる絶縁膜を形成するための材料として、脂環式オレフィン重合体が検討されている。   As a material for forming an insulating film used for forming such an electric insulating layer, an alicyclic olefin polymer has been studied.

たとえば、特許文献1には、高温下においても充分な機械的強度を備え、かつ低線膨張で、耐熱性、低吸湿性、誘電特性にも優れた材料を与えるノルボルネン系樹脂組成物として、ノルボルネン系単量体繰り返し単位を、重合体全繰り返し単位中60モル%以上含有し、DSC測定によるガラス転移温度が180℃以上のノルボルネン系重合体90〜1重量%と、充填剤10〜99重量%と、からなるノルボルネン系樹脂組成物が開示されている。   For example, Patent Document 1 discloses norbornene as a norbornene-based resin composition that provides a material having sufficient mechanical strength even at high temperatures, low linear expansion, excellent heat resistance, low moisture absorption, and dielectric properties. 90% by weight of a norbornene polymer having a glass transition temperature of 180 ° C. or higher by DSC measurement and a filler of 10% to 99% by weight. And a norbornene-based resin composition comprising:

ところで、ノルボルネン系樹脂組成物などの樹脂組成物に充填剤を配合した場合には、保存中に充填剤が凝集・沈降したり、樹脂組成物の粘度が上昇して取り扱い性が悪化したり、さらには、このような樹脂組成物を用いて、成形体を得た場合には、成形体中において充填剤が凝集し均質にならない等の問題が生ずる場合がある。   By the way, when a filler is blended in a resin composition such as a norbornene-based resin composition, the filler aggregates and settles during storage, the viscosity of the resin composition increases, and the handleability deteriorates. Furthermore, when a molded body is obtained using such a resin composition, there may be a problem that the filler does not aggregate and become homogeneous in the molded body.

これに対して、充填剤の分散安定性に優れ、かつ、保存中の粘度変化の少ないワニスを製造する方法として、たとえば、特許文献2には、所定の極性基を有する重合体、充填剤、エポキシ化合物及び有機溶剤を含むワニスを製造する際に、予め重合体溶液及び充填剤スラリーを調製し、重合体溶液に充填剤スラリーを添加し、次いで、得られる混合液の粘度の10分間の変化率が2%以下になるまで撹拌した後、エポキシ化合物を添加し、次いで、ここで得られる混合液の粘度の10分間の変化率が2%以下になるまで撹拌する方法が開示されている。   On the other hand, as a method for producing a varnish having excellent dispersion stability of the filler and having a small viscosity change during storage, for example, Patent Document 2 discloses a polymer having a predetermined polar group, a filler, When producing a varnish containing an epoxy compound and an organic solvent, a polymer solution and a filler slurry are prepared in advance, the filler slurry is added to the polymer solution, and then the viscosity of the resulting mixture is changed for 10 minutes. After stirring until the rate becomes 2% or less, a method of adding an epoxy compound and then stirring until the rate of change in viscosity of the mixed solution obtained here for 10 minutes becomes 2% or less is disclosed.

特開平11−43566号公報JP 11-43566 A 特開2008−1871号公報JP 2008-1871 A

しかしながら、本発明者らが検討したところ、上記特許文献1に記載の技術では、低線膨張であり、耐熱性、及び機械的強度に優れた成形体を得ることは可能であるが、得られる成形体を回路基板の絶縁層として用いた場合、回路を構成する配線の埋め込み平坦性が未だ不充分であった。なお、この理由としては、上記特許文献1に記載のノルボルネン系樹脂組成物の溶融粘度が高いことによると考えられる。また、上記特許文献2に記載の技術により得られるワニスを用いてなる硬化物では、配線埋め込み平坦性と低線膨張率や耐熱性のバランスを充分に満足しないという問題があった。
本発明の目的は、低線膨張であり、耐熱性や配線埋め込み平坦性に優れ、樹脂強度にも優れた硬化物を与える硬化性樹脂組成物、並びに、これを用いて得られる硬化物、積層体、多層回路基板、及び電子機器を提供することである。
However, as a result of studies by the present inventors, it is possible to obtain a molded article having low linear expansion and excellent heat resistance and mechanical strength by the technique described in Patent Document 1 above. When the molded body is used as the insulating layer of the circuit board, the embedded flatness of the wiring constituting the circuit is still insufficient. The reason for this is considered to be that the norbornene-based resin composition described in Patent Document 1 has a high melt viscosity. Moreover, the cured product using the varnish obtained by the technique described in Patent Document 2 has a problem that it does not sufficiently satisfy the balance between wiring embedding flatness, low linear expansion coefficient, and heat resistance.
An object of the present invention is a curable resin composition that provides a cured product having low linear expansion, excellent heat resistance and wiring embedding flatness, and excellent resin strength, as well as a cured product obtained by using this, and a laminate It is to provide a body, a multilayer circuit board, and an electronic device.

本発明者らは、上記目的を達成するために鋭意研究した結果、カルボキシル基および/またはカルボン酸無水物基を有する脂環式オレフィン重合体、少なくとも2つの官能基と、脂環式オレフィン構造又はフルオレン構造とを有する硬化剤、及び無機充填材を含有してなる硬化性樹脂組成物が、無機充填材の配合量を30〜90重量%と多くした場合でも溶融粘度が低く、そのため、このような硬化性樹脂組成物を用いて得られる硬化物が、低線膨張であり、耐熱性及び配線埋め込み平坦性に優れ、樹脂強度にも優れているものであることを見出し、本発明を完成させるに至った。   As a result of intensive studies to achieve the above object, the present inventors have found that an alicyclic olefin polymer having a carboxyl group and / or a carboxylic anhydride group, at least two functional groups, and an alicyclic olefin structure or A curable resin composition containing a curing agent having a fluorene structure and an inorganic filler has a low melt viscosity even when the blending amount of the inorganic filler is increased to 30 to 90% by weight. The cured product obtained by using a simple curable resin composition is found to have low linear expansion, excellent heat resistance and wiring embedding flatness, and excellent resin strength, and complete the present invention. It came to.

すなわち、本発明によれば、
〔1〕カルボキシル基および/またはカルボン酸無水物基を有する脂環式オレフィン重合体(A)、少なくとも2つの官能基と、脂環式オレフィン構造又はフルオレン構造とを有する硬化剤(B)、及び無機充填材(C)を含有してなり、前記官能基は、前記脂環式オレフィン重合体(A)のカルボキシル基および/またはカルボン酸無水物基と反応して結合を形成することができる基であり、前記無機充填材(C)の配合量が30〜90重量%である硬化性樹脂組成物、
〔2〕前記カルボキシル基および/またはカルボン酸無水物基を有する脂環式オレフィン重合体(A)が、重量平均分子量が20,000以上100,000以下であるカルボキシル基および/またはカルボン酸無水物基を有する脂環式オレフィン重合体(A1)と、重量平均分子量が5,000以上20,000未満であるカルボキシル基および/またはカルボン酸無水物基を有する脂環式オレフィン重合体(A2)とからなり、前記脂環式オレフィン重合体(A1)と前記脂環式オレフィン重合体(A2)の配合割合が、「重合体(A1)/重合体(A2)」の重量比で、5/95〜70/30である前記〔1〕に記載の硬化性樹脂組成物、
〔3〕前記硬化剤(B)が、少なくとも2つの官能基と、脂環式オレフィン構造又はフルオレン構造とを有するエポキシ樹脂(B1)と、少なくとも2つの官能基と、脂環式オレフィン構造又はフルオレン構造とを有するフェノール樹脂(B2)とからなる前記〔1〕又は〔2〕に記載の硬化性樹脂組成物、
〔4〕前記無機充填材(C)が、表面をシランカップリング剤で処理してなるシリカである前記〔1〕〜〔3〕のいずれかに記載の硬化性樹脂組成物、
〔5〕前記〔1〕〜〔4〕のいずれかに記載の硬化性樹脂組成物を硬化してなる硬化物、
〔6〕表面に導体層を有する基板と、前記〔5〕に記載の硬化物からなる電気絶縁層とを、積層してなる積層体、
〔7〕前記〔6〕に記載の積層体の、電気絶縁層上にさらに導体層を形成してなる多層回路基板、並びに、
〔8〕前記〔7〕に記載の多層回路基板を備えた電子機器、
が提供される。
That is, according to the present invention,
[1] An alicyclic olefin polymer (A) having a carboxyl group and / or a carboxylic anhydride group, a curing agent (B) having at least two functional groups, and an alicyclic olefin structure or a fluorene structure, and A group comprising an inorganic filler (C), wherein the functional group can react with a carboxyl group and / or a carboxylic anhydride group of the alicyclic olefin polymer (A) to form a bond. A curable resin composition in which the amount of the inorganic filler (C) is 30 to 90% by weight,
[2] The alicyclic olefin polymer (A) having the carboxyl group and / or carboxylic acid anhydride group has a weight average molecular weight of 20,000 or more and 100,000 or less. An alicyclic olefin polymer (A1) having a group, and an alicyclic olefin polymer (A2) having a carboxyl group and / or a carboxylic anhydride group having a weight average molecular weight of 5,000 or more and less than 20,000 The blend ratio of the alicyclic olefin polymer (A1) and the alicyclic olefin polymer (A2) is 5/95 in a weight ratio of “polymer (A1) / polymer (A2)”. The curable resin composition according to [1], which is 70/30,
[3] The curing agent (B) is an epoxy resin (B1) having at least two functional groups and an alicyclic olefin structure or fluorene structure, at least two functional groups, and an alicyclic olefin structure or fluorene. The curable resin composition according to the above [1] or [2], comprising a phenol resin (B2) having a structure;
[4] The curable resin composition according to any one of [1] to [3], wherein the inorganic filler (C) is silica obtained by treating the surface with a silane coupling agent.
[5] A cured product obtained by curing the curable resin composition according to any one of [1] to [4],
[6] A laminate formed by laminating a substrate having a conductor layer on the surface and an electrical insulating layer made of the cured product according to [5],
[7] A multilayer circuit board obtained by further forming a conductor layer on the electrical insulating layer of the laminate according to [6], and
[8] An electronic device including the multilayer circuit board according to [7],
Is provided.

本発明によれば、低線膨張であり、耐熱性及び配線埋め込み平坦性に優れ、樹脂強度にも優れた硬化物を与える硬化性樹脂組成物、並びに、硬化物、積層体、多層回路基板、及び電子機器を提供することができる。特に、本発明の硬化性樹脂組成物は、溶融粘度が低いため、硬化物とした場合に、線膨張が小さく、耐熱性、及び樹脂強度を良好に保ちながら、配線埋め込み平坦性を向上させることができるものである。   According to the present invention, a curable resin composition that provides a cured product that has low linear expansion, excellent heat resistance and wiring embedding flatness, and excellent resin strength, and a cured product, laminate, multilayer circuit board, In addition, an electronic device can be provided. In particular, since the curable resin composition of the present invention has a low melt viscosity, when used as a cured product, the linear expansion is small, and the wiring embedded flatness is improved while maintaining good heat resistance and resin strength. It is something that can be done.

本発明の硬化性樹脂組成物は、カルボキシル基および/またはカルボン酸無水物基を有する脂環式オレフィン重合体(A)、少なくとも2つの官能基と、脂環式オレフィン構造又はフルオレン構造とを有する硬化剤(B)、及び無機充填材(C)を含有してなり、前記無機充填材(C)の配合量が30〜90重量%である。   The curable resin composition of the present invention has an alicyclic olefin polymer (A) having a carboxyl group and / or a carboxylic anhydride group, at least two functional groups, and an alicyclic olefin structure or a fluorene structure. It contains a curing agent (B) and an inorganic filler (C), and the blending amount of the inorganic filler (C) is 30 to 90% by weight.

(カルボキシル基および/またはカルボン酸無水物基を有する脂環式オレフィン重合体(A))
本発明で用いるカルボキシル基および/またはカルボン酸無水物基を有する脂環式オレフィン重合体(A)(以下、適宜、「脂環式オレフィン重合体(A)」と略記する。)を構成する脂環構造としては、シクロアルカン構造やシクロアルケン構造などが挙げられるが、機械的強度、耐熱性などの観点から、シクロアルカン構造が好ましい。また、脂環式構造としては、単環、多環、縮合多環、橋架け環や、これらを組み合わせてなる多環などが挙げられる。脂環式構造を構成する炭素原子数は、特に限定されないが、通常4〜30個、好ましくは5〜20個、より好ましくは5〜15個の範囲であり、環式構造を構成する炭素原子数がこの範囲にある場合に、機械的強度、耐熱性、及び成形性の諸特性が高度にバランスされ好適である。また、脂環式オレフィン重合体(A)は、通常、熱可塑性のものである。本明細書において「カルボン酸無水物基」とは、−CO−O−CO−で示される原子団をいう。
(Alicyclic olefin polymer having carboxyl group and / or carboxylic anhydride group (A))
The fat constituting the alicyclic olefin polymer (A) having a carboxyl group and / or a carboxylic acid anhydride group used in the present invention (hereinafter abbreviated as “alicyclic olefin polymer (A)” as appropriate). Examples of the ring structure include a cycloalkane structure and a cycloalkene structure, and a cycloalkane structure is preferable from the viewpoint of mechanical strength, heat resistance, and the like. Examples of the alicyclic structure include monocycles, polycycles, condensed polycycles, bridged rings, and polycycles formed by combining these. The number of carbon atoms constituting the alicyclic structure is not particularly limited, but is usually in the range of 4 to 30, preferably 5 to 20, more preferably 5 to 15, and the carbon atoms constituting the cyclic structure. When the number is in this range, the mechanical strength, heat resistance, and moldability are highly balanced and suitable. The alicyclic olefin polymer (A) is usually thermoplastic. In the present specification, the “carboxylic anhydride group” refers to an atomic group represented by —CO—O—CO—.

脂環式オレフィン重合体(A)中の脂環式オレフィン由来の繰り返し単位の割合は、特に限定されないが、通常30〜100重量%、好ましくは50〜100重量%、より好ましくは70〜100重量%である。脂環式オレフィン由来の繰り返し単位の割合が過度に少ないと、耐熱性に劣り好ましくない。脂環式オレフィン由来の繰り返し単位以外の繰り返し単位としては、格別な限定はなく、目的に応じて適宜選択される。   The ratio of the repeating unit derived from the alicyclic olefin in the alicyclic olefin polymer (A) is not particularly limited, but is usually 30 to 100% by weight, preferably 50 to 100% by weight, more preferably 70 to 100% by weight. %. When the ratio of the repeating unit derived from the alicyclic olefin is excessively small, the heat resistance is inferior, which is not preferable. The repeating unit other than the repeating unit derived from the alicyclic olefin is not particularly limited and is appropriately selected depending on the purpose.

脂環式オレフィン重合体(A)に含有されるカルボキシル基および/またはカルボン酸無水物基は、重合体の主鎖を構成する原子に直接結合していても、メチレン基、オキシ基、オキシカルボニルオキシアルキレン基、フェニレン基などの他の二価の基を介して結合していてもよい。脂環式オレフィン重合体(A)中のカルボキシル基および/またはカルボン酸無水物基の含有率は、特に制限されないが、脂環式オレフィン重合体(A)を構成する全繰り返し単位のモル数に対して、通常5〜60モル%、好ましくは10〜50モル%である。   Even if the carboxyl group and / or carboxylic anhydride group contained in the alicyclic olefin polymer (A) is directly bonded to the atoms constituting the main chain of the polymer, it is a methylene group, an oxy group, an oxycarbonyl group. You may couple | bond together through other bivalent groups, such as an oxyalkylene group and a phenylene group. Although the content rate of the carboxyl group and / or carboxylic anhydride group in the alicyclic olefin polymer (A) is not particularly limited, it depends on the number of moles of all repeating units constituting the alicyclic olefin polymer (A). On the other hand, it is usually 5 to 60 mol%, preferably 10 to 50 mol%.

本発明で用いる脂環式オレフィン重合体(A)は、たとえば、以下の方法により得ることができる。すなわち、(1)カルボキシル基および/またはカルボン酸無水物基(以下、適宜、「カルボキシル基等」とする。)を有する脂環式オレフィンを、必要に応じて他の単量体を加えて、重合する方法、(2)カルボキシル基等を有しない脂環式オレフィンを、カルボキシル基等を有する単量体と共重合する方法、(3)カルボキシル基等を有する芳香族オレフィンを、必要に応じて他の単量体を加えて、重合し、これにより得られる重合体の芳香環部分を水素化する方法、(4)カルボキシル基等を有しない芳香族オレフィンを、カルボキシル基等を有する単量体と共重合し、これにより得られる重合体の芳香環部分を水素化する方法、又は、(5)カルボキシル基等を有しない脂環式オレフィン重合体にカルボキシル基等を有する化合物を変性反応により導入する方法、もしくは(6)前述の(1)〜(5)のようにして得られるカルボン酸エステル基を有する脂環式オレフィン重合体のカルボン酸エステル基を、例えば加水分解することなどによりカルボキシル基に変換する方法などにより得ることができる。これらのなかでも、前述の(1)の方法によって得られる重合体が好適である。
本発明で用いる脂環式オレフィン重合体(A)を得る重合法は開環重合や付加重合が用いられるが、開環重合の場合には得られた開環重合体を水素添加することが好ましい。
The alicyclic olefin polymer (A) used in the present invention can be obtained, for example, by the following method. That is, (1) an alicyclic olefin having a carboxyl group and / or a carboxylic anhydride group (hereinafter referred to as “carboxyl group or the like” as appropriate) is added with other monomers as necessary, A method of polymerizing, (2) a method of copolymerizing an alicyclic olefin having no carboxyl group or the like with a monomer having a carboxyl group or the like, and (3) an aromatic olefin having a carboxyl group or the like, if necessary. A method of polymerizing by adding another monomer and hydrogenating the aromatic ring portion of the polymer obtained thereby, (4) a monomer having a carboxyl group or the like, an aromatic olefin having no carboxyl group or the like Or a method of hydrogenating the aromatic ring portion of the polymer obtained by this, or (5) a compound having a carboxyl group or the like in an alicyclic olefin polymer having no carboxyl group or the like Or (6) hydrolyzing, for example, a carboxylic acid ester group of an alicyclic olefin polymer having a carboxylic acid ester group obtained as described in (1) to (5) above. It can obtain by the method etc. which convert to a carboxyl group by etc. Among these, a polymer obtained by the method (1) described above is preferable.
As the polymerization method for obtaining the alicyclic olefin polymer (A) used in the present invention, ring-opening polymerization or addition polymerization is used. In the case of ring-opening polymerization, it is preferable to hydrogenate the obtained ring-opening polymer. .

カルボキシル基および/またはカルボン酸無水物基を有する脂環式オレフィンの具体例としては、5−ヒドロキシカルボニルビシクロ[2.2.1]ヘプト−2−エン、5−メチル−5−ヒドロキシカルボニルビシクロ[2.2.1]ヘプト−2−エン、5−カルボキシメチル−5−ヒドロキシカルボニルビシクロ[2.2.1]ヘプト−2−エン、9−ヒドロキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ−4−エン、9−メチル−9−ヒドロキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ−4−エン、9−カルボキシメチル−9−ヒドロキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ−4−エン、5−エキソ−6−エンド−ジヒドロキシカルボニルビシクロ[2.2.1]ヘプト−2−エン、9−エキソ−10−エンド−ジヒドロキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ−4−エンなどのカルボキシル基を有する脂環式オレフィン;ビシクロ[2.2.1]ヘプト−2−エン−5,6−ジカルボン酸無水物、テトラシクロ[6.2.1.13,6.02,7]ドデカ−4−エン−9,10−ジカルボン酸無水物、ヘキサシクロ[10.2.1.13,10.15,8.02,11.04,9]ヘプタデカ−6−エン−13,14−ジカルボン酸無水物などのカルボン酸無水物基を有する脂環式オレフィン;などが挙げられる。これらは1種を単独で用いてもよいし2種以上を併用してもよい。 Specific examples of the alicyclic olefin having a carboxyl group and / or a carboxylic anhydride group include 5-hydroxycarbonylbicyclo [2.2.1] hept-2-ene, 5-methyl-5-hydroxycarbonylbicyclo [ 2.2.1] Hept-2-ene, 5-carboxymethyl-5-hydroxycarbonylbicyclo [2.2.1] hept-2-ene, 9-hydroxycarbonyltetracyclo [6.2.1.1 3 , 6 . 0 2,7 ] dodec-4-ene, 9-methyl-9-hydroxycarbonyltetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-4-ene, 9-carboxymethyl-9-hydroxycarbonyltetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-4-ene, 5-exo-6-endo-dihydroxycarbonylbicyclo [2.2.1] hept-2-ene, 9-exo-10-endo-dihydroxycarbonyltetracyclo [6. 2.1.1 3,6 . Alicyclic olefin having a carboxyl group such as 0 2,7 ] dodec-4-ene; bicyclo [2.2.1] hept-2-ene-5,6-dicarboxylic anhydride, tetracyclo [6.2. 1.1 3, 6 . 0 2,7] dodeca-4-ene-9,10-dicarboxylic anhydride, hexacyclo [10.2.1.1 3, 10. 1 5,8 . 0 2,11 . And the like; 0 4,9] heptadec-6-ene-13,14-alicyclic olefin having a carboxylic acid anhydride group, such as a dicarboxylic acid anhydride. These may be used alone or in combination of two or more.

また、カルボン酸エステル基を有する脂環式オレフィンとしては、9−メチル−9−メトキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ−4−エン、5−メトキシカルボニル−ビシクロ[2.2.1]ヘプト−2−エン、5−メチル−5−メトキシカルボニル−ビシクロ[2.2.1]ヘプト−2−エンなどが挙げられる。 In addition, examples of the alicyclic olefin having a carboxylic acid ester group include 9-methyl-9-methoxycarbonyltetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-4-ene, 5-methoxycarbonyl-bicyclo [2.2.1] hept-2-ene, 5-methyl-5-methoxycarbonyl-bicyclo [2.2.1] hept-2 -Ene and the like.

カルボキシル基および/またはカルボン酸無水物基を有しない脂環式オレフィンの具体例としては、ビシクロ[2.2.1]ヘプト−2−エン(慣用名:ノルボルネン)、5−エチル−ビシクロ[2.2.1]ヘプト−2−エン、5−ブチル−ビシクロ[2.2.1]ヘプト−2−エン、5−エチリデン−ビシクロ[2.2.1]ヘプト−2−エン、5−メチリデン−ビシクロ[2.2.1]ヘプト−2−エン、5−ビニル−ビシクロ[2.2.1]ヘプト−2−エン、トリシクロ[5.2.1.02,6]デカ−3,8−ジエン(慣用名:ジシクロペンタジエン)、テトラシクロ〔6.2.1.13,6.02,7〕ドデカ−4−エン(慣用名:テトラシクロドデセン)、9−メチル−テトラシクロ〔6.2.1.13,6.02,7〕ドデカ−4−エン、9−エチル−テトラシクロ〔6.2.1.13,6.02,7〕ドデカ−4−エン、9−メチリデン−テトラシクロ〔6.2.1.13,6.02,7〕ドデカ−4−エン、9−エチリデン−テトラシクロ〔6.2.1.13,6.02,7〕ドデカ−4−エン、9−メトキシカルボニル−テトラシクロ〔6.2.1.13,6.02,7〕ドデカ−4−エン、9−ビニル−テトラシクロ〔6.2.1.13,6.02,7〕ドデカ−4−エン、9−プロペニル−テトラシクロ〔6.2.1.13,6.02,7〕ドデカ−4−エン、9−フェニル−テトラシクロ〔6.2.1.13,6.02,7〕ドデカ−4−エン、テトラシクロ[9.2.1.02,10.03,8]テトラデカ−3,5,7,12−テトラエン、シクロペンテン、シクロペンタジエンなどが挙げられる。これらは1種を単独で用いてもよいし2種以上を併用してもよい。 Specific examples of the alicyclic olefin having no carboxyl group and / or carboxylic anhydride group include bicyclo [2.2.1] hept-2-ene (common name: norbornene), 5-ethyl-bicyclo [2 2.1] hept-2-ene, 5-butyl-bicyclo [2.2.1] hept-2-ene, 5-ethylidene-bicyclo [2.2.1] hept-2-ene, 5-methylidene -Bicyclo [2.2.1] hept-2-ene, 5-vinyl-bicyclo [2.2.1] hept-2-ene, tricyclo [5.2.1.0 2,6 ] deca-3, 8-diene (common name: dicyclopentadiene), tetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-4-ene (common name: tetracyclododecene), 9-methyl-tetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-4-ene, 9-ethyl-tetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-4-ene, 9-methylidene-tetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-4-ene, 9-ethylidene-tetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-4-ene, 9-methoxycarbonyl-tetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-4-ene, 9-vinyl-tetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-4-ene, 9-propenyl-tetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-4-ene, 9-phenyl-tetracyclo [6.2.1.1 3,6 . 0 2,7] dodeca-4-ene, tetracyclo [9.2.1.0 2,10. 0 3,8 ] tetradeca-3,5,7,12-tetraene, cyclopentene, cyclopentadiene and the like. These may be used alone or in combination of two or more.

カルボキシル基および/またはカルボン酸無水物基を有しない芳香族オレフィンの例としては、スチレン、α−メチルスチレン、ジビニルベンゼンなどが挙げられる。これらは1種を単独で用いてもよいし2種以上を併用してもよい。   Examples of the aromatic olefin having no carboxyl group and / or carboxylic anhydride group include styrene, α-methylstyrene, divinylbenzene and the like. These may be used alone or in combination of two or more.

脂環式オレフィンや芳香族オレフィンと共重合することができる、カルボキシル基および/またはカルボン酸無水物基を有する脂環式オレフィン以外の、カルボキシル基および/またはカルボン酸無水物基を有する単量体としては、カルボキシル基および/またはカルボン酸無水物基を有するエチレン性不飽和化合物が挙げられ、その具体例としては、アクリル酸、メタクリル酸、α−エチルアクリル酸、2−ヒドロキシエチル(メタ)アクリル酸、マレイン酸、フマール酸、イタコン酸などの不飽和カルボン酸化合物;無水マレイン酸、ブテニル無水コハク酸、テトラヒドロ無水フタル酸、無水シトラコン酸などの不飽和カルボン酸無水物;などが挙げられる。これらは1種を単独で用いてもよいし2種以上を併用してもよい。   Monomers having a carboxyl group and / or a carboxylic anhydride group other than an alicyclic olefin having a carboxyl group and / or a carboxylic anhydride group, which can be copolymerized with an alicyclic olefin or an aromatic olefin Examples thereof include an ethylenically unsaturated compound having a carboxyl group and / or a carboxylic anhydride group, and specific examples thereof include acrylic acid, methacrylic acid, α-ethylacrylic acid, 2-hydroxyethyl (meth) acrylic. And unsaturated carboxylic acid compounds such as acid, maleic acid, fumaric acid and itaconic acid; unsaturated carboxylic acid anhydrides such as maleic anhydride, butenyl succinic anhydride, tetrahydrophthalic anhydride and citraconic anhydride; and the like. These may be used alone or in combination of two or more.

脂環式オレフィンや芳香族オレフィンと共重合することができる、脂環式オレフィン以外の、カルボキシル基および/またはカルボン酸無水物基を有しない単量体としては、カルボキシル基および/またはカルボン酸無水物基を有しないエチレン性不飽和化合物が挙げられ、その具体例としては、エチレン、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、3−メチル−1−ブテン、3−メチル−1−ペンテン、3−エチル−1−ペンテン、4−メチル−1−ペンテン、4−メチル−1−ヘキセン、4,4−ジメチル−1−ヘキセン、4,4−ジメチル−1−ペンテン、4−エチル−1−ヘキセン、3−エチル−1−ヘキセン、1−オクテン、1−デセン、1−ドデセン、1−テトラデセン、1−ヘキサデセン、1−オクタデセン、1−エイコセンなどの炭素数2〜20のエチレンまたはα−オレフィン;1,4−ヘキサジエン、4−メチル−1,4−ヘキサジエン、5−メチル−1,4−ヘキサジエン、1,7−オクタジエンなどの非共役ジエン;などが挙げられる。これらは1種を単独で用いてもよいし2種以上を併用してもよい。   As a monomer having no carboxyl group and / or carboxylic anhydride group other than the alicyclic olefin, which can be copolymerized with an alicyclic olefin or an aromatic olefin, a carboxyl group and / or a carboxylic anhydride Examples thereof include ethylenically unsaturated compounds having no physical group, and specific examples thereof include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, and 3-methyl-1- Pentene, 3-ethyl-1-pentene, 4-methyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4,4-dimethyl-1-pentene, 4-ethyl- 1-hexene, 3-ethyl-1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, -Ethylene or α-olefin having 2 to 20 carbon atoms such as eicosene; non-such as 1,4-hexadiene, 4-methyl-1,4-hexadiene, 5-methyl-1,4-hexadiene, 1,7-octadiene Conjugated dienes; and the like. These may be used alone or in combination of two or more.

また、本発明においては、カルボキシル基および/またはカルボン酸無水物基を有する脂環式オレフィン重合体(A)として、重量平均分子量が20,000以上100,000以下である重合体(以下、適宜、「高分子量脂環式オレフィン重合体(A1)」とする。)と、重量平均分子量が5,000以上20,000未満である重合体(以下、適宜、「低分子量脂環式オレフィン重合体(A2)」とする。)とを含有するものを用いることが好ましい。互いに分子量の異なる、高分子量脂環式オレフィン重合体(A1)と、低分子量脂環式オレフィン重合体(A2)と、を組み合わせて用いることで、硬化性樹脂組成物の溶融粘度と、得られる硬化物の樹脂強度とを高度にバランスさせることができる。   In the present invention, as the alicyclic olefin polymer (A) having a carboxyl group and / or a carboxylic acid anhydride group, a polymer having a weight average molecular weight of 20,000 or more and 100,000 or less (hereinafter referred to as appropriate). , “High molecular weight alicyclic olefin polymer (A1)”) and a polymer having a weight average molecular weight of 5,000 or more and less than 20,000 (hereinafter referred to as “low molecular weight alicyclic olefin polymer as appropriate”). (A2) ”) is preferably used. By using the high molecular weight alicyclic olefin polymer (A1) and the low molecular weight alicyclic olefin polymer (A2) having different molecular weights in combination, the melt viscosity of the curable resin composition can be obtained. The resin strength of the cured product can be highly balanced.

高分子量脂環式オレフィン重合体(A1)と低分子量脂環式オレフィン重合体(A2)との配合割合は、「高分子量脂環式オレフィン重合体(A1)/低分子量脂環式オレフィン重合体(A2)」の重量比で、好ましくは5/95〜70/30であり、より好ましくは8/92〜50/50、さらに好ましくは12/88〜30/70である。高分子量脂環式オレフィン重合体(A1)が少なすぎると、硬化物とした際における樹脂強度が低下するおそれがあり、一方、低分子量脂環式オレフィン重合体(A2)が少なすぎると、溶融粘度が上昇し、硬化物とした場合における配線埋め込み平坦性が低下するおそれがある。   The blending ratio of the high molecular weight alicyclic olefin polymer (A1) and the low molecular weight alicyclic olefin polymer (A2) is “high molecular weight alicyclic olefin polymer (A1) / low molecular weight alicyclic olefin polymer”. The weight ratio of (A2) ”is preferably 5/95 to 70/30, more preferably 8/92 to 50/50, and still more preferably 12/88 to 30/70. If the amount of the high molecular weight alicyclic olefin polymer (A1) is too small, the resin strength in the case of a cured product may be lowered. On the other hand, if the amount of the low molecular weight alicyclic olefin polymer (A2) is too small, When the viscosity is increased and the cured product is used, the wiring embedding flatness may be lowered.

なお、高分子量脂環式オレフィン重合体(A1)の重量平均分子量は、20,000以上100,000以下であり、好ましくは30,000以上80,000以下、より好ましくは40,000以上60,000以下である。高分子量脂環式オレフィン重合体(A1)の分子量が低すぎると、得られる硬化物の樹脂強度が低下するおそれがある。   The weight average molecular weight of the high molecular weight alicyclic olefin polymer (A1) is from 20,000 to 100,000, preferably from 30,000 to 80,000, more preferably from 40,000 to 60,000. 000 or less. If the molecular weight of the high molecular weight alicyclic olefin polymer (A1) is too low, the resin strength of the resulting cured product may be reduced.

また、低分子量脂環式オレフィン重合体(A2)の重量平均分子量は、5,000以上20,000未満であり、好ましくは7,000以上17,000以下、より好ましくは9,000以上15,000以下である。低分子量脂環式オレフィン重合体(A2)の分子量が高すぎると、硬化性樹脂組成物の溶融粘度の低減効果が得難くなる場合がある。   The weight average molecular weight of the low molecular weight alicyclic olefin polymer (A2) is 5,000 or more and less than 20,000, preferably 7,000 or more and 17,000 or less, more preferably 9,000 or more and 15, 000 or less. If the molecular weight of the low molecular weight alicyclic olefin polymer (A2) is too high, it may be difficult to obtain the effect of reducing the melt viscosity of the curable resin composition.

なお、高分子量脂環式オレフィン重合体(A1)および低分子量脂環式オレフィン重合体(A2)の重量平均分子量は、たとえば、テトロヒドロフランを溶媒として用いたゲルパーミエーションクロマトグラフィにより、ポリスチレン換算として測定することができる。   The weight average molecular weights of the high molecular weight alicyclic olefin polymer (A1) and the low molecular weight alicyclic olefin polymer (A2) are, for example, converted to polystyrene by gel permeation chromatography using tetrohydrofuran as a solvent. Can be measured.

本発明で用いる脂環式オレフィン重合体(A)を、開環重合法により得る場合の重合触媒としては、従来公知のメタセシス重合触媒を用いることができる。メタセシス重合触媒としては、Mo,W,Nb,Ta,Ruなどの原子を含有してなる遷移金属化合物が例示され、なかでも、Mo,WまたはRuを含有する化合物は重合活性が高くて好ましい。特に好ましいメタセシス重合触媒の具体的な例としては、(1)ハロゲン基、イミド基、アルコキシ基、アリロキシ基またはカルボニル基を配位子として有する、モリブデンあるいはタングステン化合物を主触媒とし、有機金属化合物を第二成分とする触媒や、(2)Ruを中心金属とする金属カルベン錯体触媒を挙げることができる。   A conventionally known metathesis polymerization catalyst can be used as the polymerization catalyst when the alicyclic olefin polymer (A) used in the present invention is obtained by a ring-opening polymerization method. Examples of the metathesis polymerization catalyst include transition metal compounds containing atoms such as Mo, W, Nb, Ta, and Ru. Among them, compounds containing Mo, W, or Ru are preferable because of high polymerization activity. Specific examples of particularly preferred metathesis polymerization catalysts include: (1) Molybdenum or tungsten compounds having a halogen group, an imide group, an alkoxy group, an allyloxy group, or a carbonyl group as a ligand as a main catalyst, and an organometallic compound. Examples thereof include a catalyst as a second component and (2) a metal carbene complex catalyst having Ru as a central metal.

上記(1)の触媒で主触媒として用いられる化合物の例としては、MoCl、MoBrなどのハロゲン化モリブデン化合物やWCl、WOCl、タングステン(フェニルイミド)テトラクロリド・ジエチルエーテルなどのハロゲン化タングステン化合物が挙げられる。また、上記(1)の触媒で、第二成分として用いられる有機金属化合物としては、周期表第1族、2族、12族、13族または14族の有機金属化合物を挙げることができる。なかでも、有機リチウム化合物、有機マグネシウム化合物、有機亜鉛化合物、有機アルミニウム化合物、有機スズ化合物が好ましく、有機リチウム化合物、有機アルミニウム化合物、有機スズ化合物が特に好ましい。有機リチウム化合物としては、n−ブチルリチウム、メチルリチウム、フェニルリチウム、ネオペンチルリチウム、ネオフィルリチウムなどを挙げることができる。有機マグネシウムとしては、ブチルエチルマグネシウム、ブチルオクチルマグネシウム、ジヘキシルマグネシウム、エチルマグネシウムクロリド、n−ブチルマグネシウムクロリド、アリルマグネシウムブロミド、ネオペンチルマグネシウムクロリド、ネオフィルマグネシウムクロリドなどを挙げることができる。有機亜鉛化合物としては、ジメチル亜鉛、ジエチル亜鉛、ジフェニル亜鉛などを挙げることができる。有機アルミニウム化合物としては、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム、ジエチルアルミニウムクロリド、エチルアルミニウムセスキクロリド、エチルアルミニウムジクロリド、ジエチルアルミニウムエトキシド、エチルアルミニウムジエトキシドなどを挙げることができ、さらに、これらの有機アルミニウム化合物と水との反応によって得られるアルミノキサン化合物も用いることができる。有機スズ化合物としては、テトラメチルスズ、テトラ(n−ブチル)スズ、テトラフェニルスズなどを挙げることができる。これらの有機金属化合物の量は、用いる有機金属化合物によって異なるが、主触媒の中心金属に対して、モル比で、0.1〜10,000倍が好ましく、0.2〜5,000倍がより好ましく、0.5〜2,000倍が特に好ましい。 Examples of compounds used as the main catalyst in the catalyst of (1) above are halogenated molybdenum compounds such as MoCl 5 and MoBr 5, and halogenated compounds such as WCl 6 , WOCl 4 , tungsten (phenylimide) tetrachloride / diethyl ether, etc. A tungsten compound is mentioned. In addition, examples of the organometallic compound used as the second component in the catalyst of the above (1) include organometallic compounds of Group 1, Group 2, Group 12, Group 13, or Group 14 of the periodic table. Of these, organolithium compounds, organomagnesium compounds, organozinc compounds, organoaluminum compounds, and organotin compounds are preferred, and organolithium compounds, organoaluminum compounds, and organotin compounds are particularly preferred. Examples of the organic lithium compound include n-butyllithium, methyllithium, phenyllithium, neopentyllithium, neophyllithium, and the like. Examples of the organic magnesium include butylethylmagnesium, butyloctylmagnesium, dihexylmagnesium, ethylmagnesium chloride, n-butylmagnesium chloride, allylmagnesium bromide, neopentylmagnesium chloride, neophyllmagnesium chloride and the like. Examples of the organic zinc compound include dimethyl zinc, diethyl zinc, and diphenyl zinc. Examples of organoaluminum compounds include trimethylaluminum, triethylaluminum, triisobutylaluminum, diethylaluminum chloride, ethylaluminum sesquichloride, ethylaluminum dichloride, diethylaluminum ethoxide, ethylaluminum diethoxide, and the like. An aluminoxane compound obtained by a reaction between an organoaluminum compound and water can also be used. Examples of the organic tin compound include tetramethyltin, tetra (n-butyl) tin, and tetraphenyltin. The amount of these organometallic compounds varies depending on the organometallic compound used, but is preferably 0.1 to 10,000 times, preferably 0.2 to 5,000 times in terms of molar ratio to the central metal of the main catalyst. More preferably, 0.5 to 2,000 times is particularly preferable.

また、上記(2)のRuを中心金属とする金属カルベン錯体触媒としては、(1,3−ジメシチル−イミダゾリジン−2−イリデン)(トリシクロヘキシルホスフィン)ベンジリデンルテニウムジクロリド、ビス(トリシクロヘキシルホスフィン)ベンジリデンルテニウムジクロリド、トリシクロヘキシルホスフィン−〔1,3−ビス(2,4,6−トリメチルフェニル)−4,5−ジブロモイミダゾール−2−イリデン〕−〔ベンジリデン〕ルテニウムジクロリド、4−アセトキシベンジリデン(ジクロロ)(4,5−ジブロモ−1,3−ジメシチル−4−イミダゾリン−2−イリデン)(トリシクロヘキシルホスフィン)ルテニウムなどが挙げられる。   The metal carbene complex catalyst (2) having Ru as a central metal includes (1,3-dimesityl-imidazolidine-2-ylidene) (tricyclohexylphosphine) benzylidene ruthenium dichloride, bis (tricyclohexylphosphine) benzylidene. Ruthenium dichloride, tricyclohexylphosphine- [1,3-bis (2,4,6-trimethylphenyl) -4,5-dibromoimidazol-2-ylidene]-[benzylidene] ruthenium dichloride, 4-acetoxybenzylidene (dichloro) ( 4,5-dibromo-1,3-dimesityl-4-imidazoline-2-ylidene) (tricyclohexylphosphine) ruthenium and the like.

メタセシス重合触媒の使用割合は、重合に用いる単量体に対して、(メタセシス重合触媒中の遷移金属:単量体)のモル比で、通常1:100〜1:2,000,000の範囲であり、好ましくは1:200〜1:1,000,000の範囲である。触媒量が多すぎると触媒除去が困難となり、少なすぎると十分な重合活性が得られないおそれがある。   The use ratio of the metathesis polymerization catalyst is usually in the range of 1: 100 to 1: 2,000,000 in terms of the molar ratio of (transition metal in the metathesis polymerization catalyst: monomer) to the monomer used for the polymerization. Preferably, it is the range of 1: 200-1: 1,000,000. If the amount of catalyst is too large, it is difficult to remove the catalyst. If the amount is too small, sufficient polymerization activity may not be obtained.

重合反応は、通常、有機溶媒中で行なう。用いられる有機溶媒は、重合体が所定の条件で溶解または分散し、重合に影響しないものであれば、特に限定されないが、工業的に汎用されているものが好ましい。有機溶媒の具体例としては、ペンタン、ヘキサン、ヘプタンなどの脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、トリメチルシクロヘキサン、エチルシクロヘキサン、ジエチルシクロヘキサン、デカヒドロナフタレン、ビシクロヘプタン、トリシクロデカン、ヘキサヒドロインデンシクロヘキサン、シクロオクタンなどの脂環族炭化水素;ベンゼン、トルエン、キシレンなどの芳香族炭化水素;ジクロロメタン、クロロホルム、1,2−ジクロロエタンなどのハロゲン系脂肪族炭化水素;クロロベンゼン、ジクロロベンゼンなどのハロゲン系芳香族炭化水素;ニトロメタン、ニトロベンゼン、アセトニトリルなどの含窒素炭化水素系溶媒;ジエチルエ−テル、テトラヒドロフランなどのエ−テル系溶媒;アニソール、フェネトールなどの芳香族エーテル系溶媒;などを挙げることができる。これらの中でも、工業的に汎用されている芳香族炭化水素系溶媒や脂肪族炭化水素系溶媒、脂環族炭化水素系溶媒、エーテル系溶剤、芳香族エーテル系溶媒が好ましい。   The polymerization reaction is usually performed in an organic solvent. The organic solvent to be used is not particularly limited as long as the polymer is dissolved or dispersed under predetermined conditions and does not affect the polymerization, but industrially used solvents are preferable. Specific examples of the organic solvent include aliphatic hydrocarbons such as pentane, hexane, and heptane; cyclopentane, cyclohexane, methylcyclohexane, dimethylcyclohexane, trimethylcyclohexane, ethylcyclohexane, diethylcyclohexane, decahydronaphthalene, bicycloheptane, and tricyclodecane. , Hexahydroindenecyclohexane, cyclooctane and other alicyclic hydrocarbons; benzene, toluene, xylene and other aromatic hydrocarbons; dichloromethane, chloroform, 1,2-dichloroethane and other halogenated aliphatic hydrocarbons; chlorobenzene, dichlorobenzene Halogenated aromatic hydrocarbons such as: Nitrogen-containing hydrocarbon solvents such as nitromethane, nitrobenzene, and acetonitrile; Diethyl ether, tetrahydrofuran, etc. Et - ether solvents; and the like; anisole, aromatic ether solvents such as phenetole. Among these, an aromatic hydrocarbon solvent, an aliphatic hydrocarbon solvent, an alicyclic hydrocarbon solvent, an ether solvent, and an aromatic ether solvent that are widely used industrially are preferable.

有機溶媒の使用量は、重合溶液中の単量体の濃度が、1〜50重量%となる量であることが好ましく、2〜45重量%となる量であることがより好ましく、3〜40重量%となる量であることが特に好ましい。単量体の濃度が1重量%未満の場合は生産性が悪くなり、50重量%を超えると、重合後の溶融粘度が高すぎて、その後の水素添加反応が困難となる場合がある。   The amount of the organic solvent used is preferably such that the monomer concentration in the polymerization solution is 1 to 50% by weight, more preferably 2 to 45% by weight, and 3 to 40%. It is particularly preferable that the amount be% by weight. When the concentration of the monomer is less than 1% by weight, productivity is deteriorated, and when it exceeds 50% by weight, the melt viscosity after polymerization is too high, and the subsequent hydrogenation reaction may be difficult.

重合反応は、重合に用いる単量体とメタセシス重合触媒とを混合することにより開始される。これらを混合する方法としては、単量体溶液にメタセシス重合触媒溶液を加えてもよいし、その逆でもよい。用いるメタセシス重合触媒が、主触媒である遷移金属化合物と第二成分である有機金属化合物とからなる混合触媒である場合には、単量体溶液に混合触媒の反応液を加えてもよいし、その逆でもよい。また、単量体と有機金属化合物との混合溶液に遷移金属化合物溶液を加えてもよいし、その逆でもよい。さらに、単量体と遷移金属化合物の混合溶液に有機金属化合物を加えてもよいし、その逆でもよい。   The polymerization reaction is started by mixing a monomer used for polymerization and a metathesis polymerization catalyst. As a method of mixing these, the metathesis polymerization catalyst solution may be added to the monomer solution, or vice versa. When the metathesis polymerization catalyst to be used is a mixed catalyst composed of a transition metal compound as a main catalyst and an organometallic compound as a second component, the reaction solution of the mixed catalyst may be added to the monomer solution, The reverse is also possible. Further, the transition metal compound solution may be added to the mixed solution of the monomer and the organometallic compound, or vice versa. Furthermore, the organometallic compound may be added to the mixed solution of the monomer and the transition metal compound, or vice versa.

重合温度は特に制限はないが、通常、−30℃〜200℃、好ましくは0℃〜180℃である。重合時間は、特に制限はないが、通常、1分間〜100時間である。   Although there is no restriction | limiting in particular in superposition | polymerization temperature, Usually, -30 degreeC-200 degreeC, Preferably it is 0 degreeC-180 degreeC. The polymerization time is not particularly limited, but is usually 1 minute to 100 hours.

得られる脂環式オレフィン重合体(A)の分子量を調整する方法としては、ビニル化合物またはジエン化合物を適当量添加する方法を挙げることができる。分子量調整に用いるビニル化合物は、ビニル基を有する有機化合物であれば特に限定されないが、1−ブテン、1−ペンテン、1−ヘキセン、1−オクテンなどのα−オレフィン類;スチレン、ビニルトルエンなどのスチレン類;エチルビニルエーテル、i−ブチルビニルエーテル、アリルグリシジルエーテルなどのエーテル類;アリルクロライドなどのハロゲン含有ビニル化合物;酢酸アリル、アリルアルコール、グリシジルメタクリレートなど酸素含有ビニル化合物、アクリルアミドなどの窒素含有ビニル化合物などを挙げることができる。分子量調整に用いるジエン化合物としては、1,4−ペンタジエン、1,4−ヘキサジエン、1,5−ヘキサジエン、1,6−ヘプタジエン、2−メチル−1,4−ペンタジエン、2,5−ジメチル−1,5−ヘキサジエンなどの非共役ジエン、または、1,3−ブタジエン、2−メチル−1,3−ブタジエン、2,3−ジメチル−1,3−ブタジエン、1,3−ペンタジエン、1,3−ヘキサジエンなどの共役ジエンを挙げることができる。ビニル化合物またはジエン化合物の添加量は、目的とする分子量に応じて、重合に用いる単量体に対して、0.1〜10モル%の間で任意に選択することができる。   Examples of a method for adjusting the molecular weight of the obtained alicyclic olefin polymer (A) include a method of adding an appropriate amount of a vinyl compound or a diene compound. The vinyl compound used for molecular weight adjustment is not particularly limited as long as it is an organic compound having a vinyl group, but α-olefins such as 1-butene, 1-pentene, 1-hexene and 1-octene; styrene, vinyltoluene and the like Styrenes; Ethers such as ethyl vinyl ether, i-butyl vinyl ether, and allyl glycidyl ether; Halogen-containing vinyl compounds such as allyl chloride; Oxygen-containing vinyl compounds such as allyl acetate, allyl alcohol, and glycidyl methacrylate; Nitrogen-containing vinyl compounds such as acrylamide Can be mentioned. Diene compounds used for molecular weight adjustment include 1,4-pentadiene, 1,4-hexadiene, 1,5-hexadiene, 1,6-heptadiene, 2-methyl-1,4-pentadiene, 2,5-dimethyl-1 , 5-hexadiene or the like, or 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3- Mention may be made of conjugated dienes such as hexadiene. The addition amount of the vinyl compound or diene compound can be arbitrarily selected between 0.1 and 10 mol% with respect to the monomer used for the polymerization depending on the target molecular weight.

本発明で用いる脂環式オレフィン重合体(A)を、付加重合法により得る場合の重合触媒としては、たとえば、チタン、ジルコニウムまたはバナジウム化合物と有機アルミニウム化合物とからなる触媒が好適に用いられる。これらの重合触媒は、それぞれ単独でまたは2種以上を組み合わせて用いることができる。重合触媒の量は、重合触媒中の金属化合物:重合に用いる単量体のモル比で、通常、1:100〜1:2,000,000の範囲である。   As a polymerization catalyst in the case of obtaining the alicyclic olefin polymer (A) used in the present invention by an addition polymerization method, for example, a catalyst comprising a titanium, zirconium or vanadium compound and an organoaluminum compound is preferably used. These polymerization catalysts can be used alone or in combination of two or more. The amount of the polymerization catalyst is a molar ratio of the metal compound in the polymerization catalyst to the monomer used for the polymerization, and is usually in the range of 1: 100 to 1: 2,000,000.

本発明で用いる脂環式オレフィン重合体(A)として、開環重合体の水素添加物を用いる場合の、開環重合体に対する水素添加は、通常、水素添加触媒を用いて行われる。水素添加触媒は特に限定されず、オレフィン化合物の水素添加に際して一般的に使用されているものを適宜採用すればよい。水素添加触媒の具体例としては、たとえば、酢酸コバルトとトリエチルアルミニウム、ニッケルアセチルアセトナートとトリイソブチルアルミニウム、チタノセンジクロリドとn−ブチルリチウム、ジルコノセンジクロリドとsec−ブチルリチウム、テトラブトキシチタネートとジメチルマグネシウムのような遷移金属化合物とアルカリ金属化合物との組み合わせからなるチーグラー系触媒;ジクロロトリス(トリフェニルホスフィン)ロジウム、特開平7−2929号公報、特開平7−149823号公報、特開平11−209460号公報、特開平11−158256号公報、特開平11−193323号公報、特開平11−209460号公報などに記載されている、たとえば、ビス(トリシクロヘキシルホスフィン)ベンジリジンルテニウム(IV)ジクロリドなどのルテニウム化合物からなる貴金属錯体触媒;などの均一系触媒が挙げられる。また、ニッケル、パラジウム、白金、ロジウム、ルテニウムなどの金属を、カーボン、シリカ、ケイソウ土、アルミナ、酸化チタンなどの担体に担持させた不均一触媒、たとえば、ニッケル/シリカ、ニッケル/ケイソウ土、ニッケル/アルミナ、パラジウム/カーボン、パラジウム/シリカ、パラジウム/ケイソウ土、パラジウム/アルミナなどを用いることもできる。また、上述したメタセシス重合触媒をそのまま、水素添加触媒として用いることも可能である。   As the alicyclic olefin polymer (A) used in the present invention, hydrogenation of the ring-opening polymer in the case of using a hydrogenated product of the ring-opening polymer is usually performed using a hydrogenation catalyst. The hydrogenation catalyst is not particularly limited, and a catalyst generally used for hydrogenation of an olefin compound may be appropriately employed. Specific examples of the hydrogenation catalyst include cobalt acetate and triethylaluminum, nickel acetylacetonate and triisobutylaluminum, titanocene dichloride and n-butyllithium, zirconocene dichloride and sec-butyllithium, tetrabutoxytitanate and dimethylmagnesium. Ziegler catalyst comprising a combination of a transition metal compound and an alkali metal compound; dichlorotris (triphenylphosphine) rhodium, JP-A-7-2929, JP-A-7-149823, JP-A-11-209460, For example, bis (tricyclohexylphosphine) benzylidine described in JP-A-11-158256, JP-A-11-193323, JP-A-11-209460, etc. Noble metal complex catalyst comprising a ruthenium compound such as ruthenium (IV) dichloride; include homogeneous catalysts such as. Also, heterogeneous catalysts in which metals such as nickel, palladium, platinum, rhodium, ruthenium are supported on a carrier such as carbon, silica, diatomaceous earth, alumina, titanium oxide, such as nickel / silica, nickel / diatomaceous earth, nickel / Alumina, palladium / carbon, palladium / silica, palladium / diatomaceous earth, palladium / alumina, and the like can also be used. Further, the above-described metathesis polymerization catalyst can be used as it is as a hydrogenation catalyst.

水素添加反応は、通常、有機溶媒中で行う。有機溶媒は生成する水素添加物の溶解性により適宜選択することができ、上述した重合反応に用いる有機溶媒と同様の有機溶媒を使用することができる。したがって、重合反応後、有機溶媒を入れ替えることなく、そのまま水素添加触媒を添加して反応させることもできる。さらに、上述した重合反応に用いる有機溶媒の中でも、水素添加反応に際して反応しないという観点から、芳香族炭化水素系溶媒、脂肪族炭化水素系溶媒、脂環式炭化水素系溶媒、エーテル系溶媒、及び芳香族エーテル系溶媒が好ましく、芳香族炭化水素系溶媒及び芳香族エーテル系溶媒がより好ましく、芳香族エーテル系溶媒が特に好ましい。   The hydrogenation reaction is usually performed in an organic solvent. The organic solvent can be appropriately selected depending on the solubility of the generated hydrogenated product, and the same organic solvent as the organic solvent used in the polymerization reaction described above can be used. Therefore, after the polymerization reaction, the hydrogenation catalyst can be added and reacted as it is without replacing the organic solvent. Furthermore, among the organic solvents used for the polymerization reaction described above, from the viewpoint of not reacting during the hydrogenation reaction, an aromatic hydrocarbon solvent, an aliphatic hydrocarbon solvent, an alicyclic hydrocarbon solvent, an ether solvent, and Aromatic ether solvents are preferred, aromatic hydrocarbon solvents and aromatic ether solvents are more preferred, and aromatic ether solvents are particularly preferred.

水素添加反応条件は、使用する水素添加触媒の種類に応じて適宜選択すればよい。反応温度は、通常、−20〜250℃、好ましくは−10〜220℃、より好ましくは0〜200℃である。−20℃未満では反応速度が遅くなり、逆に250℃を超えると副反応が起こりやすくなる。水素の圧力は、通常、0.01〜10.0MPa、好ましくは0.05〜8.0MPaである。水素圧力が0.01MPa未満では水素添加速度が遅くなり、10.0MPaを超えると高耐圧反応装置が必要となる。   The hydrogenation reaction conditions may be appropriately selected according to the type of hydrogenation catalyst used. The reaction temperature is usually -20 to 250 ° C, preferably -10 to 220 ° C, more preferably 0 to 200 ° C. If it is less than −20 ° C., the reaction rate is slow, and if it exceeds 250 ° C., side reactions tend to occur. The pressure of hydrogen is usually 0.01 to 10.0 MPa, preferably 0.05 to 8.0 MPa. When the hydrogen pressure is less than 0.01 MPa, the hydrogen addition rate is slow, and when it exceeds 10.0 MPa, a high pressure reactor is required.

水素添加反応の時間は、水素添加率をコントロールするために適宜選択される。反応時間は、通常、0.1〜50時間の範囲であり、重合体中の主鎖の炭素−炭素二重結合のうち50%以上、好ましくは70%以上、より好ましくは80%以上、特に好ましくは90%以上を水素添加することができる。   The time for the hydrogenation reaction is appropriately selected in order to control the hydrogenation rate. The reaction time is usually in the range of 0.1 to 50 hours, and 50% or more, preferably 70% or more, more preferably 80% or more, in particular, of the carbon-carbon double bonds of the main chain in the polymer. Preferably 90% or more can be hydrogenated.

水素添加反応を行った後、水素添加反応に用いた触媒を除去する処理を行ってもよい。触媒の除去方法は特に制限されず、遠心分離、濾過などの方法が挙げられる。さらに、水やアルコールなどの触媒不活性化剤を添加したり、また活性白土、アルミナ、珪素土などの吸着剤を添加したりして、触媒の除去を促進させることができる。
本発明で用いられる脂環式オレフィン重合体(A)は、重合や水素添加反応後の重合体溶液として使用しても、溶媒を除去した後に使用してもどちらでもよいが、硬化性樹脂組成物を調製する際に添加剤の溶解や分散が良好になるとともに、工程が簡素化できるため、重合体溶液として使用するのが好ましい。
After the hydrogenation reaction, a treatment for removing the catalyst used in the hydrogenation reaction may be performed. The method for removing the catalyst is not particularly limited, and examples thereof include centrifugation and filtration. Furthermore, the catalyst removal can be promoted by adding a catalyst deactivator such as water or alcohol, or by adding an adsorbent such as activated clay, alumina, or silicon earth.
The alicyclic olefin polymer (A) used in the present invention may be used as a polymer solution after polymerization or hydrogenation reaction or may be used after removing the solvent. When preparing a product, the additive is preferably dissolved and dispersed, and the process can be simplified, so that it is preferably used as a polymer solution.

(硬化剤(B))
本発明の硬化性樹脂組成物は、少なくとも2つの官能基と、脂環式オレフィン構造又はフルオレン構造とを有する硬化剤(B)(以下、適宜、「硬化剤(B)」と略記する。)を含有する。
ここで、硬化剤(B)の有する少なくとも2つの官能基としては、脂環式オレフィン重合体(A)のカルボキシル基および/またはカルボン酸無水物基と反応して結合を形成することができる基であればよく、特に限定されない。当該官能基としては、例えば、エポキシ基、アミノ基、水酸基、及びイソシアネート基などが挙げられる。
(Curing agent (B))
The curable resin composition of the present invention has a curing agent (B) having at least two functional groups and an alicyclic olefin structure or a fluorene structure (hereinafter abbreviated as “curing agent (B)” as appropriate). Containing.
Here, as the at least two functional groups of the curing agent (B), groups capable of reacting with the carboxyl group and / or carboxylic anhydride group of the alicyclic olefin polymer (A) to form a bond. There is no particular limitation as long as it is sufficient. Examples of the functional group include an epoxy group, an amino group, a hydroxyl group, and an isocyanate group.

本発明で用いる硬化剤(B)としては、少なくとも2つの官能基と、脂環式オレフィン構造又はフルオレン構造とを有するエポキシ樹脂(B1)(以下、適宜、「エポキシ樹脂(B1)」と略記する。)、または、少なくとも2つの官能基と、脂環式オレフィン構造又はフルオレン構造とを有するフェノール樹脂(B2)(以下、適宜、「フェノール樹脂(B2)」と略記する。)が好ましく、硬化剤(B)としては、架橋密度を増加させて樹脂強度を向上させる観点から、これらエポキシ樹脂(B1)とフェノール樹脂(B2)とを組み合わせてなるものであることがより好ましい。   The curing agent (B) used in the present invention is an epoxy resin (B1) having at least two functional groups and an alicyclic olefin structure or a fluorene structure (hereinafter abbreviated as “epoxy resin (B1)” as appropriate). Or a phenol resin (B2) having at least two functional groups and an alicyclic olefin structure or a fluorene structure (hereinafter abbreviated as “phenol resin (B2)” as appropriate), and a curing agent. (B) is more preferably a combination of the epoxy resin (B1) and the phenol resin (B2) from the viewpoint of increasing the crosslink density and improving the resin strength.

なお、本発明に用いる硬化剤(B)において、「脂環式オレフィン構造」として、脂環中に少なくとも1つの炭素−炭素二重結合を有してなる脂環式構造が好ましい。当該脂環式構造は単環構造であっても、多環構造であってもよい。また、「フルオレン構造」とは、以下の構造をいう。   In the curing agent (B) used in the present invention, the “alicyclic olefin structure” is preferably an alicyclic structure having at least one carbon-carbon double bond in the alicyclic ring. The alicyclic structure may be a monocyclic structure or a polycyclic structure. The “fluorene structure” refers to the following structure.

Figure 0005630262
Figure 0005630262

少なくとも2つの官能基と、脂環式オレフィン構造又はフルオレン構造とを有するエポキシ樹脂(B1)としては、ジシクロペンタジエン骨格を有するエポキシ樹脂〔たとえば、商品名「エピクロン(登録商標)HP7200L、エピクロン(登録商標)HP7200、エピクロン(登録商標)HP7200H、エピクロン(登録商標)HP7200HH」(以上、大日本インキ化学工業社製);商品名「Tactix(登録商標)558」(ハンツマン・アドバンスト・マテリアル社製);商品名「XD−1000−1L、XD−1000−2L」(以上、日本化薬社製)〕や、フルオレン骨格を有するエポキシ樹脂〔たとえば、商品名「オンコートEX−1010、オンコートEX−1011、オンコートEX−1012、オンコートEX−1020、オンコートEX−1030、オンコートEX−1040、オンコートEX−1050、オンコートEX−1051」(以上、長瀬産業社製);商品名「オグゾールPG−100、オグゾールEG−200、オグゾールEG−250)」(以上、大阪ガスケミカル社製)〕などが挙げられる。   As an epoxy resin (B1) having at least two functional groups and an alicyclic olefin structure or a fluorene structure, an epoxy resin having a dicyclopentadiene skeleton [for example, trade names “Epicron (registered trademark) HP7200L, Epicron (registered) Trademark) HP7200, Epicron (registered trademark) HP7200H, Epicron (registered trademark) HP7200HH "(manufactured by Dainippon Ink & Chemicals, Inc.); Trade name" Tactix (registered trademark) 558 "(manufactured by Huntsman Advanced Materials) Trade names “XD-1000-1L, XD-1000-2L” (manufactured by Nippon Kayaku Co., Ltd.)] and epoxy resins having a fluorene skeleton [for example, trade names “Oncoat EX-1010, Oncoat EX-1011” , On coat EX-1012, on coat E -1020, ONCOAT EX-1030, ONCOAT EX-1040, ONCOAT EX-1050, ONCOAT EX-1051 (above, manufactured by Nagase Sangyo Co., Ltd.); EG-250) "(manufactured by Osaka Gas Chemical Co., Ltd.)] and the like.

また、少なくとも2つの官能基と、脂環式オレフィン構造又はフルオレン構造とを有するフェノール樹脂(B2)としては、ジシクロペンタジエン骨格を有するフェノール樹脂〔たとえば、商品名「レヂトップGDP−6085、レヂトップGDP−6095LR、レヂトップGDP−6095HR、レヂトップGDP−6115L、レヂトップGDP−6115H、レヂトップGDP−6140」(群栄化学工業社製);商品名「J−DPP−95、J−DPP−115」(JFEケミカル社製)〕や、フルオレン骨格を有するフェノール樹脂〔たとえば、商品名「CP−001、CP−002、NV−203−R4」(大阪ガスケミカル社製);商品名「S−TPM−113、S−TPM−130」(JFEケミカル社製)〕などが挙げられる。   Further, as the phenol resin (B2) having at least two functional groups and an alicyclic olefin structure or a fluorene structure, a phenol resin having a dicyclopentadiene skeleton [for example, trade names “Resitop GDP-6085, ResidtopGDP- 6095LR, Residtop GDP-6095HR, Residtop GDP-6115L, Residtop GDP-6115H, Residtop GDP-6140 (manufactured by Gunei Chemical Industry Co., Ltd.); Trade names "J-DPP-95, J-DPP-115" (JFE Chemical Co., Ltd.) Product)] and phenol resins having a fluorene skeleton [for example, trade names “CP-001, CP-002, NV-203-R4” (manufactured by Osaka Gas Chemical Co., Ltd.); trade names “S-TPM-113, S- TPM-130 "(manufactured by JFE Chemical Co., Ltd.)] It is.

エポキシ樹脂(B1)とフェノール樹脂(B2)との配合割合は、「エポキシ樹脂(B1)/フェノール樹脂(B2)」の重量比で、好ましくは80/20〜40/60、より好ましくは70/30〜50/50である。   The blending ratio of the epoxy resin (B1) and the phenol resin (B2) is preferably a weight ratio of “epoxy resin (B1) / phenol resin (B2)”, preferably 80/20 to 40/60, more preferably 70 / 30-50 / 50.

また、本発明の硬化性樹脂組成物中における、硬化剤(B)の配合量は、カルボキシル基および/またはカルボン酸無水物基を有する脂環式オレフィン重合体(A)100重量部に対して、好ましくは300〜1800重量部、より好ましくは350〜1500重量部、さらに好ましくは400〜1200重量部である。硬化剤(B)の配合量が少なすぎると、溶融粘度が高くなり配線埋め込み平坦性が確保できなくなる場合があり、一方、多すぎると、デスミア耐性が悪化する場合がある。   Moreover, the compounding quantity of the hardening | curing agent (B) in the curable resin composition of this invention is based on 100 weight part of alicyclic olefin polymers (A) which have a carboxyl group and / or a carboxylic anhydride group. The amount is preferably 300 to 1800 parts by weight, more preferably 350 to 1500 parts by weight, and still more preferably 400 to 1200 parts by weight. If the blending amount of the curing agent (B) is too small, the melt viscosity becomes high and the wiring embedding flatness may not be ensured. On the other hand, if it is too large, the desmear resistance may be deteriorated.

(無機充填材(C))
無機充填材(C)としては、工業的に一般に使用されるものであれば特に限定されず、たとえば、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、酸化亜鉛、酸化チタン、酸化マグネシウム、ケイ酸マグネシウム、ケイ酸カルシウム、ケイ酸ジルコニウム、水和アルミナ、水酸化マグネシウム、水酸化アルミニウム、硫酸バリウム、シリカ、タルク、クレーなどを挙げることができる。無機充填材(C)を配合することで、得られる硬化物の線膨張を低くすることができる。
(Inorganic filler (C))
The inorganic filler (C) is not particularly limited as long as it is generally used industrially. For example, calcium carbonate, magnesium carbonate, barium carbonate, zinc oxide, titanium oxide, magnesium oxide, magnesium silicate, silica Calcium acid, zirconium silicate, hydrated alumina, magnesium hydroxide, aluminum hydroxide, barium sulfate, silica, talc, clay and the like can be mentioned. By mix | blending an inorganic filler (C), the linear expansion of the hardened | cured material obtained can be made low.

上述した無機充填材(C)の中でも、耐熱性、低吸水率、誘電特性、低不純物性、放熱性等に優れるという点より、シリカが好ましく、特に、その表面をシランカップリング剤で処理してなるシリカがより好ましい。特に、表面をシランカップリング剤で処理してなるシリカを用いることにより、得られる硬化物のデスミア耐性(過マンガン酸水溶液によるデスミア処理に対する耐性)を向上させることができる。なお、シランカップリング剤としては、特に限定されず、公知のものを使用することができる。   Among the inorganic fillers (C) described above, silica is preferable because it is excellent in heat resistance, low water absorption, dielectric properties, low impurity properties, heat dissipation, and the like. In particular, the surface is treated with a silane coupling agent. Silica is more preferable. In particular, by using silica obtained by treating the surface with a silane coupling agent, it is possible to improve desmear resistance of the obtained cured product (resistance to desmear treatment with an aqueous permanganate solution). In addition, it does not specifically limit as a silane coupling agent, A well-known thing can be used.

本発明で用いられる無機充填材(C)は、平均粒子径が、好ましくは0.05〜1.5μmであり、より好ましくは0.1〜1μmである。無機充填材(C)の平均粒子径が小さすぎると、溶融粘度が高くなり埋め込み平坦性が確保できなくなる場合があり、一方、大きすぎると、微細な配線パターンを埋め込んだときに配線間のショートを引き起こす場合がある。なお、平均粒子径は、粒度分布測定装置により測定することができる。   The average particle diameter of the inorganic filler (C) used in the present invention is preferably 0.05 to 1.5 μm, more preferably 0.1 to 1 μm. If the average particle size of the inorganic filler (C) is too small, the melt viscosity increases and the embedded flatness may not be ensured. On the other hand, if the average particle size is too large, a short circuit between the wirings occurs when a fine wiring pattern is embedded. May cause. The average particle diameter can be measured with a particle size distribution measuring device.

本発明の硬化性樹脂組成物中における、無機充填材(C)の配合割合は、30〜90重量%であり、好ましくは40〜80重量%、より好ましくは50〜70重量%である。本発明の硬化性樹脂組成物は、上述したカルボキシル基および/またはカルボン酸無水物基を有する脂環式オレフィン重合体(A)に、少なくとも2つの官能基と、脂環式オレフィン構造又はフルオレン構造とを有する硬化剤(B)、及び無機充填材(C)を配合してなるものであるため、無機充填材(C)の配合量を、30重量%以上と多くした場合でも、硬化性樹脂組成物の溶融粘度の上昇を抑えることができる。そして、得られる硬化物の樹脂強度を良好に保つことができ、これにより、得られる硬化物を低線膨張であり、かつ、配線埋め込み平坦性に優れたものとすることができる。また、無機充填材(C)を、多く配合することにより、得られる硬化物の線膨張の低減効果を向上させることができる。無機充填材(C)の配合量が、少なすぎると、得られる硬化物の線膨張係数が高くなる場合がある。一方、多すぎると、溶融粘度が高くなり埋め込み平坦性が確保できなく場合がある。   The compounding ratio of the inorganic filler (C) in the curable resin composition of the present invention is 30 to 90% by weight, preferably 40 to 80% by weight, and more preferably 50 to 70% by weight. The curable resin composition of the present invention includes an alicyclic olefin polymer (A) having a carboxyl group and / or a carboxylic acid anhydride group as described above, at least two functional groups, and an alicyclic olefin structure or a fluorene structure. Since the curing agent (B) and the inorganic filler (C) are blended, the curable resin is used even when the blending amount of the inorganic filler (C) is increased to 30% by weight or more. An increase in the melt viscosity of the composition can be suppressed. And the resin intensity | strength of the hardened | cured material obtained can be kept favorable, and by this, the hardened | cured material obtained can be made into the thing with low linear expansion and excellent wiring embedding flatness. Moreover, the reduction effect of the linear expansion of the hardened | cured material obtained can be improved by mix | blending many inorganic fillers (C). When there are too few compounding quantities of an inorganic filler (C), the linear expansion coefficient of the hardened | cured material obtained may become high. On the other hand, if the amount is too large, the melt viscosity becomes high and the embedded flatness may not be ensured.

また、本発明の硬化性樹脂組成物には、上記成分以外に、硬化促進剤や硬化助剤を配合してもよい。硬化促進剤としては、一般の電気絶縁膜形成用の硬化性樹脂組成物に配合される硬化促進剤を用いればよいが、たとえば、第3級アミン系化合物や三弗化ホウ素錯化合物などが硬化促進剤として好適に用いられる。なかでも、第3級アミン系化合物を使用すると、得られる硬化物の絶縁抵抗性、耐熱性、耐薬品性の向上効果が高いため、好ましい。   Moreover, you may mix | blend a hardening accelerator and a hardening adjuvant with the curable resin composition of this invention other than the said component. As the curing accelerator, a curing accelerator blended in a general curable resin composition for forming an electrical insulating film may be used. For example, a tertiary amine compound or a boron trifluoride complex compound is cured. It is suitably used as an accelerator. Of these, the use of a tertiary amine compound is preferable because the effect of improving the insulation resistance, heat resistance, and chemical resistance of the resulting cured product is high.

第3級アミン系化合物の具体例としては、例えば、ベンジルジメチルアミン、トリエタノールアミン、トリエチルアミン、トリブチルアミン、トリベンジルアミン、ジメチルホルムアミドなどの鎖状3級アミン化合物;ピラゾール類、ピリジン類、ピラジン類、ピリミジン類、インダゾール類、キノリン類、イソキノリン類、イミダゾール類、トリアゾール類などの化合物が挙げられる。これらの中でも、イミダゾール類、特に置換基を有する置換イミダゾール化合物が好ましい。   Specific examples of the tertiary amine compound include, for example, chain tertiary amine compounds such as benzyldimethylamine, triethanolamine, triethylamine, tributylamine, tribenzylamine, dimethylformamide; pyrazoles, pyridines, pyrazines , Pyrimidines, indazoles, quinolines, isoquinolines, imidazoles, triazoles and the like. Among these, imidazoles, particularly substituted imidazole compounds having a substituent are preferable.

置換イミダゾール化合物の具体例としては、たとえば、2−エチルイミダゾール、2−エチル−4−メチルイミダゾール、ビス−2−エチル−4−メチルイミダゾール、1−メチル−2−エチルイミダゾール、2−イソプロピルイミダゾール、2,4−ジメチルイミダゾール、2−ヘプタデシルイミダゾールなどのアルキル置換イミダゾール化合物;2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、1−ベンジル−2−メチルイミダゾール、1−ベンジル−2−エチルイミダゾール、1−ベンジル−2−フェニルイミダゾール、ベンズイミダゾール、2−エチル−4−メチル−1−(2’−シアノエチル)イミダゾール、2−エチル−4−メチル−1−[2’−(3’’,5’’−ジアミノトリアジニル)エチル]イミダゾールなどのアリール基やアラルキル基などの環構造を含有する炭化水素基で置換されたイミダゾール化合物などが挙げられる。これらの中でも、環構造含有の置換基を有するイミダゾールが官能基を有する脂環式オレフィン重合体(A)との相溶性の観点から好ましく、特に、1−ベンジル−2−フェニルイミダゾールが好ましい。   Specific examples of the substituted imidazole compound include, for example, 2-ethylimidazole, 2-ethyl-4-methylimidazole, bis-2-ethyl-4-methylimidazole, 1-methyl-2-ethylimidazole, 2-isopropylimidazole, Alkyl-substituted imidazole compounds such as 2,4-dimethylimidazole and 2-heptadecylimidazole; 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-ethylimidazole 1-benzyl-2-phenylimidazole, benzimidazole, 2-ethyl-4-methyl-1- (2′-cyanoethyl) imidazole, 2-ethyl-4-methyl-1- [2 ′-(3 ″, 5 ″ -Diaminotriazinyl) ethyl] imi Tetrazole and the like imidazole compounds substituted with a hydrocarbon group containing a ring structure, such as an aryl group or an aralkyl group such as. Among these, imidazole having a ring structure-containing substituent is preferable from the viewpoint of compatibility with the alicyclic olefin polymer (A) having a functional group, and 1-benzyl-2-phenylimidazole is particularly preferable.

これらの硬化促進剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。硬化促進剤の配合量は、使用目的に応じて適宜選択すればよいが、カルボキシル基および/またはカルボン酸無水物基を有する脂環式オレフィン重合体(A)100重量部に対して、通常、0.001〜30重量部、好ましくは0.01〜10重量部、より好ましくは0.03〜5重量部である。   These curing accelerators can be used alone or in combination of two or more. The blending amount of the curing accelerator may be appropriately selected according to the purpose of use, but is usually based on 100 parts by weight of the alicyclic olefin polymer (A) having a carboxyl group and / or a carboxylic anhydride group. It is 0.001-30 weight part, Preferably it is 0.01-10 weight part, More preferably, it is 0.03-5 weight part.

硬化助剤としては、一般の電気絶縁膜形成用の硬化性樹脂組成物に配合される硬化助剤を用いればよいが、その具体例としては、キノンジオキシム、ベンゾキノンジオキシム、p−ニトロソフェノールなどのオキシム・ニトロソ系硬化助剤;N,N−m−フェニレンビスマレイミドなどのマレイミド系硬化助剤;ジアリルフタレート、トリアリルシアヌレート、トリアリルイソシアヌレートなどのアリル系硬化助剤;エチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレートなどのメタクリレート系硬化助剤;ビニルトルエン、エチルビニルベンゼン、ジビニルベンゼンなどのビニル系硬化助剤;などが挙げられる。これらの硬化助剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。硬化助剤の配合割合は、硬化剤(B)100重量部に対して、通常、1〜1000重量部、好ましくは10〜500重量部の範囲である。   As the curing aid, a curing aid blended in a general curable resin composition for forming an electrical insulating film may be used. Specific examples thereof include quinone dioxime, benzoquinone dioxime, and p-nitrosophenol. Oxime / nitroso curing aids such as: N, Nm-phenylene bismaleimide and other maleimide curing aids; diallyl phthalate, triallyl cyanurate, triallyl isocyanurate and other allyl curing aids; ethylene glycol di And methacrylate-based curing aids such as methacrylate and trimethylolpropane trimethacrylate; vinyl-based curing aids such as vinyltoluene, ethylvinylbenzene, and divinylbenzene; These curing aids can be used alone or in combination of two or more. The blending ratio of the curing aid is usually in the range of 1 to 1000 parts by weight, preferably 10 to 500 parts by weight with respect to 100 parts by weight of the curing agent (B).

また、本発明の硬化性樹脂組成物には、必要に応じて、ゴム質重合体や、上記した脂環式オレフィン重合体(A)以外のその他の熱可塑性樹脂を配合することができる。ゴム質重合体としては、常温(25℃)以下のガラス転移温度を持つ重合体であり、一般的なゴム状重合体および熱可塑性エラストマーが含まれる。本発明の硬化性樹脂組成物に、ゴム質重合体やその他の熱可塑性樹脂を配合することにより、得られる硬化物の柔軟性改良することができる。用いるゴム質重合体のムーニー粘度(ML1+4,100℃)は、適宜選択すればよいが、通常、5〜200である。 In addition, the curable resin composition of the present invention may contain a rubbery polymer and other thermoplastic resins other than the above-described alicyclic olefin polymer (A) as necessary. The rubbery polymer is a polymer having a glass transition temperature of room temperature (25 ° C.) or lower, and includes general rubbery polymers and thermoplastic elastomers. By adding a rubbery polymer or other thermoplastic resin to the curable resin composition of the present invention, the flexibility of the resulting cured product can be improved. The Mooney viscosity (ML 1 + 4 , 100 ° C.) of the rubber polymer to be used may be appropriately selected, but is usually 5 to 200.

ゴム状重合体の具体例としては、エチレン−α−オレフィン系ゴム状重合体;エチレン−α−オレフィン−ポリエン共重合体ゴム;エチレン−メチルメタクリレート、エテレン−ブチルアクリレートなどのエチレンと不飽和カルボン酸エステルとの共重合体;エチレン−酢酸ビニルなどのエチレンと脂肪酸ビニルとの共重合体;アクリル酸エチル、アクリル酸ブチル、アクリル酸ヘキシル、アクリル酸2−エチルヘキシル、アクリル酸ラウリルなどのアクリル酸アルキルエステルの重合体;ポリブタジエン、ポリイソプレン、スチレン−ブタジエンまたはスチレン−イソプレンのランダム共重合体、アクリロニトリル−ブタジエン共重合体、ブタジエン−イソプレン共重合体、ブタジエン−(メタ)アクリル酸アルキルエステル共重合体、ブタジエン−(メタ)アクリル酸アルキルエステル−アクリロニトリル共重合体、ブタジエン−(メタ)アクリル酸アルキルエステル−アクリロニトリル−スチレン共重合体などのジエン系ゴム;エポキシ化ポリブタジエンなどの変性ジエン系ゴム;ブチレン−イソプレン共重合体;などが挙げられる。   Specific examples of rubber-like polymers include ethylene-α-olefin rubber-like polymers; ethylene-α-olefin-polyene copolymer rubbers; ethylene and unsaturated carboxylic acids such as ethylene-methyl methacrylate and etherene-butyl acrylate. Copolymers with esters; copolymers of ethylene and fatty acid vinyl such as ethylene-vinyl acetate; alkyl acrylates such as ethyl acrylate, butyl acrylate, hexyl acrylate, 2-ethylhexyl acrylate, and lauryl acrylate Polybutadiene, polyisoprene, styrene-butadiene or styrene-isoprene random copolymer, acrylonitrile-butadiene copolymer, butadiene-isoprene copolymer, butadiene- (meth) acrylic acid alkyl ester copolymer, pig Diene rubber such as diene- (meth) acrylic acid alkyl ester-acrylonitrile copolymer, butadiene- (meth) acrylic acid alkyl ester-acrylonitrile-styrene copolymer; modified diene rubber such as epoxidized polybutadiene; butylene-isoprene A copolymer; and the like.

熱可塑性エラストマーの具体例としては、スチレン−ブタジエンブロック共重合体、水素化スチレン−ブタジエンブロック共重合体、スチレン−イソプレンブロック共重合体、水素化スチレン−イソプレンブロック共重合体などの芳香族ビニル−共役ジエン系ブロック共重合体、低結晶性ポリブタジエン樹脂、エチレン−プロピレンエラストマー、スチレングラフトエチレン−プロピレンエラストマー、熱可塑性ポリエステルエラストマー、エチレン系アイオノマー樹脂などが挙げられる。これらの熱可塑性エラストマーのうち、水素化スチレン−ブタジエンブロック共重合体、水素化スチレン−イソプレンブロック共重合体が好ましく、具体的には、特開平2−133406号公報、特開平2−305814号公報、特開平3−72512号公報、特開平3−74409号公報などに記載されているものが好ましく用いられる。   Specific examples of the thermoplastic elastomer include aromatic vinyl such as styrene-butadiene block copolymer, hydrogenated styrene-butadiene block copolymer, styrene-isoprene block copolymer, hydrogenated styrene-isoprene block copolymer, etc. Examples thereof include conjugated diene block copolymers, low crystalline polybutadiene resins, ethylene-propylene elastomers, styrene grafted ethylene-propylene elastomers, thermoplastic polyester elastomers, and ethylene ionomer resins. Of these thermoplastic elastomers, a hydrogenated styrene-butadiene block copolymer and a hydrogenated styrene-isoprene block copolymer are preferable, and specifically, JP-A-2-133406 and JP-A-2-305814. Those described in JP-A-3-72512 and JP-A-3-74409 are preferably used.

その他の熱可塑性樹脂としては、たとえば、低密度ポリエチレン、高密度ポリエチレン、直鎖状低密度ポリエチレン、超低密度ポリエチレン、エチレン−エチルアクリレート共重合体、エチレン−酢酸ビニル共重合体、ポリスチレン、ポリフェニレンスルフィド、ポリフェニレンエーテル、ポリアミド、ポリエステル、ポリカーボネート、セルローストリアセテートなどが挙げられる。   Other thermoplastic resins include, for example, low density polyethylene, high density polyethylene, linear low density polyethylene, ultra low density polyethylene, ethylene-ethyl acrylate copolymer, ethylene-vinyl acetate copolymer, polystyrene, polyphenylene sulfide. , Polyphenylene ether, polyamide, polyester, polycarbonate, cellulose triacetate and the like.

上述したゴム状重合体やその他の熱可塑性樹脂は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができ、その配合量は、本発明の目的を損なわない範囲で適宜選択されるが、脂環式オレフィン重合体(A)100重量部に対して、30重量部以下の配合量とすることが好ましい。   The above-mentioned rubber-like polymer and other thermoplastic resins can be used alone or in combination of two or more, and the blending amount thereof is appropriately selected within a range not impairing the object of the present invention. The blending amount is preferably 30 parts by weight or less with respect to 100 parts by weight of the alicyclic olefin polymer (A).

本発明の硬化性樹脂組成物には、硬化物とした際における難燃性を向上させる目的で、例えば、ハロゲン系難燃剤やリン酸エステル系難燃剤などの一般の電気絶縁膜形成用の硬化性樹脂組成物に配合される難燃剤を配合してもよい。本発明の硬化性樹脂組成物に難燃剤を配合する場合の配合量は、脂環式オレフィン重合体(A)100重量部に対して、好ましくは100重量部以下であり、より好ましくは60重量部以下である。   In the curable resin composition of the present invention, for the purpose of improving flame retardancy when cured, for example, curing for forming a general electric insulation film such as a halogen-based flame retardant or a phosphate ester-based flame retardant. You may mix | blend the flame retardant mix | blended with an adhesive resin composition. When the flame retardant is blended with the curable resin composition of the present invention, the blending amount is preferably 100 parts by weight or less, more preferably 60 parts by weight with respect to 100 parts by weight of the alicyclic olefin polymer (A). Or less.

また、本発明の硬化性樹脂組成物には、さらに必要に応じて、難燃助剤、耐熱安定剤、耐候安定剤、老化防止剤、紫外線吸収剤(レーザー加工性向上剤)、レベリング剤、帯電防止剤、スリップ剤、アンチブロッキング剤、防曇剤、滑剤、染料、天然油、合成油、ワックス、乳剤、磁性体、誘電特性調整剤、靭性剤などの任意成分を配合してもよい。これらの任意成分の配合割合は、本発明の目的を損なわない範囲で適宜選択すればよい。
本発明の硬化性樹脂組成物の製造方法としては、特に限定されるものではなく、上記各成分を、そのまま混合してもよいし、有機溶剤に溶解もしくは分散させた状態で混合してもよいし、上記各成分の一部を有機溶剤に溶解もしくは分散させた状態の組成物を調製し、当該組成物に残りの成分を混合してもよい。
Further, the curable resin composition of the present invention further includes a flame retardant aid, a heat resistance stabilizer, a weather resistance stabilizer, an anti-aging agent, an ultraviolet absorber (laser processability improver), a leveling agent, if necessary. You may mix | blend arbitrary components, such as an antistatic agent, a slip agent, an antiblocking agent, an antifogging agent, a lubricant, a dye, a natural oil, a synthetic oil, a wax, an emulsion, a magnetic body, a dielectric property modifier, and a toughening agent. What is necessary is just to select suitably the mixture ratio of these arbitrary components in the range which does not impair the objective of this invention.
The method for producing the curable resin composition of the present invention is not particularly limited, and the above components may be mixed as they are, or may be mixed in a state dissolved or dispersed in an organic solvent. Then, a composition in a state where a part of each of the above components is dissolved or dispersed in an organic solvent may be prepared, and the remaining components may be mixed with the composition.

(硬化物)
本発明の硬化物は、上述した本発明の硬化性樹脂組成物を硬化してなるものである。本発明の硬化物を得る際には、本発明の硬化性樹脂組成物を、シート状またはフィルム状に成形して成形体とし、あるいは、本発明の硬化性樹脂組成物を、繊維基材に含浸させて、シート状またはフィルム状の複合成形体とし、得られた成形体または複合成形体を加熱することにより、得ることが好ましい。
(Cured product)
The cured product of the present invention is obtained by curing the above-described curable resin composition of the present invention. When obtaining the cured product of the present invention, the curable resin composition of the present invention is molded into a sheet or film to form a molded body, or the curable resin composition of the present invention is applied to a fiber substrate. It is preferably obtained by impregnating it into a sheet-like or film-like composite molded body and heating the resulting molded body or composite molded body.

本発明の硬化性樹脂組成物を、シート状またはフィルム状に成形して成形体とする際には、本発明の硬化性樹脂組成物を、必要に応じて有機溶剤を添加して、支持体に塗布、散布または流延し、次いで乾燥することより得ることが好ましい。   When the curable resin composition of the present invention is molded into a sheet shape or a film shape to obtain a molded body, the curable resin composition of the present invention is added to an organic solvent as necessary, and a support. It is preferably obtained by applying, spraying or casting to the substrate and then drying.

この際に用いる支持体としては、樹脂フィルムや金属箔などが挙げられる。樹脂フィルムとしては、ポリエチレンテレフタレートフィルム、ポリプロピレンフィルム、ポリエチレンフィルム、ポリカーボネートフィルム、ポリエチレンナフタレートフィルム、ポリアリレートフィルム、ナイロンフィルムなどが挙げられる。これらのフィルムのうち、耐熱性、耐薬品性、剥離性などの観点からポリエチレンテレフタレートフィルムまたはポリエチレンナフタレートフィルムが好ましい。金属箔としては、銅箔、アルミ箔、ニッケル箔、クロム箔、金箔、銀箔などが挙げられる。   Examples of the support used in this case include a resin film and a metal foil. Examples of the resin film include polyethylene terephthalate film, polypropylene film, polyethylene film, polycarbonate film, polyethylene naphthalate film, polyarylate film, and nylon film. Among these films, a polyethylene terephthalate film or a polyethylene naphthalate film is preferable from the viewpoint of heat resistance, chemical resistance, peelability, and the like. Examples of the metal foil include copper foil, aluminum foil, nickel foil, chrome foil, gold foil, and silver foil.

シート状またはフィルム状の成形体の厚さは、特に限定されないが、作業性などの観点から、通常、1〜150μm、好ましくは2〜100μm、より好ましくは5〜80μmである。また、支持体の表面平均粗さRaは、通常、300nm以下、好ましくは150nm以下、より好ましくは100nm以下である。   The thickness of the sheet-like or film-like molded product is not particularly limited, but is usually 1 to 150 μm, preferably 2 to 100 μm, more preferably 5 to 80 μm from the viewpoint of workability and the like. The surface average roughness Ra of the support is usually 300 nm or less, preferably 150 nm or less, more preferably 100 nm or less.

本発明の硬化性樹脂組成物を塗布する方法としては、ディップコート、ロールコート、カーテンコート、ダイコート、スリットコート、グラビアコートなどが挙げられる。   Examples of the method for applying the curable resin composition of the present invention include dip coating, roll coating, curtain coating, die coating, slit coating, and gravure coating.

なお、本発明で用いる成形体においては、本発明の硬化性樹脂組成物が未硬化または半硬化の状態であることが好ましい。ここで未硬化とは、成形体を、脂環式オレフィン重合体(A)を溶解可能な溶剤に漬けたときに、実質的に脂環式オレフィン重合体(A)の全部が溶解する状態をいう。また、半硬化とは、加熱すれば更に硬化しうる程度に途中まで硬化された状態であり、好ましくは、脂環式オレフィン重合体(A)を溶解可能な溶剤に脂環式オレフィン重合体(A)の一部(具体的には7重量%以上)が溶解する状態であるか、あるいは、溶剤中に成形体を24時間浸漬した後の体積が、浸漬前の体積の200%以上(膨潤率)である状態をいう。   In the molded product used in the present invention, the curable resin composition of the present invention is preferably in an uncured or semi-cured state. Here, uncured means a state where substantially all of the alicyclic olefin polymer (A) is dissolved when the molded body is immersed in a solvent capable of dissolving the alicyclic olefin polymer (A). Say. Semi-cured is a state where the resin is cured to the middle so that it can be further cured by heating. Preferably, the alicyclic olefin polymer (A) is dissolved in a solvent capable of dissolving the alicyclic olefin polymer (A). A part of A) (specifically, 7% by weight or more) is in a dissolved state, or the volume after the molded body is immersed in the solvent for 24 hours is 200% or more of the volume before the immersion (swelling) Rate).

また、本発明の硬化性樹脂組成物を、支持体上に塗布した後、必要に応じて、乾燥を行ってもよい。乾燥温度は、本発明の硬化性樹脂組成物が硬化しない程度の温度とすることが好ましく、通常、20〜300℃、好ましくは30〜200℃である。乾燥温度が高すぎると、硬化反応が進行しすぎて、得られる成形体が未硬化または半硬化の状態とならなくなるおそれがある。また、乾燥時間は、通常、30秒間〜1時間、好ましくは1分間〜30分間である。   Moreover, after apply | coating the curable resin composition of this invention on a support body, you may dry as needed. The drying temperature is preferably a temperature at which the curable resin composition of the present invention is not cured, and is usually 20 to 300 ° C, preferably 30 to 200 ° C. If the drying temperature is too high, the curing reaction proceeds too much and the resulting molded article may not be in an uncured or semi-cured state. The drying time is usually 30 seconds to 1 hour, preferably 1 minute to 30 minutes.

そして、このようにして得られた成形体は、支持体上に付着させた状態で、または支持体からはがして、使用される。   And the molded object obtained in this way is used in the state made to adhere on a support body, or peeling from a support body.

あるいは、シート状またはフィルム状の成形体に代えて、本発明の硬化性樹脂組成物を、繊維基材に含浸させて、シート状またはフィルム状の複合成形体とし、得られた複合成形体を、加熱することにより硬化物を得てもよい。   Alternatively, instead of a sheet-shaped or film-shaped molded body, the fiber base material is impregnated with the curable resin composition of the present invention to form a sheet-shaped or film-shaped molded body, and the obtained composite molded body is obtained. The cured product may be obtained by heating.

この場合に用いる繊維基材としては、たとえば、ロービングクロス、チョップドマット、サーフェシングマットなどの織布、不織布;繊維の束や塊などが挙げられる。これら繊維基材の中で、寸法安定性の観点からは織布が好ましく、加工性の観点からは不織布が好ましい。   Examples of the fiber base material used in this case include woven and non-woven fabrics such as roving cloth, chopped mat, and surfacing mat; and bundles and lumps of fibers. Among these fiber base materials, a woven fabric is preferable from the viewpoint of dimensional stability, and a nonwoven fabric is preferable from the viewpoint of workability.

シート状またはフィルム状の複合成形体の厚さは、特に限定されないが、作業性などの観点から、通常、1〜150μm、好ましくは2〜100μm、より好ましくは5〜80μmである。また、複合成形体中の繊維基材の量は、通常、20〜90重量%、好ましくは30〜85重量%である。   The thickness of the sheet-shaped or film-shaped composite molded body is not particularly limited, but is usually 1 to 150 μm, preferably 2 to 100 μm, and more preferably 5 to 80 μm from the viewpoint of workability. The amount of the fiber base in the composite molded body is usually 20 to 90% by weight, preferably 30 to 85% by weight.

本発明の硬化性樹脂組成物を、繊維基材に含浸させる方法としては、特に限定されないが、粘度などを調整するために本発明の硬化性樹脂組成物に有機溶剤を添加し、有機溶剤を添加した硬化性樹脂組成物に繊維基材を浸漬する方法、有機溶剤を添加した硬化性樹脂組成物を繊維基材に塗布や散布する方法などが挙げられる。塗布または散布する方法においては、支持体の上に繊維基材を置いて、これに、有機溶剤を添加した硬化性樹脂組成物を塗布または散布することができる。なお、本発明で用いる複合成形体においては、上述した成形体と同様に、本発明の硬化性樹脂組成物が未硬化または半硬化の状態で含有されていることが好ましい。   The method for impregnating the fiber base material with the curable resin composition of the present invention is not particularly limited, but an organic solvent is added to the curable resin composition of the present invention to adjust the viscosity and the like. The method of immersing a fiber base material in the added curable resin composition, the method of apply | coating or spraying the curable resin composition which added the organic solvent to a fiber base material, etc. are mentioned. In the method of coating or spreading, a curable resin composition to which an organic solvent is added can be applied or spread on a fiber base material placed on a support. In addition, in the composite molded object used by this invention, it is preferable that the curable resin composition of this invention is contained in the uncured or semi-hardened state similarly to the molded object mentioned above.

また、本発明の硬化性樹脂組成物を、繊維基材に含浸させた後、必要に応じて、乾燥を行ってもよい。乾燥温度は、本発明の硬化性樹脂組成物が硬化しない程度の温度とすることが好ましく、通常、20〜300℃、好ましくは30〜200℃である。乾燥温度が高すぎると、硬化反応が進行しすぎて、得られる複合成形体が未硬化または半硬化の状態とならなくなるおそれがある。また、乾燥時間は、通常、30秒間〜1時間、好ましくは1分間〜30分間である。   Moreover, after impregnating the fiber base material with the curable resin composition of this invention, you may dry as needed. The drying temperature is preferably a temperature at which the curable resin composition of the present invention is not cured, and is usually 20 to 300 ° C, preferably 30 to 200 ° C. If the drying temperature is too high, the curing reaction proceeds too much, and the resulting composite molded article may not be in an uncured or semi-cured state. The drying time is usually 30 seconds to 1 hour, preferably 1 minute to 30 minutes.

そして、本発明の硬化物は、上述した成形体または複合成形体を、加熱し、硬化させることにより、得ることができる。   And the hardened | cured material of this invention can be obtained by heating and hardening the molded object or composite molded object mentioned above.

硬化条件は硬化剤(B)の種類に応じて適宜選択されるが、硬化温度は、通常、30〜400℃、好ましくは70〜300℃、より好ましくは100〜200℃である。また、硬化時間は、0.1〜5時間、好ましくは0.5〜3時間である。加熱の方法は特に制限されず、例えば電気オーブンなどを用いて行えばよい。   The curing conditions are appropriately selected according to the type of the curing agent (B), but the curing temperature is usually 30 to 400 ° C, preferably 70 to 300 ° C, more preferably 100 to 200 ° C. The curing time is 0.1 to 5 hours, preferably 0.5 to 3 hours. The heating method is not particularly limited, and may be performed using, for example, an electric oven.

(積層体)
本発明の積層体は、表面に導体層を有する基板と、上述した本発明の硬化物からなる電気絶縁層とを積層してなる。
(Laminate)
The laminate of the present invention is formed by laminating a substrate having a conductor layer on the surface and an electrical insulating layer made of the cured product of the present invention described above.

表面に導体層を有する基板は、電気絶縁性基板の表面に導体層を有するものである。電気絶縁性基板は、公知の電気絶縁材料(たとえば、脂環式オレフィン重合体、エポキシ樹脂、マレイミド樹脂、(メタ)アクリル樹脂、ジアリルフタレート樹脂、トリアジン樹脂、ポリフェニルエーテル、ガラス等)を含有する硬化性樹脂組成物を硬化して形成されたものである。導体層は、特に限定されないが、通常、導電性金属等の導電体により形成された配線を含む層であって、更に各種の回路を含んでいてもよい。配線や回路の構成、厚み等は、特に限定されない。表面に導体層を有する基板の具体例としては、プリント配線基板、シリコンウェーハ基板等を挙げることができる。表面に導体層を有する基板の厚みは、通常、10μm〜10mm、好ましくは20μm〜5mm、より好ましくは30μm〜2mmである。   A substrate having a conductor layer on the surface has a conductor layer on the surface of the electrically insulating substrate. The electrically insulating substrate contains a known electrically insulating material (for example, alicyclic olefin polymer, epoxy resin, maleimide resin, (meth) acrylic resin, diallyl phthalate resin, triazine resin, polyphenyl ether, glass, etc.). It is formed by curing a curable resin composition. Although a conductor layer is not specifically limited, Usually, it is a layer containing the wiring formed with conductors, such as an electroconductive metal, Comprising: Various circuits may be included further. The configuration and thickness of the wiring and circuit are not particularly limited. Specific examples of the substrate having a conductor layer on the surface include a printed wiring board and a silicon wafer substrate. The thickness of the substrate having a conductor layer on the surface is usually 10 μm to 10 mm, preferably 20 μm to 5 mm, more preferably 30 μm to 2 mm.

本発明で用いる表面に導体層を有する基板は、電気絶縁層との密着性を向上させるために、導体層表面に前処理が施されていることが好ましい。前処理の方法としては、公知の技術を、特に限定されず使用することができる。例えば、導体層が銅からなるものであれば、強アルカリ酸化性溶液を導体層表面に接触させて、導体表面に酸化銅の層を形成して粗化する酸化処理方法、導体層表面を先の方法で酸化した後に水素化ホウ素ナトリウム、ホルマリンなどで還元する方法、導体層にめっきを析出させて粗化する方法、導体層に有機酸を接触させて銅の粒界を溶出して粗化する方法、および導体層にチオール化合物やシラン化合物などによりプライマー層を形成する方法等が挙げられる。これらの内、微細な配線パターンの形状維持の容易性の観点から、導体層に有機酸を接触させて銅の粒界を溶出して粗化する方法、及び、チオール化合物やシラン化合物などによりプライマー層を形成する方法が好ましい。   The substrate having a conductor layer on the surface used in the present invention is preferably pretreated on the surface of the conductor layer in order to improve adhesion to the electrical insulating layer. As a pretreatment method, a known technique can be used without any particular limitation. For example, if the conductor layer is made of copper, an oxidation treatment method in which a strong alkali oxidizing solution is brought into contact with the surface of the conductor layer to form a copper oxide layer on the conductor surface and roughened, After oxidation with this method, reduce with sodium borohydride, formalin, etc., deposit and roughen the plating on the conductor layer, contact the organic acid with the conductor layer to elute the copper grain boundaries and roughen And a method of forming a primer layer with a thiol compound or a silane compound on the conductor layer. Among these, from the viewpoint of easy maintenance of the shape of a fine wiring pattern, a method in which an organic acid is brought into contact with a conductor layer to elute and roughen the grain boundaries of copper, and a primer using a thiol compound or a silane compound A method of forming a layer is preferred.

本発明の積層体は、通常、表面に導体層を有する基板上に、上述した成形体(本発明の硬化性樹脂組成物を、シート状またはフィルム状に成形してなる成形体)、または複合成形体(本発明の硬化性樹脂組成物を、繊維基材に含浸させてなる複合成形体)を加熱圧着し、成形体または複合成形体を硬化して、本発明の硬化物からなる電気絶縁層を形成することにより製造できる。   The laminate of the present invention is usually a molded body (a molded body formed by molding the curable resin composition of the present invention into a sheet or film) on a substrate having a conductor layer on the surface, or a composite. Electrical insulation comprising a molded product (composite molded product obtained by impregnating a fiber base material with the curable resin composition of the present invention) by thermocompression bonding, curing the molded product or the composite molded product, and the cured product of the present invention. It can be manufactured by forming a layer.

加熱圧着の方法としては、支持体付きの成形体または複合成形体を、上述した基板の導体層に接するように重ね合わせ、加圧ラミネータ、プレス、真空ラミネータ、真空プレス、ロールラミネータなどの加圧機を使用して加熱圧着(ラミネーション)する方法が挙げられる。加熱加圧することにより、基板表面の導体層と成形体または複合成形体との界面に空隙が実質的に存在しないように結合させることができる。   As a method of thermocompression bonding, a molded body with a support or a composite molded body is superposed so as to be in contact with the conductor layer of the substrate described above, and a pressure laminator, a press, a vacuum laminator, a vacuum press, a roll laminator or the like is used. The method of carrying out thermocompression bonding (lamination) using is mentioned. By heating and pressurizing, bonding can be performed so that there is substantially no void at the interface between the conductor layer on the substrate surface and the molded body or composite molded body.

加熱圧着操作の温度は、通常、30〜250℃、好ましくは70〜200℃であり、加える圧力は、通常、10kPa〜20MPa、好ましくは100kPa〜10MPaであり、時間は、通常、30秒〜5時間、好ましくは1分〜3時間である。また、加熱圧着は、配線パターンの埋め込み性を向上させ、気泡の発生を抑えるために減圧下で行うのが好ましい。加熱圧着を行う減圧下の圧力は、通常100kPa〜1Pa、好ましくは40kPa〜10Paである。   The temperature of the thermocompression bonding operation is usually 30 to 250 ° C., preferably 70 to 200 ° C., the pressure applied is usually 10 kPa to 20 MPa, preferably 100 kPa to 10 MPa, and the time is usually 30 seconds to 5 seconds. Time, preferably 1 minute to 3 hours. The thermocompression bonding is preferably performed under reduced pressure in order to improve the embedding property of the wiring pattern and suppress the generation of bubbles. The pressure under reduced pressure at which thermocompression bonding is performed is usually 100 kPa to 1 Pa, preferably 40 kPa to 10 Pa.

そして、加熱圧着される成形体または複合成形体の硬化を行い、電気絶縁層を形成することで、本発明の積層体が製造される。硬化は、通常、導体層上に成形体または複合成形体が形成された基板全体を加熱することにより行う。硬化は、上述した加熱圧着操作と同時に行うことができる。また、先ず加熱圧着操作を硬化の起こらない条件、すなわち比較的低温、短時間で行った後、硬化を行ってもよい。   And the laminated body of this invention is manufactured by hardening the molded object or composite molded object which is thermocompression-bonded, and forming an electrical-insulation layer. Curing is usually performed by heating the entire substrate on which a molded body or a composite molded body is formed on the conductor layer. Curing can be performed simultaneously with the above-described thermocompression bonding operation. Alternatively, the thermocompression may be performed after the thermocompression operation is performed under conditions that do not cause curing, that is, at a relatively low temperature for a short time.

また、電気絶縁層の平坦性を向上させる目的や、電気絶縁層の厚みを増す目的で、基板の導体層上に成形体または複合成形体を2以上接して貼り合わせて積層してもよい。   Further, for the purpose of improving the flatness of the electrical insulation layer or for the purpose of increasing the thickness of the electrical insulation layer, two or more molded bodies or composite molded bodies may be bonded and laminated on the conductor layer of the substrate.

(多層回路基板)
本発明の多層回路基板は、上述した本発明の積層体の電気絶縁層上に、さらに別の導体層を形成してなるものである。以下、本発明の多層回路基板の製造方法について、説明する。
(Multilayer circuit board)
The multilayer circuit board of the present invention is obtained by forming another conductor layer on the above-described electrical insulating layer of the laminate of the present invention. Hereinafter, the manufacturing method of the multilayer circuit board of this invention is demonstrated.

まず、積層体に、電気絶縁層を貫通するビアホールやスルーホールを形成する。ビアホールは、多層回路基板とした場合に、多層回路基板を構成する各導体層を連結するために形成される。ビアホールやスルーホールは、フォトリソグラフィ法のような化学的処理により、または、ドリル、レーザー、プラズマエッチングなどの物理的処理などにより形成することができる。これらの方法の中でもレーザーによる方法(炭酸ガスレーザー、エキシマレーザー、UV−YAGレーザーなど)は、より微細なビアホールを電気絶縁層の特性を低下させずに形成できるので好ましい。   First, a via hole or a through hole that penetrates the electrical insulating layer is formed in the laminate. The via hole is formed to connect the respective conductor layers constituting the multilayer circuit board when the multilayer circuit board is used. The via hole or the through hole can be formed by chemical processing such as photolithography or physical processing such as drilling, laser, or plasma etching. Among these methods, a laser method (carbon dioxide laser, excimer laser, UV-YAG laser, or the like) is preferable because a finer via hole can be formed without degrading the characteristics of the electrical insulating layer.

次に、積層体の電気絶縁層(すなわち、本発明の硬化物)の表面を、過マンガン酸塩の水溶液で粗化する表面粗化処理を行う。表面粗化処理は、電気絶縁層上に形成する導電層との接着性を高めるために行う。
電気絶縁層の表面平均粗さRaは、好ましくは0.05μm以上0.3μm未満、より好ましくは0.06μm以上0.2μm以下であり、かつ表面十点平均粗さRzjisは、好ましくは0.3μm以上4μm未満、より好ましくは0.5μm以上2μm以下である。なお、本明細書において、RaはJIS B0601−2001に示される中心線平均粗さであり、表面十点平均粗さRzjisは、JIS B0601−2001付属書1に示される十点平均粗さである。
Next, a surface roughening treatment is performed to roughen the surface of the electrical insulating layer (that is, the cured product of the present invention) of the laminate with an aqueous solution of permanganate. The surface roughening treatment is performed in order to improve the adhesiveness with the conductive layer formed on the electrical insulating layer.
The surface average roughness Ra of the electrical insulating layer is preferably 0.05 μm or more and less than 0.3 μm, more preferably 0.06 μm or more and 0.2 μm or less, and the surface 10-point average roughness Rzjis is preferably 0.00. They are 3 micrometers or more and less than 4 micrometers, More preferably, they are 0.5 micrometers or more and 2 micrometers or less. In this specification, Ra is the center line average roughness shown in JIS B0601-2001, and the surface ten-point average roughness Rzjis is the ten-point average roughness shown in JIS B0601-2001 appendix 1. .

表面粗化処理方法としては、特に限定されないが、電気絶縁層表面と酸化性化合物とを接触させる方法などが挙げられる。酸化性化合物としては、無機酸化性化合物や有機酸化性化合物などの酸化能を有する公知の化合物が挙げられる。電気絶縁層の表面平均粗さの制御の容易さから、無機酸化性化合物や有機酸化性化合物を用いるのが特に好ましい。無機酸化性化合物としては、過マンガン酸塩、無水クロム酸、重クロム酸塩、クロム酸塩、過硫酸塩、活性二酸化マンガン、四酸化オスミウム、過酸化水素、過よう素酸塩などが挙げられる。有機酸化性化合物としてはジクミルパーオキサイド、オクタノイルパーオキサイド、m−クロロ過安息香酸、過酢酸、オゾンなどが挙げられる。   Although it does not specifically limit as a surface roughening processing method, The method etc. which make an electrical insulating layer surface and an oxidizing compound contact are mentioned. Examples of the oxidizing compound include known compounds having oxidizing ability, such as inorganic oxidizing compounds and organic oxidizing compounds. In view of easy control of the average surface roughness of the electrical insulating layer, it is particularly preferable to use an inorganic oxidizing compound or an organic oxidizing compound. Examples of inorganic oxidizing compounds include permanganate, chromic anhydride, dichromate, chromate, persulfate, activated manganese dioxide, osmium tetroxide, hydrogen peroxide, periodate, and the like. . Examples of the organic oxidizing compound include dicumyl peroxide, octanoyl peroxide, m-chloroperbenzoic acid, peracetic acid, and ozone.

無機酸化性化合物や有機酸化性化合物を用いて電気絶縁層表面を表面粗化処理する方法に格別な制限はない。例えば、上記酸化性化合物を溶解可能な溶媒に溶解して調製した酸化性化合物溶液を電気絶縁層表面に接触させる方法が挙げられる。
たとえば、上述した酸化性化合物を溶解可能な溶媒に溶解して調製した酸化性化合物溶液を電気絶縁層表面に接触させる方法が挙げられる。酸化性化合物溶液を、電気絶縁層の表面に接触させる方法としては、特に限定されないが、たとえば、電気絶縁層を酸化性化合物溶液に浸漬するディップ法、酸化性化合物溶液の表面張力を利用して、酸化性化合物溶液を、電気絶縁層に載せる液盛り法、酸化性化合物溶液を、電気絶縁層に噴霧するスプレー法、などいかなる方法であってもよい。表面粗化処理を行うことにより、電気絶縁層の、導体層など他の層との間の密着性を向上させることができる。
There is no particular limitation on the method of roughening the surface of the electrical insulating layer using an inorganic oxidizing compound or an organic oxidizing compound. For example, there is a method in which an oxidizing compound solution prepared by dissolving the oxidizing compound in a soluble solvent is brought into contact with the surface of the electrical insulating layer.
For example, there is a method in which an oxidizing compound solution prepared by dissolving the above-described oxidizing compound in a soluble solvent is brought into contact with the surface of the electrical insulating layer. The method for bringing the oxidizing compound solution into contact with the surface of the electrical insulating layer is not particularly limited. For example, the dipping method in which the electrical insulating layer is immersed in the oxidizing compound solution, the surface tension of the oxidizing compound solution is used. Any method may be used, such as a liquid filling method in which the oxidizing compound solution is placed on the electric insulating layer, or a spray method in which the oxidizing compound solution is sprayed on the electric insulating layer. By performing the surface roughening treatment, it is possible to improve the adhesion between the electrical insulating layer and another layer such as a conductor layer.

これらの酸化性化合物溶液を電気絶縁層表面に接触させる温度や時間は、酸化性化合物の濃度や種類、接触方法などを考慮して、任意に設定すればよいが、温度は、通常、10〜250℃、好ましくは20〜180℃であり、時間は、通常、0.5〜60分間、好ましくは1〜40分間である。   The temperature and time for bringing these oxidizing compound solutions into contact with the surface of the electrical insulating layer may be set arbitrarily in consideration of the concentration and type of the oxidizing compound, the contact method, etc. It is 250 degreeC, Preferably it is 20-180 degreeC, and time is 0.5 to 60 minutes normally, Preferably it is 1 to 40 minutes.

なお、表面粗化処理後、酸化性化合物を除去するため、表面粗化処理後の電気絶縁層表面を水で洗浄する。また、水だけでは洗浄しきれない物質が付着している場合には、その物質を溶解可能な洗浄液でさらに洗浄したり、他の化合物と接触させたりすることにより水に可溶な物質にしてから水で洗浄する。例えば、過マンガン酸カリウム水溶液や過マンガン酸ナトリウム水溶液などのアルカリ性水溶液を電気絶縁層と接触させた場合は、発生した二酸化マンガンの皮膜を除去する目的で、硫酸ヒドロキシアミンと硫酸との混合液などの酸性水溶液により中和還元処理した後に水で洗浄することができる。   Note that the surface of the electrical insulating layer after the surface roughening treatment is washed with water in order to remove the oxidizing compound after the surface roughening treatment. In addition, if a substance that cannot be washed with water is attached, the substance can be further washed with a dissolvable cleaning solution or brought into contact with other compounds to make it soluble in water. Wash with water. For example, when an alkaline aqueous solution such as an aqueous potassium permanganate solution or an aqueous sodium permanganate solution is brought into contact with the electrical insulating layer, a mixed solution of hydroxyamine sulfate and sulfuric acid is used to remove the generated manganese dioxide film. It can wash | clean with water, after neutralizing-reducing process with the acidic aqueous solution of this.

次いで、積層体の電気絶縁層について表面粗化処理を行った後、電気絶縁層の表面およびビアホールやスルーホールの内壁面に、導体層を形成する。
導体層の形成方法は、特に限定されないが、密着性に優れる導体層を形成する観点からめっき法が好ましい。
Next, after surface roughening treatment is performed on the electrical insulating layer of the laminate, a conductor layer is formed on the surface of the electrical insulating layer and on the inner wall surface of the via hole or the through hole.
Although the formation method of a conductor layer is not specifically limited, The plating method is preferable from a viewpoint of forming the conductor layer excellent in adhesiveness.

導体層をめっき法により形成する方法としては特に限定されず、例えば、電気絶縁層上にめっきなどにより金属薄膜を形成し、次いで厚付けめっきにより金属層を成長させる方法を採用することができる。   The method for forming the conductor layer by plating is not particularly limited. For example, a method of forming a metal thin film on the electrical insulating layer by plating or the like and then growing the metal layer by thick plating can be employed.

たとえば、金属薄膜の形成を無電解めっきにより行う場合、金属薄膜を電気絶縁層の表面に形成させる前に、電気絶縁層上に、銀、パラジウム、亜鉛、コバルトなどの触媒核を付着させるのが一般的である。触媒核を電気絶縁層に付着させる方法は特に制限されず、例えば、銀、パラジウム、亜鉛、コバルトなどの金属化合物やこれらの塩や錯体を、水またはアルコールもしくはクロロホルムなどの有機溶剤に0.001〜10重量%の濃度で溶解した液(必要に応じて酸、アルカリ、錯化剤、還元剤などを含有していてもよい。)に浸漬した後、金属を還元する方法などが挙げられる。   For example, when forming a metal thin film by electroless plating, a catalyst nucleus such as silver, palladium, zinc, cobalt, etc. is attached on the electric insulating layer before forming the metal thin film on the surface of the electric insulating layer. It is common. The method for attaching the catalyst nucleus to the electrical insulating layer is not particularly limited. For example, a metal compound such as silver, palladium, zinc, or cobalt or a salt or complex thereof is added to water or an organic solvent such as chloroform or 0.001. Examples include a method of reducing a metal after dipping in a solution (which may contain an acid, an alkali, a complexing agent, a reducing agent, etc., if necessary) dissolved at a concentration of 10 to 10% by weight.

無電解めっき法に用いる無電解めっき液としては、公知の自己触媒型の無電解めっき液を用いればよく、めっき液中に含まれる金属種、還元剤種、錯化剤種、水素イオン濃度、溶存酸素濃度などは特に限定されない。例えば、次亜リン酸アンモニウム、次亜リン酸、水素化硼素アンモニウム、ヒドラジン、ホルマリンなどを還元剤とする無電解銅めっき液;次亜リン酸ナトリウムを還元剤とする無電解ニッケル−リンめっき液;ジメチルアミンボランを還元剤とする無電解ニッケル−ホウ素めっき液;無電解パラジウムめっき液;次亜リン酸ナトリウムを還元剤とする無電解パラジウム−リンめっき液;無電解金めっき液;無電解銀めっき液;次亜リン酸ナトリウムを還元剤とする無電解ニッケル−コバルト−リンめっき液などの無電解めっき液を用いることができる。   As the electroless plating solution used in the electroless plating method, a known autocatalytic electroless plating solution may be used, and the metal species, reducing agent species, complexing agent species, hydrogen ion concentration, The dissolved oxygen concentration is not particularly limited. For example, electroless copper plating solution using ammonium hypophosphite, hypophosphorous acid, ammonium borohydride, hydrazine, formalin, etc. as a reducing agent; electroless nickel-phosphorous plating solution using sodium hypophosphite as a reducing agent Electroless nickel-boron plating solution using dimethylamine borane as a reducing agent; electroless palladium plating solution; electroless palladium-phosphorous plating solution using sodium hypophosphite as a reducing agent; electroless gold plating solution; electroless silver Plating solution: An electroless plating solution such as an electroless nickel-cobalt-phosphorous plating solution using sodium hypophosphite as a reducing agent can be used.

金属薄膜を形成した後、基板表面を防錆剤と接触させて防錆処理を施すことができる。また、金属薄膜を形成した後、密着性向上などのため、金属薄膜を加熱することもできる。加熱温度は、通常、50〜350℃、好ましくは80〜250℃である。なお、この際において、加熱は加圧条件下で実施してもよい。このときの加圧方法としては、例えば、熱プレス機、加圧加熱ロール機などの物理的加圧手段を用いる方法が挙げられる。加える圧力は、通常、0.1〜20MPa、好ましくは0.5〜10MPaである。この範囲であれば、金属薄膜と電気絶縁層との高い密着性が確保できる。   After forming the metal thin film, the substrate surface can be brought into contact with a rust preventive agent to carry out a rust prevention treatment. Moreover, after forming a metal thin film, a metal thin film can also be heated in order to improve adhesiveness. The heating temperature is usually 50 to 350 ° C, preferably 80 to 250 ° C. In this case, heating may be performed under a pressurized condition. As a pressurizing method at this time, for example, a method using a physical pressurizing means such as a hot press machine or a pressurizing and heating roll machine can be cited. The applied pressure is usually 0.1 to 20 MPa, preferably 0.5 to 10 MPa. If it is this range, the high adhesiveness of a metal thin film and an electrically insulating layer is securable.

このようにして形成された金属薄膜上にめっき用レジストパターンを形成し、更にその上に電解めっきなどの湿式めっきによりめっきを成長させ(厚付けめっき)、次いで、レジストを除去し、更にエッチングにより金属薄膜をパターン状にエッチングして導体層を形成する。従って、この方法により形成される導体層は、通常、パターン状の金属薄膜と、その上に成長させためっきとからなる。   A resist pattern for plating is formed on the metal thin film thus formed, and further, plating is grown thereon by wet plating such as electrolytic plating (thick plating), then the resist is removed, and further etched. The metal thin film is etched into a pattern to form a conductor layer. Therefore, the conductor layer formed by this method usually consists of a patterned metal thin film and plating grown thereon.

以上のようにして得られた多層回路基板を、上述した積層体を製造するための基板とし、これを上述した成形体または複合成形体とを加熱圧着し、硬化して電気絶縁層を形成し、さらにこの上に、上述した方法に従い、導電層の形成を行い、これらを繰り返すことにより、更なる多層化を行うことができ、これにより所望の多層回路基板とすることができる。   The multilayer circuit board obtained as described above is used as a board for manufacturing the above-described laminate, and this is thermocompression-bonded to the above-described molded body or composite molded body and cured to form an electrical insulating layer. Further, by further forming a conductive layer in accordance with the above-described method and repeating these, further multilayering can be performed, and thereby a desired multilayer circuit board can be obtained.

このようにして得られる本発明の多層回路基板は、本発明の硬化性樹脂組成物からなる電気絶縁層(本発明の硬化物)を有してなり、該電気絶縁層は、低線膨張であり、耐熱性、配線埋め込み平坦性、及び樹脂強度に優れるものであるため、本発明の多層回路基板は、各種用途に好適に用いることができる。   The multilayer circuit board of the present invention thus obtained has an electrical insulation layer (cured product of the present invention) made of the curable resin composition of the present invention, and the electrical insulation layer has a low linear expansion. In addition, since it is excellent in heat resistance, wiring embedding flatness, and resin strength, the multilayer circuit board of the present invention can be suitably used for various applications.

(電子機器)
本発明の電子機器は、上述した本発明の多層回路基板を備えてなるものである。
本発明の電子機器としては、特に制限されないが、例えば、携帯電話機、PHS、ノート型パソコン、PDA(携帯情報端末)、携帯テレビ電話機、パーソナルコンピューター、スーパーコンピューター、サーバー、ルーター、液晶プロジェクタ、エンジニアリング・ワークステーション(EWS)、ページャ、ワードプロセッサ、テレビ、ビューファインダ型またはモニタ直視型のビデオテープレコーダ、電子手帳、電子卓上計算機、カーナビゲーション装置、POS端末、タッチパネルを備えた装置などが挙げられる。本発明によれば、本発明の電子機器を、本発明の多層回路基板を備えてなるものとすることにより、高性能で高品質なものとすることができる。
(Electronics)
The electronic device of the present invention comprises the multilayer circuit board of the present invention described above.
The electronic device of the present invention is not particularly limited, and for example, a mobile phone, a PHS, a notebook computer, a PDA (personal digital assistant), a mobile video phone, a personal computer, a supercomputer, a server, a router, a liquid crystal projector, an engineering Examples include a workstation (EWS), a pager, a word processor, a television, a viewfinder type or a monitor direct-view type video tape recorder, an electronic notebook, an electronic desk calculator, a car navigation device, a POS terminal, and a device equipped with a touch panel. According to the present invention, the electronic device of the present invention is provided with the multilayer circuit board of the present invention, so that it is possible to achieve high performance and high quality.

以下に、実施例及び比較例を挙げて、本発明についてより具体的に説明する。各例中の部及び%は、特に断りのない限り、重量基準である。
なお、各特性の定義及び評価方法は、以下のとおりである。
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. Parts and% in each example are based on weight unless otherwise specified.
In addition, the definition and evaluation method of each characteristic are as follows.

(1)脂環式オレフィン重合体の数平均分子量(Mn)、重量平均分子量(Mw)および分子量分布(Mw/Mn)
テトラヒドロフランを展開溶媒として、ゲル・パーミエーション・クロマトグラフィー(GPC)により測定し、ポリスチレン換算値として求めた。
(1) Number average molecular weight (Mn), weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) of alicyclic olefin polymer
It was measured by gel permeation chromatography (GPC) using tetrahydrofuran as a developing solvent, and was determined as a polystyrene equivalent value.

(2)脂環式オレフィン重合体の水素添加率
水素添加率は、水素添加前における脂環式オレフィン重合体中の不飽和結合のモル数に対する水素添加された不飽和結合のモル数の比率をいい、400MHzの1H−NMRスペクトル測定により求めた。
(2) Hydrogenation rate of alicyclic olefin polymer The hydrogenation rate is the ratio of the number of moles of unsaturated bonds hydrogenated to the number of moles of unsaturated bonds in the alicyclic olefin polymer before hydrogenation. It was obtained by measuring 1H-NMR spectrum at 400 MHz.

(3)脂環式オレフィン重合体のカルボン酸無水物基を有する繰り返し単位の含有率
脂環式オレフィン重合体中の総単量体単位モル数に対するカルボン酸無水物基を有する繰り返し単位のモル数の割合をいい、400MHzの1H−NMRスペクトル測定により求めた。
(3) Content ratio of repeating unit having carboxylic acid anhydride group of alicyclic olefin polymer Number of moles of repeating unit having carboxylic acid anhydride group to total number of moles of monomer units in alicyclic olefin polymer The ratio was obtained by 1H-NMR spectrum measurement at 400 MHz.

(4)溶融粘度
硬化性樹脂組成物のフィルム成形体を15枚重ね合わせ、厚さ600μmの板状のサンプルを作製した。この動的粘弾性率測定をジャスコインターナショナル社製VAR100 VISCOANALYSER ETC−3を用いて昇温速度は5℃/分、開始温度50℃、測定温度間隔2.5℃、振動1Hz/degで測定し、100℃〜130℃における最低溶融粘度を以下の基準で評価した。
◎:50Pa・s未満
○:50Pa・s以上、100Pa・s未満
△:100Pa・s以上、500Pa・s未満
×:500Pa・s以上
(4) Melt viscosity 15 film molded bodies of the curable resin composition were overlapped to produce a plate-like sample having a thickness of 600 μm. This dynamic viscoelasticity measurement was measured using a VAR100 VISCOANALYSER ETC-3 manufactured by Jusco International at a rate of temperature increase of 5 ° C./min, a starting temperature of 50 ° C., a measurement temperature interval of 2.5 ° C., and a vibration of 1 Hz / deg. The minimum melt viscosity at 100 ° C to 130 ° C was evaluated according to the following criteria.
◎: Less than 50 Pa · s ○: 50 Pa · s or more, less than 100 Pa · s Δ: 100 Pa · s or more, less than 500 Pa · s ×: 500 Pa · s or more

(5)線膨張係数
銅張り積層基板の上に厚さ10μmの銅箔をのせ、その上から硬化性樹脂組成物のフィルム成形体を、支持体が付いた状態で、硬化性樹脂組成物が内側になるようにして、耐熱性ゴム製プレス板を上下に備えた真空ラミネータを用い、200Paに減圧して、温度110℃、圧力0.1MPaで60秒間加熱圧着積層し、その後180℃で120分間空気中で加熱硬化した。硬化後、銅箔付き硬化樹脂を切り出し、銅箔を1mol/Lの過硫酸アンモニウム水溶液にて溶解し、フィルム状の硬化物を得た。得られたフィルム状の硬化物から幅5.95mm、長さ15.4mm、厚さ30μmの小片を切り出し、支点間距離10mm、昇温速度10℃/分の条件で、熱重量/示差熱同時測定装置(TMA/SDTA840:メトラー・トレド社製)により、線膨張係数の測定を行い、以下の基準で評価した。
◎:線膨張係数の値が、25ppm/℃未満
○:線膨張係数の値が、25ppm/℃以上、40ppm/℃未満
△:線膨張係数の値が、40ppm/℃以上、55ppm/℃未満
×:線膨張係数の値が、55ppm/℃以上
(5) Linear expansion coefficient A 10 μm-thick copper foil is placed on a copper-clad laminate, and a film molded body of the curable resin composition is placed thereon, with the support attached, Using a vacuum laminator equipped with heat-resistant rubber press plates at the top and bottom so as to be on the inside, the pressure was reduced to 200 Pa, thermocompression bonded at a temperature of 110 ° C. and a pressure of 0.1 MPa for 60 seconds, and then 120 ° C. at 120 ° C. Heat cured in air for minutes. After curing, a cured resin with a copper foil was cut out and the copper foil was dissolved in a 1 mol / L ammonium persulfate aqueous solution to obtain a film-like cured product. A piece having a width of 5.95 mm, a length of 15.4 mm, and a thickness of 30 μm was cut out from the obtained film-like cured product, and thermogravimetric / differential heat was simultaneously obtained under the conditions of a distance between fulcrums of 10 mm and a heating rate of 10 ° C./min. The linear expansion coefficient was measured with a measuring device (TMA / SDTA840: manufactured by METTLER TOLEDO) and evaluated according to the following criteria.
◎: The value of the linear expansion coefficient is less than 25 ppm / ° C. ○: The value of the linear expansion coefficient is 25 ppm / ° C. or more and less than 40 ppm / ° C. Δ: The value of the linear expansion coefficient is 40 ppm / ° C. or more and less than 55 ppm / ° C. : The value of linear expansion coefficient is 55 ppm / ° C or more

(6)ガラス転移温度(Tg)
上記(5)と同様にしてフィルム状の硬化物を得た。得られた硬化物フィルムのガラス転移温度(Tg)は、動的粘弾性分析(DMA法)の損失正接のピーク温度から求め、ガラス転移温度(Tg)を以下の基準で評価した。
◎:ガラス転移温度が、170℃以上
○:ガラス転移温度が、160℃以上、170℃未満
△:ガラス転移温度が、150℃以上、160℃未満
×:ガラス転移温度が、150℃未満
(6) Glass transition temperature (Tg)
A film-like cured product was obtained in the same manner as in (5) above. The glass transition temperature (Tg) of the obtained cured film was determined from the peak temperature of loss tangent of dynamic viscoelasticity analysis (DMA method), and the glass transition temperature (Tg) was evaluated according to the following criteria.
A: Glass transition temperature is 170 ° C. or higher. ○: Glass transition temperature is 160 ° C. or higher and lower than 170 ° C. Δ: Glass transition temperature is 150 ° C. or higher and lower than 160 ° C. ×: Glass transition temperature is lower than 150 ° C.

(7)デスミア耐性
ビアホールを有する積層体を80℃の過マンガン酸水溶液中に30分間浸漬しデスミア処理を行った。そして、デスミア処理後のビアホールを光学顕微鏡(倍率:2000倍)で観察し、以下の基準で、デスミア耐性を評価した。
◎:ビアホールのトップ径の変化率が10%未満
○:ビアホールのトップ径の変化率が10%以上、15%未満
△:ビアホールのトップ径の変化率が15%以上、20%未満
×:ビアホールのトップ径の変化率が20%以上
(7) Desmear resistance The laminated body which has a via hole was immersed in the 80 degreeC permanganate aqueous solution for 30 minutes, and the desmear process was performed. And the via hole after a desmear process was observed with the optical microscope (magnification: 2000 times), and the desmear tolerance was evaluated on the following references | standards.
◎: Change rate of via hole top diameter is less than 10% ○: Change rate of via hole top diameter is 10% or more and less than 15% △: Change rate of via hole top diameter is 15% or more and less than 20% ×: Via hole The change rate of the top diameter of 20% or more

(8)樹脂強度
ビアホールを有する積層体を80℃の過マンガン酸水溶液中に30分間浸漬し、デスミア処理を行った。そして、デスミア処理後のビアホールを光学顕微鏡で観察し、以下の基準で、樹脂強度を評価した。
◎:ビアホール周りにクラック無し
○:ビアホール1000穴中でクラックが1個発生
△:ビアホール1000穴中でクラックが2個以上、10個以下発生
×:ビアホール1000穴中でクラックが11個以上発生
(8) Resin Strength A laminate having via holes was immersed in an aqueous permanganate solution at 80 ° C. for 30 minutes, and desmeared. And the via hole after a desmear process was observed with the optical microscope, and the resin intensity | strength was evaluated on the following references | standards.
◎: No crack around the via hole ○: One crack is generated in 1000 holes of the via hole △: 2 or more cracks are generated in 1000 holes of the via hole 1000: 11 or more cracks are generated in 1000 holes of the via hole

(9)配線埋め込み平坦性
銅厚さ35μm、L /S=50/50、100/100、又は200/200μmの配線パターンを形成した銅張り積層基板を作製した。これに樹脂厚さ40μmの硬化性樹脂組成物フィルムを真空ラミネーターを用いて積層し、180℃で60分間硬化した。硬化後、パターンのある部分とパターンのない部分との段差を触針式段差膜厚計(Tencor Instruments製 P−10)にて測定し、以下の基準で、配線埋め込み平坦性を評価した。
◎:段差が1μm未満
○:段差が1μm以上、2μm未満
△:段差が2μm以上、3μm未満
×:段差が3μm以上
(9) Wiring embedding flatness A copper-clad laminated substrate on which a wiring pattern with a copper thickness of 35 μm, L / S = 50/50, 100/100, or 200/200 μm was formed. A curable resin composition film having a resin thickness of 40 μm was laminated thereon using a vacuum laminator and cured at 180 ° C. for 60 minutes. After curing, the step between the portion with the pattern and the portion without the pattern was measured with a stylus type step thickness meter (P-10 manufactured by Tencor Instruments), and the wiring embedding flatness was evaluated according to the following criteria.
A: Step is less than 1 μm ○: Step is 1 μm or more and less than 2 μm Δ: Step is 2 μm or more and less than 3 μm ×: Step is 3 μm or more

製造例1
テトラシクロ[9.2.1.02,10.03,8]テトラデカ−3,5,7,12−テトラエン(メタノテトラヒドロフルオレン、以下、「MTF」と略記する。)70モル部、ビシクロ[2.2.1]ヘプト−2−エン−5,6−ジカルボン酸無水物(以下、「NDCA」と略記する)30モル部、1−ヘキセン0.9モル部、アニソール590モル部およびルテニウム系重合触媒として4−アセトキシベンジリデン(ジクロロ)(4,5−ジブロモ−1,3−ジメシチル−4−イミダゾリン−2−イリデン)(トリシクロヘキシルホスフィン)ルテニウム(和光純薬社製)0.015モル部を、窒素置換した耐圧ガラス反応器に仕込み、攪拌下に80℃で1時間の重合反応を行って開環重合体の溶液を得た。次いで、窒素置換した攪拌機付きオートクレーブに、得られた開環重合体の溶液を仕込み、150℃、水素圧7MPaで、5時間攪拌させて水素添加反応を行って、高分子量脂環式オレフィン重合体(A1)の溶液を得た。得られた脂環式オレフィン重合体(A1)の重量平均分子量は50,000、数平均分子量は26,000、分子量分布は1.9であった。また、水素添加率は97%であり、カルボン酸無水物基を有する繰り返し単位の含有率は30モル%であった。脂環式オレフィン重合体(A1)の溶液の固形分濃度は25%であった。
Production Example 1
Tetracyclo [9.2.1.0 2,10. 0 3,8 ] tetradeca-3,5,7,12-tetraene (methanotetrahydrofluorene, hereinafter abbreviated as “MTF”) 70 mole parts, bicyclo [2.2.1] hept-2-ene-5 , 6-dicarboxylic anhydride (hereinafter abbreviated as “NDCA”) 30 mol part, 1-hexene 0.9 mol part, anisole 590 mol part and 4-acetoxybenzylidene (dichloro) (4 5-Dibromo-1,3-dimesityl-4-imidazoline-2-ylidene) (tricyclohexylphosphine) ruthenium (manufactured by Wako Pure Chemical Industries, Ltd.) in an amount of 0.015 mol in a nitrogen-substituted pressure glass reactor and stirred. The polymer was subjected to a polymerization reaction at 80 ° C. for 1 hour to obtain a ring-opened polymer solution. Next, the solution of the obtained ring-opening polymer was charged into an autoclave equipped with a stirrer purged with nitrogen, and the mixture was stirred at 150 ° C. and a hydrogen pressure of 7 MPa for 5 hours to carry out a hydrogenation reaction, whereby a high molecular weight alicyclic olefin polymer was obtained. A solution of (A1) was obtained. The resulting alicyclic olefin polymer (A1) had a weight average molecular weight of 50,000, a number average molecular weight of 26,000, and a molecular weight distribution of 1.9. The hydrogenation rate was 97%, and the content of repeating units having a carboxylic anhydride group was 30 mol%. The solid content concentration of the alicyclic olefin polymer (A1) solution was 25%.

製造例2
MTF 70モル部、NDCA 30モル部、1−ヘキセン6モル部、アニソール590モル部およびルテニウム系重合触媒として4−アセトキシベンジリデン(ジクロロ)(4,5−ジブロモ−1,3−ジメシチル−4−イミダゾリン−2−イリデン)(トリシクロヘキシルホスフィン)ルテニウム(和光純薬社製)0.015モル部を、窒素置換した耐圧ガラス反応器に仕込み、攪拌下に80℃で1時間の重合反応を行って開環重合体の溶液を得た。次いで、窒素置換した攪拌機付きオートクレーブに、得られた開環重合体の溶液を仕込み、150℃、水素圧7MPaで、5時間攪拌させて水素添加反応を行って、低分子量脂環式オレフィン重合体(A2)の溶液を得た。得られた低分子量脂環式オレフィン重合体(A2)の重量平均分子量は10,000、数平均分子量は5,000、分子量分布は2であった。また、水素添加率は97%であり、カルボン酸無水物基を有する繰り返し単位の含有率は30モル%であった。その溶液からアニソールを減圧留去し、固形分濃度を50%にした。
Production Example 2
MTF 70 mol part, NDCA 30 mol part, 1-hexene 6 mol part, anisole 590 mol part and 4-acetoxybenzylidene (dichloro) (4,5-dibromo-1,3-dimesityl-4-imidazoline) as ruthenium-based polymerization catalyst 2-ylidene) (tricyclohexylphosphine) ruthenium (manufactured by Wako Pure Chemical Industries, Ltd.) in an amount of 0.015 mol was charged in a pressure-resistant glass reactor substituted with nitrogen, and the polymerization reaction was carried out at 80 ° C. for 1 hour with stirring. A solution of a ring polymer was obtained. Next, the nitrogen-substituted autoclave equipped with a stirrer was charged with the obtained ring-opening polymer solution, and the mixture was stirred at 150 ° C. and a hydrogen pressure of 7 MPa for 5 hours to conduct a hydrogenation reaction. A low molecular weight alicyclic olefin polymer A solution of (A2) was obtained. The resulting low molecular weight alicyclic olefin polymer (A2) had a weight average molecular weight of 10,000, a number average molecular weight of 5,000, and a molecular weight distribution of 2. The hydrogenation rate was 97%, and the content of repeating units having a carboxylic anhydride group was 30 mol%. Anisole was distilled off from the solution under reduced pressure to make the solid concentration 50%.

実施例1
(硬化性樹脂組成物)
製造例1で得られた高分子量脂環式オレフィン重合体(A1)10部、製造例2で得られた低分子量脂環式オレフィン重合体(A2)50部、エポキシ樹脂(B1)としてのジシクロペンタジエン骨格を有するエポキシ樹脂(商品名「エピクロンHP7200L」、大日本インキ化学工業社製)28部、エポキシ樹脂(B1)としてのフルオレン骨格を有するエポキシ樹脂(商品名「オグゾールPG100」、大阪ガスケミカル社製)106部、フェノール樹脂(B2)としてのジシクロペンタジエン骨格を有するフェノール樹脂(商品名「レヂトップGDP−6095LR」、群栄化学工業社製)79部、フェノール樹脂(B2)としてのフルオレン骨格を有するフェノール樹脂(商品名「CP−001」、大阪ガスケミカル社製)35部、その他硬化剤として、ビスフェノールA型エポキシ樹脂(jER828EL、三菱化学社製)28部、多官能エポキシ樹脂(jER1032H60、三菱化学社製)23部、無機充填材(C)としてのシランカップリング剤処理シリカ(商品名「アドマファインシリカSC2500−SXJ」、アドマテックス社製)660部、レーザ加工性向上剤としての2−[2−ヒドロキシ−3,5−ビス(α,α−ジメチルべンジル)フェニル]べンゾトリアゾール1部、老化防止剤としてトリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−イソシアヌレート1部、及び、硬化促進剤としての1−べンジル−2−フェニルイミダゾール1部をアニソール343部に混合して、硬化性樹脂組成物を得た。なお、得られた硬化性樹脂組成物中における、シランカップリング剤処理シリカの含有割合は、65重量%であった。そして、得られた硬化性樹脂組成物について、上記方法に従い、溶融粘度の評価を行なった。結果を表1に示す。
Example 1
(Curable resin composition)
10 parts of the high molecular weight alicyclic olefin polymer (A1) obtained in Production Example 1, 50 parts of the low molecular weight alicyclic olefin polymer (A2) obtained in Production Example 2, and diester as an epoxy resin (B1) Epoxy resin having a cyclopentadiene skeleton (trade name “Epicron HP7200L”, manufactured by Dainippon Ink and Chemicals, Inc.) 28 parts, Epoxy resin having a fluorene skeleton as an epoxy resin (B1) (trade name “Ogsol PG100”, Osaka Gas Chemical) 106 parts, phenol resin having a dicyclopentadiene skeleton as a phenol resin (B2) (trade name “Resitop GDP-6095LR”, Gunei Chemical Industry Co., Ltd.) 79 parts, a fluorene skeleton as a phenol resin (B2) Phenol resin (trade name “CP-001”, manufactured by Osaka Gas Chemical Co., Ltd.) 35 parts As other curing agents, bisphenol A type epoxy resin (jER828EL, manufactured by Mitsubishi Chemical Corporation) 28 parts, polyfunctional epoxy resin (jER1032H60, manufactured by Mitsubishi Chemical Corporation) 23 parts, silane coupling agent treated silica as inorganic filler (C) (Trade name “Admafine Silica SC2500-SXJ”, manufactured by Admatechs) 660 parts, 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] as a laser processability improver 1 part of benzotriazole, 1 part of tris (3,5-di-t-butyl-4-hydroxybenzyl) -isocyanurate as an anti-aging agent, and 1-benzyl-2-phenylimidazole as a curing accelerator 1 part was mixed with 343 parts of anisole to obtain a curable resin composition. In addition, the content rate of the silane coupling agent process silica in the obtained curable resin composition was 65 weight%. And about the obtained curable resin composition, the melt viscosity was evaluated according to the said method. The results are shown in Table 1.

(フィルム成形体)
次いで、上記にて得られた硬化性樹脂組成物を、ダイコーターを用いて、縦300mm×横300mmの大きさで厚さが38μm、表面平均粗さRaが0.08μmのポリエチレンテレフタレートフィルム(支持体:ルミラー(登録商標)T60 東レ社製)上に塗工し、次いで、窒素雰囲気下、80℃で10分間乾燥し、支持体上に厚さ40μmの硬化性樹脂組成物のフィルム成形体を得た。得られた硬化性樹脂組成物のフィルム成形体を用いて、上記方法に従い、線膨張係数、ガラス転移温度(Tg)、及び配線埋め込み平坦性の各評価を行った。結果を表1に示す。
(Film molded product)
Next, using a die coater, the curable resin composition obtained above was a polyethylene terephthalate film having a size of length 300 mm × width 300 mm, thickness 38 μm, and surface average roughness Ra 0.08 μm (support) Body: Lumirror (registered trademark) T60 manufactured by Toray Industries, Inc.) and then dried in a nitrogen atmosphere at 80 ° C. for 10 minutes to form a 40 μm-thick curable resin composition film molding on the support. Obtained. Each evaluation of a linear expansion coefficient, a glass transition temperature (Tg), and wiring embedding flatness was performed according to the said method using the film molding of the obtained curable resin composition. The results are shown in Table 1.

(ビアホールを有する積層体)
ガラスフィラーおよびハロゲン不含エポキシ樹脂を含有するワニスをガラス繊維に含浸させて得られたコア材表面に、厚さ35μmの銅が貼られた、厚さ0.8mm×縦150mm×横150mmの両面銅張り積層基板の表面に、L /S=50/50、100/100、又は200/200μmの配線パターンを形成した。次いで、銅表面を有機酸との接触によってマイクロエッチング処理して、表面に配線パターンを有する両面銅張り積層基板(内層基板)を得た。
(Laminated body with via hole)
Both sides of 0.8 mm thick × 150 mm long × 150 mm wide, with 35 μm thick copper pasted on the surface of the core material obtained by impregnating glass fiber with varnish containing glass filler and halogen-free epoxy resin A wiring pattern of L / S = 50/50, 100/100, or 200/200 μm was formed on the surface of the copper-clad laminate. Subsequently, the copper surface was microetched by contact with an organic acid to obtain a double-sided copper-clad laminate (inner layer substrate) having a wiring pattern on the surface.

そして、上記にて得られた硬化性樹脂組成物のフィルム成形体を、支持体が付いた状態で、縦150mm×横150mmの大きさに裁断し、フィルム成形体が内側、支持体が外側となる様にして、上記にて得られた内層基板の両面に重ね合わせた。これを、耐熱ゴム製プレス板を上下に備えた真空ラミネータを用いて、雰囲気を200Paに減圧して、温度110℃、圧着圧力0.1MPaで60秒間加熱圧着した(一次プレス)。さらに、金属製プレス板を上下に備えた真空ラミネータを用いて、温度110℃、圧着圧力1.0MPaで90秒間、加熱圧着した(二次プレス)。次いで支持体を剥がして、180℃で60分間空気中で加熱硬化して硬化物層を積層させた積層基板を得た。   Then, the film molded body of the curable resin composition obtained above is cut into a size of 150 mm in length and 150 mm in width with the support attached, and the film molded body is on the inside and the support is on the outside. In this manner, the inner layer substrate obtained above was superposed on both surfaces. The atmosphere was decompressed to 200 Pa using a vacuum laminator equipped with heat-resistant rubber press plates at the top and bottom, and thermocompression bonded at a temperature of 110 ° C. and a pressure bonding pressure of 0.1 MPa for 60 seconds (primary press). Furthermore, using a vacuum laminator provided with metal press plates at the top and bottom, thermocompression bonding was performed at a temperature of 110 ° C. and a pressure bonding pressure of 1.0 MPa for 90 seconds (secondary press). Next, the support was peeled off, and the cured substrate was laminated by heating and curing in air at 180 ° C. for 60 minutes to obtain a laminated substrate.

そして、この硬化物層に、CO2レーザーを用いてトップ径/ボトム径=55/44μmとなるビアホールを形成し、ビアホールを有する積層体を得た。そして、得られたビアホールを有する積層体を用いて、デスミア耐性、樹脂強度の評価を行った。結果を表1に示す。   And in this hardened | cured material layer, the via hole used as top diameter / bottom diameter = 55 / 44micrometer was formed using CO2 laser, and the laminated body which has a via hole was obtained. And evaluation of desmear tolerance and resin strength was performed using the obtained laminated body which has a via hole. The results are shown in Table 1.

実施例2
エポキシ樹脂(B1)としてのジシクロペンタジエン骨格を有するエポキシ樹脂(商品名「エピクロン(登録商標)HP7200L」、大日本インキ化学工業社製)90部、エポキシ樹脂(B1)としてのフルオレン骨格を有するエポキシ樹脂(商品名「オグゾールPG100」、大阪ガスケミカル社製)28部とし、フェノール樹脂(B2)としてのフルオレン骨格を有するフェノール樹脂(商品名「CP−001」、大阪ガスケミカル社製)、ジシクロペンタジエン骨格を有するフェノール樹脂(商品名「レヂトップGDP−6095LR」)の替わりに、ジシクロペンタジエン骨格を有するフェノール樹脂(商品名「レヂトップGDP−6140」)を124部とした以外は、実施例1と同様にして、硬化性樹脂組成物、フィルム成形体、及びビアホールを有する積層体を得て、各評価を行った。結果を表1に示す。
Example 2
Epoxy resin having a dicyclopentadiene skeleton as an epoxy resin (B1) (trade name “Epicron (registered trademark) HP7200L”, manufactured by Dainippon Ink & Chemicals, Inc.) 90 parts, an epoxy having a fluorene skeleton as an epoxy resin (B1) Resin (trade name “Ogsol PG100”, manufactured by Osaka Gas Chemical Co., Ltd.) 28 parts, phenol resin having a fluorene skeleton as the phenol resin (B2) (trade name “CP-001”, manufactured by Osaka Gas Chemical Co., Ltd.), dicyclo Example 1 except that the phenolic resin having a dicyclopentadiene skeleton (trade name “Resitop GDP-6140”) instead of the phenolic resin having a pentadiene skeleton (trade name “Resitop GDP-6095LR”) is 124 parts. Similarly, curable resin composition, film molding , And to obtain a laminate having a via hole was subjected to each evaluation. The results are shown in Table 1.

実施例3
高分子量脂環式オレフィン重合体(A1)の配合量を5部、及び、低分子量脂環式オレフィン重合体(A2)の配合量を55部に、それぞれ変更した以外は、実施例1と同様にして、硬化性樹脂組成物、フィルム成形体、及びビアホールを有する積層体を得て、各評価を行った。結果を表1に示す。
Example 3
The same as Example 1 except that the amount of the high molecular weight alicyclic olefin polymer (A1) was changed to 5 parts and the amount of the low molecular weight alicyclic olefin polymer (A2) was changed to 55 parts. Then, a curable resin composition, a film molded body, and a laminate having a via hole were obtained, and each evaluation was performed. The results are shown in Table 1.

実施例4
高分子量脂環式オレフィン重合体(A1)の配合量を20部、及び、低分子量脂環式オレフィン重合体(A2)の配合量を40部に、それぞれ変更した以外は、実施例1と同様にして、硬化性樹脂組成物、フィルム成形体、及びビアホールを有する積層体を得て、各評価を行った。結果を表1に示す。
Example 4
Example 1 except that the amount of the high molecular weight alicyclic olefin polymer (A1) was changed to 20 parts and the amount of the low molecular weight alicyclic olefin polymer (A2) was changed to 40 parts, respectively. Then, a curable resin composition, a film molded body, and a laminate having a via hole were obtained, and each evaluation was performed. The results are shown in Table 1.

実施例5,6
シランカップリング剤処理シリカの配合量を、それぞれ、192部(実施例5)、2016部(実施例6)に変更した以外は、実施例1と同様にして、硬化性樹脂組成物、フィルム成形体、及びビアホールを有する積層体を得て、各評価を行った。結果を表1に示す。なお、得られた硬化性樹脂組成物中における、シランカップリング剤処理シリカの含有割合は、それぞれ、35重量%(実施例5)、85重量%(実施例6)であった。
Examples 5 and 6
The curable resin composition and film molding were carried out in the same manner as in Example 1, except that the amount of the silane coupling agent-treated silica was changed to 192 parts (Example 5) and 2016 parts (Example 6), respectively. The laminated body which has a body and a via hole was obtained, and each evaluation was performed. The results are shown in Table 1. In addition, the content rate of the silane coupling agent process silica in the obtained curable resin composition was 35 weight% (Example 5) and 85 weight% (Example 6), respectively.

実施例7
シランカップリング剤処理シリカに代えて、シランカップリング剤で処理していないシリカ(商品名「アドマファインシリカSC2500」、アドマテックス社製)を用いた以外は、実施例1と同様にして、硬化性樹脂組成物、フィルム成形体、及びビアホールを有する積層体を得て、各評価を行った。結果を表1に示す。
Example 7
In place of silane coupling agent-treated silica, curing was performed in the same manner as in Example 1 except that silica not treated with a silane coupling agent (trade name “Admafine Silica SC2500”, manufactured by Admatechs) was used. The laminated body which has a conductive resin composition, a film molded object, and a via hole was obtained, and each evaluation was performed. The results are shown in Table 1.

実施例8
高分子量脂環式オレフィン重合体(A1)を配合しないとともに、低分子量脂環式オレフィン重合体(A2)の配合量を60部に変更した以外は、実施例1と同様にして、硬化性樹脂組成物、フィルム成形体、及びビアホールを有する積層体を得て、各評価を行った。結果を表1に示す。
Example 8
A curable resin was prepared in the same manner as in Example 1 except that the high molecular weight alicyclic olefin polymer (A1) was not added and the amount of the low molecular weight alicyclic olefin polymer (A2) was changed to 60 parts. A laminate having a composition, a film molded body, and a via hole was obtained, and each evaluation was performed. The results are shown in Table 1.

実施例9
高分子量脂環式オレフィン重合体(A1)の配合量を60部に変更し、低分子量脂環式オレフィン重合体(A2)を配合しなかった以外は、実施例1と同様にして、硬化性樹脂組成物、フィルム成形体、及びビアホールを有する積層体を得て、各評価を行った。結果を表1に示す。
Example 9
The curability was the same as in Example 1 except that the blending amount of the high molecular weight alicyclic olefin polymer (A1) was changed to 60 parts and the low molecular weight alicyclic olefin polymer (A2) was not blended. A laminate having a resin composition, a film molded body, and a via hole was obtained, and each evaluation was performed. The results are shown in Table 1.

比較例1
硬化剤(B)としてのエポキシ樹脂(B1)の代わりに、ビスフェノールA型エポキシ化合物(商品名「jER828EL」、三菱化学社製)45部、多官能エポキシ樹脂(jER1032H60、三菱化学社製)100部、及び、フェノールノボラック型エポキシ化合物(商品名「jER152」、三菱化学社製)45部、硬化剤(B)としてのフェノール樹脂(B2)の代わりに、ノボラック型フェノール樹脂(商品名「TD−2131」、DIC社製)100部に変更した以外は、実施例1と同様にして、硬化性樹脂組成物、フィルム成形体、及びビアホールを有する積層体を得て、各評価を行った。結果を表1に示す。
Comparative Example 1
Instead of the epoxy resin (B1) as the curing agent (B), 45 parts of a bisphenol A type epoxy compound (trade name “jER828EL”, manufactured by Mitsubishi Chemical Corporation), 100 parts of a polyfunctional epoxy resin (jER1032H60, manufactured by Mitsubishi Chemical Corporation) And 45 parts of a phenol novolac type epoxy compound (trade name “jER152”, manufactured by Mitsubishi Chemical Corporation), instead of the phenol resin (B2) as the curing agent (B), a novolac type phenol resin (trade name “TD-2131”) “A product made by DIC Co., Ltd.) Except for changing to 100 parts, a curable resin composition, a film molded body, and a laminate having a via hole were obtained in the same manner as in Example 1, and each evaluation was performed. The results are shown in Table 1.

Figure 0005630262
Figure 0005630262

表1より、カルボキシル基を有する脂環式オレフィン重合体(A)に、少なくとも2つの官能基と、脂環式オレフィン構造又はフルオレン構造とを有する硬化剤(B)を配合した場合には、無機充填材(C)としてのシリカを比較的多く添加した場合でも、溶融粘度を低くすることができ、低線膨張であり、耐熱性、配線埋め込み平坦性、及び樹脂強度に優れた硬化物を与えることが可能であることが分かる(実施例1〜9)。また、無機充填材(C)として、表面がシランカップリング剤で処理されたシリカを用いることにより、積層体とした場合に、デスミア耐性に優れたものとすることが可能であることが分かる(実施例7以外の実施例)。   From Table 1, when the alicyclic olefin polymer (A) having a carboxyl group is blended with a curing agent (B) having at least two functional groups and an alicyclic olefin structure or a fluorene structure, it is inorganic. Even when a relatively large amount of silica as the filler (C) is added, the melt viscosity can be lowered, low linear expansion is achieved, and a cured product having excellent heat resistance, wiring embedding flatness, and resin strength is obtained. (Examples 1-9). Moreover, it turns out that it can be set as the thing excellent in desmear tolerance, when it is set as a laminated body by using the silica by which the surface was processed with the silane coupling agent as an inorganic filler (C) ( Examples other than Example 7).

一方、硬化剤として、脂環式オレフィン構造又はフルオレン構造を有しない硬化剤を用いた場合には、溶融粘度が高くなってしまい、得られる硬化物は、樹脂強度及び配線埋め込み平坦性に劣ることが分かる(比較例1)。   On the other hand, when a curing agent having no alicyclic olefin structure or fluorene structure is used as the curing agent, the melt viscosity becomes high, and the obtained cured product is inferior in resin strength and wiring embedding flatness. (Comparative Example 1).

Claims (8)

カルボキシル基および/またはカルボン酸無水物基を有する脂環式オレフィン重合体(A)、
少なくとも2つの官能基と、脂環式オレフィン構造又はフルオレン構造とを有する硬化剤(B)、及び
無機充填材(C)を含有してなり、
前記官能基は、前記脂環式オレフィン重合体(A)のカルボキシル基および/またはカルボン酸無水物基と反応して結合を形成することができる基であり、
前記無機充填材(C)の配合量が30〜90重量%である硬化性樹脂組成物。
An alicyclic olefin polymer (A) having a carboxyl group and / or a carboxylic anhydride group,
A curing agent (B) having at least two functional groups, an alicyclic olefin structure or a fluorene structure, and an inorganic filler (C);
The functional group is a group capable of reacting with a carboxyl group and / or a carboxylic anhydride group of the alicyclic olefin polymer (A) to form a bond,
Curable resin composition whose compounding quantity of the said inorganic filler (C) is 30 to 90 weight%.
前記カルボキシル基および/またはカルボン酸無水物基を有する脂環式オレフィン重合体(A)が、重量平均分子量が20,000以上100,000以下であるカルボキシル基および/またはカルボン酸無水物基を有する脂環式オレフィン重合体(A1)と、重量平均分子量が5,000以上20,000未満であるカルボキシル基および/またはカルボン酸無水物基を有する脂環式オレフィン重合体(A2)とからなり、前記脂環式オレフィン重合体(A1)と前記脂環式オレフィン重合体(A2)の配合割合が、「重合体(A1)/重合体(A2)」の重量比で、5/95〜70/30である請求項1に記載の硬化性樹脂組成物。   The alicyclic olefin polymer (A) having a carboxyl group and / or a carboxylic acid anhydride group has a carboxyl group and / or a carboxylic acid anhydride group having a weight average molecular weight of 20,000 or more and 100,000 or less. An alicyclic olefin polymer (A1) and an alicyclic olefin polymer (A2) having a carboxyl group and / or a carboxylic anhydride group having a weight average molecular weight of 5,000 or more and less than 20,000, The blending ratio of the alicyclic olefin polymer (A1) and the alicyclic olefin polymer (A2) is 5/95 to 70 / in a weight ratio of “polymer (A1) / polymer (A2)”. The curable resin composition according to claim 1, which is 30. 前記硬化剤(B)が、少なくとも2つの官能基と、脂環式オレフィン構造又はフルオレン構造とを有するエポキシ樹脂(B1)と、少なくとも2つの官能基と、脂環式オレフィン構造又はフルオレン構造とを有するフェノール樹脂(B2)とからなる請求項1又は2に記載の硬化性樹脂組成物。   The curing agent (B) comprises at least two functional groups, an epoxy resin (B1) having an alicyclic olefin structure or a fluorene structure, at least two functional groups, and an alicyclic olefin structure or a fluorene structure. The curable resin composition according to claim 1, comprising a phenol resin (B2) having the resin. 前記無機充填材(C)が、表面をシランカップリング剤で処理してなるシリカである請求項1〜3のいずれかに記載の硬化性樹脂組成物。   The curable resin composition according to any one of claims 1 to 3, wherein the inorganic filler (C) is silica obtained by treating the surface with a silane coupling agent. 請求項1〜4のいずれかに記載の硬化性樹脂組成物を硬化してなる硬化物。   Hardened | cured material formed by hardening | curing the curable resin composition in any one of Claims 1-4. 表面に導体層を有する基板と、請求項5に記載の硬化物からなる電気絶縁層とを、積層してなる積層体。   The laminated body formed by laminating | stacking the board | substrate which has a conductor layer on the surface, and the electrically insulating layer which consists of hardened | cured material of Claim 5. 請求項6に記載の積層体の、電気絶縁層上にさらに導体層を形成してなる多層回路基板。   A multilayer circuit board obtained by further forming a conductor layer on the electrically insulating layer of the laminate according to claim 6. 請求項7に記載の多層回路基板を備えた電子機器。   An electronic device comprising the multilayer circuit board according to claim 7.
JP2010290449A 2010-12-27 2010-12-27 Curable resin composition, cured product, laminate, multilayer circuit board, and electronic device Active JP5630262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010290449A JP5630262B2 (en) 2010-12-27 2010-12-27 Curable resin composition, cured product, laminate, multilayer circuit board, and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010290449A JP5630262B2 (en) 2010-12-27 2010-12-27 Curable resin composition, cured product, laminate, multilayer circuit board, and electronic device

Publications (2)

Publication Number Publication Date
JP2012136646A JP2012136646A (en) 2012-07-19
JP5630262B2 true JP5630262B2 (en) 2014-11-26

Family

ID=46674329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010290449A Active JP5630262B2 (en) 2010-12-27 2010-12-27 Curable resin composition, cured product, laminate, multilayer circuit board, and electronic device

Country Status (1)

Country Link
JP (1) JP5630262B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150142682A (en) * 2013-04-10 2015-12-22 오사카 가스 케미칼 가부시키가이샤 Resin composition containing fluorine compound, molded body, wavelength dispersion adjustment agent, and method for adjusting wavelength dispersion of resin
JP6528226B2 (en) * 2014-01-31 2019-06-12 インテル・コーポレーション Curable resin composition, film, laminated film, prepreg, laminate, cured product, and composite
JP6358533B2 (en) * 2014-03-27 2018-07-18 パナソニックIpマネジメント株式会社 Prepreg, metal-clad laminate, printed wiring board
JP6379600B2 (en) * 2014-04-03 2018-08-29 三菱瓦斯化学株式会社 Resin composition, prepreg, resin sheet, and metal foil-clad laminate
JP6592962B2 (en) * 2015-05-22 2019-10-23 住友ベークライト株式会社 Thermosetting resin composition, resin film with carrier, printed wiring board, and semiconductor device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4581292B2 (en) * 2001-06-01 2010-11-17 日本ゼオン株式会社 Resin composition, prepreg and laminate
DE102007044425A1 (en) * 2007-09-18 2009-03-19 Zf Friedrichshafen Ag Device for detecting the position of a shift fork of a transmission
JP5287438B2 (en) * 2009-03-31 2013-09-11 日本ゼオン株式会社 Curable resin composition and insulating film for circuit board
JP5584990B2 (en) * 2009-03-31 2014-09-10 日本ゼオン株式会社 Method for producing modified silica, resin composition for insulating material, and film for insulating film

Also Published As

Publication number Publication date
JP2012136646A (en) 2012-07-19

Similar Documents

Publication Publication Date Title
JP5403190B1 (en) Prepreg and laminate manufacturing method
JP6056851B2 (en) Curable resin composition, film, laminated film, prepreg, laminate, cured product, and composite
JP5590245B2 (en) Curable resin composition, film, prepreg, laminate, cured product, and composite
JP6056760B2 (en) Insulating adhesive film, laminate, cured product, and composite
JP5751257B2 (en) Curable resin composition, cured product, surface-treated cured product, and laminate
JP5630262B2 (en) Curable resin composition, cured product, laminate, multilayer circuit board, and electronic device
JP5691977B2 (en) Insulating adhesive film, prepreg, laminate, cured product, and composite
JP2014133877A (en) Curable resin composition and cured article
WO2014091750A1 (en) Curable resin composition, insulating film, prepreg, cured product, composite, and substrate for electronic material
WO2015133513A1 (en) Multilayer curable resin film, pre-preg, laminate body, cured product, complex, and multilayer circuit board
JP2012214606A (en) Curable resin composition, film, laminate, and cured product
JP6528226B2 (en) Curable resin composition, film, laminated film, prepreg, laminate, cured product, and composite
JP2013010887A (en) Resin composition, film, laminate, cured product, and composite
JP2015147310A (en) Multilayer curable resin film, prepreg, laminate, cured product, composite body, and multilayer circuit board
JP2013055301A (en) Manufacturing method of multilayer printed wiring board
JP2010245064A (en) Method for manufacturing circuit board
JP2013010895A (en) Insulating adhesive film, laminate, cured product and composite body
JP2015174898A (en) Curable resin composition, film, laminate film, prepreg, laminate, hardened product and composite body
JP2010155934A (en) Curable resin composition
JP2014117823A (en) Insulating film, prepreg and cure product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140922

R150 Certificate of patent or registration of utility model

Ref document number: 5630262

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250