JP5628496B2 - Manufacturing method of three-dimensional molded circuit components - Google Patents

Manufacturing method of three-dimensional molded circuit components Download PDF

Info

Publication number
JP5628496B2
JP5628496B2 JP2009190342A JP2009190342A JP5628496B2 JP 5628496 B2 JP5628496 B2 JP 5628496B2 JP 2009190342 A JP2009190342 A JP 2009190342A JP 2009190342 A JP2009190342 A JP 2009190342A JP 5628496 B2 JP5628496 B2 JP 5628496B2
Authority
JP
Japan
Prior art keywords
insulating substrate
mask material
catalyst
circuit
covered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009190342A
Other languages
Japanese (ja)
Other versions
JP2011042818A (en
Inventor
哲男 湯本
哲男 湯本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sankyo Kasei Co Ltd
Original Assignee
Sankyo Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyo Kasei Co Ltd filed Critical Sankyo Kasei Co Ltd
Priority to JP2009190342A priority Critical patent/JP5628496B2/en
Publication of JP2011042818A publication Critical patent/JP2011042818A/en
Application granted granted Critical
Publication of JP5628496B2 publication Critical patent/JP5628496B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemically Coating (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

本発明は、三次元成形回路部品の製造方法に関し、特に絶縁性基体の表面に無電解めっきを選択的に形成する三次元成形回路部品の製造方法に関する。   The present invention relates to a method of manufacturing a three-dimensional molded circuit component, and more particularly to a method of manufacturing a three-dimensional molded circuit component that selectively forms electroless plating on the surface of an insulating substrate.

従来から絶縁性の基体の表面に、回路となる部分を除いてマスク材で被覆し、このマスク材で被覆されていない部分に、選択的に無電解めっきを施して導電性回路を形成する成形回路部品の製造方法が提案されている(例えば特許文献1等参照。)。また絶縁性の基体の表面に無電解めっき用の触媒を付与し、この触媒に選択的にレーザー光を照射して非回路となる部分の触媒を除去し、触媒が除去されていない回路となる部分に無電解めっきを施して、導電性回路を形成する成形回路部品の製造方法が提案されている(例えば特許文献2等参照。)。   Conventionally, the surface of an insulating substrate is covered with a mask material except for the part that becomes a circuit, and the part that is not covered with the mask material is selectively subjected to electroless plating to form a conductive circuit. A method of manufacturing a circuit component has been proposed (see, for example, Patent Document 1). In addition, a catalyst for electroless plating is applied to the surface of the insulating substrate, and this catalyst is selectively irradiated with laser light to remove the non-circuit portion of the catalyst, resulting in a circuit in which the catalyst is not removed. There has been proposed a method of manufacturing a molded circuit component in which a part is subjected to electroless plating to form a conductive circuit (see, for example, Patent Document 2).

特開平11−145583号公報JP-A-11-145583 特開昭61−6892号公報JP 61-6892 A

しかるに、特に三次元の成形回路部品については、非回路となる部分について上述したマスク材の被覆が困難な部分と、レーザー光の照射による触媒の除去が困難な部分との、双方が存在する場合がある。例えば図3に示すヘリカルアンテナ等では、絶縁性基体201の表面において回路となる部分211は、長さがスパイラル状に長いため、この回路となる部分に隣接する、幅が狭く、かつ長さがスパイラル状に長い非回路となる部分212について、マスク材を射出成形して被覆する場合には、このマスク材となる樹脂の流動抵抗が大きくなるために、射出圧力を高くする必要がある。ところが射出圧力を高くすると、基体の変形等の問題が生じるため、マスク材を射出成形して被覆することが困難となる。   However, especially in the case of three-dimensional molded circuit components, when there are both a portion where it is difficult to cover the mask material as described above and a portion where removal of the catalyst by laser light irradiation is difficult for the non-circuit portion There is. For example, in the helical antenna shown in FIG. 3 and the like, the portion 211 that becomes a circuit on the surface of the insulating base 201 is long in a spiral shape, so that the width is narrow and the length is adjacent to the portion that becomes the circuit. When the mask material is coated by injection molding on the portion 212 that is a long non-circuit in a spiral shape, the flow resistance of the resin that becomes the mask material is increased, so that it is necessary to increase the injection pressure. However, when the injection pressure is increased, problems such as deformation of the substrate occur, so that it is difficult to cover the mask material by injection molding.

そこでヘリカルアンテナ等の絶縁性基体201の全表面を粗化して、この粗化面に無電解めっき用の触媒を付与し、非回路となる部分212にレーザー光203を照射することによって、この非回路となる部分の触媒の作用を消失させて、この触媒の作用が消失されなかった回路となる部分211に、無電解めっきを行なうことが考えられる。ところがレーザー光203を使用すれば、幅が狭く、かつ長さがスパイラル状に長い非回路となる部分212の触媒の作用を消失させることができるものの、例えば絶縁性基体201に形成した開口孔212dの内部は、レーザー光の照射が困難であるため、この開口孔の内部表面に付与された触媒の作用を消失することができない。   Accordingly, the entire surface of the insulating substrate 201 such as a helical antenna is roughened, a catalyst for electroless plating is applied to the roughened surface, and the non-circuit portion 212 is irradiated with the laser beam 203 to thereby remove the non-circuit. It is conceivable to perform the electroless plating on the portion 211 which becomes a circuit where the action of the catalyst in the portion that becomes the circuit is lost and the action of the catalyst is not lost. However, if the laser beam 203 is used, the action of the catalyst in the non-circuit portion 212 having a narrow width and a long spiral shape can be eliminated. However, for example, the opening hole 212d formed in the insulating substrate 201 is used. Since it is difficult to irradiate the inside of the laser beam, the action of the catalyst applied to the inner surface of the opening cannot be lost.

さらにレーザー光の照射領域は円状であって、その照射エネルギーは、この円状の中心に向かって密度が高くなる円錐状のエネルギー分布になっている。したがって、被加工物表面に対しては、垂直に照射することが望ましく、被加工物表面に対して斜めに照射すると、照射領域が楕円形等になって広がり、照射領域におけるエネルギー密度が分散されて低下してしまう。このためレーザー光の照射による加工が困難となる。しかるに三次元形状の被加工物においては、被加工面が垂直面、傾斜面、あるいは円筒内部など多様に亘る場合がある。このうち有効なレーザー光の照射領域は、せいぜい照射方向から30度以上傾いた傾斜面であって、垂直な側面、裏面、あるいは円筒内部等は、レーザー光の照射によって加工することが困難となる。   Further, the irradiation region of the laser beam is circular, and the irradiation energy has a conical energy distribution in which the density increases toward the center of the circle. Therefore, it is desirable to irradiate the workpiece surface perpendicularly. When the workpiece surface is irradiated obliquely, the irradiation area spreads in an elliptical shape and the energy density in the irradiation area is dispersed. Will fall. For this reason, processing by laser light irradiation becomes difficult. However, in a workpiece having a three-dimensional shape, there are cases in which the surface to be processed extends in various ways such as a vertical surface, an inclined surface, or the inside of a cylinder. Of these, the effective laser light irradiation area is an inclined surface inclined at least 30 degrees from the irradiation direction, and it is difficult to process the vertical side surface, back surface, or inside of the cylinder by laser light irradiation. .

例えば図4に示すように、中央に略V字状の溝312eを有する絶縁性基体301において、この略V字状の溝を挟む両側の上面に、幅が狭く、かつ長い回路となる部分311に導電性回路を形成する場合には、この回路となる部分に挟まれた、幅が狭く、かつ長い非回路となる部分312にマスク材を射出成形することは困難となる。したがって絶縁性基体301の全表面を粗化して、この粗化面に無電解めっき用の触媒を付与し、非回路となる部分312にレーザー光303を照射することによって、この非回路となる部分の触媒の作用を消失させて、この触媒の作用を消失させなかった回路となる部分311に、無電解めっきを行なうことが考えられる。   For example, as shown in FIG. 4, in an insulating substrate 301 having a substantially V-shaped groove 312e at the center, a portion 311 having a narrow width and a long circuit is formed on both upper surfaces sandwiching the substantially V-shaped groove. In the case of forming a conductive circuit, it is difficult to injection-mold a mask material in a portion 312 which is sandwiched between the portions to be the circuit and has a narrow width and a long non-circuit. Therefore, the entire surface of the insulating substrate 301 is roughened, a catalyst for electroless plating is applied to the roughened surface, and the non-circuit portion 312 is irradiated with the laser beam 303 to thereby form the non-circuit portion. It is conceivable to perform electroless plating on the portion 311 which becomes a circuit in which the action of the catalyst is lost and the action of the catalyst is not lost.

しかるに上述したように、略V字状の溝312eの両斜面の角度:θが、60度以上であると、この両斜面へのレーザー光303の照射エネルギー密度が低下して、レーザー光の照射による触媒の作用を消失させることが困難となる。また絶縁性基体301の右側面に開口する横溝32f内においては、レーザー光303の照射によって、触媒の作用を消失させることが困難となる。 However, as described above, when the angle [theta] of both slopes of the substantially V-shaped groove 312e is 60 [deg.] Or more, the irradiation energy density of the laser beam 303 to both slopes is reduced, and the laser light irradiation is performed. It becomes difficult to eliminate the action of the catalyst. Further, in the lateral groove 3 1 2 f opened on the right side surface of the insulating base 301, it becomes difficult to eliminate the action of the catalyst by irradiation with the laser beam 303.

そこで本発明の目的は、非回路となる部分について、レーザー光を照射して除去できない部分とマスク材で被覆できない部分との双方が存在する場合にも、無電解めっきを選択的に形成することができる、三次元成形回路部品の製造方法を提供することにある。   Accordingly, an object of the present invention is to selectively form electroless plating even when there are both non-circuit portions that cannot be removed by irradiating laser light and portions that cannot be covered with a mask material. An object of the present invention is to provide a method for manufacturing a three-dimensional molded circuit component.

上記課題を解決するために、本発明による三次元成形回路部品の製造方法の特徴1は、触媒を付与した非回路となる部分について、レーザー光の照射が容易な部分は、このレーザー光の照射によって触媒の作用を消失または低下させると共に、このレーザー光を照射していな部分をマスク材で覆うことによって、この触媒の作用が消失または低下しておらず、かつマスク材で覆われていない回路となる部分に、無電解めっきを選択的に行なうことにある。   In order to solve the above-described problem, the first feature of the method for producing a three-dimensional molded circuit component according to the present invention is that a portion that becomes a non-circuit provided with a catalyst is easily irradiated with a laser beam. The circuit where the action of the catalyst is not lost or reduced and is not covered with the mask material by covering the part not irradiated with the laser light with a mask material. In this part, electroless plating is selectively performed.

すなわちこの三次元成形回路部品の製造方法は、絶縁性基体を成形する第1工程と、上記絶縁性基体の表面について、無電解めっきとの接着性を向上させるための粗化または表面改質のいずれかを行なう第2工程と、上記粗化または表面改質のいずれかを行なった絶縁性基体の表面に、無電解めっき用の触媒を付与する第3工程と、上記触媒を付与した絶縁性基体を乾燥させて、この触媒を絶縁性基体の表面に定着させる第4工程と、上記絶縁性基体の表面のうち非回路となる部分であって、レーザー光の照射が容易な部分について、このレーザー光の照射によって、この触媒の作用を消失または低下させる第5工程と、上記絶縁性基体の表面のうち非回路となる部分であって、上記レーザー光が照射されていない部分にマスク材を射出成形して覆う第6工程と、上記絶縁性基体の表面であって、上記レーザー光が照射されておらず、かつ上記マスク材で覆われていない回路となる部分に無電解めっきを行なう第7工程と、上記マスク材を除去する第8工程と、上記マスク材で覆われていた部分に残存する上記触媒を除去する第9工程とを備えている。   That is, the three-dimensional molded circuit component manufacturing method includes a first step of molding an insulating substrate, and roughening or surface modification for improving the adhesion of the surface of the insulating substrate to electroless plating. A second step of performing any one, a third step of imparting a catalyst for electroless plating to the surface of the insulating substrate subjected to either the above roughening or surface modification, and an insulating property to which the above catalyst is imparted The fourth step of drying the substrate and fixing the catalyst to the surface of the insulating substrate, and the non-circuit portion of the surface of the insulating substrate that is easily irradiated with laser light, A mask material is applied to a portion of the surface of the insulating substrate that is non-circuited and that is not irradiated with the laser light, and the fifth step of eliminating or reducing the action of the catalyst by laser light irradiation. injection molding And a seventh step of performing electroless plating on a surface of the insulating substrate that is not irradiated with the laser light and is not covered with the mask material. The eighth step of removing the mask material and the ninth step of removing the catalyst remaining in the portion covered with the mask material are provided.

本発明による三次元成形回路部品の製造方法の特徴2は、絶縁性基体の表面であって触媒を付与した非回路となる部分について、マスク材による被覆が容易な部分は、このマスク材によって覆うと共に、このマスク材で覆われていない部分は、レーザー光の照射によって触媒の作用を消失または低下させることによって、この触媒の作用が消失または低下しておらず、かつマスク材で覆われていない回路となる部分に、無電解めっきを選択的に行なうことにある。   Characteristic 2 of the method for manufacturing a three-dimensional molded circuit component according to the present invention is that the portion of the surface of the insulating substrate that is a non-circuit to which a catalyst is applied is covered with the mask material, which is easily covered with the mask material. At the same time, the portion not covered with the mask material is not covered or covered with the mask material because the action of the catalyst is not lost or lowered by irradiating or reducing the action of the catalyst by laser light irradiation. The purpose is to selectively perform electroless plating on a portion to be a circuit.

すなわちこの三次元成形回路部品の製造方法は、絶縁性基体を成形する第1工程と、上記絶縁性基体の表面について、無電解めっきとの接着性を向上させるための粗化または表面改質のいずれかを行なう第2工程と、上記粗化または表面改質のいずれかをおこなった絶縁性基体の表面のうち非回路となる部分であって、マスク材による被覆が容易な部分について、このマスク材を射出成形して覆う第3工程と、上記マスク材を射出成形した絶縁性基体の表面に、無電解めっき用の触媒を付与する第4工程と、上記マスク材を除去する第5工程と、上記マスク材を除去した絶縁性基体を乾燥させて、上記触媒を絶縁性基体の表面に定着させる第6工程と、上記触媒を定着させた絶縁性基体の表面のうち非回路となる部分であって、上記マスク材で覆われていなかった部分に残存する上記触媒にレーザー光を照射して、この触媒の作用を消失または低下させる第7工程と、上記絶縁性基体の表面であって上記マスク材で被覆されず、かつ上記レーザー光が照射されなかった回路となる部分に無電解めっきを行なう第8工程とを備えている。   That is, the three-dimensional molded circuit component manufacturing method includes a first step of molding an insulating substrate, and roughening or surface modification for improving the adhesion of the surface of the insulating substrate to electroless plating. This portion of the surface of the insulating substrate subjected to either the second step or any of the above roughening or surface modification, which is non-circuited, and which is easily covered with the mask material is masked. A third step of covering the material by injection molding; a fourth step of applying a catalyst for electroless plating to the surface of the insulating substrate on which the mask material is injection molded; and a fifth step of removing the mask material. The sixth step of drying the insulating substrate from which the mask material has been removed to fix the catalyst on the surface of the insulating substrate, and the non-circuit portion of the surface of the insulating substrate on which the catalyst is fixed The mask material A seventh step of irradiating the catalyst remaining in the uncovered portion with laser light to eliminate or reduce the action of the catalyst, and the surface of the insulating substrate that is not covered with the mask material, And an eighth step of performing electroless plating on a portion of the circuit that has not been irradiated with the laser light.

上記特徴1において、上記レーザー光を照射した部分と上記マスク材で被覆する部分とが相互に隣接する部分は、このレーザー光を照射した部分の上に、この隣接する部分から所定の幅分だけ、このマスク材がオーバーラップするように被覆することが望ましい。   In the feature 1, the portion where the portion irradiated with the laser light and the portion covered with the mask material are adjacent to each other is above the portion irradiated with the laser light by a predetermined width from the adjacent portion. It is desirable to cover the mask material so as to overlap.

さらに上記特徴1におけるマスク材は、加水分解性のポリグリコール酸若しくはポリ乳酸のいずれかであって、上記第7工程における無電解めっきは、中性浴組成または酸性浴組成のいずれかで行うことが望ましい。また上記特徴2におけるマスク材は、水溶性のポリビニールアルコールであることが望ましい。   Further, the mask material in the above feature 1 is either hydrolyzable polyglycolic acid or polylactic acid, and the electroless plating in the seventh step is performed in either a neutral bath composition or an acidic bath composition. Is desirable. The mask material in the above feature 2 is preferably water-soluble polyvinyl alcohol.

ここで、「絶縁性基体」とは、例えば合成樹脂、セラミックス、あるいはガラスが該当する。合成樹脂としては、熱可塑性樹脂が好ましいが、熱硬化性樹脂でもよく、かかる樹脂としては、例えば芳香族系液晶ポリマー、ポリエーテルエーテルケトン、ポリスルホン、ポリエーテルポリスルホン、ポリアリールスルホン、ポリエーテルイミド、ポリエステル、アクリロニトリル・ブタジエン・スチレン共重合樹脂、ポリアミド、変性ポリフェニレンオキサイド樹脂、ノルボルネン樹脂、フェノール樹脂、エポキシ樹脂が該当する。また「絶縁性基体」は、その形状を問わない。三次元的なものに限らず、二次元的なものも含む。例えば平板状のもの、多角形のブロック状のもの、表面が曲面状のもの、あるいは表面に開口孔や開口溝を有するものが該当し、複数の部品からなる場合も含む。   Here, the “insulating substrate” corresponds to, for example, synthetic resin, ceramics, or glass. The synthetic resin is preferably a thermoplastic resin, but may be a thermosetting resin. Examples of such a resin include aromatic liquid crystal polymers, polyether ether ketone, polysulfone, polyether polysulfone, polyaryl sulfone, polyetherimide, Examples include polyester, acrylonitrile / butadiene / styrene copolymer resin, polyamide, modified polyphenylene oxide resin, norbornene resin, phenol resin, and epoxy resin. The shape of the “insulating base” is not limited. Not only three-dimensional but also two-dimensional. For example, a flat plate shape, a polygonal block shape, a surface having a curved surface, or a surface having an opening hole or an opening groove is applicable, and includes a case of a plurality of parts.

「絶縁性基体を成形する」とは、射出成形に限らず、例えばブロック材からの削り出しも含む。「無電解めっきとの接着性を向上させるための粗化」とは、公知の技術であって、例えば合成樹脂等の絶縁性基体の表面を、エッチング液、サンドブラスト、レーザー照射、及びマイクロ波プラズマ等によって粗化することが該当する。また「無電解めっきとの接着性を向上させるための表面改質」とは、電子線、放射線、プラズマ若しくは紫外線等の照射によって表面の濡れ性を向上等させる手段、コロナ放電によって表面の濡れ性を向上等させる手段が該当する。さらに本発明おける「無電解めっきとの接着性を向上させるための表面改質」には、機能性分子接着剤若しくは導電性高分子等を絶縁性基体の表面に付与する手段も含まれている。   “Making an insulating base” is not limited to injection molding, but includes, for example, cutting out from a block material. “Roughening to improve adhesion with electroless plating” is a known technique, for example, the surface of an insulating substrate such as a synthetic resin, etching solution, sandblasting, laser irradiation, and microwave plasma. Roughening by such means is applicable. "Surface modification to improve adhesion with electroless plating" means means to improve surface wettability by irradiation with electron beam, radiation, plasma, ultraviolet rays, etc., surface wettability by corona discharge This means to improve the above. Furthermore, “surface modification for improving adhesion with electroless plating” in the present invention includes means for applying a functional molecular adhesive or a conductive polymer to the surface of an insulating substrate. .

「無電解めっき」とは、公知の技術であって、例えば無電解銅めっき、及び無電解ニッケルめっきが該当する。「レーザー光」としては、例えばYAGレーザー、第2高調波レーザー、COレーザー、及びArレーザー等が該当する。「レーザー光の照射による除去が容易な部分」とは、レーザー光の照射方向から30度未満の範囲で傾いた傾斜面、並びにレーザー光で照射が困難な開口孔の内部、開口溝の内部、及び裏面等を除く部分を意味する。「マスク材」とは、その表面に無電解めっきが形成されない絶縁材を意味し、絶縁性基体との相溶性が良い樹脂であれば、その種類を問わない。ここで「マスク材」として、加水分解性の高分子材料であるポリグリコール酸またはポリ乳酸のいずれかを使用すれば、後工程において、このマスク材をアルカリ性溶液で加水分解することによって、容易に除去することができる。また「マスク材」として、水溶性のポリビニールアルコールを使用すれば、後工程において、このマスク材を温湯において容易に除去することができる。 “Electroless plating” is a known technique and corresponds to, for example, electroless copper plating and electroless nickel plating. Examples of the “laser light” include a YAG laser, a second harmonic laser, a CO 2 laser, and an Ar laser. “Easy removal by laser light irradiation” means an inclined surface inclined within a range of less than 30 degrees from the laser light irradiation direction, an inside of an opening hole difficult to be irradiated with laser light, an inside of an opening groove, And the portion excluding the back surface. The “mask material” means an insulating material on which electroless plating is not formed on the surface, and any type of resin can be used as long as the resin has good compatibility with the insulating base. Here, if either hydrolyzable polymer material polyglycolic acid or polylactic acid is used as the “mask material”, the mask material can be easily hydrolyzed with an alkaline solution in the subsequent step. Can be removed. If water-soluble polyvinyl alcohol is used as the “mask material”, this mask material can be easily removed with hot water in a subsequent process.

「この隣接する部分から所定の幅分だけ、このマスク材がオーバーラップするように被覆する」とは、レーザー光の照射によって触媒の作用を消失または低下させた部分において、この部分の外縁から、この部分の内側に向かって、マスク材が所定の幅分だけ侵入するように被覆することを意味する。   “Coating so that this mask material overlaps by a predetermined width from this adjacent portion” means that the portion of the portion where the action of the catalyst has been lost or reduced by irradiation with laser light, from the outer edge of this portion, This means that the mask material is covered so as to enter a predetermined width toward the inside of this portion.

絶縁性基体の表面であって非回路となる部分について、レーザー光を照射できない部分とマスク材で被覆できない部分との双方が存在する場合にも、レーザー光の照射と、マスク材による被覆との双方を、本発明に特有な工程順序で行なうことによって、この絶縁性基体の表面に無電解めっきを選択的に形成することができる。レーザー光の照射によって触媒の作用を消失または低下させた部分と、マスク材で被覆した部分とが相互に隣接する部分においては、このレーザー光の照射した部分の上に、この隣接する部分から所定の幅分だけオーバーラップするように、このマスク材で被覆することによって、レーザー光の照射によって除去した部分とマスク材で被覆した部分との間に隙間が生じることを、容易かつ確実に防止することが可能となり、非回路となる部分に意図しない無電解めっきが積層されることを防止できる。またマスク材に加水分解性の高分子材料であるポリグリコール酸またはポリ乳酸のいずれかを使用すれば、後工程において、アルカリ水溶液の加水分解によって、容易に除去することができる。さらにマスク材にポリビニールアルコールを使用すれば、後工程において、温湯によって容易に除去することができる。   Even when there are both a portion that cannot be irradiated with laser light and a portion that cannot be covered with a mask material on the surface of the insulating substrate that is not a circuit, the irradiation with laser light and the coating with the mask material By performing both in the process sequence peculiar to the present invention, the electroless plating can be selectively formed on the surface of the insulating substrate. In the part where the action of the catalyst has been lost or reduced by the laser light irradiation and the part covered with the mask material are adjacent to each other, the predetermined part from the adjacent part is placed on the part irradiated with the laser light. By covering with the mask material so as to overlap by the width of, it is possible to easily and reliably prevent a gap from being generated between the portion removed by laser light irradiation and the portion covered with the mask material. Therefore, it is possible to prevent unintended electroless plating from being laminated on a non-circuit portion. In addition, if either hydrolyzable polymer material polyglycolic acid or polylactic acid is used for the mask material, it can be easily removed by hydrolysis of an alkaline aqueous solution in a subsequent step. Furthermore, if polyvinyl alcohol is used for the mask material, it can be easily removed with hot water in a subsequent process.

三次元成形回路部品の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of a three-dimensional molded circuit component. 三次元成形回路部品の製造方法を示す他の工程図である。It is another process drawing which shows the manufacturing method of a three-dimensional molded circuit component. 非回路となる部分にマスク材の被覆が困難なヘリカルアンテナの斜視図である。It is a perspective view of a helical antenna in which it is difficult to cover with a mask material on a non-circuit portion. レーザー光の照射によって非回路となる部分における触媒の除去が困難な形状を示す斜視図である。It is a perspective view which shows the shape where the removal of the catalyst in the part which becomes a non-circuit by irradiation of a laser beam is difficult.

図1に示す工程図を参照しつつ、本発明による成形回路部品の製造方法を説明する。なお本発明による成形回路部品の製造方法は、第1工程〜第9工程を備えている「図1(A)〜図1(I)」。さて第1工程「図1(A)」においては、熱可塑性樹脂を射出成形して、ブロック形状の絶縁性基体1を形成する。ここで熱可塑性樹脂としては、例えば芳香族系液晶ポリマー(ポリプラスチック株式会社製の「べクトラ#C820」)を使用する。次の第2工程「図1(B)」において、後工程における無電解めっきとの密着性を向上させるために、絶縁性基体1の全表面をエッチングにより粗化する。   A method for manufacturing a molded circuit component according to the present invention will be described with reference to the process chart shown in FIG. In addition, the manufacturing method of the molded circuit component by this invention is equipped with the 1st process-the 9th process (FIG. 1 (A)-FIG. 1 (I)). In the first step “FIG. 1A”, a thermoplastic resin is injection-molded to form a block-shaped insulating substrate 1. Here, for example, an aromatic liquid crystal polymer (“Vectra # C820” manufactured by Polyplastics Co., Ltd.) is used as the thermoplastic resin. In the next second step “FIG. 1B”, the entire surface of the insulating substrate 1 is roughened by etching in order to improve the adhesion with the electroless plating in the subsequent step.

このエッチングは、カ性ソーダまたはカ性カリを所定濃度、例えば45重量%に溶解したアルカリ性水溶液を、所定温度、例えば50〜90℃に加熱し、絶縁性基体1を所定時間、例えば30分浸漬して行う。次に第3工程「図1(C)」として、絶縁性基体1の粗化した表面に触媒2を付与して、無電解めっきを析出させるための核を形成する。この触媒の付与手順としては、例えば、錫、パラジウム系の混合触媒液に、絶縁性基体1を浸漬した後、塩酸、硫酸などの酸で活性化し、表面にパラジウムを析出させる。または、塩化第1錫等の比較的強い還元剤を表面に吸着させ、金などの貴金属イオンを含む触媒溶液に浸漬し、表面に金を析出させる。液の温度は15〜23℃で5分間浸漬すれば良い。   In this etching, an alkaline aqueous solution in which caustic soda or caustic potash is dissolved at a predetermined concentration, for example, 45% by weight, is heated to a predetermined temperature, for example, 50 to 90 ° C., and the insulating substrate 1 is immersed for a predetermined time, for example, 30 minutes. And do it. Next, as a third step “FIG. 1C”, a catalyst 2 is applied to the roughened surface of the insulating substrate 1 to form a nucleus for depositing electroless plating. As a procedure for applying the catalyst, for example, the insulating substrate 1 is immersed in a mixed catalyst solution of tin and palladium, and then activated with an acid such as hydrochloric acid or sulfuric acid to deposit palladium on the surface. Alternatively, a relatively strong reducing agent such as stannous chloride is adsorbed on the surface and immersed in a catalyst solution containing noble metal ions such as gold to deposit gold on the surface. What is necessary is just to immerse the temperature of a liquid at 15-23 degreeC for 5 minutes.

次の第4工程「図1(D)」において、触媒2を付与した絶縁性基体1を乾燥させて、この触媒を絶縁性基体の表面に定着させる。この乾燥工程は、例えば熱風乾燥機によって、120℃の熱風を60分間吹き付けて行なう。   In the next fourth step “FIG. 1D”, the insulating substrate 1 provided with the catalyst 2 is dried to fix the catalyst on the surface of the insulating substrate. This drying step is performed by blowing hot air at 120 ° C. for 60 minutes using, for example, a hot air dryer.

次に第5工程「図1(E)」において、絶縁性基体1の表面のうち非回路となる部分であって、レーザー光3の照射による除去が容易な部分について、このレーザー光の照射によって触媒2を除去し、この触媒の作用を消失させる。ここでレーザー光3の照射によって触媒2の除去が容易な部分としては、絶縁性基体1の上面が該当する。一方レーザー光3の照射によって触媒2の除去が困難な部分としては、絶縁性基体1の側面と裏面とが該当する。したがってレーザー光3の照射によって触媒2を除去する部分は、絶縁性基体1の上面であって、幅が狭く、かつ長い回路となる部分11、11に隣接する、非回路となる部分12a,12b,12cとなる。なお回路となる部分11,11に挟まれた、幅が狭く、かつ長い非回路となる部分12bは、上述したようにマスク材となる樹脂の流動抵抗が大きくなるために、マスク材の射出成形によって被覆することが困難な部分である。なおレーザー光3としては、例えば出力6Wの第2高調波であって、スキャンスピード1000mm/秒、Qスイッチ周波数30kHzにて3回走査する。   Next, in the fifth step “FIG. 1 (E)”, the portion of the surface of the insulating substrate 1 which is a non-circuit and which can be easily removed by irradiation with the laser beam 3 is irradiated with this laser beam. The catalyst 2 is removed and the action of this catalyst is lost. Here, the upper surface of the insulating substrate 1 corresponds to a portion where the catalyst 2 can be easily removed by irradiation with the laser beam 3. On the other hand, the side surface and the back surface of the insulating substrate 1 correspond to the portions where it is difficult to remove the catalyst 2 by the irradiation of the laser beam 3. Therefore, the portion from which the catalyst 2 is removed by the irradiation of the laser beam 3 is the upper surface of the insulating substrate 1, and the portions 11 a and 12 b which are non-circuits adjacent to the narrow and long circuits 11 and 11. , 12c. In addition, the narrow and long non-circuit portion 12b sandwiched between the circuit portions 11 and 11 has a large flow resistance of the resin serving as the mask material, as described above, so that the injection molding of the mask material is performed. This is a difficult part to cover. The laser beam 3 is, for example, a second harmonic with an output of 6 W, and is scanned three times at a scan speed of 1000 mm / second and a Q switch frequency of 30 kHz.

次に第6工程「図1(F)」として、絶縁性基体1の表面のうち非回路となる部分であって、レーザー光3が照射されていない部分にマスク材4を射出成形して覆う。具体的には、絶縁性基体1の裏面と両側面、及び上面の両端部分を、マスク材4で覆う。なお絶縁性基体1の上面の両端部分において、レーザー光3を照射した非回路となる部分12a,12cと、マスク材4で被覆する部分とが相互に隣接する部分は、このレーザー光を照射した非回路となる部分の上に、この隣接する部分から所定の幅分だけ、このマスク材がオーバーラップ4aするように被覆する。またマスク材4としては、耐酸性でかつ加水分解性のポリグリコール酸(例えば、株式会社クレハ製の「#KSK08」)を使用する。   Next, as a sixth step "FIG. 1 (F)", the mask material 4 is covered by injection molding on the portion of the surface of the insulating substrate 1 that is a non-circuit and is not irradiated with the laser beam 3. . Specifically, the back surface and both side surfaces of the insulating substrate 1 and both end portions of the upper surface are covered with the mask material 4. At both end portions of the upper surface of the insulating substrate 1, the portions 12a and 12c that become non-circuits irradiated with the laser beam 3 and the portions covered with the mask material 4 are adjacent to each other. The mask material is covered on the non-circuit portion so that the mask material overlaps by a predetermined width from the adjacent portion. As the mask material 4, acid-resistant and hydrolyzable polyglycolic acid (for example, “# KSK08” manufactured by Kureha Co., Ltd.) is used.

次の第7工程「図1(G)」において、絶縁性基体1の表面であって、レーザー光3が照射されておらず、かつマスク材4で覆われていない回路となる部分11、11に無電解銅めっき5を行なう。これらの回路となる部分11、11では、触媒2が除去されていないため、この触媒を核として、無電解銅めっき5のめっき金属が析出する。なお無電解銅めっき5のめっき液は、酸性浴組成として、耐酸性を有するマスク材4の溶解を回避する。例えば酸性の硫酸銅浴を用い、その浴組成を、CuSO・5HO(75g)/lHSO(190g)/lCl(60ppm)/添加剤(適量)とする。また陽極材料を含リン銅として、浴温度は25℃に設定し、陰極電流密度を2.5A/dm2とする。なお電解銅めっき5の替わりに、浴組成が中性または酸性の無電解ニッケルめっきを積層してもよい。 In the next seventh step “FIG. 1G”, portions 11, 11 which are the surface of the insulating substrate 1 and are not irradiated with the laser beam 3 and are not covered with the mask material 4. Then, electroless copper plating 5 is performed. Since the catalyst 2 is not removed in the portions 11 and 11 serving as these circuits, the plating metal of the electroless copper plating 5 is deposited using this catalyst as a nucleus. In addition, the plating solution of the electroless copper plating 5 avoids dissolution of the mask material 4 having acid resistance as an acidic bath composition. For example, an acidic copper sulfate bath is used, and the bath composition is CuSO 4 .5H 2 O (75 g) / lH 2 SO 4 (190 g) / lCl (60 ppm) / additive (appropriate amount). The anode material is phosphorous copper, the bath temperature is set to 25 ° C., and the cathode current density is 2.5 A / dm 2. Instead of the electrolytic copper plating 5, an electroless nickel plating having a neutral or acidic bath composition may be laminated.

次に第8工程「図1(H)」として、絶縁性基体1を覆うマスク材4を除去する。マスク材4は、加水分解性であるため、このマスク材で覆われた絶縁性基体1を、例えば濃度2〜15重量%、温度25〜70℃の苛性アルカリ(NaOH、KOHなど)水溶液中に、1〜120分程度浸漬して、このマスク材を除去する。   Next, as an eighth step “FIG. 1H”, the mask material 4 covering the insulating substrate 1 is removed. Since the mask material 4 is hydrolyzable, the insulating substrate 1 covered with the mask material is placed in a caustic (NaOH, KOH, etc.) aqueous solution having a concentration of 2 to 15% by weight and a temperature of 25 to 70 ° C., for example. Then, the mask material is removed by immersion for about 1 to 120 minutes.

最後の第9工程「図1(I)」において、マスク材4で覆われていた部分に残存する触媒2を公知の手段を用いて除去する。例えばマスク材4を除去した絶縁性基体1を、過マンガン酸カリウムを含む温度80℃の水溶液に浸漬し、次いで芳香族ニトロ化合物、アミン化合物、アミノカルボン酸、カルボン酸、及び水酸化ナトリウムを含む温度90℃の水溶液に浸漬して、残存する触媒2を除去する。   In the final ninth step "FIG. 1 (I)", the catalyst 2 remaining in the portion covered with the mask material 4 is removed using a known means. For example, the insulating substrate 1 from which the mask material 4 has been removed is immersed in an aqueous solution containing potassium permanganate at a temperature of 80 ° C., and then contains an aromatic nitro compound, an amine compound, an aminocarboxylic acid, a carboxylic acid, and sodium hydroxide. Immerse in an aqueous solution at a temperature of 90 ° C. to remove the remaining catalyst 2.

次に図2に示す工程図を参照しつつ、本発明による成形回路部品の他の製造方法を説明する。なお図1に示した部品または部分と同等のものは、参照の便宜等を図るため、図1に示した部品番号に、一律に100を加えた番号にしてある(同様に図3及び図4では、図1に示した部品番号に、それぞれ一律に200、及び300を加えた番号にしてある。)。さてこの製造方法は、第1工程〜第8工程を備えている「図1(A)〜図1(H)」。さて第1工程「図2(A)」の絶縁性基体101の製作、及び第2工程「図2(B)」における、この絶縁性基体の表面の粗化は、図1において説明したものと同等である。   Next, another method for manufacturing a molded circuit component according to the present invention will be described with reference to the process chart shown in FIG. The parts or parts equivalent to those shown in FIG. 1 are numbered by adding 100 to the part numbers shown in FIG. 1 for the sake of convenience of reference (similarly, FIGS. 3 and 4). Then, the numbers are uniformly added to the part numbers shown in FIG. 1 by 200 and 300, respectively. The manufacturing method includes the first step to the eighth step (FIGS. 1A to 1H). The production of the insulating base 101 in the first step “FIG. 2A” and the roughening of the surface of the insulating base in the second step “FIG. 2B” are as described in FIG. It is equivalent.

次の第3工程「図2(C)」において、絶縁性基体101の表面のうち非回路となる部分であって、マスク材104による被覆が容易な部分を、このマスク材を射出成形して覆う。ここでマスク材104による被覆が容易な部分としては、絶縁性基体101の裏面、両側面、及び上面の両端部分である。なお後述する第7工程の「図2(G)」に示す、回路となる部分111、111に挟まれた、狭く、細長い非回路となる部分112bは、上述したようにマスク材104の射出成形が困難な部分である。また絶縁性基体101の裏面及び両側面は、後述する第7工程「図2(G)」において、レーザー光103の照射が困難な部分である。ここでマスク材104は、水溶性のポリビニールアルコール(日本合成化学工業株式会社の「#AX2000」)を使用する。なお図2に示す製造方法では、無電解銅めっき「図2(H)」は、マスク材104の除去「図2(E)」より後で行うため、このマスク材に水溶性のポリビニールアルコールを使用しても、この無電解銅めっきのめっき液によって、このマスク材が溶解することを考慮する必要がない。   In the next third step “FIG. 2C”, the portion of the surface of the insulating base 101 that is a non-circuit and is easily covered with the mask material 104 is formed by injection molding the mask material. cover. Here, the portions that can be easily covered with the mask material 104 are the back surface, both side surfaces, and both end portions of the top surface of the insulating substrate 101. Note that the narrow and elongated non-circuit portion 112b sandwiched between the circuit portions 111 and 111 shown in “FIG. 2G” of the seventh step described later is injection-molded of the mask material 104 as described above. Is a difficult part. Further, the back surface and both side surfaces of the insulating substrate 101 are difficult to irradiate with the laser beam 103 in a seventh step “FIG. 2G” described later. Here, the mask material 104 uses water-soluble polyvinyl alcohol (“# AX2000” from Nippon Synthetic Chemical Industry Co., Ltd.). In the manufacturing method shown in FIG. 2, since electroless copper plating “FIG. 2 (H)” is performed after “FIG. 2 (E)” of removing mask material 104, water-soluble polyvinyl alcohol is applied to this mask material. However, it is not necessary to consider that the mask material is dissolved by the electroless copper plating solution.

次に第4工程「図2(D)」として、マスク材104で覆った絶縁性基体101の表面に、触媒102を付与する。なお、触媒102は、図1(C)において説明したものと同じ工程で行なう。その後第5工程「図2(E)」として、マスク材104を除去する。なおマスク材104は、水溶性であるため、マスク材104で覆った絶縁性基体101を、温度70℃の温水に浸漬して溶解除去する。次の第6工程「図2(F)」において、触媒102を付与した絶縁性基体101を乾燥させて、この触媒を絶縁性基体の表面に定着させる。この乾燥は、上述した図1(D)で示したものと同等の工程で行う。   Next, as a fourth step “FIG. 2D”, the catalyst 102 is applied to the surface of the insulating substrate 101 covered with the mask material 104. Note that the catalyst 102 is formed in the same process as described in FIG. Thereafter, as a fifth step “FIG. 2E”, the mask material 104 is removed. Since the mask material 104 is water-soluble, the insulating substrate 101 covered with the mask material 104 is immersed in warm water at a temperature of 70 ° C. to be removed by dissolution. In the next sixth step "FIG. 2 (F)", the insulating substrate 101 provided with the catalyst 102 is dried to fix the catalyst on the surface of the insulating substrate. This drying is performed in the same process as that shown in FIG.

次に第7工程「図2(G)」として、触媒102を定着させた絶縁性基体101の表面のうち非回路となる部分であって、マスク材104で覆われていない部分112a,112b,112cに残存する触媒に、レーザー光103を照射して、この触媒の作用を消失させる。なおレーザー光103の照射は、上述した「図1(E)」で示したものと同等の工程で行う。   Next, as a seventh step “FIG. 2G”, portions 112 a, 112 b, 112 a, 112 b, which are non-circuit portions of the surface of the insulating base 101 to which the catalyst 102 is fixed and are not covered with the mask material 104. The catalyst remaining in 112c is irradiated with the laser beam 103 to eliminate the action of the catalyst. Note that the irradiation with the laser beam 103 is performed in the same process as that shown in FIG.

最後の第8工程「図2(H)」として、絶縁性基体101の表面であって、レーザー光103が照射されておらず、かつマスク材104で覆われていない回路となる部分111、111に無電解銅めっき105を行なう。これらの回路となる部分111、111では、触媒102が除去されていないため、この触媒を核として、無電解銅めっき105のめっき金属が析出する。無電解銅めっき105は、上述した「図1(G)」で示したものと同等の工程で行う。なおマスク材104は既に除去されているため、無電解銅めっき105のめっき液は、酸性浴組成に限ることなく、アルカリ性の浴組成も使用することができる。さらに電解銅めっき105の上に、無電解ニッケルめっきや、電解銅めっき等を積層してもよい。   As the final eighth step “FIG. 2H”, portions 111 and 111 which are the surface of the insulating base 101 and are not irradiated with the laser beam 103 and are not covered with the mask material 104. Then, electroless copper plating 105 is performed. Since the catalyst 102 is not removed in the portions 111 and 111 serving as these circuits, the plating metal of the electroless copper plating 105 is deposited using this catalyst as a nucleus. The electroless copper plating 105 is performed in the same process as that shown in “FIG. 1G” described above. Since the mask material 104 has already been removed, the plating solution for the electroless copper plating 105 is not limited to the acidic bath composition, and an alkaline bath composition can also be used. Furthermore, electroless nickel plating, electrolytic copper plating, or the like may be laminated on the electrolytic copper plating 105.

絶縁性基体の表面に、レーザー光を照射して除去できない部分とマスク材で被覆できない部分との双方が存在する場合にも、電解めっきを選択的に形成することができるため、電子機器等に関する産業に広く利用可能である。   Electrolytic plating can be selectively formed even when there are both a portion that cannot be removed by irradiating a laser beam and a portion that cannot be covered with a mask material on the surface of the insulating substrate. It can be widely used in industry.

1、101〜301 絶縁性基体
11、111〜311 回路となる部分
12a、12b、12c レーザー光の照射が容易な非回路となる部分
112a、112b、112c レーザー光の照射が容易な非回路となる部分
2、102 触媒
3、103〜303 レーザー光
4、104 マスク材
5、105 無電解銅めっき(無電解めっき)
DESCRIPTION OF SYMBOLS 1,101-301 Insulating base | substrate 11,111-311 The part used as a circuit 12a, 12b, 12c The part used as a non-circuit with easy laser irradiation 112a, 112b, 112c It becomes a non-circuit with easy laser irradiation Portion 2,102 Catalyst 3,103-303 Laser beam 4,104 Mask material 5,105 Electroless copper plating (electroless plating)

Claims (3)

絶縁性基体を成形する第1工程と、
上記絶縁性基体の表面について、無電解めっきとの接着性を向上させるための粗化または表面改質のいずれかを行なう第2工程と、
上記粗化または表面改質のいずれかを行なった絶縁性基体の表面に、無電解めっき用の触媒を付与する第3工程と、
上記触媒を付与した絶縁性基体を乾燥させて、この触媒を絶縁性基体の表面に定着させる第4工程と、
上記絶縁性基体の表面のうち非回路となる部分であって、マスク材を射出成形して被覆することが困難な部分について、レーザー光の照射によって、上記触媒の作用を消失または低下させる第5工程と、
上記絶縁性基体の表面のうち非回路となる部分であって、上記レーザー光の照射によって、上記触媒の作用を消失または低下させることが困難な部分を上記マスク材を射出成形して覆う第6工程と、
上記絶縁性基体の表面であって、上記レーザー光が照射されておらず、かつ上記マスク材で覆われていない回路となる部分に無電解めっきを行なう第7工程と、
上記マスク材を除去する第8工程と、
上記マスク材で覆われていた部分に残存する上記触媒を除去する第9工程とを備え
上記マスク材を射出成形して被覆することが困難な部分は、上記回路となる部分に挟まれた幅が狭く、かつ長い上記非回路となる部分であって、
上記レーザー光の照射によって上記触媒の作用を消失または低下させることが困難な部分は、このレーザー光の照射方向から30度未満の範囲で傾いた傾斜面、並びに上記絶縁性基体に形成した開口孔の内部、開口溝の内部、及びこの絶縁性基体の裏面のいずれかである
ことを特徴とする三次元成形回路部品の製造方法。
A first step of forming an insulating substrate;
A second step of performing either roughening or surface modification to improve the adhesion to the electroless plating on the surface of the insulating substrate;
A third step of applying a catalyst for electroless plating to the surface of the insulating substrate subjected to either the above roughening or surface modification;
A fourth step of drying the insulating substrate provided with the catalyst and fixing the catalyst to the surface of the insulating substrate;
A part of the surface of the insulating substrate which is a non-circuit and which is difficult to cover by injection molding of a mask material is used to eliminate or reduce the action of the catalyst by laser light irradiation. Process,
A portion that becomes a non-circuit in the surface of the insulating base and is difficult to eliminate or reduce the action of the catalyst by irradiation with the laser beam is covered by injection molding the mask material. Process,
A seventh step of performing electroless plating on the surface of the insulating substrate that is not irradiated with the laser light and is a circuit that is not covered with the mask material;
An eighth step of removing the mask material;
A ninth step of removing the catalyst remaining in the portion covered with the mask material ,
The portion that is difficult to cover by injection molding the mask material is a portion that is narrow and long non-circuited between the portions that become the circuit,
The portions where it is difficult to eliminate or reduce the action of the catalyst by the irradiation of the laser light include an inclined surface inclined within a range of less than 30 degrees from the irradiation direction of the laser light, and an opening hole formed in the insulating substrate. A method for producing a three-dimensional molded circuit component, characterized in that any one of the interior of the substrate, the interior of the opening groove, and the back surface of the insulating substrate .
絶縁性基体を成形する第1工程と、
上記絶縁性基体の表面について、無電解めっきとの接着性を向上させるための粗化または表面改質のいずれかを行なう第2工程と、
上記粗化または表面改質のいずれかを行なった絶縁性基体の表面のうち非回路となる部分であって、この非回路となる部分に無電解めっき用の触媒を付与した場合に、レーザー光の照射によってこの触媒の作用を消失または低下させることが困難な部分について、マスク材を射出成形して覆う第3工程と、
上記マスク材を射出成形した絶縁性基体の表面に、上記触媒を付与する第4工程と、
上記マスク材を除去する第5工程と、
上記マスク材を除去した絶縁性基体を乾燥させて、上記触媒を絶縁性基体の表面に定着させる第6工程と、
上記触媒を定着させた絶縁性基体の表面のうち非回路となる部分であって、上記マスク材を射出成形して被覆することが困難な部分に上記ザー光を照射して、この触媒の作用を消失または低下させる第7工程と、
上記絶縁性基体の表面であって上記マスク材で被覆されず、かつ上記レーザー光が照射されなかった回路となる部分に無電解めっきを行なう第8工程とを備え
上記マスク材を射出成形して被覆することが困難な部分は、上記回路となる部分に挟まれた幅が狭く、かつ長い上記非回路となる部分であって、
上記レーザー光の照射によって上記触媒の作用を消失または低下させることが困難な部分は、このレーザー光の照射方向から30度未満の範囲で傾いた傾斜面、並びに上記絶縁性基体に形成した開口孔の内部、開口溝の内部、及びこの絶縁性基体の裏面のいずれかである
ことを特徴とする三次元成形回路部品の製造方法。
A first step of forming an insulating substrate;
A second step of performing either roughening or surface modification to improve the adhesion to the electroless plating on the surface of the insulating substrate;
When the surface of the insulating substrate subjected to either the above roughening or surface modification is a non-circuit portion, and a non-electrolytic plating catalyst is applied to the non-circuit portion, a laser beam A third step of covering and masking the mask material for a portion where it is difficult to eliminate or reduce the action of this catalyst by irradiation of
A fourth step of applying the catalyst to the surface of the insulating substrate on which the mask material is injection-molded;
A fifth step of removing the mask material;
A sixth step of drying the insulating substrate from which the mask material has been removed and fixing the catalyst to the surface of the insulating substrate;
The portion of the surface of the insulating substrate on which the catalyst is fixed, which is a non-circuit portion, which is difficult to cover by injection molding of the mask material is irradiated with the Zer light, and the action of the catalyst A seventh step of eliminating or reducing
An eighth step of performing electroless plating on a portion of the surface of the insulating substrate that is not covered with the mask material and is not irradiated with the laser beam ;
The portion that is difficult to cover by injection molding the mask material is a portion that is narrow and long non-circuited between the portions that become the circuit,
The portions where it is difficult to eliminate or reduce the action of the catalyst by the irradiation of the laser light include an inclined surface inclined within a range of less than 30 degrees from the irradiation direction of the laser light, and an opening hole formed in the insulating substrate. A method for producing a three-dimensional molded circuit component, characterized in that any one of the interior of the substrate, the interior of the opening groove, and the back surface of the insulating substrate .
請求項1において、上記レーザー光を照射した部分と上記マスク材で被覆する部分とが相互に隣接する部分は、このレーザー光を照射した部分の上に、この隣接する部分から所定の幅分だけ、このマスク材がオーバーラップするように被覆する
ことを特徴とする三次元成形回路部品の製造方法。
In Claim 1, the part which the part irradiated with the said laser beam and the part coat | covered with the said mask material mutually adjoin is only a predetermined width from this adjacent part on the part irradiated with this laser beam. A method for producing a three-dimensional molded circuit component , wherein the mask material is covered so as to overlap .
JP2009190342A 2009-08-19 2009-08-19 Manufacturing method of three-dimensional molded circuit components Active JP5628496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009190342A JP5628496B2 (en) 2009-08-19 2009-08-19 Manufacturing method of three-dimensional molded circuit components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009190342A JP5628496B2 (en) 2009-08-19 2009-08-19 Manufacturing method of three-dimensional molded circuit components

Publications (2)

Publication Number Publication Date
JP2011042818A JP2011042818A (en) 2011-03-03
JP5628496B2 true JP5628496B2 (en) 2014-11-19

Family

ID=43830445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009190342A Active JP5628496B2 (en) 2009-08-19 2009-08-19 Manufacturing method of three-dimensional molded circuit components

Country Status (1)

Country Link
JP (1) JP5628496B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7011388B2 (en) * 2016-12-28 2022-01-26 エスアイアイ・プリンテック株式会社 Groove structure plating method
US11444049B2 (en) 2017-08-14 2022-09-13 Sony Corporation Electronic component module, method for producing the same, endoscopic apparatus, and mobile camera
JP7447801B2 (en) * 2018-12-20 2024-03-12 株式会社レゾナック Wiring board and its manufacturing method
JP6745560B1 (en) * 2020-03-25 2020-08-26 株式会社イオックス Plating product having a pattern-shaped electroless plating layer

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS616892A (en) * 1984-06-20 1986-01-13 キヤノン株式会社 Method of producing printed circuit
JP3493703B2 (en) * 1994-01-25 2004-02-03 松下電工株式会社 Circuit board forming method
JPH09107170A (en) * 1995-10-13 1997-04-22 Toppan Printing Co Ltd Manufacture of printed wiring board
JP3031459B2 (en) * 1997-06-26 2000-04-10 大塚化学株式会社 Manufacturing method of three-dimensional circuit board
JP3616488B2 (en) * 1997-11-10 2005-02-02 三共化成株式会社 Manufacturing method of molded circuit components
JP4331840B2 (en) * 1999-12-07 2009-09-16 亮 伊藤 Fine plating method
JP2001323393A (en) * 2000-05-16 2001-11-22 Shin Etsu Chem Co Ltd Method for forming fine plating pattern
JP2001177219A (en) * 2000-11-06 2001-06-29 Matsushita Electric Works Ltd Manufacturing method of circuit board
JP2002344116A (en) * 2001-05-16 2002-11-29 Sankyo Kasei Co Ltd Method of manufacturing circuit components
JP4501442B2 (en) * 2004-01-30 2010-07-14 住友電気工業株式会社 Manufacturing method of three-dimensional injection molded circuit components
JP5102643B2 (en) * 2008-01-29 2012-12-19 三共化成株式会社 Synthetic resin spring with conductive circuit

Also Published As

Publication number Publication date
JP2011042818A (en) 2011-03-03

Similar Documents

Publication Publication Date Title
JP4996653B2 (en) Manufacturing method of molded circuit components
KR102319221B1 (en) Method for Forming Electrically-Conductive Traces on a Polymer Article Surface
KR101475423B1 (en) Precursor substrate, flexible circuit board and process for producing the same
CN103053227A (en) Method of producing formed circuit component
JP2007180089A (en) Manufacturing method of resin molded component with circuit conductor pattern
JP5628496B2 (en) Manufacturing method of three-dimensional molded circuit components
JP2005322868A (en) Method for electrolytic gold plating of printed circuit board
KR101475340B1 (en) Multi-layer flexible circuit board and process for producing the same
KR101448256B1 (en) Methods for manufacturing a antenna
EP1926358B1 (en) Molding circuit component and process for producing the same
JP5302810B2 (en) Manufacturing method of three-dimensional molded circuit components
WO2012157135A1 (en) Method for manufacturing molded circuit board
JP3999834B2 (en) Manufacturing of plated parts such as molded circuit parts
JP5753628B2 (en) Through-hole plating structure
JP4332795B2 (en) Electroless plating method
JP2009123567A (en) Synthetic resin spring having conductive circuit
JP2007288011A (en) Method for manufacturing polyimide wiring substrate
JP2007077439A (en) Method for metallizing surface of polyimide resin material
WO2021049624A1 (en) Molded circuit component and electronic device
KR101933991B1 (en) Method for manufactuing a circuit board
JP5102643B2 (en) Synthetic resin spring with conductive circuit
KR20220114021A (en) Oscillator surface metallization method and metallized vibrator
JP2009272468A (en) Method of manufacturing resin circuit board
JP2009062609A (en) Method for producing forming circuit component
TWI544847B (en) Chemical plating product and method forming thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141002

R150 Certificate of patent or registration of utility model

Ref document number: 5628496

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250