JP5628615B2 - 半導体発光装置およびその製造方法 - Google Patents

半導体発光装置およびその製造方法 Download PDF

Info

Publication number
JP5628615B2
JP5628615B2 JP2010215194A JP2010215194A JP5628615B2 JP 5628615 B2 JP5628615 B2 JP 5628615B2 JP 2010215194 A JP2010215194 A JP 2010215194A JP 2010215194 A JP2010215194 A JP 2010215194A JP 5628615 B2 JP5628615 B2 JP 5628615B2
Authority
JP
Japan
Prior art keywords
transparent electrode
semiconductor layer
layer
emitting device
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010215194A
Other languages
English (en)
Other versions
JP2012069860A (ja
Inventor
田中 聡
聡 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2010215194A priority Critical patent/JP5628615B2/ja
Priority to US13/246,415 priority patent/US20120061642A1/en
Publication of JP2012069860A publication Critical patent/JP2012069860A/ja
Application granted granted Critical
Publication of JP5628615B2 publication Critical patent/JP5628615B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

本発明は、発光ダイオード(LED:Light Emitting Diode)等の半導体発光装置に関し、特に半導体層の内部における電流拡散を制御する構造に関する。
いわゆるフェイスアップ型の半導体発光装置は、絶縁性の成長用基板の上にn型半導体層、活性層、p型半導体層を順次積層し、p型半導体層および活性層の一部を除去することによりn型半導体層を部分的に露出させ、p型半導体層の表面および露出したn型半導体層の表面にそれぞれp側電極およびn側電極を形成することにより製造される。p側電極は、p型半導体層の表面を広く覆うスズドープ酸化インジウム(ITO:Indium Tin Oxide)等からなる透明電極の上に金属からなるパッド電極を積層することにより形成される。
しかしながら、このような電極構造によれば、p側パッド電極から供給された電流は、n側電極に向けて最短経路で流れるため半導体層内における電流拡散が不十分となり、順方向電圧の上昇や発光効率の低下を引き起こす。更に、電流が集中するp側パッド電極直下においてはジュール熱が増大し、p側パッド電極と透明電極との界面に熱応力が生じ、p側パッド電極が透明電極から剥がれるといった不具合が発生する場合もある。
このようなp側パッド電極直下における電流集中を抑制する技術として、例えば特許文献1には、p型GaN層の内部にTiOからなる電流阻止層を有する半導体発光装置が開示されている。
特許文献2には、p型GaN層の表面に並置されたSiO膜およびITO透明電極と、SiO膜上にITO透明電極の一部と接するように形成されたp側パッド電極とを含む半導体発光装置が開示されている。
特許文献3には、最表面の半導体層をn型GaN層とし、n型GaN層の表面にn型GaN層に対する接触抵抗が比較的大きいAg等からなる電流阻止層と、n型GaN層に対する接触抵抗が比較的小さいITOからなる透明電極を形成し、パッド電極を電流阻止層の直上に配置した半導体発光装置が開示されている。
特開平10−294531号公報 特開平10−173224号公報 特開2006−156590号公報
特許文献1に記載されているように、p型GaN層の内部にTiOからなる電流阻止層を形成する場合、以下に示すプロセスが必要となる。p型GaN層を形成した後、MOCVD装置内の温度を室温まで下げウエハを取り出す。ウエハを真空蒸着装置のチャンバ内に設置し、Ti膜を真空蒸着する。フォトリソグラフィおよびエッチングによりTi膜をパターニングする。ウエハを酸化炉内に設置し、Ti膜を酸化してTiO膜を得る。ウエハを再びMOCVD装置に設置し、結晶成長を行う。このように、半導体層内部にTiO膜を形成しようとすると、結晶成長工程が中断されることになり工程が煩雑となる。また、結晶成長を中断してウエハをハンドリングするため、歩留り低下を引き起こし、生産コストが高くなる。
特許文献2に記載されているように、SiO膜上にITO透明電極の一部と接するようにp側パッド電極を形成した場合、電流はp側パッド電極とITO透明電極の接合部に集中する。上記接合部では電流集中により発熱し、熱応力によりp側パッド電極がITO透明電極から剥離する場合もあり、このような電極構成が信頼性低下の要因となる。一方、光取り出し効率を向上させるために、p側パッド電極を極力小さく形成する必要があることから、p側パッド電極とITO透明電極との接合部面積を大きくすることは困難である。従って、大電流を供給した場合、p側パッド電極とITO透明電極との接合部に電流が集中し、順方向電圧が高くなってしまう。
特許文献3に記載されているように、最表面の半導体層をn型GaN層とした場合、このn型GaN層を形成する際の熱により活性層が劣化し、内部量子効率の低下を招く。また、電流阻止層をパターニングする際のフォトリソグラフィ工程において最表面のn型GaN層が汚染され、後に形成される透光性電極とn型GaN層との間で良好なオーミック性接触を形成することが困難となる。更に、電流阻止層を金属で形成した場合、当該金属が高反射率を有する場合であっても活性層から放射された光の一部は電流阻止層に吸収され、光取り出し効率が低下する。
本発明は、上記した点に鑑みてなされたものであり、比較的簡便な方法で製造することができ、歩留り低下、信頼性低下、駆動電圧の上昇および光り取り出し効率の低下といった従来の問題を解消し得る半導体発光装置およびその製造方法を提供することを目的とする。
本発明に係る半導体発光装置の製造方法は、成長用基板の表面にn型半導体層、活性層およびp型半導体層を形成する工程と、前記p型半導体層の表面にスパッタ法により金属酸化物透明導電膜を成膜する工程と、前記金属酸化物透明導電膜をウエットエッチングによりパターン形成する工程と、酸素を含む雰囲気中での熱処理によりパターン形成された前記金属酸化物透明導電膜をシンタリングして第1の透明電極を形成する工程と、前記第1の透明電極を形成した後に、前記p型半導体層の表面に前記第1の透明電極の表面をも覆うようにスパッタ法により金属酸化物透明導電膜を成膜し、熱処理によるシンタリングをせずにウエットエッチングにより端部が前記第1の透明電極と重なるようにパターン形成して第2の透明電極を形成する工程と、前記第2の透明電極の表面に金属からなるp側パッド電極を形成する工程と、を含み、前記第1の透明電極の結晶性は、前記第2の透明電極の結晶性より高く、前記第2の透明電極の前記p型半導体層に対する接触抵抗は、前記第1の透明電極の前記p型半導体層に対する接触抵抗より高く、前記第2の透明電極のシート抵抗は、前記第1の透明電極のシート抵抗よりも低いことを特徴としている。
また、本発明に係る半導体発光装置は、n型半導体層と、p型半導体層と、前記n型半導体層と前記p型半導体層の間に設けられた活性層と、を含む半導体発光装置であって、前記p型半導体層の表面に設けられた金属酸化物透明導電体からなる第1の透明電極と、前記p型半導体層の表面に設けられ、前記第1の透明電極に電気的に接続された金属酸化物透明導電体からなる第2の透明電極と、前記第2の透明電極の表面に設けられた金属からなるp側パッド電極と、を含み、前記第1の透明電極の結晶性は、前記第2の透明電極の結晶性よりも高く、前記第2の透明電極は、前記第1の透明電極よりも前記p型半導体層に対する接触抵抗が高く、前記第1の透明電極よりもシート抵抗が低く、前記第1の透明電極の表面全体を覆うように設けられていることを特徴としている。
本発明に係る半導体発光装置およびその製造方法によれば、比較的簡便な方法で製造することができ、歩留り低下、信頼性低下、駆動電圧の上昇および光り取り出し効率の低下といった従来の問題を解消し得る半導体発光装置およびその製造方法を提供することが可能となる。
(a)は、本発明の実施例1に係る半導体発光装置の構成を示す平面図、(b)は図1(a)における1b−1b線に沿った断面図である。 (a)〜(c)は、本発明の実施例に係る半導体発光装置の製造方法を示す断面図である。 (a)および(b)は、本発明の実施例に係る半導体発光装置の製造方法を示す断面図である。 本発明の実施例に係る第1の透明電極と第2の透明電極の透過率スペクトルを示す図である。 (a)は、本発明の実施例2に係る半導体発光装置の構成を示す平面図、(b)は図5(a)における5b−5b線に沿った断面図である。 本発明の実施例3に係る半導体発光装置の構成を示す断面図である。
以下、本発明の実施例について図面を参照しつつ説明する。尚、以下に示す図において、実質的に同一又は等価な構成要素、部分には同一の参照符を付している。
図1(a)は本発明の実施例1に係る半導体発光装置1の平面図、図1(b)は図1(a)における1b−1b線に沿った断面図である。
成長用基板10は、GaN系半導体膜の結晶成長を行うための基板であり、例えばC面サファイア基板である。成長用基板10の上にはAlxInyGa1-x-yN(0≦x≦1, 0≦y≦1)で表されるGaN系窒化物半導体層が形成されている。窒化物半導体層は、バッファ層21、n型コンタクト層22、活性層23、p型クラッド層24、p型コンタクト層25がこの順序で積層されて構成される。n型コンタクト層22には所定濃度のSiがドープされており、n型の導電型を有している。p型クラッド層24およびp型コンタクト層25には所定濃度のMgがドープされており、これら各層はp型の導電型を有している。活性層23は、例えばInGaN井戸層とGaN障壁層を繰り返し積層した多重量子井戸構造を有する。尚、窒化物半導体層の積層構造は、ホモ接合構造、シングルへテロ接合構造、ダブルへテロ接合構造のいずれの積層構造を有するものであってもよい。
半導体発光装置1は、いわゆるフェイスアップ型の半導体発光装置であり、n側コンタクト層22の一部は、p型コンタクト層25の表面と同じ側に露出している。n型コンタクト層22の露出面には、TiおよびAlをこの順序で積層して構成されるn側パッド電極50が設けられている。n側パッド電極50は、n型コンタクト層22との間でオーミック性接触を形成している。
p型コンタクト層25の表面には例えばスズドープ酸化インジウム(ITO:Indium Tin Oxide)からなる厚さ約110nmの第1の透明電極31と、同じくスズドープ酸化インジウムからなる厚さ約110nmの第2の透明電極32が形成されている。第1の透明電極31および第2の透明電極32は、完全に透明であることを要さず、活性層23からの光に対して透光性を有していればよい。また、第1の透明電極31および第2の透明電極32は、導電性を有している。第2の透明電極32は、第1の透明電極31に部分的に重なるように形成され、これらは互いに電気的に接続されている。第1の透明電極31と第2の透明電極32は、p型コンタクト層25に対する接触抵抗が互いに異なる。すなわち、第1の透明電極31とp型コンタクト層25との接触抵抗は例えば2×10−4Ω/cm〜7×10−3Ωcmであるのに対して、第2の透明電極32とp型コンタクト層25との接触抵抗は例えば2×10Ωcm以上である。つまり、第2の透明電極32は、第1の透明電極31の1000倍以上の接触抵抗を有する。また、第1の透明電極31のシート抵抗は、例えば100〜200Ω/□であるのに対して第2の透明電極32のシート抵抗は、例えば10〜40Ω/□である。第1の透明電極31と第2の透明電極32におけるこのような電気的特性の差異は、これらの透明電極を構成するITO膜の成膜後におけるシンタリング処理の有無によってもたらされる。その詳細については後述する。
第2の透明電極32の表面には、NiおよびAuをこの順序で積層して構成されるp側パッド電極40が形成されている。p側パッド電極40は、第2の透明電極32にのみ接合し、第1の透明電極31には接合していない。
n側パッド電極50およびp側パッド電極40は、例えば矩形形状を有する半導体発光装置1の互いに対向する2つのコーナ部の近傍にそれぞれ配置される。p側パッド電極40から供給された電流は、第2の透明電極32に流れ込む。上記したように、第1の透明電極31と第2の透明電極32のp型コンタクト層25に対する接触抵抗は顕著に異なるため、電流は接触抵抗の低い第1の透明電極31の全域に亘って広がり、主に第1の透明電極31からp型コンタクト層25に注入され、n側パッド電極50に向けて流れる。一方、p型コンタクト層25に対する接触抵抗が高い第2の透明電極32からはp型コンタクト層25に向けて電流は殆ど注入されない。すなわち、第2の透明電極32は、供給された電流を第1の透明電極32に迂回させ、p側パッド電極40の直下における電流集中を抑制する電流制御層として機能する。第1および第2の透明電極の配置や面積を適切に設定することにより、窒化物半導体層内における電流分布を均一とすることが可能となる。仮に、p型コンタクト層25の表面の透明電極を接触抵抗の低い第1の透明電極31のみで形成した場合には、p側パッド電極40の直下を経由する経路に電流が集中し、輝度分布の不均一、順方向電圧の上昇、信頼性の低下といった結果を招く。
次に、上記した構成を有する半導体発光装置1の製造方法について説明する。図2(a)〜図2(c)および図3(a)〜図3(b)は、半導体発光装置1の製造工程におけるプロセスステップ毎の断面図である。
(窒化物半導体層形成工程)
はじめに、成長用基板10を用意する。本実施例では、有機金属気相成長法(MOCVD:Metal Organic Chemical Vapor Deposition)によりGaN系窒化物半導体層を形成することができるC面サファイア基板を成長用基板として用いた。
成長用基板10をMOCVD装置に投入し、約1000℃の水素雰囲気中で10分程度の加熱を行った(サーマルクリーニング)。次に基板温度を約500℃とし、トリメチルガリウム(TMG)(流量 10.4 μmol/min)、アンモニア(NH)(流量3.3LM)を3分間供給してGaNからなるn型バッファ層21を形成した。その後、基板温度を1000℃まで昇温して30秒間保持することによりn型バッファ層を結晶化させた。
次に、基板温度(成長温度)1000℃にてトリメチルガリウム(TMG)(流量45μmol/min)、アンモニア(NH)(流量4.4LM)、シラン(SiH)(流量2.7×10−9μmol/min)を60分間供給し、層厚4μm程度のGaNからなるn型コンタクト層22を形成した。
活性層23にはInGaN/GaNからなる多重量子井戸構造を適用した。本実施例ではInGaN井戸層/GaN障壁層を1周期として5周期成長を行った。基板温度約700℃でトリメチルガリウム(TMG)(流量3.6 μmol/min)、トリメチルインジウム(TMI)(流量10 μmol/min)、アンモニア(NH)(流量4.4LM)を33秒間供給し、層厚2.2nm程度のInGaN井戸層を形成し、続いてトリメチルガリウム(TMG)(流量3.6μmol/min)、アンモニア(NH)(流量4.4LM)を320秒間供給し、層厚15nm程度のGaN障壁層を形成した。かかる処理を5周期分繰り返すことにより活性層23を形成した。
次に、基板温度を870℃まで上げ、トリメチルガリウム(TMG)(流量8.1μmol/min)、トリメチルアルミニウム(TMA)(流量7.5μmol/min)、アンモニア(NH)(流量4.4LM)、CpMg(bis-cyclopentadienyl Mg)(流量2.9×10−7μmol/min)を5分間供給し、層厚40nm程度のAlGaNからなるp型クラッド24を形成した。引き続きそのままの温度でトリメチルガリウム(TMG)(流量18μmol/min)、アンモニア(NH)(流量4.4LM)、CpMg(2.9×10−7μmol/min)を7分間供給しGaNからなる層厚150nm程度のp型コンタクト層25 を形成した(図2(a))。
(p型コンタクト層活性化工程)
ウエハをMOCVD装置から取り出し、p型コンタクト層25の活性化を行った。成長過程において、p型コンタクト層25の層内にはキャリアガスの原料である水素が混入しており、Mg−H結合が形成されている。このような状態では、ドープされたMgはドーパントとしての機能を果たすことができず、p型コンタクト層25は高抵抗化している。この為、p型コンタクト層25内に混入している水素を脱離させる活性化工程が必要となる。具体的には、400℃以上の不活性ガス雰囲気中でウエハの熱処理を行ってp型コンタクト層25を活性化させた。
(第1の透明電極形成工程)
活性化されたp型コンタクト層25の表面に第1の透明電極31を形成した。基板温度を約200℃とし、RFスパッタ法によりp型コンタクト層25の表面に厚さ約110nmのITO膜を形成した。次に、ITO膜上に所定の開口パターンを有するレジストマスクを形成し、レジストマスクを介してITO膜をウェットエッチングしてITO膜にパターニングを施した。尚、ITO膜の成膜時の基板温度は150℃以上300℃以下の範囲に設定することができる。ITOは基板温度150℃以上で結晶化が促進される。基板温度が低く結晶化が促進されない場合、ITOの光透過率は著しく低下するため好ましくない。一方、基板温度が300℃以上となると、結晶化が促進されITO膜をパターニングするためのエッチング処理が困難となる。また、この場合、ITO膜中の酸素量が増加して酸素欠損が減少することによりキャリア濃度が減少し、シート抵抗が増加するため好ましくない。
レジストマスクを除去した後、600℃の酸素を含む雰囲気中にウエハを投入し、1分間の熱処理を行った。この熱処理でITO膜のシンタリングを行うことによりITO膜とp型コンタクト層25との間の接触抵抗が大幅に低減される。また、この熱処理によりITO膜の酸素欠損部位に酸素が導入され結晶性が向上する。すなわち、この熱処理により、ITO膜の結晶化の促進とシンタリングが同時に行われることとなる。尚、ITO膜の熱処理温度は、500〜700℃の範囲に設定することが好ましい。熱処理温度を400℃以下とした場合、ITO膜のシンタリングが促進されず、p型コンタクト層25に対する接触抵抗を十分に下げることができない。一方、熱処理温度を800℃以上とした場合、p型コンタクト層25において窒素の脱離が起こるため好ましくない。以上の工程を経てp型コンタクト25上に第1の透明電極31が形成される(図2(b))。
(第2の透明電極形成工程)
p型コンタクト層25の表面に第1の透明電極31に電気的に接続されるように第2の透明電極32を形成した。基板温度を約200℃とし、RFスパッタ法により第1の透明電極31が形成されたp型コンタクト層25の表面に厚さ約110nmのITO膜を形成した。先の工程において形成された第1の透明電極31の表面をも覆うようにITO膜を形成した。尚、ITO膜の成膜時の基板温度は150℃以上300℃以下の範囲に設定することができる。次に、ITO膜上に所定の開口パターンを有するレジストマスクを形成し、レジストマスクを介してITO膜をウェットエッチングしてITO膜にパターニングを施した。かかるエッチングにより第1の透明電極31の表面を露出させた。第2の透明電極32の端部が第1の透明電極31と重なるようにパターニングを施した。尚、第1の透明電極31は、先の酸素雰囲気中での熱処理により結晶化が促進されエッチング速度が著しく遅い為、本エッチング工程において除去されることはない。第2の透明電極32を構成するITO膜に対しては、成膜後の熱処理は行わない。すなわち、第2の透明電極32についてはシンタリング処理は実施されず、ITO膜の成膜直後の界面状態が維持される。従って、p型コンタクト層25に対する接触抵抗は、第1の透明電極31よりも高くなる。以上の工程を経てp型コンタクト25上に第2の透明電極32が形成される(図2(c))。
(n型コンタクト層露出工程)
窒化物半導体層をp型コンタクト層25の表面からエッチンングしてn型コンタクト層22を部分的に露出させた。第1および第2の透明電極の形成部を含むp型コンタクト層25の所定領域を覆うレジストマスクを形成した。次にウエハを反応性イオンエッチング(RIE:reactive ion etching)装置に投入し、n型コンタクト層22が露出するまでp型コンタクト層25の表面から窒化物半導体層をエッチングした(図3(a))。
(n側パッド電極形成工程)
露出したn型コンタクト層22の表面にn側パッド電極50を形成した。n型コンタクト層50の表面に、n側パッド電極形成部に開口部を有するレジストマスクを形成した後、EB蒸着法にてTi(1nA)およびAl(1μm)をこの順序で堆積した。その後、レジストマスクをリフトオフすることによりn側パッド電極50のパターニングを行った。
(p側パッド電極形成工程)
第2の透明電極32の表面にp側パッド電極40を形成した。第2の透明電極32の表面に、p側パッド電極形成部に開口部を有するレジストマスクを形成した後、EB蒸着法にてNi(25nA)およびAu(500nm)をこの順序で堆積した。その後、レジストマスクをリフトオフすることによりp側パッド電極40のパターニングを行った。p側パッド電極40は、第2の透明電極32の表面の一部を覆い、且つ第1の透明電極31には接触しないように形成された。尚、Ni層とAu層との間に高い反射率を有するAg、Pt、Al又はこれらのいずれかを含む合金層を挿入してもよい。(図3(b))。
以上の各工程を経ることにより、半導体発光装置1が完成した。上記した製造方法で作製された半導体発光装置の第1の透明電極31および第2の透明電極32の各種特性について評価した結果を以下に示す。
第1の透明電極31と第2の透明電極32のシート抵抗およびp型コンタクト層25に対する接触抵抗の測定値を表1に示す。第1の透明電極31のp型コンタクト層25に対する接触抵抗については、第1の透明電極31がオーミック電極として機能するのに十分な低抵抗値を得ることができた。第2の透明電極32のp型コンタクト層25に対する接触抵抗については、第2の透明電極32が電流制御層として機能するのに好適な値が得られた。すなわち、第1の透明電極31と第2の透明電極32との間で接触抵抗に顕著な差異が得られた。これは、第1の透明電極31については、熱処理によるITO膜のシンタリングが実施されたのに対して、第2の透明電極32については、ITO膜のシンタリングが実施されず、ITO膜の成膜直後の界面状態が維持されているからである。第1の透明電極31と第2の透明電極32との間で接触抵抗にこのような顕著な差異を設けることにより、p型コンタクト層25に対する電流注入は、主に第1の透明電極31を介して行われ、第2の透明電極32の直下には電流は殆ど流れなくなる。換言すれば、第2の透明電極32を電流制御層として有効に機能させることが可能となり、p側パッド電極40の直下における電流集中を抑制することが可能となる。これにより、窒化物半導体層内における電流分布の均一化を図ることが可能となり、発光分布の均一化、順方向電圧の低減および信頼性の向上を達成することができる。
一方、シート抵抗に関しては第2の透明電極32が第1の透明電極31よりも低いことが確認された。第1の透明電極31は、ITO膜の成膜後の熱処理により酸素欠損部位に酸素が導入され、結晶化が促進された結果、キャリア密度が低下したため第2の透明電極32よりもシート抵抗値が高くなっているものと考えられる。しかしながら、その絶対値は実使用上において問題のないレベルである。一方、第2の透明電極32は、ITO膜の成膜時において酸素の脱離が起こるため、酸素欠損部位が比較的多く、キャリア密度が比較的高いため、シート抵抗値が比較的低く抑えられている。
このように、第2の透明電極32は、主に半導体発光装置1の主面と平行方向な方向に電流を流すのに有利な特性を有しており、第1の透明電極31は、主に半導体発光装置1の厚さ方向に電流を流すのに有利な特性を有している。
Figure 0005628615
図4に第1の透明電極31と第2の透明電極32の透過率スペクトルを示す。第2の透明電極32は、第1の透明電極31よりも光吸収端が短波長側に位置していることが確認された。これは、第2の透明電極32の方が第1の透明電極31に比べ、バンドギャップが大きく、透過性が高いことを意味している。第2の透明電極32が高い透過性を有することにより、第1の透明電極31を経由する光、すなわち、活性層23から放射され、p側パッド電極40にて反射された後、外部に放出される光の吸収が抑制され、光取り出し効率を向上させることが可能となる。
以上の説明から明らかなように、本発明の実施例に係る半導体発光装置およびその製造方法によれば、窒化物半導体層に対する接触抵抗が互いに顕著に異なる2つの透明電極が窒化物半導体層の表面に形成される。これにより、窒化物半導体層に対する接触抵抗が比較的低い第1の透明電極31は、オーミック電極として機能し、窒化物半導体層に対する接触抵抗が比較的高い第2の透明電極32は、電流制御層として機能する。p側パッド電極40は、電流制御層として機能する第2の透明電極32にのみ接触するように形成されるので、p側パッド電極直下における電流集中を抑制することが可能となる。これにより、窒化物半導体層内部における電流分布が均一となり、発光分布の均一化、順方向電圧の低減および信頼性の向上を達成することができる。
また、本発明の実施例に係る半導体発光装置およびその製造方法によれば、窒化物半導体層に対する接触抵抗が互いに異なる2つの透明電極を窒化物半導体層の表面に形成することにより電流拡散構造が形成されるので、窒化物半導体層の成長工程の途中でウエハを別の処理装置に搬入するといった作業を要しない。すなわち、酸化チタン(TiO)等の金属酸化膜を半導体層内に形成することにより電流狭窄構造を得る従来のものよりも容易に製造することができ、製造コストの低減および歩留りの向上を図ることが可能となる。
また、p側パッド電極40から供給される電流は、p側パッド電極40の全面に亘って接合する第2の透明電極32を介して窒化物半導体層に注入されるので、電流制御層をSiO膜等の絶縁膜で形成する場合と比較してp側パッド電極における電流集中を回避することが可能となる。すなわち、p側パッド電極と接合し且つ電流制御層として機能する第2の透明電極32は、導電性を有しており、p側パッド電極40との接合面の全域が電流経路となり得るので、p側パッド電極との接合面の面積が制限される従来の電極構造と比較して順方向電圧の低減および熱応力に起因するp側パッド電極の剥離を防止することが可能となる。
また、本発明の実施例に係る半導体発光装置の製造方法によれば、オーミック電極として機能する第1の透明電極31を形成する前に窒化物半導体層の表面にレジストマスクを形成および除去する工程が存在しないので、窒化物半導体層の表面が汚染されることはなく、第1の透明電極と窒化物半導体層との電気的接続を良好に維持することが可能となる。また、電流制御層が透明電極で構成されるので、窒化物半導体層から臨界角以上の角度で入射する光は、高い反射率で全反射され外部に放出されることとなる。すなわち、電流制御層をAg等の高反射率の金属で構成する場合よりも光の吸収を低減することができ、光取り出し効率の向上を図ることが可能となる。
図5(a)は、本発明の実施例2に係る半導体発光装置2の構成を示す平面図、図5(b)は、図5(a)における5b−5b線に沿った断面図である。
半導体発光装置2は、第2の透明電極32が第1の透明電極31の表面の全面を覆うように形成されている点が上記した実施例1に係る半導体発光装置1と異なる。他の構成は、実施例1に係る半導体発光装置1と同様である。
上記したように、第2の透明電極32のシート抵抗は、第1の透明電極32のシート抵抗の約5分の1であり、第1の透明電極31よりも高い導電性を有する。第1の透明電極31の表面全体をシート抵抗の低い第2の透明電極32で覆うことにより、半導体発光装置の主面と平行な方向に流れる電流の経路上の抵抗をより低くすることができ、順方向電圧を更に低減することが可能となる。尚、第2の透明電極32が第1の透明電極31を覆う範囲は、必ずしも全面である必要はなく、第1の透明電極31の一部が覆われていればよい。また、第1の透明電極31および第2の透明電極32のそれぞれの厚さは、実施例1に係る半導体発光装置1と比較して薄くすることが好ましく、例えば第1の透明電極31と第2の透明電極32とが重なっている部分の厚さが110nm程度とすることができる。また、第1の透明電極31を薄く、第2の透明電極を厚くすることがより高い透光性を得る観点から好ましい。
図6は、本発明の実施例3に係る半導体発光装置3の構成を示す断面図である。上記した実施例1および2に係る半導体発光装置は、p型コンタクト層25とn型コンタクト層22とが同一方向に表出し、かかるp型コンタクト層25とn型コンタクト層の22の表出面上にそれぞれp側パッド電極40およびn側パッド電極50が形成されているいわゆるフェイスアップ型であった。実施例3に係る半導体発光装置3は、p側パッド電極とn側パッド電極は、窒化物半導体層および成長用基板を挟むように設けられたいわゆる両面電極型である。
このような電極配置を有する半導体発光装置は、例えばGaNやSiC等の導電性を有する成長用基板10aを用いて窒化物半導体層の結晶成長を行うものに適用される。成長用基板10aの表面には、AlxInyGa1-x-yN(0≦x≦1, 0≦y≦1)で表されるGaN系窒化物半導体層が形成されている。窒化物半導体層は、バッファ層21、n型コンタクト層22、活性層23、p型クラッド層24、p型コンタクト層25がこの順序で積層されて構成される。
p型コンタクト層25の表面には例えばITOからなる厚さ約110nmの第1の透明電極31と、同じくITOからなる厚さ約110nmの第2の透明電極32が形成されている。第2の透明電極32は、例えばp型コンタクト層25の表面の略中央に配置されている。第1の透明電極31は、第2の透明電極32を囲むように形成され、第2の透明電極32に電気的に接続されている。第1の透明電極31と第2の透明電極32は、p型コンタクト層25に対する接触抵抗が互いに異なる。すなわち、第1の透明電極31とp型コンタクト層25との接触抵抗は例えば2×10−4Ω/cm〜7×10−3Ωcmであるのに対して、第2の透明電極32とp型コンタクト層25との接触抵抗は例えば2×10Ωcm以上である。また、第1の透明電極31のシート抵抗は、例えば100〜200Ω/□であるのに対して第2の透明電極32のシート抵抗は、例えば10〜40Ω/□である。
第2の透明電極32の表面には、NiおよびAuをこの順序で積層して構成されるp側パッド電極40が形成されている。p側パッド電極40は、第2の透明電極32にのみ接合され、第1の透明電極31には接合されていない。導電性を有する成長用基板10aの裏面すなわち結晶成長面とは反対側の面には、TiおよびAlをこの順序で積層して構成されるn側パッド電極50が形成されている。
かかる構造を有する半導体発光装置3において、p側パッド電極40から供給された電流は、第2の透明電極32に流れ込む。第1の透明電極31と第2の透明電極32のp型コンタクト層25に対する接触抵抗は顕著に異なるため、電流は接触抵抗の低い第1の透明電極31の全域に亘って広がり、主に第1の透明電極31からp型コンタクト層25に注入され、n側パッド電極50に向けて流れる。一方、p型コンタクト層25に対する接触抵抗が高い第2の透明電極32からはp型コンタクト層25に向けて電流は殆ど注入されない。すなわち、第2の透明電極32は、供給された電流を第1の透明電極32に迂回させ、p側パッド電極40の直下における電流集中を抑制する電流制御層として機能する。第1および第2の透明電極の配置や面積を適切とすることにより、窒化物半導体層内における電流分布を均一とすることが可能となる。
このように、窒化物半導体層および成長用基板を挟んだ両側にp側パッド電極およびn側パッド電極を配置した電極構成を有する半導体発光装置においても、上記した実施例に係る半導体発光装置と同様の作用効果を得ることが可能である。
尚、上記した各実施例においては、第1および第2の透明電極の材料をITOとした場合を例に説明したが、これに限定されない。第1および第2の透明電極は、ZTO(Zinc Tin Oxide:Zn2SnO4)、AZO(アルミニウムドープ酸化亜鉛)、GZO(ガリウムドープ酸化亜鉛)、ATO(アンチモンドープ酸化スズ)、FTO(フッ素ドープ酸化スズ)等の他の金属酸化物透明導電体を使用することも可能である。また、上記した各実施例においては、GaN系窒化物半導体層を有する半導体発光装置に本発明を適用した場合を例に説明したが、GaAs系半導体層、GaP系半導体層を有する半導体発光装置に本発明を適用することも可能である。
10 成長用基板
21 バッファ層
22 n型コンタクト層
23 活性層
24 p型クラッド層
25 p型コンタクト層
31 第1の透明電極
32 第2の透明電極
40 p側パッド電極
50 n側パッド電極

Claims (8)

  1. 成長用基板の表面にn型半導体層、活性層およびp型半導体層を形成する工程と、
    前記p型半導体層の表面にスパッタ法により金属酸化物透明導電膜を成膜する工程と、
    前記金属酸化物透明導電膜をウエットエッチングによりパターン形成する工程と、
    酸素を含む雰囲気中での熱処理によりパターン形成された前記金属酸化物透明導電膜をシンタリングして第1の透明電極を形成する工程と、
    前記第1の透明電極を形成した後に、前記p型半導体層の表面に前記第1の透明電極の表面をも覆うようにスパッタ法により金属酸化物透明導電膜を成膜し、熱処理によるシンタリングをせずにウエットエッチングにより端部が前記第1の透明電極と重なるようにパターン形成して第2の透明電極を形成する工程と、
    前記第2の透明電極の表面に金属からなるp側パッド電極を形成する工程と、を含み、
    前記第1の透明電極の結晶性は、前記第2の透明電極の結晶性より高く、
    前記第2の透明電極の前記p型半導体層に対する接触抵抗は、前記第1の透明電極の前記p型半導体層に対する接触抵抗より高く、
    前記第2の透明電極のシート抵抗は、前記第1の透明電極のシート抵抗よりも低いことを特徴とする半導体発光装置の製造方法。
  2. 前記第2の透明電極を形成する工程は、前記第1の透明電極の表面全体を覆うようにパターン形成して第2の透明電極を形成することを特徴とする請求項1に記載の半導体発光装置の製造方法。
  3. 前記第1および第2の透明電極を構成する金属酸化物透明導電膜は、スズドープ酸化インジウム(ITO)からなることを特徴とする請求項1又は2に記載の半導体発光装置の製造方法。
  4. 前記熱処理は、500℃以上700℃以下で行われること特徴とする請求項3に記載の半導体発光装置の製造方法。
  5. 前記金属酸化物透明導電膜を成膜する工程は、基板温度150度以上300度以下の範囲で成膜すること特徴とする請求項3に記載の半導体発光装置の製造方法。
  6. n型半導体層と、p型半導体層と、前記n型半導体層と前記p型半導体層の間に設けられた活性層と、を含む半導体発光装置であって、
    前記p型半導体層の表面に設けられた金属酸化物透明導電体からなる第1の透明電極と、
    前記p型半導体層の表面に設けられ、前記第1の透明電極に電気的に接続された金属酸化物透明導電体からなる第2の透明電極と、
    前記第2の透明電極の表面に設けられた金属からなるp側パッド電極と、を含み、
    前記第1の透明電極の結晶性は、前記第2の透明電極の結晶性よりも高く、
    前記第2の透明電極は、前記第1の透明電極よりも前記p型半導体層に対する接触抵抗が高く、前記第1の透明電極よりもシート抵抗が低く、前記第1の透明電極の表面全体を覆うように設けられていることを特徴とする半導体発光装置。
  7. 前記第2の透明電極のバンドギャップは、前記第1の透明電極のバンドギャップよりも大であることを特徴とする請求項6に記載の半導体発光装置。
  8. 前記第1および第2の透明電極は、スズドープ酸化インジウム(ITO)からなることを特徴とする請求項6又は7に記載の半導体発光装置。
JP2010215194A 2010-09-13 2010-09-27 半導体発光装置およびその製造方法 Active JP5628615B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010215194A JP5628615B2 (ja) 2010-09-27 2010-09-27 半導体発光装置およびその製造方法
US13/246,415 US20120061642A1 (en) 2010-09-13 2011-09-27 Semiconductor light emitting device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010215194A JP5628615B2 (ja) 2010-09-27 2010-09-27 半導体発光装置およびその製造方法

Publications (2)

Publication Number Publication Date
JP2012069860A JP2012069860A (ja) 2012-04-05
JP5628615B2 true JP5628615B2 (ja) 2014-11-19

Family

ID=45805754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010215194A Active JP5628615B2 (ja) 2010-09-13 2010-09-27 半導体発光装置およびその製造方法

Country Status (2)

Country Link
US (1) US20120061642A1 (ja)
JP (1) JP5628615B2 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014053458A (ja) * 2012-09-07 2014-03-20 Sharp Corp 窒化物半導体発光素子および窒化物半導体発光素子の製造方法
JP5949368B2 (ja) * 2012-09-13 2016-07-06 豊田合成株式会社 半導体発光素子とその製造方法
US9666779B2 (en) * 2013-11-25 2017-05-30 Yangzhou Zhongke Semiconductor Lighting Co., Ltd. Semiconductor light emitting diode chip with current extension layer and graphical current extension layers
JP6485019B2 (ja) * 2013-12-19 2019-03-20 日亜化学工業株式会社 半導体発光素子
JP2015149389A (ja) * 2014-02-06 2015-08-20 ルネサスエレクトロニクス株式会社 半導体発光素子およびその製造方法
US9647172B2 (en) * 2014-02-07 2017-05-09 Epistar Corporation Light emitting device
US9385001B1 (en) * 2015-03-17 2016-07-05 Toshiba Corporation Self-aligned ITO gate electrode for GaN HEMT device
US10804435B2 (en) * 2016-08-25 2020-10-13 Epistar Corporation Light-emitting device
CN107731981B (zh) * 2017-09-13 2019-05-10 厦门市三安光电科技有限公司 一种氮化物半导体发光元件
CN108091746B (zh) * 2017-11-13 2019-06-25 厦门市三安光电科技有限公司 一种半导体元件
JP2020126995A (ja) * 2019-02-06 2020-08-20 シャープ株式会社 半導体レーザ素子及びその製造方法
US11764333B2 (en) * 2020-09-29 2023-09-19 Bolb Inc. P-ohmic contact structure and light emitting device using the same
CN113410354B (zh) * 2021-04-29 2023-03-24 华灿光电(浙江)有限公司 提高晶体质量的发光二极管外延片及其制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6693352B1 (en) * 2000-06-05 2004-02-17 Emitronix Inc. Contact structure for group III-V semiconductor devices and method of producing the same
TWM265766U (en) * 2004-09-16 2005-05-21 Super Nova Optoelectronics Cor Structure of GaN light emitting device
KR100878433B1 (ko) * 2005-05-18 2009-01-13 삼성전기주식회사 발광소자의 오믹컨택층 제조방법 및 이를 이용한발광소자의 제조방법
JP5232970B2 (ja) * 2006-04-13 2013-07-10 豊田合成株式会社 半導体発光素子の製造方法及び半導体発光素子とそれを備えたランプ
JP2008227109A (ja) * 2007-03-12 2008-09-25 Mitsubishi Chemicals Corp GaN系LED素子および発光装置
WO2008129859A1 (ja) * 2007-04-13 2008-10-30 Panasonic Corporation 発光素子及び表示装置
JP2009054889A (ja) * 2007-08-28 2009-03-12 Yamaguchi Univ Ito電極及びその作製方法、並びに窒化物半導体発光素子
JP2009094108A (ja) * 2007-10-03 2009-04-30 Mitsubishi Chemicals Corp GaN系LED素子の製造方法
JP2009260237A (ja) * 2008-01-24 2009-11-05 Showa Denko Kk 化合物半導体発光素子及びその製造方法、化合物半導体発光素子用導電型透光性電極、ランプ、電子機器並びに機械装置
JP2009231549A (ja) * 2008-03-24 2009-10-08 Toyoda Gosei Co Ltd 窒化物系半導体発光素子
JP2010003804A (ja) * 2008-06-19 2010-01-07 Sharp Corp 窒化物半導体発光ダイオード素子およびその製造方法
JP5244980B2 (ja) * 2009-09-16 2013-07-24 株式会社東芝 半導体発光素子

Also Published As

Publication number Publication date
JP2012069860A (ja) 2012-04-05
US20120061642A1 (en) 2012-03-15

Similar Documents

Publication Publication Date Title
JP5628615B2 (ja) 半導体発光装置およびその製造方法
JP5857786B2 (ja) 半導体発光素子の製造方法
JP4091261B2 (ja) 半導体発光素子及びその製造方法
KR100975659B1 (ko) 발광 소자 및 그 제조 방법
EP2426743B1 (en) GaN compound semiconductor light emitting element and method of manufacturing the same
EP1709695B1 (en) Gallium nitride-based iii-v group compound semiconductor device and method of manufacturing the same
KR100778820B1 (ko) 금속 전극 형성 방법 및 반도체 발광 소자의 제조 방법 및질화물계 화합물 반도체 발광 소자
TWI359509B (en) Semiconductor light emitting element, process for
JP5526712B2 (ja) 半導体発光素子
US9099627B2 (en) Method for producing group III nitride semiconductor light-emitting device
TW200807756A (en) Process for producing semiconductor light emitting element, semiconductor light emitting element, and lamp equipped with the same
WO2011018942A1 (ja) 半導体発光素子、半導体発光装置、半導体発光素子の製造方法、半導体発光装置の製造方法、半導体発光装置を用いた照明装置および電子機器
WO2006011497A1 (ja) 発光素子及びその製造方法
JP2019207925A (ja) 半導体発光素子および半導体発光素子の製造方法
JP6094819B2 (ja) 半導体発光素子及びその製造方法
US6946372B2 (en) Method of manufacturing gallium nitride based semiconductor light emitting device
JP5434288B2 (ja) 半導体発光素子、半導体発光素子の製造方法、半導体発光素子を備えたランプ、照明装置および電子機器
TWI488333B (zh) LED element and manufacturing method thereof
JP2003133590A (ja) 窒化ガリウム系化合物半導体発光素子及びその製造方法
WO2009078574A1 (en) Light emitting device and method of manufacturing the same
JP5327976B2 (ja) 半導体発光素子の製造方法
JP2012186199A (ja) 半導体発光装置およびその製造方法
US8525210B2 (en) Semiconductor light emitting device and method for manufacturing the same
WO2005060013A1 (ja) 半導体発光素子およびその製法
JP5900400B2 (ja) Iii族窒化物半導体発光素子の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140916

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141002

R150 Certificate of patent or registration of utility model

Ref document number: 5628615

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250