JP5618589B2 - Cutting tools - Google Patents

Cutting tools Download PDF

Info

Publication number
JP5618589B2
JP5618589B2 JP2010070399A JP2010070399A JP5618589B2 JP 5618589 B2 JP5618589 B2 JP 5618589B2 JP 2010070399 A JP2010070399 A JP 2010070399A JP 2010070399 A JP2010070399 A JP 2010070399A JP 5618589 B2 JP5618589 B2 JP 5618589B2
Authority
JP
Japan
Prior art keywords
hard phase
cermet
cutting
phase
cutting tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010070399A
Other languages
Japanese (ja)
Other versions
JP2011200972A (en
Inventor
徳永 隆司
隆司 徳永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2010070399A priority Critical patent/JP5618589B2/en
Publication of JP2011200972A publication Critical patent/JP2011200972A/en
Application granted granted Critical
Publication of JP5618589B2 publication Critical patent/JP5618589B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/04Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbonitrides

Description

本発明は、Ti元素を主成分とするサーメットからなり、耐摩耗性および耐熱衝撃性に優れるとともに焼成による変形が小さい切削工具に関する。   The present invention relates to a cutting tool comprising a cermet containing a Ti element as a main component, having excellent wear resistance and thermal shock resistance, and being small in deformation due to firing.

現在、切削工具としてTiを主成分とするサーメットが広く使われている。サーメットの硬質相は芯部と周辺部とからなる有芯構造をとりやすいことが知られているが、例えば、特許文献1では、周辺部の面積割合が多いほど、鋳鉄との耐化学反応性が向上することが開示され、周辺部の平均粒径/芯部の平均粒径の比率を3〜8としたサーメットが記載されている。また、特許文献2では、焼結硬質合金からなる切削工具の表面近傍に金属結合層を形成するとともに、合金の切刃部領域においてはホーニング処理によって金属結合層を除去した構成が開示されている。   Currently, cermets mainly composed of Ti are widely used as cutting tools. Although it is known that the hard phase of cermet tends to have a cored structure composed of a core part and a peripheral part, for example, in Patent Document 1, as the area ratio of the peripheral part increases, the chemical reactivity with cast iron increases. Is disclosed, and cermets are described in which the ratio of the average particle diameter of the peripheral part / the average particle diameter of the core part is 3 to 8. Patent Document 2 discloses a configuration in which a metal bonding layer is formed in the vicinity of the surface of a cutting tool made of a sintered hard alloy and the metal bonding layer is removed by a honing process in the cutting edge region of the alloy. .

特開2004−285421号公報JP 2004-285421 A 特開平08−150502号公報Japanese Patent Laid-Open No. 08-150502

しかしながら、特許文献1のように周辺部の面積比率を多くするにはサーメットの焼成温度を高くする必要があるが、焼成温度を高くすると、焼成中に生じる金属原子の移動や窒素原子の拡散の影響で、焼結体が元の成形体の形状から大きく変形してしまうという問題があった。焼結体が変形した場合、焼結体の表面を研磨加工して形状を整える方法もあるが、製造コストがかさむとともに複雑な形状の切削工具の場合には研磨加工自体が困難であった。また、特許文献2のように焼結体に対し切刃部にホーニングを施して金属結合層を除去して、切刃部の組織を焼結体の内部と同じ組織としても、サーメットの切削工具としての耐摩耗性および耐熱衝撃性には限界があった。   However, as in Patent Document 1, in order to increase the area ratio of the peripheral part, it is necessary to increase the cermet firing temperature. However, if the firing temperature is increased, the movement of metal atoms and the diffusion of nitrogen atoms that occur during firing are increased. Due to the influence, there was a problem that the sintered body was greatly deformed from the shape of the original molded body. When the sintered body is deformed, there is a method of adjusting the shape by polishing the surface of the sintered body. However, the manufacturing cost increases, and in the case of a cutting tool having a complicated shape, the polishing process itself is difficult. Further, as in Patent Document 2, honing is applied to the cutting edge portion of the sintered body, the metal bonding layer is removed, and the cutting blade portion has the same structure as the inside of the sintered body. There was a limit to the wear resistance and thermal shock resistance.

本発明は上記問題を解決するためのものであり、その目的は優れた耐摩耗性および耐熱衝撃性を兼ね備えるとともに、焼結体の変形を抑制できて複雑な形状でも容易に作製可能なサーメットおよび切削工具を提供することである。   The present invention is intended to solve the above-mentioned problems, and the purpose thereof is to provide a cermet that has both excellent wear resistance and thermal shock resistance, and that can be easily produced even in a complicated shape by suppressing deformation of the sintered body. It is to provide a cutting tool.

本発明の切削工具は、Tiの炭化物、窒化物または炭窒化物からなる第1硬質相と、TiおよびTi以外の周期表第4、5および6族金属の群から選ばれる少なくとも1種の炭化物、窒化物または炭窒化物からなる第2硬質相と、鉄族金属からなる結合相と、を有するサーメットからなり、該サーメットの表面領域において、切刃部における前記第1硬質相と前記第2硬質相との合計面積に対する前記第2硬質相の含有面積割合が、平坦部における前記第1硬質相と前記第2硬質相との合計面積に対する前記第2硬質相の含有面積割合よりも高いものである。
The cutting tool of the present invention comprises at least one carbide selected from the group consisting of a first hard phase composed of Ti carbide, nitride or carbonitride, and periodic table groups 4, 5 and 6 other than Ti and Ti. A cermet having a second hard phase made of nitride or carbonitride and a binder phase made of an iron group metal, and in the surface region of the cermet, the first hard phase and the second in the cutting edge portion content area ratio of the second hard phase with respect to the total area of the hard phase is higher than the content area ratio of the second hard phase with respect to the total area of the first hard phase and the second hard phase in the flat portion It is.

ここで、前記サーメットの表面領域において、前記切刃部における前記第2硬質相の平均粒径が前記平坦部おける前記第2硬質相の平均粒径に比べて大きいことが望ましい。   Here, in the surface region of the cermet, it is preferable that an average particle diameter of the second hard phase in the cutting edge portion is larger than an average particle diameter of the second hard phase in the flat portion.

また、前記サーメットの表面領域において、前記切刃部における前記結合相の含有割合が前記平坦部における前記結合相の含有割合に比べて低いことが望ましい。   Moreover, in the surface area | region of the said cermet, it is desirable that the content rate of the said binder phase in the said cutting edge part is low compared with the content rate of the said binder phase in the said flat part.

本発明の切削工具によれば、サーメットの表面領域において、切刃部における前記第1硬質相と前記第2硬質相との合計面積に対する前記第2硬質相の含有面積割合が、平坦部における前記第1硬質相と前記第2硬質相との合計面積に対する前記第2硬質相の含有面積割合よりも高いことによって、耐摩耗性および耐熱衝撃性に優れた組織からなるとともに、サーメット表面の平坦部では焼成による変形が小さい組織となるので焼結体全体の変形を抑制できて、複雑な形状でも容易に寸法精度の高い切削工具を作製できる。
According to the cutting tool of the present invention, in the surface region of the cermet, containing area ratio of the second hard phase with respect to the total area of the first hard phase and the second hard phase in the cutting portion, wherein the flat portion It has a structure excellent in wear resistance and thermal shock resistance by being higher than the content area ratio of the second hard phase with respect to the total area of the first hard phase and the second hard phase, and a flat portion of the cermet surface Then, since the deformation due to firing becomes a small structure, the deformation of the entire sintered body can be suppressed, and a cutting tool with high dimensional accuracy can be easily produced even with a complicated shape.

ここで、前記サーメットの表面領域において、前記切刃部における前記第2硬質相の平均粒径が前記平坦部おける前記第2硬質相の平均粒径に比べて大きいことが、切刃部における熱伝導率を高めて耐熱衝撃性を向上させるとともに、平坦部では切屑等との接触による耐摩耗性を向上できる点で望ましい。   Here, in the surface region of the cermet, the average particle size of the second hard phase in the cutting blade portion is larger than the average particle size of the second hard phase in the flat portion. It is desirable in terms of improving the thermal shock resistance by increasing the conductivity and improving the wear resistance due to contact with chips on the flat portion.

また、前記サーメットの表面領域において、前記切刃部における前記結合相の含有割合が前記平坦部における前記結合相の含有割合に比べて低いことが、サーメットを低温で緻密化できるとともに、切刃部における耐摩耗性を高める点で望ましい。   Further, in the surface region of the cermet, the cermet can be densified at a low temperature, and the cutting blade portion has a lower content ratio of the binder phase in the cutting blade portion than the content ratio of the binder phase in the flat portion. It is desirable from the viewpoint of enhancing the wear resistance.

本発明の切削工具の一例について、(A)概略斜視図、(B)(A)のX−X断面図である。It is (A) schematic perspective view and (B) (A) XX sectional drawing about an example of the cutting tool of this invention. 本発明の切削工具の一例について、サーメット断面の表面付近における、(a)切刃部、(b)平坦部の走査型電子顕微鏡写真である。It is a scanning electron micrograph of (a) cutting edge part and (b) flat part in the vicinity of the surface of a cermet cross section about an example of the cutting tool of this invention.

本発明の切削工具について、その一例についての(A)概略斜視図、(B)(A)のX−X断面図である図1、および図1においてサーメットの表面付近における(a)切刃部、(b)平坦部の走査型電子顕微鏡写真である図2を基に説明する。   About the cutting tool of this invention, (A) Schematic perspective view about the example, (B) FIG. 1 which is XX sectional drawing of (A), and (a) Cutting edge part in the surface vicinity of cermet in FIG. FIG. 2B is a scanning electron micrograph of the flat portion.

切削工具1は、図1に示すような概略平板形状をなし、主面がすくい面2および着座面(図示せず)を、側面が逃げ面3を、すくい面2と逃げ面3との交差稜線部が切刃部4を構成している。   The cutting tool 1 has a substantially flat plate shape as shown in FIG. 1, the main surface is a rake surface 2 and a seating surface (not shown), the side surface is a flank surface 3, and the rake surface 2 and the flank surface 3 intersect. The ridge line portion constitutes the cutting edge portion 4.

また、図1、2の切削工具1は、Tiの炭化物、窒化物または炭窒化物からなる第1硬質相5と、TiおよびTi以外の周期表第4、5および6族金属の群から選ばれる少なくとも1種の炭化物、窒化物または炭窒化物からなる第2硬質相6と、の硬質相7と、鉄族金属からなる結合相8と、を有するサーメットからなる。   The cutting tool 1 shown in FIGS. 1 and 2 is selected from the group of the first hard phase 5 made of Ti carbide, nitride, or carbonitride and the periodic table group 4, 5, and 6 metals other than Ti and Ti. The cermet has a second hard phase 6 made of at least one kind of carbide, nitride or carbonitride, a hard phase 7 made of iron group metal, and a bonded phase 8 made of an iron group metal.

そして、図2によれば、サーメットの表面領域において、切刃部4における第1硬質相5と第2硬質相6との合計面積に対する第2硬質相6の含有面積割合が、すくい面2および逃げ面3の平坦部9における第1硬質相5と第2硬質相6との合計面積に対する第2硬質相6の含有面積割合よりも高い構成となっている。これによって、サーメットの切刃部4では耐摩耗性および耐熱衝撃性が高い第2硬質相6の含有比率が高い組織からなるとともに、平坦部9では切刃部4に比べて第1硬質相5の含有比率が高くて焼結による変形が小さいので、焼結体全体の変形を抑制できて複雑な形状でも容易に寸法精度の高い切削工具を作製できる。なお、図2の走査型電子顕微鏡写真では、サーメットの表面端部がエッジ効果に起因するチャージアップにより本来の組織が観察できずに白く見えている。
And according to FIG. 2, in the surface area | region of a cermet, the content area ratio of the 2nd hard phase 6 with respect to the total area of the 1st hard phase 5 and the 2nd hard phase 6 in the cutting-blade part 4 is the rake face 2 and The flat area 9 of the flank 3 has a configuration higher than the content area ratio of the second hard phase 6 to the total area of the first hard phase 5 and the second hard phase 6 . Accordingly, the cutting edge portion 4 of the cermet has a structure with a high content ratio of the second hard phase 6 having high wear resistance and thermal shock resistance, and the flat portion 9 has a first hard phase 5 as compared with the cutting edge portion 4. Therefore, the deformation of the entire sintered body can be suppressed, and a cutting tool with high dimensional accuracy can be easily produced even in a complicated shape. In the scanning electron micrograph of FIG. 2, the surface end of the cermet appears white because the original structure cannot be observed due to charge-up caused by the edge effect.

ここで、本発明においては、図1に示すように、切刃部4とは切刃稜線からの距離が100μm以内の範囲rを指し、平坦部9とは切刃稜線からの距離が300μm以上離れた部分Rを指す。なお、切刃部4と平坦部9との間は両者の移行領域となっている。また、切刃部4における第2硬質相6の含有割合S2Eと平坦部9における第2硬質相6の含有割合S2Fとの比率S2E/S2Fの望ましい範囲は1.1〜1.3である。なお、図2に示すように、サーメットの走査型電子顕微鏡写真において、第1硬質相5は黒色粒子、
第2硬質相6は灰色粒子、結合相8は白色に観察されるので、写真中でこれらを特定してそれぞれの面積比率を求めることにより、第2硬質相6の含有割合を算出することができる。
Here, in the present invention, as shown in FIG. 1, the cutting edge portion 4 indicates a range r within a distance of 100 μm from the cutting edge ridge line, and the flat portion 9 has a distance from the cutting edge ridge line of 300 μm or more. Refers to the distant portion R. In addition, between the cutting blade part 4 and the flat part 9 is a transition region between them. Further, the desirable range of the ratio S 2E / S 2F the content S 2F of the second hard phase 6 in the proportion S 2E and the flat portion 9 of the second hard phase 6 in the cutting section 4 1.1-1. 3. In addition, as shown in FIG. 2, in the scanning electron micrograph of cermet, the first hard phase 5 is black particles,
Since the second hard phase 6 is observed as gray particles and the binder phase 8 is observed as white, the content ratio of the second hard phase 6 can be calculated by specifying these in the photograph and determining the respective area ratios. it can.

また、硬質相7の構成については、第1硬質相5からなる芯部の外周を第2硬質相6からなる周辺部が取り囲んだ有芯構造をなしていることが、粒成長制御効果を有してサーメットが微細で均一な組織となるとともに、結合相8との濡れ性に優れてサーメットの高強度化に寄与する点で望ましい。   Further, the structure of the hard phase 7 has a core growth structure in which the outer periphery of the core portion made of the first hard phase 5 is surrounded by the peripheral portion made of the second hard phase 6 has a grain growth control effect. Thus, it is desirable in that the cermet has a fine and uniform structure and is excellent in wettability with the binder phase 8 and contributes to increasing the strength of the cermet.

ここで、サーメットの表面領域において、切刃部4における第2硬質相6の平均粒径が平坦部9における第2硬質相6の平均粒径に比べて大きいことが、切刃部4における熱伝導率を高めて耐熱衝撃性を改善するとともに、平坦部9では耐摩耗性に優れる点で望ましい。切刃部4における第2硬質相6の平均粒径d2Eと、平坦部9における第2硬質相6の平均粒径d2Fとの比(d2E/d2F)は1.3〜2.5であることが、切削性能と変形抑制とを両立できる点で望ましい。 Here, in the surface region of the cermet, the average particle size of the second hard phase 6 in the cutting edge portion 4 is larger than the average particle size of the second hard phase 6 in the flat portion 9. The flat portion 9 is desirable in that it improves the thermal shock resistance by increasing the conductivity and is excellent in wear resistance. The ratio (d 2E / d 2F ) between the average particle diameter d 2E of the second hard phase 6 in the cutting edge portion 4 and the average particle diameter d 2F of the second hard phase 6 in the flat portion 9 is 1.3-2. 5 is desirable in that both cutting performance and deformation suppression can be achieved.

なお、切削工具1の内部において、硬質相7の平均結晶粒径dは2.5μm以下、特に0.5〜2μm、さらに0.8〜1.5μmであることが、サーメットの強度が高くて切削工具1の耐摩耗性が高く、かつサーメットの内部における熱伝導率を高める点で望ましい。また、サーメットの表面領域の切刃部における第2硬質相6の平均粒径d2Eは、サーメット内部の硬質相の平均粒径dに比べて比率(d2E/d)が1.5〜3.0と大きいことが、サーメット2の表面における熱伝導率を高める点では望ましい。さらに、第1硬質相5のサーメット内部における粒径の望ましい範囲は、焼成による変形抑制の点で0.1〜0.8μmである。 In the cutting tool 1, the average crystal grain size d of the hard phase 7 is 2.5 μm or less, particularly 0.5 to 2 μm, and more preferably 0.8 to 1.5 μm, because the strength of the cermet is high. It is desirable in that the wear resistance of the cutting tool 1 is high and the thermal conductivity inside the cermet is increased. Further, the average particle diameter d 2E of the second hard phase 6 in the cutting edge portion of the surface region of the cermet has a ratio (d 2E / d) of 1.5 to 3 as compared with the average particle diameter d of the hard phase inside the cermet. A large value of 0.0 is desirable in terms of increasing the thermal conductivity on the surface of the cermet 2. Furthermore, the desirable range of the particle diameter inside the cermet of the first hard phase 5 is 0.1 to 0.8 μm from the viewpoint of suppressing deformation by firing.

また、サーメットの表面領域において、切刃部4における結合相8の含有割合が平坦部9における結合相8の含有割合に比べて低いことが、切刃部4における耐摩耗性を高める点で望ましい。サーメットの表面領域のうちの切刃部4における結合相含有量bEと平坦部9における結合相含有量bFとの比bE/bFの望ましい範囲は0.75〜0.9である。なお、CoおよびNiの少なくとも1種からなる結合相8はサーメット全体に対して5〜30重量%の割合で含有されることが、切削工具1の耐欠損性と耐摩耗性をともに維持する点で望ましい。   Moreover, in the surface area | region of a cermet, it is desirable that the content rate of the binder phase 8 in the cutting blade part 4 is low compared with the content rate of the binder phase 8 in the flat part 9 at the point which improves the abrasion resistance in the cutting blade part 4. FIG. . A desirable range of the ratio bE / bF of the binder phase content bE in the cutting edge portion 4 and the binder phase content bF in the flat portion 9 in the surface region of the cermet is 0.75 to 0.9. The bonded phase 8 composed of at least one of Co and Ni is contained in a proportion of 5 to 30% by weight with respect to the entire cermet, so that both the fracture resistance and the wear resistance of the cutting tool 1 are maintained. Is desirable.

さらに、本発明によれば、サーメットを基体として、その表面に、(Ti,M1−x)(C1−y)(ただし、MはTi以外の周期律表4a、5aおよび6a族金属、Al、Siのうちの1種以上、0.4<x≦1,0≦y≦1)で表わされる硬質被覆層(以下、Ti系被覆層と略す。)、またはダイヤモンド、立方晶窒化硼素、アルミナ、Zr、Hf、Cr、Siの炭化物、窒化物、炭窒化物の1種以上からなる他の硬質被覆層を形成することもでき、かかる表面被覆層を形成した場合においても耐摩耗性が向上するとともに耐塑性変形性、耐欠損性を維持することができる。 Furthermore, according to the present invention, cermet is used as a substrate, and (Ti x , M 1-x ) (C y N 1-y ) (where M is a periodic table other than Ti, 4a, 5a and 6a) A hard coating layer (hereinafter abbreviated as Ti-based coating layer) represented by one or more of group metals, Al and Si, 0.4 <x ≦ 1, 0 ≦ y ≦ 1, or diamond, cubic crystal Other hard coating layers composed of one or more of boron nitride, alumina, Zr, Hf, Cr, Si carbide, nitride, carbonitride can be formed, and even when such a surface coating layer is formed, Abrasion is improved and plastic deformation resistance and fracture resistance can be maintained.

(製造方法)
本発明のサーメットからなる切削工具を製造するには、まず原料粉末として、硬質相形成成分として、平均粒径は0.5〜2μmのTiCN粉末と、TiCN以外の周期表4、5および6族金属の炭化物、窒化物、炭窒化物の群から選ばれる少なくとも1種の粉末、および平均粒径が0.3〜4μmのNiおよびCoの少なくとも1種の粉末を所定の割合で添加する。
(Production method)
In order to produce a cutting tool comprising the cermet of the present invention, first, as raw material powder, as a hard phase forming component, TiCN powder having an average particle size of 0.5 to 2 μm, and periodic tables 4, 5 and 6 other than TiCN At least one powder selected from the group consisting of metal carbide, nitride and carbonitride, and at least one powder of Ni and Co having an average particle size of 0.3 to 4 μm are added at a predetermined ratio.

そしてこれらの秤量された粉末をボールミルなどによって混合した後、プレス成形、押出成形、射出成形などの公知の成形手法によって所定の切削工具形状に成形した後、焼成
する。
These weighed powders are mixed by a ball mill or the like, then formed into a predetermined cutting tool shape by a known forming method such as press molding, extrusion molding or injection molding, and then fired.

本発明においては、成形した焼成前の成形体に対して切刃稜線部をブラシ等にてホーニング加工してから焼成する。また、焼成条件については、100Pa以下の真空中で1250℃までの昇温速度Rを5〜15℃/分で昇温し、1250〜1350℃までの昇温速度Rを0.5〜3℃/分で昇温し、1350℃にて不活性ガスを0.8kPa〜100kPa導入した雰囲気で、昇温速度を1〜7℃/分に切り替えて1450〜1550℃の焼成温度まで昇温し、0.5〜1.0時間の保持を行う。その後、真空雰囲気にして1200℃以下まで冷却し、それから、10℃/分以上の昇温速度にて1550〜1600℃まで急速昇温し、15〜60分間保持後、10℃/分以上の降温速度で室温まで急速冷却することによって、本発明の切削工具を得ることができる。 In the present invention, the cutting edge ridge line portion is honed with a brush or the like to the molded body before firing and fired. As for the firing condition, the Atsushi Nobori rate R 1 up to 1250 ° C. the temperature was raised at 5 to 15 ° C. / min in a vacuum of 100 Pa, 0.5 to the heating rate R 2 of up to 1250 to 1350 ° C. The temperature was raised at 3 ° C./min, and the temperature was raised to a firing temperature of 1450 to 1550 ° C. by switching the rate of temperature rise to 1 to 7 ° C./min in an atmosphere in which an inert gas was introduced at 0.850 to 100 kPa at 1350 ° C. And holding for 0.5 to 1.0 hour. Then, it is cooled to 1200 ° C. or less in a vacuum atmosphere, and then rapidly heated to 1550 to 1600 ° C. at a temperature rising rate of 10 ° C./min or more, held for 15 to 60 minutes, and then cooled to 10 ° C./min or more. By rapidly cooling to room temperature at a speed, the cutting tool of the present invention can be obtained.

そして、上記の方法によって作製されたサーメットに対して、所望により化学蒸着法または物理蒸着法にて被覆層を成膜して、本発明の切削工具を作製することができる。   Then, the cutting tool of the present invention can be produced by forming a coating layer on the cermet produced by the above method by chemical vapor deposition or physical vapor deposition, if desired.

原料粉末として、平均粒径0.5μmのTiCN粉末と、いずれも平均粒径が0.5〜2μmのTiN粉末、TaC粉末、NbC粉末、WC粉末、ZrC粉末、VC粉末、MoC粉末、MnCO粉末、および平均粒径が2μmのCo粉末、Ni粉末またはCoとNiとの合金粉末を用い、これら原料粉末を表1に示される配合組成に配合し、ボールミルで湿式混合粉砕した。なお、上記平均粒径はマイクロトラック法で測定したものである。 As the raw material powder, TiCN powder having an average particle size of 0.5 μm, TiN powder having an average particle size of 0.5 to 2 μm, TaC powder, NbC powder, WC powder, ZrC powder, VC powder, MoC powder, MnCO 3 These raw material powders were blended in the blending composition shown in Table 1 using powder and Co powder, Ni powder or Co and Ni alloy powder having an average particle diameter of 2 μm, and wet mixed and pulverized by a ball mill. The average particle diameter is measured by the microtrack method.

次に、上記混合粉末を用いて、成形圧98MPaでISO規格CNMG120408のチップ形状にプレス成形し、ブラシ加工によりすくい面側および逃げ面側の研磨量がともに0.03mmのRホーニング加工を施し、この成形体を100Pa以下の真空中で1250℃まで12.5℃/分で昇温し、1250〜1350℃までを1℃/分の昇温速度で昇温し、Nガスを1kPa導入した状態で1350℃から表2の焼成温度までは5/分で昇温し、表1の焼成温度に到達した後で1時間の保持を行い、その後、真空雰囲気にして1200℃まで冷却した。そして、12.5℃/分の昇温速度で表2の熱処理温度まで昇温し、表2の時間保持した後、12.5℃にて降温する焼成パターンで焼成して、CNMG120408形状のサーメットからなる切削工具を作製した。また、試料No.5については焼成後にブラシ加工によりすくい面側および逃げ面側の研磨量がともに0.03mmのRホーニング加工を施した。 Next, using the above mixed powder, it was press-molded into a chip shape of ISO standard CNMG120408 at a molding pressure of 98 MPa, and subjected to R honing processing with a polishing amount of 0.03 mm on both the rake face side and the flank face side by brushing, This compact was heated to 1250 ° C. at 12.5 ° C./min in a vacuum of 100 Pa or less, heated to 1250-1350 ° C. at a rate of 1 ° C./min, and N 2 gas was introduced at 1 kPa. In this state, the temperature was raised from 1350 ° C. to the firing temperature shown in Table 2 at a rate of 5 / min. After reaching the firing temperature shown in Table 1, the temperature was maintained for 1 hour, and then cooled to 1200 ° C. in a vacuum atmosphere. Then, the temperature was raised to the heat treatment temperature shown in Table 2 at a temperature raising rate of 12.5 ° C./min, held for the time shown in Table 2, and then fired in a firing pattern that lowered the temperature at 12.5 ° C. to form CNMG120408 shaped cermet A cutting tool consisting of Sample No. For No. 5, an R honing process in which the polishing amount on the rake face side and the flank face side was 0.03 mm was performed by brushing after firing.

得られた切削工具に対して、サーメット表面の切刃部およびすくい面の平坦部について5000倍で顕微鏡観察を行い、組織および結合相の含有比率を測定した。なお、各相の含有比率および平均粒径の測定については、20×20μmの観察領域2箇所を画像解析にて測定し、各粒子を特定して各粒子の面積を求めて平均面積を算出し、これを円に換算して平均粒径とした。また、金属顕微鏡を用いてサーメットの側面(逃げ面)形状をトレースし、側面の中央部における膨らみ量(変形量)を算出した。   With respect to the obtained cutting tool, the cutting edge part of the cermet surface and the flat part of the rake face were observed with a microscope at a magnification of 5000 to measure the content ratio of the structure and the binder phase. In addition, about the measurement of the content ratio and average particle diameter of each phase, two observation regions of 20 × 20 μm are measured by image analysis, each particle is specified, the area of each particle is obtained, and the average area is calculated. This was converted to a circle to obtain an average particle size. Moreover, the side surface (flank) shape of the cermet was traced using the metal microscope, and the bulge amount (deformation amount) in the center part of the side surface was calculated.

さらに、得られた切削工具について、下記条件で切削性能を評価した。
被削材: S45C
切削速度: 250m/分
送り: 0.25mm/rev.
切込み: 1.0mm
切削状態:湿式(水溶性切削液使用)
評価方法:摩耗量が0.2mmに達するまでの時間
結果は表3に示した。
Further, the cutting performance of the obtained cutting tool was evaluated under the following conditions.
Work material: S45C
Cutting speed: 250 m / min Feed: 0.25 mm / rev.
Cutting depth: 1.0mm
Cutting condition: wet (use water-soluble cutting fluid)
Evaluation method: Table 3 shows the time results until the amount of wear reached 0.2 mm.

表1〜3から明らかなように、焼成後にホーニング加工した試料No.5、焼成温度が1550℃を越える試料No.8、熱処理温度が1550℃より低い試料No.6、熱処理時間が60分より長い試料No.7では、いずれも、切刃部における第1硬質相と第2硬質相との合計面積に対する第2硬質相の含有面積割合が、平坦部における第1硬質相と第2硬質相との合計面積に対する第2硬質相の含有面積割合以下となってしまい、焼成に伴う変形量が大きいか、または切刃部における耐熱衝撃性が低下して切削時間が短くなった。 As is apparent from Tables 1 to 3, the sample No. 5. Sample No. with a firing temperature exceeding 1550 ° C. 8. Sample No. with heat treatment temperature lower than 1550 ° C. 6. Sample No. with a heat treatment time longer than 60 minutes 7, the content area ratio of the second hard phase to the total area of the first hard phase and the second hard phase in the cutting edge portion is the total area of the first hard phase and the second hard phase in the flat portion. The amount of the second hard phase relative to the area was less than or equal to the amount of deformation, and the amount of deformation accompanying firing was large, or the thermal shock resistance at the cutting edge was reduced, resulting in a shortened cutting time.

これに対して、本発明に従う試料No.1〜4では、いずれも焼成に伴う変形量が小さく、かつ切削時間も長いものであった。   On the other hand, sample no. In 1-4, all had the small deformation amount accompanying baking, and the cutting time was long.

1 切削工具
2 すくい面
3 逃げ面
4 切刃部
5 第1硬質相
6 第2硬質相
7 硬質相
8 結合相
9 平坦部
DESCRIPTION OF SYMBOLS 1 Cutting tool 2 Rake face 3 Relief face 4 Cutting edge part 5 1st hard phase 6 2nd hard phase 7 Hard phase 8 Bonded phase 9 Flat part

Claims (3)

Tiの炭化物、窒化物または炭窒化物からなる第1硬質相と、TiおよびTi以外の周期表第4、5および6族金属の群から選ばれる少なくとも1種の炭化物、窒化物または炭窒化物からなる第2硬質相と、鉄族金属からなる結合相と、のサーメットからなり、該サーメットの表面領域において、切刃部における前記第1硬質相と前記第2硬質相との合計面積に対する前記第2硬質相の含有面積割合が、平坦部における前記第1硬質相と前記第2硬質相との合計面積に対する前記第2硬質相の含有面積割合よりも高い切削工具。 A first hard phase comprising a carbide, nitride or carbonitride of Ti, and at least one carbide, nitride or carbonitride selected from the group of metals of Group 4, 5 and 6 of the periodic table other than Ti and Ti A cermet of a second hard phase consisting of a binder phase consisting of an iron group metal, and in the surface area of the cermet, the total area of the first hard phase and the second hard phase in the cutting edge portion content area ratio of the second hard phase, high cutting tool than the content area ratio of the second hard phase to the total area of the second hard phase and the first hard phase in the flat portion. 前記サーメットの表面領域において、前記切刃部では前記平坦部に比べて前記第2硬質相の平均粒径が大きい請求項1記載の切削工具。   The cutting tool according to claim 1, wherein, in the surface region of the cermet, an average particle diameter of the second hard phase is larger in the cutting edge portion than in the flat portion. 前記サーメットの表面領域において、前記切刃部では前記平坦部に比べて前記結合相の含有割合が少ない請求項1または2記載の切削工具。   The cutting tool according to claim 1 or 2, wherein in the surface region of the cermet, the cutting blade portion has a smaller content of the binder phase than the flat portion.
JP2010070399A 2010-03-25 2010-03-25 Cutting tools Active JP5618589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010070399A JP5618589B2 (en) 2010-03-25 2010-03-25 Cutting tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010070399A JP5618589B2 (en) 2010-03-25 2010-03-25 Cutting tools

Publications (2)

Publication Number Publication Date
JP2011200972A JP2011200972A (en) 2011-10-13
JP5618589B2 true JP5618589B2 (en) 2014-11-05

Family

ID=44878242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010070399A Active JP5618589B2 (en) 2010-03-25 2010-03-25 Cutting tools

Country Status (1)

Country Link
JP (1) JP5618589B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014029001A (en) * 2012-07-31 2014-02-13 Sumitomo Electric Hardmetal Corp Cermet, method for manufacturing the cermet, and cutting tool
CN105283569B (en) * 2013-06-28 2017-07-14 京瓷株式会社 Cermet and its manufacture method and cutting element
JP5807851B1 (en) * 2014-04-10 2015-11-10 住友電気工業株式会社 Cermets and cutting tools

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008155335A (en) * 2006-12-25 2008-07-10 Kyocera Corp Cutting tool
JP5063129B2 (en) * 2007-02-08 2012-10-31 京セラ株式会社 cermet
JP2009006413A (en) * 2007-06-26 2009-01-15 Kyocera Corp Ti based cermet

Also Published As

Publication number Publication date
JP2011200972A (en) 2011-10-13

Similar Documents

Publication Publication Date Title
JPWO2011002008A1 (en) Cermet and coated cermet
JP5989930B1 (en) Cermet and cutting tools
JP5652113B2 (en) WC-based cemented carbide cutting tool and surface-coated WC-based cemented carbide cutting tool exhibiting excellent fracture resistance in heat-resistant alloy cutting
JP6256415B2 (en) Cemented carbide and cutting tools
WO2019116614A1 (en) Cemented carbide and cutting tool
JP2010105099A (en) Cutting tool
JP5618589B2 (en) Cutting tools
JP2011235410A (en) Cutting tool made from wc-based cemented carbide and cutting tool made from surface coating wc-based cemented carbide which exhibit excellent chipping resistance in cutting work of heat resistant alloy
JP5273987B2 (en) Cermet manufacturing method
JP2012086297A (en) Wc-based cemented carbide cutting tool exercising superior chipping resistance and wear resistance in high speed intermittent cutting
JPH10182233A (en) Titanium aluminum nitride-base sintered material and its production
JP5451507B2 (en) Cutting tools
JP2011045954A (en) Cermet sintered body and cutting tool
JP5063129B2 (en) cermet
JP5381616B2 (en) Cermet and coated cermet
JP4703122B2 (en) Method for producing TiCN-based cermet
JP7385829B2 (en) WC-based cemented carbide cutting tools and surface-coated WC-based cemented carbide cutting tools with excellent plastic deformation resistance and fracture resistance
JP4069749B2 (en) Cutting tool for roughing
JP5436083B2 (en) Cermet sintered body and cutting tool
JP2011088253A (en) Cutting tool made of wc-based cemented carbide superior in thermal plastic deformation resistance and cutting tool made of surface-coated wc-based cemented carbide
JP2010253607A (en) Cutting tool
JP7307394B2 (en) WC-based cemented carbide cutting tools and surface-coated WC-based cemented carbide cutting tools with excellent plastic deformation resistance and chipping resistance
JP4284153B2 (en) Cutting method
JP6410210B2 (en) Cubic boron nitride composite sintered body insert
JP7209216B2 (en) WC-based cemented carbide cutting tools and surface-coated WC-based cemented carbide cutting tools with excellent plastic deformation resistance and chipping resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140916

R150 Certificate of patent or registration of utility model

Ref document number: 5618589

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150