JP5627391B2 - Multiple wiring board - Google Patents

Multiple wiring board Download PDF

Info

Publication number
JP5627391B2
JP5627391B2 JP2010237528A JP2010237528A JP5627391B2 JP 5627391 B2 JP5627391 B2 JP 5627391B2 JP 2010237528 A JP2010237528 A JP 2010237528A JP 2010237528 A JP2010237528 A JP 2010237528A JP 5627391 B2 JP5627391 B2 JP 5627391B2
Authority
JP
Japan
Prior art keywords
conductor
wiring board
conductors
layer
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010237528A
Other languages
Japanese (ja)
Other versions
JP2012089797A (en
Inventor
結美 柿原
結美 柿原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2010237528A priority Critical patent/JP5627391B2/en
Publication of JP2012089797A publication Critical patent/JP2012089797A/en
Application granted granted Critical
Publication of JP5627391B2 publication Critical patent/JP5627391B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Structure Of Printed Boards (AREA)

Description

本発明は、半導体素子や弾性表面波素子等の電子部品を搭載するための配線基板となる複数の配線基板領域が母基板に縦横の並びに配列されてなり、各配線基板領域の配線導体にめっき用の電流を供給するためのめっき用端子が母基板の露出表面に形成された多数個取り配線基板に関するものである。   In the present invention, a plurality of wiring board regions serving as wiring boards for mounting electronic components such as semiconductor elements and surface acoustic wave elements are arranged vertically and horizontally on a mother board, and the wiring conductors of each wiring board area are plated. The present invention relates to a multi-piece wiring board in which plating terminals for supplying a current for forming are formed on an exposed surface of a mother board.

従来、半導体素子や弾性表面波素子等の電子部品を搭載するために用いられる配線基板は、ガラスセラミック焼結体や酸化アルミニウム質焼結体等のセラミック焼結体からなる四角形板状の複数の絶縁層が積層されて形成された絶縁基体の上面に電子部品を搭載するための搭載部を有し、この搭載部またはその周辺から絶縁基体の側面や下面にかけてタングステンや銅等の金属材料から成る複数の配線導体が形成された構造を有している。   Conventionally, wiring boards used for mounting electronic components such as semiconductor elements and surface acoustic wave elements have a plurality of rectangular plate-like shapes made of ceramic sintered bodies such as glass ceramic sintered bodies and aluminum oxide sintered bodies. It has a mounting portion for mounting electronic components on the upper surface of the insulating base formed by stacking the insulating layers, and is made of a metal material such as tungsten or copper from the mounting portion or its periphery to the side or lower surface of the insulating base. It has a structure in which a plurality of wiring conductors are formed.

このような配線基板は、一般に、1枚の広面積の母基板から複数個の配線基板を同時集約的に得るようにした、いわゆる多数個取り配線基板の形態で製作されている。多数個取り配線基板は、例えば、平板状の母基板に配線基板となる複数の配線基板領域が縦横の並びに配列形成された構造を有している。   Such a wiring board is generally manufactured in the form of a so-called multi-cavity wiring board in which a plurality of wiring boards are obtained simultaneously from a single large-area mother board. The multi-cavity wiring board has, for example, a structure in which a plurality of wiring board regions serving as wiring boards are arranged vertically and horizontally on a flat mother board.

このような多数個取り配線基板は、配線基板領域の上面から下面等にかけて配線導体が形成され、上下の絶縁層の配線導体同士は絶縁層を厚み方向に貫通する貫通導体を介して互いに電気的に接続されている。   In such a multi-piece wiring board, wiring conductors are formed from the upper surface to the lower surface of the wiring board region, and the wiring conductors of the upper and lower insulating layers are electrically connected to each other via through conductors that penetrate the insulating layer in the thickness direction. It is connected to the.

また、多数個取り配線基板は、所定部位に配線導体となる導体ペーストを印刷した複数のセラミックグリーンシートを積層し、焼成することによって製作されている。貫通導体は、このセラミックグリーンシートにあらかじめ孔あけ加工を施して貫通孔を形成しておき、この貫通孔内に導体ペーストを充填して上記焼成の際に同時焼成することによって形成されている。   Further, the multi-piece wiring board is manufactured by laminating and firing a plurality of ceramic green sheets on which a conductor paste serving as a wiring conductor is printed at a predetermined portion. The through conductor is formed by punching the ceramic green sheet in advance to form a through hole, filling the through hole with a conductive paste, and simultaneously firing at the time of firing.

特開2001−319991号公報JP 2001-319991 特開2003−273272号公報JP 2003-273272 A 特開2007−158183号公報JP 2007-158183 A

しかしながら、上記従来技術の多数個取り配線基板においては、積層された上下のセラミックグリーンシートの間で互いに位置がずれる積層ずれを生じている可能性がある。積層ずれが生じると、上下の配線導体間の電磁的な結合の所定の数値からのずれによる電気特性の変動や、絶縁層(セラミックグリーンシート)を厚み方向に貫通するビア導体を介して上下の配線導体を電気的に接続するときのビア導体と配線導体との断線等の不具合を生じる可能性がある。特に、近年、配線導体を伝送される電気信号の高周波化が進んでいるため、上下の配線導体間の位置ずれによる配線導体の電気特性への影響が大きくなってきている。そのため、多数個取り配線基板においては、このような積層ずれが発生していないものであることを容易かつ確実に検知することが求められるようになっている。   However, in the above-described prior art multi-cavity wiring board, there is a possibility that there is a stacking misalignment between the stacked upper and lower ceramic green sheets. When stacking deviation occurs, the electrical characteristics fluctuate due to deviation from a predetermined numerical value of the electromagnetic coupling between the upper and lower wiring conductors, and the upper and lower via via conductors that penetrate the insulating layer (ceramic green sheet) in the thickness direction. There is a possibility of causing problems such as disconnection between the via conductor and the wiring conductor when the wiring conductor is electrically connected. In particular, since the frequency of electrical signals transmitted through wiring conductors has been increasing in recent years, the influence on the electrical characteristics of the wiring conductors due to the positional deviation between the upper and lower wiring conductors has increased. For this reason, it is demanded that a multi-piece wiring board easily and reliably detect that such a stacking deviation has not occurred.

本発明は、このような従来の問題点に鑑みて完成されたものであり、その目的は、許容
範囲を超える積層ずれが発生していないことを容易かつ確実に検知することが可能な多数個取り配線基板を提供することにある。
The present invention has been completed in view of such conventional problems, and its purpose is to provide a large number of pieces that can easily and reliably detect that a stacking deviation exceeding an allowable range has not occurred. It is to provide a wiring board.

本発明の多数個取り配線基板は、セラミック焼結体からなる複数の絶縁層が積層されて形成された母基板に複数の配線基板領域が縦横の並びに配列され、前記母基板の露出表面に、前記配線基板領域の配線導体にめっき用電流を供給するためのめっき用端子が形成された多数個取り配線基板であって、前記絶縁層の層間に前記めっき用端子と電気的に接続された一対の導体層が並んで形成されているとともに、前記母基板の表面から前記導体層
が形成されている層間にかけて、端面が前記導体層に接続している一対の貫通導体が並んで形成されており、一対の該貫通導体がともに、前記導体層の互いに隣り合う側の縁に偏って位置しているか、または該隣り合う側と反対側の外側の縁に偏って位置しているとともに、平面視で、前記貫通導体と前記導体層とが互いに接続されている部分の、前記導体層が並ぶ方向における最大長さを合計した長さが、上下の前記絶縁層間の前記導体層が並ぶ方向において許容される積層ずれ量の2倍に一致しており、前記導体層と前記貫通導体とが重なる方向から見て、一対の前記導体層の間の中点と、一対の前記貫通導体の間の中点とが一致していることを特徴とするものである。
In the multi-cavity wiring board of the present invention, a plurality of wiring board regions are arranged vertically and horizontally on a mother board formed by laminating a plurality of insulating layers made of a ceramic sintered body, and on the exposed surface of the mother board, A multi-piece wiring board in which a plating terminal for supplying a plating current to a wiring conductor in the wiring board region is formed, and a pair electrically connected to the plating terminal between the insulating layers Are formed side by side, and a pair of through conductors whose end faces are connected to the conductor layer are formed side by side from the surface of the mother substrate to the layer where the conductor layer is formed. The pair of through conductors are both located on the edges of the conductor layers adjacent to each other, or are located on the outer edges opposite to the adjacent sides, and in plan view. In the through conductor The sum of the maximum lengths of the portions where the conductor layers are connected to each other in the direction in which the conductor layers are arranged is the amount of stacking deviation allowed in the direction in which the conductor layers are arranged between the upper and lower insulating layers. The midpoint between the pair of conductor layers and the midpoint between the pair of through conductors match when viewed from the direction in which the conductor layer and the through conductor overlap. It is characterized by being.

また、本発明の多数個取り配線基板は、上記構成において、前記母基板の外周部に枠状のダミー領域が設けられており、前記導体層および前記貫通導体が前記ダミー領域に形成されていることを特徴とするものである。   In the multi-piece wiring board of the present invention, in the above configuration, a frame-shaped dummy region is provided on the outer peripheral portion of the mother substrate, and the conductor layer and the through conductor are formed in the dummy region. It is characterized by this.

また、本発明の多数個取り配線基板は、上記構成において、複数対の前記導体層および前記貫通導体が、それぞれの並びの方向同士が互いに交差し合うように前記母基板に配置されていることを特徴とするものである。   In the multi-piece wiring board according to the present invention, in the above configuration, a plurality of pairs of the conductor layers and the through conductors are arranged on the mother board so that the respective directions of the rows intersect each other. It is characterized by.

本発明の多数個取り配線基板によれば、上記構成を備え、一対の貫通導体がともに、導体層の互いに隣り合う側の縁に偏って位置しているか、またはこの隣り合う側と反対側の外側の縁に偏って位置しているとともに、平面視で、貫通導体と導体層とが互いに接続されている部分の、導体層が並ぶ方向における最大長さを合計した長さが、上下の絶縁層間の導体層が並ぶ方向において許容される積層ずれ量の2倍に一致しており、導体層と貫通導体とが重なる方向から見て、一対の導体層の間の中点と、一対の貫通導体の間の中点とが一致していることから、積層ずれが許容範囲内であるときには、積層ずれによる一方の貫通導体の導体層に対する上記接続の最大長さの減少分と、他方の貫通導体の導体層に対する接続の最大長さの増加分とが一致し、接続の最大長さの合計は一定(許容される積層ずれ量の2倍)に維持され、一対の貫通導体のそれぞれの端面が対応する導体層に接続している。
According to the multi-cavity wiring board of the present invention, the above-described configuration is provided, and the pair of through conductors are both located on the edges of the conductor layers adjacent to each other or on the opposite side of the adjacent side. The total length of the portion where the through conductor and conductor layer are connected to each other in the plan view is the sum of the maximum lengths in the direction in which the conductor layers are arranged in the plan view. Matches twice the amount of stacking deviation allowed in the direction in which the conductor layers between the layers are aligned, and when viewed from the direction in which the conductor layer and the through conductor overlap, the midpoint between the pair of conductor layers and the pair of penetrations Since the midpoint between the conductors coincides , when the stacking deviation is within an allowable range, the decrease in the maximum length of the connection to the conductor layer of one through conductor due to the stacking deviation and the other through The increase in the maximum length of the connection to the conductor layer of the conductor and Match, the sum of the maximum length of the connection is maintained constant (twice the acceptable stacking deviation amount), respective end surfaces of the pair of through conductors is connected to the corresponding conductor layer.

そのため、めっき用端子にめっき用の電流を通電した際に、導体層を介して一対の貫通導体の両方にもめっき用の電流が供給され、それぞれの貫通導体の露出している端面にめっき層が被着される。そして、この貫通導体の露出している端面にめっき層が被着されていることを確認することによって、多数個取り配線基板において許容範囲を超える積層ずれが発生していないことを容易に、かつ確実に検知することができる。したがって、許容範囲を超える積層ずれが発生していないことを容易かつ確実に検知することが可能な多数個取り配線基板を提供することができる。   Therefore, when a plating current is supplied to the plating terminal, the plating current is supplied to both of the pair of through conductors via the conductor layer, and the plated layer is exposed on the exposed end face of each through conductor. Is deposited. And by confirming that the plating layer is deposited on the exposed end face of this through conductor, it is easy to confirm that there is no stacking deviation exceeding the allowable range in the multi-piece wiring board, and It can be detected reliably. Therefore, it is possible to provide a multi-piece wiring board capable of easily and reliably detecting that a stacking deviation exceeding an allowable range has not occurred.

なお、許容される範囲を超えて積層ずれが発生した多数個取り配線基板においては、導体層の隣り合う側または外側の縁に偏って位置している貫通導体の端面が導体層よりも内側または外側にはずれて導体層に接続せず、貫通導体の露出する端面にめっき層が被着されない。したがって、上記積層ずれが発生している多数個取り配線基板を容易に識別することができる。   Note that in a multi-piece wiring board in which a stacking deviation has occurred beyond the allowable range, the end surface of the through conductor located on the adjacent side or the outer edge of the conductor layer is on the inner side or on the conductor layer. The plated layer is not deposited on the exposed end face of the through conductor without being shifted to the outside and connected to the conductor layer. Therefore, it is possible to easily identify a multi-piece wiring board in which the stacking deviation occurs.

また、本発明の多数個取り配線基板は、上記構成において、母基板の外周部に枠状のダミー領域が設けられており、導体層および貫通導体がダミー領域に形成されている場合には、配線基板領域に不要な導体層を配置する必要がないため、配線基板領域(個片の配線基板)の小型化や配線導体の高密度化を容易としながら、積層ずれが発生していないことを容易に確認することができる多数個取り配線基板を提供することができる。   Further, the multi-cavity wiring board of the present invention has a frame-shaped dummy region provided on the outer peripheral portion of the mother board in the above configuration, and when the conductor layer and the through conductor are formed in the dummy region, Since there is no need to place an unnecessary conductor layer in the wiring board area, it is easy to reduce the size of the wiring board area (individual wiring board) and increase the density of the wiring conductor, and to ensure that no stacking deviation occurs. A multi-piece wiring board that can be easily confirmed can be provided.

また、本発明の多数個取り配線基板は、上記構成において、複数対の導体層および貫通導体が、それぞれの並びの方向同士が互いに交差し合うように母基板に配置されている場合には、上下の絶縁層について互いに異なる方向における積層ずれ(積層ずれが発生していないこと)についても効果的に検知することができる。例えば、それぞれ2対の導体層および貫通導体を、互いに直交し合うように配置すれば、いわゆるX−Y方向の積層ずれの有無を有効に検知することができるため、積層ずれが発生していないことをより確実に確認することができる。   Further, the multi-cavity wiring board of the present invention, in the above-described configuration, when a plurality of pairs of conductor layers and through conductors are arranged on the mother board so that the respective alignment directions intersect each other, It is also possible to effectively detect stacking deviations in the different directions of the upper and lower insulating layers (that no stacking deviation has occurred). For example, if two pairs of conductor layers and through conductors are arranged so as to be orthogonal to each other, it is possible to effectively detect the presence or absence of stacking misalignment in the so-called XY direction, so that stacking misalignment does not occur. This can be confirmed more reliably.

(a)は本発明の多数個取り配線基板の実施の形態の一例における要部を示す平面図であり、(b)は(a)のA−A線における断面図である。(A) is a top view which shows the principal part in an example of embodiment of the multi-cavity wiring board of this invention, (b) is sectional drawing in the AA of (a). 図1に示す多数個取り配線基板の全体を模式的に示す平面図である。It is a top view which shows typically the whole multi-piece wiring board shown in FIG. 図1(a)の要部をさらに拡大して示す要部拡大平面図である。It is a principal part enlarged plan view which expands and shows the principal part of Fig.1 (a) further. (a)は本発明の多数個取り配線基板の実施の形態の他の例を示す平面図であり、(b)は(a)のB−B線における断面図である。(A) is a top view which shows the other example of embodiment of the multi-piece wiring board of this invention, (b) is sectional drawing in the BB line of (a). (a)および(b)はそれぞれ参考例の多数個取り配線基板の要部を示す要部拡大平面図である。(A) And (b) is a principal part enlarged plan view which shows the principal part of the multi-piece wiring board of a reference example, respectively. 本発明の多数個取り配線基板の実施の形態の他の例における要部を示す平面図である。It is a top view which shows the principal part in the other example of embodiment of the multi-cavity wiring board of this invention. 本発明の多数個取り配線基板の実施の形態の他の例における要部を示す平面図である。It is a top view which shows the principal part in the other example of embodiment of the multi-cavity wiring board of this invention. (a)は本発明の多数個取り配線基板の実施の形態の他の例における要部を示す平面図であり、(b)は(a)のC−C線における断面図である。(A) is a top view which shows the principal part in the other example of embodiment of the multi-cavity wiring board of this invention, (b) is sectional drawing in CC line of (a). 本発明の多数個取り配線基板の実施の形態の他の例を示す平面図である。It is a top view which shows the other example of embodiment of the multi-piece wiring board of this invention.

本発明の多数個取り配線基板について、添付の図面を参照しつつ説明する。   A multi-piece wiring board of the present invention will be described with reference to the accompanying drawings.

図1(a)は、本発明の多数個取り配線基板の実施の形態の一例における要部を示す平面図であり、図1(b)は、図1(a)のA−A線における断面図であり、図2は、図1に示す多数個取り配線基板の全体を模式的に示す平面図である。図1(a),図1(b)および図2において、1は母基板,2は配線基板領域,3は配線導体である。配線導体3が形成された配線基板領域2が母基板1に複数個、縦横の並びに配列されて多数個取り配線基板9が基本的に形成されている。また、母基板1の外周側面や上面の外周部等の露出表面には、配列された複数の配線基板領域2のそれぞれの配線導体3にめっき用電流を供給するためのめっき用端子8が形成されている。   Fig.1 (a) is a top view which shows the principal part in an example of embodiment of the multi-piece wiring board of this invention, FIG.1 (b) is a cross section in the AA line of Fig.1 (a). FIG. 2 is a plan view schematically showing the whole multi-piece wiring board shown in FIG. In FIG. 1A, FIG. 1B, and FIG. 2, 1 is a mother board, 2 is a wiring board region, and 3 is a wiring conductor. A plurality of wiring board regions 9 in which wiring conductors 3 are formed are arranged on the mother board 1 in the vertical and horizontal directions, so that a multi-piece wiring board 9 is basically formed. Further, plating terminals 8 for supplying a plating current to the respective wiring conductors 3 of the plurality of wiring substrate regions 2 formed on the exposed surface such as the outer peripheral side surface of the mother substrate 1 and the outer peripheral portion of the upper surface are formed. Has been.

母基板1は、ガラスセラミック焼結体,酸化アルミニウム質焼結体,窒化アルミニウム質焼結体,炭化珪素質焼結体,窒化珪素質焼結体,ムライト質焼結体等のセラミック焼結体からなる複数の絶縁層1aが積層されて形成されている。   The mother substrate 1 is a ceramic sintered body such as a glass ceramic sintered body, an aluminum oxide sintered body, an aluminum nitride sintered body, a silicon carbide sintered body, a silicon nitride sintered body, and a mullite sintered body. A plurality of insulating layers 1a made of

母基板1に配列された複数の配線基板領域2は、それぞれが個片の配線基板(図示せず)となる領域である。母基板1が配線基板領域2の境界に沿って分割されることにより、複数の配線基板が同時集約的に製作される。   The plurality of wiring board regions 2 arranged on the mother board 1 are areas that each become an individual wiring board (not shown). By dividing the mother board 1 along the boundary of the wiring board region 2, a plurality of wiring boards are manufactured simultaneously and collectively.

個片の配線基板が電子部品搭載用基板として使用される場合には、配線基板領域2の上面の中央部等の表面に電子部品の搭載部(符号なし)が設けられる。図1に示す例においては、配線基板領域2の中央部が電子部品の搭載部とされ、この搭載部から外周部にかけて配線導体3が形成されている。配線導体3は、搭載部に近い部分に電子部品の電極がボンディングワイヤやはんだ等の導電性接続材(図示せず)を介して電気的に接続される。   When an individual wiring board is used as an electronic component mounting board, an electronic component mounting portion (no reference numeral) is provided on the surface such as the central portion of the upper surface of the wiring board region 2. In the example shown in FIG. 1, the central portion of the wiring board region 2 is an electronic component mounting portion, and the wiring conductor 3 is formed from the mounting portion to the outer peripheral portion. In the wiring conductor 3, an electrode of an electronic component is electrically connected to a portion near the mounting portion via a conductive connecting material (not shown) such as a bonding wire or solder.

搭載部に搭載される電子部品(図示せず)としては、ICやLSI等の半導体集積回路素子、およびLED(発光ダイオード)やPD(フォトダイオード),CCD(電荷結合素子)等の光半導体素子を含む半導体素子、弾性表面波素子や水晶振動子等の圧電素子、容量素子、抵抗器、半導体基板の表面に微小な電子機械機構が形成されてなるマイクロマシン(いわゆるMEMS素子)等の種々の電子部品が挙げられる。   Electronic components (not shown) mounted on the mounting unit include semiconductor integrated circuit elements such as IC and LSI, and optical semiconductor elements such as LED (light emitting diode), PD (photodiode), and CCD (charge coupled device). Various electronic devices such as semiconductor devices including surface acoustic wave devices, piezoelectric devices such as surface acoustic wave devices and crystal resonators, capacitive devices, resistors, and micromachines (so-called MEMS devices) in which a minute electromechanical mechanism is formed on the surface of a semiconductor substrate. Parts.

電子部品は、搭載部に、例えばエポキシ系樹脂,ポリイミド系樹脂,アクリル系樹脂,シリコーン系樹脂,ポリエーテルアミド系樹脂等の樹脂接着剤や、Au−Sn,Sn−Ag−Cu,Sn−Cu,Sn−Pb等のはんだや、ガラス等の接合材を介して接合される。   The electronic component has a resin adhesive such as an epoxy resin, a polyimide resin, an acrylic resin, a silicone resin, a polyether amide resin, Au-Sn, Sn-Ag-Cu, or Sn-Cu on the mounting portion. , Sn-Pb or the like, or a bonding material such as glass.

配線導体3は、例えば上記のように電子部品と電気的に接続され、この電子部品を外部の電気回路に電気的に接続する導電路となる。図1に示す例においては、絶縁層1aを間に挟んで上下に配線導体3が配置されている。上下の配線導体3同士は互いに重なり合う部分を有し、この重なり合っている部分で電磁的に結合して所定のインダクタンス成分や容量成分を生じるように設定されている。この場合、配線導体3に数百MHz〜数十GHz程度を高周波信号が伝送されるときに、上記配線導体3間の電磁的な結合によって配線導体3の電気特性が所定の値になるように調整される。   The wiring conductor 3 is electrically connected to an electronic component as described above, for example, and serves as a conductive path that electrically connects the electronic component to an external electric circuit. In the example shown in FIG. 1, wiring conductors 3 are arranged above and below with an insulating layer 1a interposed therebetween. The upper and lower wiring conductors 3 have portions that overlap each other, and are set so as to generate a predetermined inductance component and capacitance component by electromagnetic coupling at the overlapping portions. In this case, when a high frequency signal of about several hundred MHz to several tens GHz is transmitted to the wiring conductor 3, the electrical characteristics of the wiring conductor 3 become a predetermined value by electromagnetic coupling between the wiring conductors 3. Adjusted.

配線導体3は、タングステンやモリブデン,銅−タングステン,マンガン,銀,銅,パラジウム,白金,金等の金属材料により形成されている。これらの金属材料は、例えばメタライズ層として絶縁層1aの表面に被着される。   The wiring conductor 3 is made of a metal material such as tungsten, molybdenum, copper-tungsten, manganese, silver, copper, palladium, platinum, or gold. These metal materials are deposited on the surface of the insulating layer 1a as a metallized layer, for example.

なお、配線導体3は、絶縁層1aを厚み方向に貫通する導体(いわゆるビア導体)(図示せず)を含む場合がある。この場合には、絶縁層1aを厚み方向に貫通する貫通孔(図示せず)内に上記と同様のタングステン等の金属材料が充填されることによってビア導体が形成される。   The wiring conductor 3 may include a conductor (so-called via conductor) (not shown) penetrating the insulating layer 1a in the thickness direction. In this case, a via conductor is formed by filling a through-hole (not shown) penetrating the insulating layer 1a in the thickness direction with a metal material such as tungsten similar to the above.

めっき用端子8は、例えば四角平板状の母基板1の外周側面や上下面の外周部等の露出表面に形成され、例えば母基板1の内部や表面等に形成された接続用の導体(図示せず)を介して配線基板領域2の配線導体3と電気的に接続されている。めっき用端子8は、例えば、母基板1の外周部に平面視で円弧状等の形状で切り欠きを設け、この切り欠きの内側面に配線導体3と同様の金属材料が被着されて形成されている。   The plating terminal 8 is formed on an exposed surface such as the outer peripheral side of the rectangular flat plate-shaped mother board 1 or the outer peripheral portion of the upper and lower surfaces, for example, a connection conductor formed on the inner surface or the surface of the mother board 1 (see FIG. (Not shown) and electrically connected to the wiring conductor 3 in the wiring board region 2. The plating terminal 8 is formed, for example, by forming a cutout in the shape of an arc or the like in a plan view on the outer peripheral portion of the mother substrate 1 and depositing the same metal material as the wiring conductor 3 on the inner surface of the cutout. Has been.

このような、それぞれが配線導体3を有する複数の配線基板領域2が縦横の並びに配列された、めっき用端子8を有する母基板1は、例えば各絶縁層1aが酸化アルミニウム質焼結体からなる場合であれば、次のようにして製作することができる。   In such a mother substrate 1 having plating terminals 8 in which a plurality of wiring substrate regions 2 each having a wiring conductor 3 are arranged vertically and horizontally, for example, each insulating layer 1a is made of an aluminum oxide sintered body. If so, it can be manufactured as follows.

まず、酸化アルミニウムおよび二酸化ケイ素を含むホウケイ酸系ガラスを主成分とし、酸化マグネシウムや酸化カルシウム等を混合してなる原料粉末を、有機溶剤およびバインダと混練するとともに、ドクターブレード法やリップコータ法等の成形方法でシート状に成形して、セラミックグリーンシートを作製する。次に、タングステンやモリブデン等の金属材料の粉末を有機溶剤およびバインダとともに混練して、金属ペーストを作製する。
次に、配線基板領域2となる領域のそれぞれに、所定の配線導体3のパターンにスクリーン印刷法等の印刷法で金属ペーストを印刷する。また、必要に応じて、とともに、セラミックグリーンシートに貫通孔を形成して、この貫通孔内にビア導体となる金属ペーストを充填する。そして、複数のセラミックグリーンシートに、所定パターンにめっき用端子8となる金属ペーストを印刷するとともにこれらを積層し、このセラミックグリーンシートの積層体を、母基板1の外形寸法に切断した後、約1500〜1600℃程度の焼成温度で焼成することによって、それぞれが配線導体3を有する複数の配線基板領域2が縦横の並びに配列された、めっき用端子8を有する母基板1を製作することができる。
First, a raw material powder composed mainly of borosilicate glass containing aluminum oxide and silicon dioxide, mixed with magnesium oxide, calcium oxide, etc. is kneaded with an organic solvent and a binder, and a doctor blade method, a lip coater method, etc. A ceramic green sheet is produced by forming into a sheet by a forming method. Next, a metal paste such as tungsten or molybdenum is kneaded with an organic solvent and a binder to produce a metal paste.
Next, a metal paste is printed on a pattern of a predetermined wiring conductor 3 by a printing method such as a screen printing method in each region to be the wiring board region 2. Further, as necessary, a through hole is formed in the ceramic green sheet, and a metal paste serving as a via conductor is filled in the through hole. Then, a plurality of ceramic green sheets are printed with a metal paste serving as the plating terminals 8 in a predetermined pattern, and these are laminated. After the ceramic green sheet laminate is cut into the outer dimensions of the mother board 1, about By firing at a firing temperature of about 1500 to 1600 ° C., the mother board 1 having the plating terminals 8 in which the plurality of wiring board regions 2 each having the wiring conductor 3 are arranged vertically and horizontally can be manufactured. .

なお、めっき用端子8となる金属ペーストの印刷は、セラミックグリーンシートを積層する前でも、積層した後でも、どちらでも構わない。この場合、セラミックグリーンシートまたはその積層体の外周部に円弧状等の切り下記を設けておいて、この切り欠きの内側面にめっき用端子8となる金属ペーストを印刷するようにしてもよい。   The printing of the metal paste to be the plating terminal 8 may be performed either before or after the ceramic green sheets are stacked. In this case, an arc-like cut or the like may be provided on the outer peripheral portion of the ceramic green sheet or its laminate, and a metal paste that will serve as the plating terminal 8 may be printed on the inner surface of the cutout.

本発明の多数個取り配線基板9は、絶縁層1aの層間にめっき用端子8と電気的に接続された一対の導体層4が並んで形成されているとともに、母基板1の表面から導体層4が形成されている層間にかけて、端面が導体層4に接続している一対の貫通導体5が並んで形成されている。この一対の貫通導体5は、ともに、導体層4の互いに隣り合う側の縁に偏って位置しているか、またはこの隣り合う側と反対側の外側の縁に偏って位置しているとともに、例えば図3に示すように、平面視で、貫通導体5と導体層4とが互いに接続されている部分の、導体層4が並ぶ方向Lにおける最大長さMを合計した長さが、上下の絶縁層1a間の導体層4が並ぶ方向において許容される積層ずれ量の2倍に一致している。なお、図3は、図1(a)の要部をさらに拡大して示す要部拡大平面図である。図3において図1と同様の部位には同様の符号を付している。   In the multi-piece wiring board 9 of the present invention, a pair of conductor layers 4 electrically connected to the plating terminals 8 are formed side by side between the insulating layers 1a, and the conductor layers from the surface of the mother board 1 are formed. A pair of through conductors 5 whose end faces are connected to the conductor layer 4 are formed side by side between the layers on which 4 is formed. The pair of through conductors 5 are both biased toward the edges of the conductor layer 4 that are adjacent to each other, or are offset toward the outer edge opposite to the adjacent side. As shown in FIG. 3, in plan view, the total length of the portions where the through conductors 5 and the conductor layers 4 are connected to each other in the direction L in which the conductor layers 4 are arranged is the upper and lower insulations. This corresponds to twice the allowable stacking deviation in the direction in which the conductor layers 4 between the layers 1a are arranged. FIG. 3 is an enlarged plan view showing a main part of the main part of FIG. In FIG. 3, the same parts as those in FIG.

図1〜図3に示す例においては、一対の貫通導体5は、ともに導体層4の外側の縁に偏って位置している。また、図1に示す例においては、平面視で、左右それぞれの貫通導体5と導体層4とが互いに接続されている部分において、導体層4が並ぶ方向Lにおける最大長さ(以下、単に最大長さという場合がある)Mが、上下の絶縁層1a間の導体層4が並ぶ方向Lにおいて許容される積層ずれ量(以下、単に許容ずれ量という場合がある)に一致している。この左右2つの貫通導体5と導体層4とのそれぞれの接続の最大長さMを合計すれば、許容される積層ずれ量の2倍になる。   In the example shown in FIGS. 1 to 3, the pair of penetrating conductors 5 are both biased to the outer edge of the conductor layer 4. Further, in the example shown in FIG. 1, the maximum length in the direction L in which the conductor layers 4 are arranged (hereinafter simply referred to as the maximum) in the portion where the left and right through conductors 5 and the conductor layers 4 are connected to each other in plan view. M (which may be referred to as a length) corresponds to the amount of stacking deviation allowed in the direction L in which the conductor layers 4 between the upper and lower insulating layers 1a are arranged (hereinafter sometimes simply referred to as the allowable deviation amount). If the maximum length M of each connection between the two left and right through conductors 5 and the conductor layer 4 is summed, the allowable stacking deviation amount is doubled.

このような多数個取り配線基板9によれば、上記構成を備えることから、上下の絶縁層1a間の積層ずれが許容範囲内であるときには、積層ずれによる一方の貫通導体5の導体層4に対する接続の最大長さMの減少分と、他方の貫通導体5の導体層4に対する接続の最大長さMの増加分とが一致し、接続の最大長さMの合計は一定(許容ずれ量の2倍)に維持され、一対の貫通導体5のそれぞれの端面が対応する導体層4に接続している。   According to such a multi-cavity wiring board 9, since the above configuration is provided, when the stacking deviation between the upper and lower insulating layers 1a is within an allowable range, the one through conductor 5 with respect to the conductor layer 4 due to the stacking deviation. The decrease in the maximum connection length M and the increase in the maximum connection length M with respect to the conductor layer 4 of the other through conductor 5 coincide with each other, and the total maximum connection length M is constant (the allowable deviation amount). 2 times), and each end face of the pair of through conductors 5 is connected to the corresponding conductor layer 4.

そのため、めっき用端子8にめっき用の電流を通電した際に、導体層4を介して貫通導体5にもめっき用の電流が供給され、貫通導体5の露出している端面(図1に示す例では上端面)にめっき層(図示せず)が被着される。そして、この貫通導体5の露出している端面にめっき層が被着されていることを確認することによって、多数個取り配線基板9において許容範囲を超える積層ずれが発生していないことを容易に、かつ確実に検知することができる。したがって、許容範囲を超える積層ずれが発生していないことを容易かつ確実に検知することが可能な多数個取り配線基板9を提供することができる。   Therefore, when a plating current is supplied to the plating terminal 8, the plating current is also supplied to the through conductor 5 through the conductor layer 4, and the exposed end surface of the through conductor 5 (shown in FIG. 1). In the example, a plating layer (not shown) is deposited on the upper end surface. Then, by confirming that the plated layer is deposited on the exposed end face of the through conductor 5, it is easy to confirm that the stacking deviation exceeding the allowable range does not occur in the multi-piece wiring board 9. And can be detected reliably. Therefore, it is possible to provide the multi-piece wiring board 9 that can easily and surely detect that the stacking deviation exceeding the allowable range has not occurred.

導体層4とめっき用端子8との電気的な接続は、例えば絶縁層1aの層間に配置した内部配線(図示せず)や絶縁層1aを厚み方向に貫通するビア導体(図示せず)等を介して行なわせることができる。   The electrical connection between the conductor layer 4 and the plating terminal 8 is, for example, an internal wiring (not shown) disposed between the insulating layers 1a, a via conductor (not shown) penetrating the insulating layer 1a in the thickness direction, or the like. It can be done through.

なお、許容される積層ずれ量とは、例えば前述した上下の配線導体3間の電磁的な結合を所定の値とする上で許容されるずれ量である。この許容ずれ量を超えて上下の絶縁層1aの間で積層ずれが生じたときには、上下の配線導体3間の電磁的な結合量が所定の値から外れ、配線導体3の電気的な特性が所定値から外れてしまう。   Note that the allowable stacking shift amount is, for example, a shift amount allowed when the electromagnetic coupling between the upper and lower wiring conductors 3 described above is set to a predetermined value. When a laminating deviation occurs between the upper and lower insulating layers 1a exceeding the allowable deviation amount, the electromagnetic coupling amount between the upper and lower wiring conductors 3 deviates from a predetermined value, and the electrical characteristics of the wiring conductor 3 are reduced. It deviates from the predetermined value.

この場合、一対の導体層4と一対の貫通導体5との接続の最大長さMが許容ずれ量の2倍に一致していれば、それぞれの導体層4と貫通導体5との接続の最大長さMが互いに同じである必要はない。例えば、図4に示すように、実際の積層ずれ量が許容ずれ量と同じ程度であるとき(ずれ量が大きいとき)には、一方の貫通導体5が一方の導体層4の外縁に接するように位置し、他方の貫通導体5が他方の導体層4の外周部から中央側に寄って位置する。この場合にも、一対の導体層4と一対の貫通導体5とのそれぞれの接続の最大長さMの合計が許容ずれ量の2倍に一致する。なお、図4(a)は、本発明の多数個取り配線基板9の実施の形態の他の例を示す平面図であり、図4(b)は図4(a)のB−B線における断面図である。図4において図1と同様の部位には同様の符号を付している。 In this case, if the maximum length M of the connection between the pair of conductor layers 4 and the pair of through conductors 5 is equal to twice the allowable deviation amount, the maximum connection between each conductor layer 4 and the through conductors 5 is achieved. The lengths M need not be the same. For example, as shown in FIG. 4, when the actual stacking misalignment amount is the same as the allowable misalignment amount (when the misalignment amount is large), one through conductor 5 is in contact with the outer edge of one conductor layer 4. The other through conductor 5 is located closer to the center side from the outer peripheral portion of the other conductor layer 4. Also in this case, the sum of the maximum lengths M of the connection between the pair of conductor layers 4 and the pair of through conductors 5 is twice the allowable deviation amount. 4A is a plan view showing another example of the embodiment of the multi-cavity wiring board 9 of the present invention, and FIG. 4B is a cross-sectional view taken along line BB in FIG. 4A. It is sectional drawing. 4, parts similar to those in FIG. 1 are denoted by the same reference numerals.

許容される積層ずれ量は、例えば上記のように上下の配線導体3間の電磁的な結合を考慮したものであるときには、絶縁層1aが酸化アルミニウム質焼結体からなり、配線導体3がタングステンまたはモリブデンからなる線幅が約100μm程度のものである場合に、
配線導体3を伝送される電気信号を数百MHz程度の高周波信号とすれば、最大で約25μm程度である。
The allowable stacking deviation amount is, for example, in consideration of electromagnetic coupling between the upper and lower wiring conductors 3 as described above, and the insulating layer 1a is made of an aluminum oxide sintered body, and the wiring conductor 3 is made of tungsten. Or when the line width made of molybdenum is about 100 μm,
If the electrical signal transmitted through the wiring conductor 3 is a high-frequency signal of about several hundred MHz, the maximum is about 25 μm.

この場合、一対の貫通導体5をそれぞれ直径が約100μmの円形状(円柱状)とすると
ともに、一対の導体層4をそれぞれ幅(短辺の寸法)が約100μmの四角形状(長方形状
等)として、左右の貫通導体5を導体層4の外側の縁に偏らせて位置させる。そして、設計上の設定値として、左右それぞれの貫通導体5の導体層4に対する接続の最大長さMを許容ずれ量の25μmとすればよい。
In this case, each of the pair of through conductors 5 has a circular shape (cylindrical shape) with a diameter of about 100 μm, and each of the pair of conductor layers 4 has a rectangular shape (rectangular shape, etc.) with a width (short side dimension) of about 100 μm. The left and right through conductors 5 are positioned so as to be biased toward the outer edges of the conductor layer 4. Then, as a design setting value, the maximum length M of the connection of the left and right through conductors 5 to the conductor layer 4 may be set to an allowable deviation amount of 25 μm.

このような多数個取り配線基板9によれば、上下の絶縁層1aの間の積層ずれ量が許容ずれ量以下であれば、一対の貫通導体5のいずれもが、導体層4と接続されて、めっき用端子8と電気的に接続される。すなわち、積層ずれが発生していない(積層ずれ量が0μmである)ときには、左右の貫通導体5のいずれもが、設定値と同じ25μm程度の長さで、それぞれ導体層4と接続される。このときには、それぞれの貫通導体5のうち導体層4と接続されない部分(導体層4の並びの方向に約75μmの長さ)は、導体層4の外縁よりも外側に出る。また、積層ずれが許容ずれ量と同じ程度であるときには、貫通導体5の導体層4に対する接続の最大長さMが、左右いずれか一方の貫通導体5においては約50μm程度になり、他方の貫通導体5においては、0μmに近くなるが、互いの縁部分同士が接して電気的に接続される。   According to such a multi-cavity wiring board 9, if the amount of misalignment between the upper and lower insulating layers 1 a is equal to or less than the allowable amount of deviation, both of the pair of through conductors 5 are connected to the conductor layer 4. And electrically connected to the plating terminal 8. That is, when there is no misalignment (the misalignment amount is 0 μm), each of the left and right through conductors 5 is connected to the conductor layer 4 with a length of about 25 μm, which is the same as the set value. At this time, a portion of each through conductor 5 that is not connected to the conductor layer 4 (a length of about 75 μm in the direction in which the conductor layers 4 are arranged) protrudes outside the outer edge of the conductor layer 4. When the stacking deviation is about the same as the allowable deviation amount, the maximum length M of connection of the through conductor 5 to the conductor layer 4 is about 50 μm in the left and right through conductors 5 and the other through The conductor 5 is close to 0 μm, but the edge portions of each other are in contact with each other and are electrically connected.

導体層4の幅は、貫通導体5との電気的な接続を確実とするために、上記のように、例えば円形状である貫通導体5の直径(50〜100μm程度)の2倍以上(100〜200μm程度
)であることが好ましい。
The width of the conductor layer 4 is at least twice the diameter (about 50 to 100 μm) of, for example, a circular through conductor 5 as described above in order to ensure electrical connection with the through conductor 5 (100 It is preferably about ~ 200 μm).

導体層4は、このような積層ずれに応じて貫通導体5との接続長さが変化するものである必要がある。そのため、一対の導体層4は、少なくとも、貫通導体5が接続される側(導体層4同士が隣り合う側または外側)が、互いに平行な直線状の辺であるものとする必要があり、母基板1に配置するスペースや生産性等を考慮すれば長方形状等の四角形状であることが好ましい。   The conductor layer 4 needs to change in connection length with the through conductor 5 according to such a stacking deviation. For this reason, the pair of conductor layers 4 must be such that at least the side to which the through conductor 5 is connected (the side where the conductor layers 4 are adjacent to each other or the outside) are straight sides parallel to each other. Considering the space to be arranged on the substrate 1, productivity, etc., a rectangular shape such as a rectangular shape is preferable.

また、許容される積層ずれ量は、上記の配線導体3間の電磁的な結合以外の要因によっ
て定められたものであっても構わない。例えば、各配線基板領域2の境界に沿って貫通孔(いわゆるキャスタレーション)(図示せず)を設けるときに、このキャスタレーションの内側面からの絶縁層1aの端部分(貫通孔の内側面を構成する部分)の許容される突出量を基準としてもよい。また、上下の配線導体3を、絶縁層1aを厚み方向に貫通する導体(ビア導体)(図示せず)を介して直接に電気的に接続するときに、ビア導体と配線導体3との接続範囲を基準にしてもよい。
The allowable stacking deviation amount may be determined by factors other than the electromagnetic coupling between the wiring conductors 3 described above. For example, when a through hole (so-called castellation) (not shown) is provided along the boundary of each wiring board region 2, the end portion of the insulating layer 1a from the inner side surface of this castellation (the inner side surface of the through hole is defined). The allowable protrusion amount of the component) may be used as a reference. When the upper and lower wiring conductors 3 are directly electrically connected via a conductor (via conductor) (not shown) penetrating the insulating layer 1a in the thickness direction, the connection between the via conductor and the wiring conductor 3 is established. The range may be used as a reference.

なお、許容される範囲を超えて積層ずれが発生した多数個取り配線基板(図示せず)においては、導体層の隣り合う側または外側の縁に偏って位置している貫通導体の端面が導体層よりも内側または外側にはずれて導体層に接続せず、貫通導体の露出する端面にめっき層が被着されない。したがって、上記積層ずれが発生している多数個取り配線基板を容易に識別することができる。   Note that in a multi-piece wiring board (not shown) in which the stacking deviation has occurred beyond the allowable range, the end face of the through conductor located on the adjacent side or the outer edge of the conductor layer is the conductor. The plated layer is not deposited on the exposed end face of the through conductor without being connected to the conductor layer by shifting to the inside or outside of the layer. Therefore, it is possible to easily identify a multi-piece wiring board in which the stacking deviation occurs.

例えば、図5(a)に示す例においては、上側の絶縁層が左方向に許容ずれ量を超えて積層ずれして、左側の貫通導体15が導体層14に電気的に接続されていない。そのため、左側の貫通導体15の露出する端面にはめっき層が被着されず、許容ずれ量を超える積層ずれが発生している多数個取り配線基板19であることが容易に検知できる。   For example, in the example shown in FIG. 5A, the upper insulating layer is displaced in the left direction beyond the allowable deviation amount, and the left through conductor 15 is not electrically connected to the conductor layer 14. Therefore, the exposed end face of the left through conductor 15 is not covered with a plating layer, and it can be easily detected that the multi-piece wiring board 19 has a stacking deviation exceeding an allowable deviation amount.

また、図5(b)に示すように、貫通導体15が導体層14の隣り合う側または隣り合う側と反対側の外側の縁に偏って位置していない場合には、積層ずれが許容ずれ量を超えたとしても、導体層14と貫通導体15との間の電気的な接続を確実に遮断することができるとは限らない。図5(b)に示す例のように、比較的幅が広い導体層14を設け、この外側から中央側に少し寄った位置で貫通導体15を導体層14に接続させたとすると、積層ずれ量が許容ずれ量を超えたとしても貫通導体15の導体層14に対する電気的な接続が維持される可能性があり、積層ずれ量が許容ずれ量を超えたことを検知できない可能性がある。貫通導体15を導体層14の隣り合う側の縁に偏らせて位置させる場合も同様である。なお、図5(a)および(b)はそれぞれ、参考例の多数個取り配線基板19の要部を示す要部拡大平面図である。図5において11は母基板であり、12は配線基板領域である。   In addition, as shown in FIG. 5B, when the through conductor 15 is not biased to the outer edge on the adjacent side of the conductor layer 14 or on the opposite side to the adjacent side, the stacking shift is an allowable shift. Even if the amount is exceeded, the electrical connection between the conductor layer 14 and the through conductor 15 cannot always be reliably cut off. As in the example shown in FIG. 5B, when a conductor layer 14 having a relatively wide width is provided and the through conductor 15 is connected to the conductor layer 14 at a position slightly deviating from the outside to the center side, Even when the allowable deviation amount exceeds the allowable deviation amount, the electrical connection of the through conductor 15 to the conductor layer 14 may be maintained, and it may not be possible to detect that the lamination deviation amount exceeds the allowable deviation amount. The same applies to the case where the through conductor 15 is positioned so as to be biased to the adjacent edge of the conductor layer 14. 5 (a) and 5 (b) are main part enlarged plan views showing the main part of the multi-piece wiring board 19 of the reference example. In FIG. 5, 11 is a mother board and 12 is a wiring board area.

したがって、本発明の多数個取り配線基板9において、貫通導体5は、導体層4の隣り合う側(または外側)の縁に偏らせて、言い換えれば、貫通導体5を例えば四角形状導体層4に、平面視において、この導体層4の隣り合う側(または外側)の辺に接するか、またはこの辺を一部が越えるようにして位置させる必要がある。   Therefore, in the multi-piece wiring board 9 of the present invention, the through conductor 5 is biased toward the edge on the adjacent side (or outside) of the conductor layer 4, in other words, the through conductor 5 is, for example, a rectangular conductor layer 4. In plan view, it is necessary to contact the adjacent side (or outside) side of the conductor layer 4 or to be positioned so that a part of the side is exceeded.

めっき用端子8に対するめっき用の電流の供給は、例えばめっき用端子8にめっき用ジグ(いわゆるラック等)(図示せず)の導通ピンを押し当てて、整流器等の電源からめっき用ジグを介してめっき用端子8に所定の電流を通電させることによって行なわれる。この場合、めっき用の電流は、めっき液中において、めっき用端子8から導体層4に供給されるとともに、各配線基板領域2の配線導体3にも供給され、ニッケルやコバルト,銅,金またはこれらを主成分とする合金等のめっき層が配線導体3および貫通導体5の露出面に被着される。この場合、配線基板領域2の間で配線導体3や導体層4を、絶縁層1a間に配置した接続用の導体(図示せず)等を介して互いに電気的に接続させておけば、最外周の配線基板領域2から順次、配列の内側の配線基板領域2にもめっき用の電流が供給される。   The plating current is supplied to the plating terminal 8 by, for example, pressing a conduction pin of a plating jig (so-called rack or the like) (not shown) against the plating terminal 8 and supplying power from a rectifier or the like through the plating jig. The plating terminal 8 is energized with a predetermined current. In this case, the plating current is supplied from the plating terminal 8 to the conductor layer 4 and also to the wiring conductor 3 in each wiring board region 2 in the plating solution, and nickel, cobalt, copper, gold or A plating layer such as an alloy containing these as main components is applied to the exposed surfaces of the wiring conductor 3 and the through conductor 5. In this case, if the wiring conductor 3 and the conductor layer 4 are electrically connected to each other via the connecting conductor (not shown) disposed between the insulating layers 1a between the wiring board regions 2, Sequentially from the outer peripheral wiring board region 2, a plating current is also supplied to the inner wiring board region 2.

なお、本発明の多数個取り配線基板9においては、上記のように貫通導体5の露出する端面へのめっき層の被着を確認することによって積層ずれが発生していないものであることを容易に検知することができ、この検知に要する時間は、例えば配線基板領域2が100
〜400個程度配列されている場合であれば、10秒程度以内である。これに対して、従来の
多数個取り配線基板(図示せず)においては、個々の配線基板領域(図示せず)毎に電気
的な検査を施して積層ずれの有無を検査する場合には、自動検査装置を用いて約10分必要である。
In the multi-piece wiring board 9 of the present invention, it is easy to check that the plating layer is not deposited on the exposed end face of the through conductor 5 as described above so that no stacking deviation occurs. The time required for this detection is, for example, 100 for the wiring board region 2.
If about 400 are arranged, it is within about 10 seconds. On the other hand, in the conventional multi-cavity wiring board (not shown), when an electrical inspection is performed for each wiring board region (not shown) to inspect the presence or absence of misalignment, It takes about 10 minutes using an automatic inspection device.

また、本発明の多数個取り配線基板9は、図6に示すように、母基板1の外周部に枠状のダミー領域6が設けられており、導体層4および貫通導体5がダミー領域6に形成されている場合には、配線基板領域2に不要な導体層4を配置する必要がないため、配線基板領域2(個片の配線基板)の小型化や配線導体3の高密度化を容易としながら、積層ずれが発生していないことを容易に確認することができる多数個取り配線基板9を提供することができる。なお、図6は、本発明の多数個取り配線基板9の実施の形態の他の例における要部を示す平面図である。図6において図1および図2と同様の部位には同様の符号を付している。   Further, as shown in FIG. 6, the multi-piece wiring board 9 of the present invention is provided with a frame-like dummy region 6 on the outer peripheral portion of the mother board 1, and the conductor layer 4 and the through conductor 5 are the dummy region 6. In the case of being formed in this manner, it is not necessary to dispose the unnecessary conductor layer 4 in the wiring board region 2. Therefore, the wiring board region 2 (individual wiring board) can be downsized and the wiring conductor 3 can be increased in density. While being easy, it is possible to provide the multi-piece wiring board 9 that can easily confirm that no stacking deviation has occurred. FIG. 6 is a plan view showing a main part in another example of the embodiment of the multi-piece wiring board 9 of the present invention. 6, parts similar to those in FIGS. 1 and 2 are denoted by the same reference numerals.

図6に示す例において、ダミー領域6は四角枠状であり、このダミー領域6の長さ方向に沿って一対の長方形状の導体層4が、互いの長辺同士が隣り合うように配置されている。また、この導体層4の並ぶ方向Lに沿って、平面視で円形状の一対の貫通導体5が並んで形成されている。この例においても、それぞれの貫通導体5と導体層4との接続の最大長さMは、ともに許容ずれ量と一致していて、これらの接続の最大長さMを合計すれば許容すれ量の2倍に一致する。   In the example shown in FIG. 6, the dummy region 6 has a rectangular frame shape, and a pair of rectangular conductor layers 4 are arranged along the length direction of the dummy region 6 so that their long sides are adjacent to each other. ing. A pair of circular through conductors 5 are formed side by side along the direction L in which the conductor layers 4 are arranged in a plan view. Also in this example, the maximum length M of the connection between the respective through conductors 5 and the conductor layer 4 is equal to the allowable deviation amount. If the maximum length M of these connections is summed, the allowable amount of Matches twice.

なお、図6に示す例においては、母基板1の互いに対向し合う2つの外周部分にそれぞれ2つずつ切り欠きが設けられ、この切り欠きの内側面から母基板1の上面の外周部にかけて、めっき用端子8として金属層が被着されている。この切り欠きにめっき用ジグのピンをかけて母基板1を上下から挟んで保持すれば、めっき液中における母基板1の保持とめっき用端子8に対するめっき用の電流の供給とを併せて行なうことができる。   In the example shown in FIG. 6, two notches are provided in each of two opposing outer peripheral portions of the mother substrate 1, and from the inner surface of the notches to the outer periphery of the upper surface of the mother substrate 1, A metal layer is applied as the plating terminal 8. If the notch is provided with a plating jig pin to hold the mother substrate 1 from above and below, the holding of the mother substrate 1 in the plating solution and the supply of plating current to the plating terminals 8 are performed together. be able to.

また、本発明の多数個取り配線基板9は、上記構成において、複数対の導体層4および貫通導体5が、それぞれの並びの方向L同士が互いに交差し合うように母基板1に配置されている場合には、上下の絶縁層1aについて互いに異なる方向における積層ずれ(積層ずれが発生していないこと)についても効果的に検知することができる。例えば、それぞれ2対の導体層4および貫通導体5を、互いに直交し合うように配置すれば、いわゆるX−Y方向の積層ずれの有無を有効に検知することができるため、積層ずれが発生していないことをより確実に確認することができる多数個取り配線基板9を提供することができる。   In the multi-piece wiring board 9 of the present invention, in the above configuration, a plurality of pairs of conductor layers 4 and through conductors 5 are arranged on the mother board 1 so that the respective alignment directions L intersect each other. In the case where the upper and lower insulating layers 1a are present, it is also possible to effectively detect the stacking misalignment in the directions different from each other (the absence of stacking misalignment). For example, if two pairs of conductor layers 4 and through conductors 5 are arranged so as to be orthogonal to each other, it is possible to effectively detect the presence of misalignment in the so-called XY direction. Thus, it is possible to provide a multi-piece wiring board 9 that can more reliably confirm that there is no wiring.

図7に示す例においては、四角板状の母基板1の外周部に四角枠状のダミー領域6を設け、このダミー領域6の各辺にそれぞれ、一対の導体層4および一対の貫通導体5を形成している。各対の導体層4および貫通導体5は、ダミー領域6の互いに対向し合う2つの辺部分に配置されたもの同士は同じ方向L1に並び、他の互いに対向し合う2つの辺部分に配置されたもの同士は、上記L1と直交するL2の方向に並んでいる。これによって、上記のように母基板1のX−Y方向の積層ずれの有無を確実に検知することができるようにしている。なお、図7は、本発明の多数個取り配線基板9の実施の形態の他の例における要部を示す平面図である。図7において図1および図2と同様の部位には同様の符号を付している。   In the example shown in FIG. 7, a rectangular frame-shaped dummy region 6 is provided on the outer peripheral portion of a rectangular plate-shaped mother substrate 1, and a pair of conductor layers 4 and a pair of through conductors 5 are provided on each side of the dummy region 6, respectively. Is forming. The conductor layers 4 and the through conductors 5 of each pair are arranged in two opposite side portions of the dummy region 6 in the same direction L1, and are arranged in the other two opposite side portions. Are arranged in the direction of L2 orthogonal to L1. As a result, the presence or absence of misalignment of the mother board 1 in the XY direction can be reliably detected as described above. FIG. 7 is a plan view showing a main part in another example of the embodiment of the multi-piece wiring board 9 of the present invention. In FIG. 7, the same parts as those in FIGS. 1 and 2 are denoted by the same reference numerals.

この場合、複数の対の導体層4および貫通導体5は、互いに直交し合うものである必要はなく、母基板1の形状や積層ずれが発生しやすい方向等に応じて、適宜、互いに交差し合う角度を調整するようにしてもよい。   In this case, the plurality of pairs of conductor layers 4 and through conductors 5 do not have to be orthogonal to each other, and appropriately cross each other depending on the shape of the mother board 1 and the direction in which the stacking deviation tends to occur. The matching angle may be adjusted.

以上の説明では、一対の貫通導体5が導体層4の、互いに隣り合う側と反対側の外側の縁に偏って位置している例を挙げて説明したが、例えば図8に示すように、一対の貫通導
体5が導体層4の互いに隣り合う側の縁に偏って位置していてもかまわない。この場合にも、以上の説明と同様の効果を得ることができる。なお、図8(a)は、本発明の多数個取り配線基板9の実施の形態の他の例における要部を示す平面図であり、図8(b)は図8(a)のC−C線における断面図である。
In the above description, the pair of through conductors 5 has been described with reference to the example in which the conductor layer 4 is located on the outer edge opposite to the side adjacent to each other. For example, as shown in FIG. The pair of through conductors 5 may be offset from the adjacent edges of the conductor layer 4. In this case, the same effect as described above can be obtained. FIG. 8A is a plan view showing a main part in another example of the embodiment of the multi-piece wiring board 9 of the present invention, and FIG. 8B is a cross-sectional view of FIG. It is sectional drawing in C line.

また、例えば母基板1のダミー領域6に複数対の導体層4および貫通導体5を形成する場合に、ダミー領域6の形状や寸法,配線導体3とめっき用端子8とを接続する接続用の導体の形成位置等の都合に応じて、貫通導体5が導体層4の互いに隣り合っている側の縁に偏っているものと導体層4の外側の縁に偏っているものとが混在していても構わない。   For example, when a plurality of pairs of conductor layers 4 and through conductors 5 are formed in the dummy region 6 of the mother board 1, the shape and dimensions of the dummy region 6, and the connection for connecting the wiring conductor 3 and the plating terminal 8 are used. Depending on the convenience of the formation position of the conductor and the like, there are mixed cases where the through conductors 5 are biased toward the edges of the conductor layer 4 adjacent to each other and those that are biased toward the outer edge of the conductor layer 4. It doesn't matter.

また、例えば図9に示すように、一対の導体層4および貫通導体5は、ダミー領域6の同じ辺部分に隣接して配置されている必要はなく、互いに対向し合う2つの辺部分に分かれて(間に配線基板領域2の並びを挟んで)並ぶように配置されていてもよい。この場合には、導体層4および貫通導体5を配置するスペースをより小さく抑えることができるので、多数個取り配線基板9の小型化に有利である。なお、図9は、本発明の多数個取り配線基板9の実施の形態の他の例を示す平面図である。図9において図1と同様の部位には同様の符号を付している。   For example, as shown in FIG. 9, the pair of conductor layers 4 and through conductors 5 do not have to be disposed adjacent to the same side portion of the dummy region 6, and are divided into two side portions facing each other. May be arranged so as to be arranged (with the arrangement of the wiring board regions 2 in between). In this case, the space for arranging the conductor layer 4 and the through conductor 5 can be further reduced, which is advantageous for downsizing the multi-piece wiring board 9. FIG. 9 is a plan view showing another example of the embodiment of the multi-piece wiring board 9 of the present invention. 9, parts similar to those in FIG. 1 are denoted by the same reference numerals.

なお、本発明は以上の実施の形態の例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更は可能である。   It should be noted that the present invention is not limited to the above embodiments, and various modifications can be made without departing from the gist of the present invention.

例えば、貫通導体5の露出する端面(上端面)に配線導体3と同様の金属材料を用いて認識用のパッド(図示せず)を被着させて、積層ずれの認識をより容易にできるようにしてもよい。この場合には、貫通導体5の端面に比べて面積が広い認識用のパッドによって、めっき層が被着していること、つまり積層ずれが発生していないことをより容易に、且つ確実に認識することができる。   For example, a recognition pad (not shown) is attached to the exposed end surface (upper end surface) of the through conductor 5 using the same metal material as that of the wiring conductor 3 so that the stacking deviation can be recognized more easily. It may be. In this case, it is possible to more easily and reliably recognize that the plating layer is deposited, that is, no misalignment has occurred, by the recognition pad having a larger area than the end face of the through conductor 5. can do.

1・・・母基板
1a・・絶縁層
2・・・配線基板領域
3・・・配線導体
4・・・導体層
5・・・貫通導体
6・・・ダミー領域
8・・・めっき用端子
9・・・多数個取り配線基板
DESCRIPTION OF SYMBOLS 1 ... Mother board 1a .... Insulating layer 2 ... Wiring board area | region 3 ... Wiring conductor 4 ... Conductor layer 5 ... Through conductor 6 ... Dummy area 8 ... Terminal 9 for plating ... Multi-cavity wiring boards

Claims (3)

セラミック焼結体からなる複数の絶縁層が積層されて形成された母基板に複数の配線基板領域が縦横の並びに配列され、前記母基板の露出表面に、前記配線基板領域の配線導体にめっき用電流を供給するためのめっき用端子が形成された多数個取り配線基板であって、前記絶縁層の層間に前記めっき用端子と電気的に接続された一対の導体層が並んで形成されているとともに、前記母基板の表面から前記導体層が形成されている層間にかけて、端面が前記導体層に接続している一対の貫通導体が並んで形成されており、一対の該貫通導体がともに、前記導体層の互いに隣り合う側の縁に偏って位置しているか、または該隣り合う側と反対側の外側の縁に偏って位置しているとともに、平面視で、前記貫通導体と前記導体層とが互いに接続されている部分の、前記導体層が並ぶ方向における最大長さを合計した長さが、上下の前記絶縁層間の前記導体層が並ぶ方向において許容される積層ずれ量の2倍に一致しており、前記導体層と前記貫通導体とが重なる方向から見て、一対の前記導体層の間の中点と、一対の前記貫通導体の間の中点とが一致していることを特徴とする多数個取り配線基板。 A plurality of wiring board regions are arranged vertically and horizontally on a mother board formed by laminating a plurality of insulating layers made of a ceramic sintered body, and the wiring conductor of the wiring board area is plated on the exposed surface of the mother board. A multi-piece wiring board on which plating terminals for supplying a current are formed, and a pair of conductor layers electrically connected to the plating terminals are arranged side by side between the insulating layers. In addition, a pair of through conductors whose end faces are connected to the conductor layer are formed side by side from the surface of the mother board to the layer where the conductor layer is formed. The conductor layer is biased to be adjacent to the edges on the sides adjacent to each other, or is biased to the outer edge on the opposite side of the adjacent side, and the through conductor and the conductor layer in plan view Are connected to each other Portion have a length which is the sum of the maximum length in a direction in which the conductive layer is lined, it coincides with the double layered shift amount allowed in the direction in which the conductor layers of the upper and lower of said insulating layers are arranged, wherein A multi-piece structure, wherein a midpoint between the pair of conductor layers and a midpoint between the pair of through conductors coincide with each other when viewed from the direction in which the conductor layer and the through conductor overlap. Wiring board. 前記母基板の外周部に枠状のダミー領域が設けられており、前記導体層および前記貫通導体が前記ダミー領域に形成されていることを特徴とする請求項1記載の多数個取り配線基板。   2. The multi-piece wiring board according to claim 1, wherein a frame-like dummy region is provided on an outer peripheral portion of the mother substrate, and the conductor layer and the through conductor are formed in the dummy region. 複数対の前記導体層および前記貫通導体が、それぞれの並びの方向同士が互いに交差し合うように前記母基板に配置されていることを特徴とする請求項1または請求項2記載の多数個取り配線基板。   3. The multi-piece manufacturing method according to claim 1, wherein a plurality of pairs of the conductor layers and the through conductors are arranged on the mother board such that the respective directions of the crossing intersect each other. Wiring board.
JP2010237528A 2010-10-22 2010-10-22 Multiple wiring board Expired - Fee Related JP5627391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010237528A JP5627391B2 (en) 2010-10-22 2010-10-22 Multiple wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010237528A JP5627391B2 (en) 2010-10-22 2010-10-22 Multiple wiring board

Publications (2)

Publication Number Publication Date
JP2012089797A JP2012089797A (en) 2012-05-10
JP5627391B2 true JP5627391B2 (en) 2014-11-19

Family

ID=46261064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010237528A Expired - Fee Related JP5627391B2 (en) 2010-10-22 2010-10-22 Multiple wiring board

Country Status (1)

Country Link
JP (1) JP5627391B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5558321B2 (en) * 2010-11-19 2014-07-23 京セラ株式会社 Multiple wiring board
JP6215636B2 (en) * 2013-10-01 2017-10-18 京セラ株式会社 Multiple wiring board
JP6847773B2 (en) * 2017-06-15 2021-03-24 株式会社沖データ LED substrate manufacturing method, LED substrate, LED head and image forming device
JP7011563B2 (en) * 2018-09-27 2022-01-26 京セラ株式会社 Circuit boards and electronic components

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2927048B2 (en) * 1991-05-13 1999-07-28 日本電気株式会社 Multilayer wiring ceramic substrate
JPH11214832A (en) * 1998-01-26 1999-08-06 Sumitomo Metal Electronics Devices Inc Formation of plating wire in circuit board
JP2004179546A (en) * 2002-11-28 2004-06-24 Kyocera Corp Wiring board and method of manufacturing the same
JP4564820B2 (en) * 2004-06-11 2010-10-20 日本特殊陶業株式会社 Multi-piece wiring board and manufacturing method thereof
JP4837530B2 (en) * 2006-11-14 2011-12-14 日本メクトロン株式会社 Inspection target for printed wiring boards

Also Published As

Publication number Publication date
JP2012089797A (en) 2012-05-10

Similar Documents

Publication Publication Date Title
JP5627391B2 (en) Multiple wiring board
JP5558321B2 (en) Multiple wiring board
JP5842859B2 (en) Multilayer wiring board and module having the same
JP5958454B2 (en) Built-in module
US10985098B2 (en) Electronic component mounting substrate, electronic device, and electronic module
JP6154154B2 (en) Laminated board
JP6408423B2 (en) Package and electronic equipment
JP2010258189A (en) Manufacturing method of electronic component mounting substrate, and manufacturing method of electronic component mounting motherboard
JP2016006846A (en) Wiring board and electronic apparatus
JP6780996B2 (en) Wiring boards, electronics and electronic modules
JP7011563B2 (en) Circuit boards and electronic components
JP2013207204A (en) Wiring mother board
JP5956185B2 (en) Multiple wiring board
JP6959785B2 (en) Circuit boards, electronic components and electronic modules
JP2015225893A (en) Wiring board and electronic apparatus
JP5036591B2 (en) Wiring board
JP5383545B2 (en) Multi-cavity wiring board and wiring board
JP2008159731A (en) Substrate for mounting electronic component
JP6001464B2 (en) Wiring board and electronic device
JP6359943B2 (en) Wiring board and electronic device
JP6215636B2 (en) Multiple wiring board
JP2006270081A (en) Wiring board
JP2005019749A (en) Wiring board and multiple wiring board
JP2018050025A (en) Wiring board, electronic apparatus, and electronic module
JP2014216548A (en) Multiple piece wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140930

R150 Certificate of patent or registration of utility model

Ref document number: 5627391

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees