JP4703122B2 - Method for producing TiCN-based cermet - Google Patents

Method for producing TiCN-based cermet Download PDF

Info

Publication number
JP4703122B2
JP4703122B2 JP2004084626A JP2004084626A JP4703122B2 JP 4703122 B2 JP4703122 B2 JP 4703122B2 JP 2004084626 A JP2004084626 A JP 2004084626A JP 2004084626 A JP2004084626 A JP 2004084626A JP 4703122 B2 JP4703122 B2 JP 4703122B2
Authority
JP
Japan
Prior art keywords
cermet
powder
hard phase
cutting
ticn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004084626A
Other languages
Japanese (ja)
Other versions
JP2005272877A (en
Inventor
隆司 徳永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004084626A priority Critical patent/JP4703122B2/en
Publication of JP2005272877A publication Critical patent/JP2005272877A/en
Application granted granted Critical
Publication of JP4703122B2 publication Critical patent/JP4703122B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

本発明は、Ti基サーメットとその製造方法および切削工具に関し、特に、硬度に優れるとともに超硬合金に匹敵する耐熱衝撃性を有して高速切削においても優れた切削性能を長期に亘って発揮するTi基サーメット製切削工具に関するものである。   The present invention relates to a Ti-based cermet, a method for producing the same, and a cutting tool. In particular, the present invention has excellent hardness and thermal shock resistance comparable to that of a cemented carbide and exhibits excellent cutting performance over a long period even in high-speed cutting. The present invention relates to a Ti-based cermet cutting tool.

従来より、耐摩耗性工具や切削工具用合金としてTiCやTiCNを主成分とするTi基サーメットが開発されており、特に靭性を改善したTiCNを主体とするTi基サーメットが広く用いられている。かかるTi基サーメットにおいては、一般的に結合金属としてTiCN粒子との濡れ性を高めるためにNi(ニッケル)が添加されており、加えて、サーメットの靭性および熱伝導性向上の目的でCo(コバルト)が添加される。   Conventionally, Ti-based cermets mainly composed of TiC and TiCN have been developed as wear-resistant tools and cutting tool alloys, and Ti-based cermets mainly composed of TiCN with improved toughness have been widely used. In such a Ti-based cermet, Ni (nickel) is generally added as a binding metal in order to improve wettability with TiCN particles. In addition, Co (cobalt) is used for the purpose of improving the toughness and thermal conductivity of the cermet. ) Is added.

最近、このようなサーメットに対して特に耐欠損性を向上させることが求められており、例えば、本出願人は、特許文献1にて、4a、5a、6a族金属の配合比率、特にW(タングステン)の含有比率を制御するとともに、結合金属の80モル%以上をCoにて形成することにより、サーメットの湿式加工時の耐欠損性を向上できることを提案した。   Recently, it has been demanded to improve the fracture resistance particularly for such a cermet. For example, the applicant of the present application disclosed in Patent Document 1 the mixing ratio of 4a, 5a, and 6a group metals, particularly W ( It was proposed that the fracture resistance during wet processing of cermet can be improved by controlling the content ratio of tungsten) and forming 80 mol% or more of the bonding metal with Co.

また、特許文献2には、Ta(タンタル)とW(タングステン)の含有量とC(炭素)とN(窒素)の含有比率を調整するとともに、サーメットの結合金属(バインダー)をCo中に溶解する固溶体強化を図ることによって、耐摩耗性を維持したままサーメット工具の突発欠損を抑制できると記載されている。
特開平11−216603号公報 特開2000−336450号公報
In Patent Document 2, the content of Ta (tantalum) and W (tungsten) and the content ratio of C (carbon) and N (nitrogen) are adjusted, and the binding metal (binder) of cermet is dissolved in Co. It is described that the sudden defect of the cermet tool can be suppressed while maintaining the wear resistance by strengthening the solid solution.
Japanese Patent Laid-Open No. 11-216603 JP 2000-336450 A

しかしながら、特許文献1、2のように、結合金属中に占めるCoの含有割合を高めたサーメットであっても、サーメットの熱伝導率が低い点、および熱膨張率が大きいという問題があり、特に過酷な条件の切削加工を行うと切刃温度が上昇して高温になりやすく、かつ切刃が繰り返しの熱伸縮によって熱疲労し、最終的に突発欠損に至るという問題を解消することはできなかった。   However, as in Patent Documents 1 and 2, even cermets in which the content ratio of Co in the binding metal is increased, there are problems that the thermal conductivity of the cermet is low and that the thermal expansion coefficient is large. If cutting is performed under severe conditions, the cutting edge temperature will rise and become hot, and the problem that the cutting edge will thermally fatigue due to repeated thermal expansion and contraction will not be solved. It was.

本発明は、上記課題を解決するためになされたものであり、その目的は、特に過酷な切削条件、例えば高速切削やドライ加工のような加工条件であっても、表面における熱伝導率の向上および熱膨張率の低減による熱疲労による突発欠損を防止して、耐欠損性および耐摩耗性に優れたTi基サーメットおよびその製造方法並びにこれを用いた切削工具を提供することにある。   The present invention has been made to solve the above-mentioned problems, and its purpose is to improve the thermal conductivity on the surface even under severe cutting conditions such as high-speed cutting and dry processing. Another object of the present invention is to provide a Ti-based cermet excellent in fracture resistance and wear resistance, a manufacturing method thereof, and a cutting tool using the same, by preventing sudden fracture due to thermal fatigue due to a reduction in thermal expansion coefficient.

本発明は、サーメット中の結合金属としてCoの含有割合を高めるとともに、少なくともW(タングステン)を必須として含有せしめ、かつW濃度が内部から表面に向かって増加し表面から10μm深さまでの領域で最大となる表面領域を有する構成とすることにより、特に過酷な切削条件、例えば高速切削やドライ加工のような加工条件であっても、サーメット表面における靭性向上、および熱伝導率向上と熱膨張率を小さくすることによる熱疲労の低減を図ることができる結果、繰り返し加工しても切刃に突発欠損が発生することなく、耐欠損性および耐摩耗性に優れたTi基サーメットとなることを特徴とする。   The present invention increases the content ratio of Co as a binding metal in the cermet, contains at least W (tungsten) as an essential component, and increases the W concentration from the inside toward the surface, and reaches a maximum in a region from the surface to a depth of 10 μm. With a structure having a surface region that becomes, even under severe cutting conditions, such as high-speed cutting and dry processing, toughness improvement on the cermet surface, thermal conductivity improvement and thermal expansion coefficient As a result of being able to reduce thermal fatigue by reducing the size, it is characterized by a Ti-based cermet having excellent fracture resistance and wear resistance without causing sudden fracture on the cutting edge even after repeated machining. To do.

すなわち、本発明のTi基サーメットは、TiおよびWと、それ以外の周期律表4a、5aおよび6a族金属のうちの1種以上との複合金属炭窒化物からなる硬質相を、少なくともCoを80モル%以上の割合で含有する鉄族金属からなる結合相:10〜20質量%にて結合してなり、W濃度が内部から表面に向かって増加し表面から10μm〜100μm深さまでの領域で最大となる表面領域を有することを特徴とする。   That is, the Ti-based cermet of the present invention has a hard phase composed of a composite metal carbonitride of Ti and W and one or more of the other periodic group 4a, 5a and 6a group metals, at least Co. Bond phase composed of iron group metal contained at a ratio of 80 mol% or more: Bonded at 10 to 20% by mass, W concentration increases from the inside toward the surface, and in the region from the surface to a depth of 10 μm to 100 μm. It is characterized by having a maximum surface area.

ここで、前記表面領域における前記W元素の最大含有量をW、表面から1mm以上の深さにおける前記W元素の内部含有量をWとしたとき、W/W=1.3〜2.0となることが、耐塑性変形性を高める点で望ましい。 Here, the maximum amount of W s of the W element in the surface region, when the internal content of the W element in the surface 1mm or more the depth was set to W i, W s / W i = 1.3~ 2.0 is desirable from the viewpoint of improving the plastic deformation resistance.

また、前記硬質相の平均粒径が2μm以下であることが、サーメットの硬度および強度を高めて、サーメットの耐摩耗性を向上させる点で望ましく、このように硬質相の粒径が微粒化する場合一般的には焼結性が低下する傾向にあるが、本発明によれば、後述するWの添加方法の工夫によって硬質相の粒径が微粒となっても焼結性が低下することなく緻密化した焼結体を得ることができる。   In addition, it is desirable that the average particle size of the hard phase is 2 μm or less from the viewpoint of increasing the hardness and strength of the cermet and improving the wear resistance of the cermet, and thus the particle size of the hard phase is atomized. In general, the sinterability tends to decrease, but according to the present invention, the sinterability does not decrease even if the particle size of the hard phase becomes fine by devising the addition method of W described later. A densified sintered body can be obtained.

さらに、前記Ti基サーメット任意断面の走査型電子顕微鏡写真(SEM)において、前記硬質相が黒色の第1硬質相と灰白色の第2硬質相とからなり、前記サーメット内部における第1硬質相の平均粒径d1inが0.05〜1.5μmで、前記サーメット内部の全体に占める第1硬質相の面積比率S1inが40〜80面積%からなるとともに、前記サーメット表面に前記第1硬質相の平均粒径d1sfと前記サーメット内部における第1硬質相の平均粒径d1inとの比(d1sf/d1in)が1.1〜3で、前記サーメット表面部に占める第1硬質相の面積比率S1sfと前記サーメット内部における第1硬質相の面積比率S1inとの比(S1sf/S1in)が0.3〜0.7からなる表面領域sfが存在することが、サーメットの硬度、強度向上とサーメット表面における耐熱衝撃性向上をともに満足して耐摩耗性および耐欠損性を最適化できる点で望ましい。 Furthermore, in the scanning electron micrograph (SEM) of the Ti-based cermet arbitrary cross section, the hard phase is composed of a black first hard phase and an off-white second hard phase, and the average of the first hard phase inside the cermet The particle size d 1in is 0.05 to 1.5 μm, the area ratio S 1in of the first hard phase occupying the whole inside of the cermet is 40 to 80% by area, and the surface of the first hard phase is on the cermet surface. area average particle diameter d in a ratio of 1SF and the average particle diameter d 1in the first hard phase in the cermet internal (d 1SF / d 1in) is 1.1 to 3, the first hard phase occupying the cermet surface portion that the ratio S 1SF the ratio between the area ratio S 1in of the first hard phase in the cermet internal (S 1sf / S 1in) consists of 0.3-0.7 surface area sf exists It is desirable in that the hardness and strength of the cermet are improved and the thermal shock resistance on the surface of the cermet is satisfied and the wear resistance and fracture resistance can be optimized.

さらには、前記サーメット内部における前記第2硬質相の平均粒径d2inが0.6〜2μmで、前記サーメット内部の全体に占める第2硬質相の面積比率S2inが5〜40面積%からなるとともに、前記サーメット表面領域における前記第2硬質相の平均粒径d2sfが1〜3μmでd2inより大きく、前記サーメット表面部の全体に占める第2硬質相の面積比率S2sfが50〜80面積%からなることが、サーメットの耐摩耗性および耐欠損性の最適化の点で望ましい。 Furthermore, the average particle diameter d 2in of the second hard phase in the cermet is 0.6 to 2 μm, and the area ratio S 2in of the second hard phase in the entire cermet is 5 to 40% by area. together, said average particle size d 2SF of the second hard phase in the cermet surface area greater than d 2in with 1 to 3 [mu] m, the area ratio S 2SF 50 to 80 area of the second hard phase in the total of the cermet surface portion % Is desirable in terms of optimizing the wear resistance and fracture resistance of the cermet.

また、本発明のTi基サーメットの製造方法は、TiCN粉末、(W,Co)合金粉末、それ以外の周期律表4a、5aおよび6a族金属のうちの1種以上の炭化物粉末、窒化物粉末、炭窒化物粉末の少なくとも1種、を少なくとも混合した混合粉末を成形し、真空中で1200℃まで加熱し、1200℃から0.7〜2℃/minの昇温速度aで1250〜1350℃の昇温速度Aまで昇温し、次いで不活性ガスを0.3MPa〜3.0MPaで導入しながら15〜25℃/minの昇温速度bで1400〜1550℃の焼成温度Bまで昇温し、真空中で所定時間維持した後、80〜100℃/minの冷却速度cで最高焼結温度から1200℃まで不活性ガスを0.3MPa〜3.0MPaで導入し、室温まで真空で冷却することを特徴とする。   The Ti-based cermet production method of the present invention includes TiCN powder, (W, Co) alloy powder, other one or more carbide powders of the periodic table 4a, 5a and 6a metals, nitride powder. Then, a mixed powder obtained by mixing at least one of carbonitride powders is molded, heated to 1200 ° C. in a vacuum, and heated from 1200 ° C. to 0.7 to 2 ° C./min at 1250 to 1350 ° C. Then, the temperature was raised to a firing temperature B of 1400 to 1550 ° C. at a temperature raising rate b of 15 to 25 ° C./min while introducing an inert gas at 0.3 to 3.0 MPa. After maintaining for a predetermined time in a vacuum, an inert gas is introduced at 0.3 to 3.0 MPa from the maximum sintering temperature to 1200 ° C. at a cooling rate c of 80 to 100 ° C./min, and cooled to room temperature in a vacuum. That features To.

ここで、前記(W,Co)合金原料粉末中に占めるW元素の含有量が15質量%〜50質量%であることが、サーメット中の硬質粒子と結合金属との濡れ性を高めることができるとともに、上記Wの濃度分布に制御する点で望ましい。   Here, when the content of W element in the (W, Co) alloy raw material powder is 15% by mass to 50% by mass, the wettability between the hard particles in the cermet and the binding metal can be improved. At the same time, it is desirable to control the W concentration distribution.

また、本発明の切削工具は、被削材に切刃を当てて加工するものであって、上記Ti基サーメットからなる。   The cutting tool of the present invention is processed by applying a cutting blade to a work material, and comprises the Ti-based cermet.

本発明は、サーメット中の結合金属としてCoの含有割合を高めるとともに、少なくともW(タングステン)を必須として含有せしめ、かつW濃度が内部から表面に向かって増加し表面から10μm深さまでの領域で最大となる表面領域を有する構成とすることにより、特に過酷な切削条件、例えば高速切削やドライ加工のような加工条件であっても、サーメット表面における靭性向上、および熱伝導率向上と熱膨張率を小さくすることによる熱疲労の低減を図ることができる結果、繰り返し加工しても切刃に突発欠損が発生することなく、耐欠損性および耐摩耗性に優れたTi基サーメットとなる。   The present invention increases the content ratio of Co as a binding metal in the cermet, contains at least W (tungsten) as an essential component, and increases the W concentration from the inside toward the surface, and reaches a maximum in a region from the surface to a depth of 10 μm. With a structure having a surface region that becomes, even under severe cutting conditions, such as high-speed cutting and dry processing, toughness improvement on the cermet surface, thermal conductivity improvement and thermal expansion coefficient As a result of being able to reduce thermal fatigue by reducing the size, a Ti-based cermet having excellent fracture resistance and wear resistance can be obtained without causing sudden fracture on the cutting edge even after repeated machining.

本発明のTi基サーメットは、TiおよびWと、それ以外の周期律表4a、5aおよび6a族金属のうちの1種以上との複合金属炭窒化物からなる硬質相を、少なくともCoを80モル%以上の割合で含有する鉄族金属からなる結合相:10〜20質量%にて結合してなり、W濃度が内部から表面に向かって増加し表面から10〜100μm深さまでの表面領域で最大となることを特徴とする。   The Ti-based cermet of the present invention has a hard phase composed of a composite metal carbonitride of Ti and W and one or more of the other metals in the periodic tables 4a, 5a and 6a, at least 80 mol of Co. % Of a binder phase composed of an iron group metal contained in a ratio of not less than 10%: It is bonded at 10 to 20% by mass, and the W concentration increases from the inside toward the surface and is maximum in the surface region from the surface to a depth of 10 to 100 μm It is characterized by becoming.

ここで、結合相の含有量が10質量%より少なくなるとサーメットの耐欠損性が急激に低下してしまう。逆に結合相の含有量が20質量%より多くなるとサーメットの耐塑性変形性および耐摩耗性が急激に低下してしまう。望ましい結合相の含有量は13〜17質量%である。また、結合相中のCo含有量が80モル%より少ないとサーメットの耐欠損性が低下してしまう。さらに、前記表面領域において、前記サーメット中に含有されるW濃度が最大となる位置が表面から深さ10μm以下、もしくは内部から表面に向かって減少するかまたは同じであると、サーメットの熱伝導率が悪化するとともに熱膨張率が大きくなって熱疲労が大きくなる結果、突発欠損が発生しやすくなる。また、表面でのW元素濃度が最大となる位置が表面からの深さで100μm以上であると耐摩耗性が急激に悪化することに加えて、サーメット表面の耐塑性変形性が悪化してサーメット表面が変形してしまう。   Here, when the content of the binder phase is less than 10% by mass, the fracture resistance of the cermet is drastically lowered. On the contrary, when the content of the binder phase is more than 20% by mass, the plastic deformation resistance and the wear resistance of the cermet are rapidly lowered. A desirable binder phase content is 13 to 17% by mass. On the other hand, when the Co content in the binder phase is less than 80 mol%, the fracture resistance of the cermet is lowered. Further, in the surface region, if the position where the W concentration contained in the cermet is maximum is 10 μm or less in depth from the surface, or decreases or is the same from the inside toward the surface, the thermal conductivity of the cermet As a result, the coefficient of thermal expansion increases and thermal fatigue increases, and as a result, sudden defects are likely to occur. In addition, when the position where the W element concentration on the surface is the maximum is 100 μm or more in depth from the surface, in addition to the rapid deterioration of the wear resistance, the plastic deformation resistance of the cermet surface deteriorates and the cermet The surface will be deformed.

ここで、Wは硬質相中に含有されるとともに、一部は結合金属中および結合金属中に固溶されるか、または硬質相と結合相との界面に存在することが望ましく、具体的には、前記Ti基サーメットを粉砕し、#20メッシュを通した粉砕粉末を50℃の希塩酸(HCl:HO=1:1)中で24時間溶解してろ過したろ液中に、ろ液中の総金属量に対してタングステンを2〜20質量%の割合で含有することが固溶体強化により硬質相と結合相との結合力を強化して、Ni含有量の少ない焼結体であっても充分に焼結性のよい焼結体を作製することができる。 Here, W is contained in the hard phase, and a part thereof is desirably dissolved in the bonding metal and the bonding metal, or preferably present at the interface between the hard phase and the bonding phase. Crush the Ti-based cermet, dissolve the pulverized powder passing through # 20 mesh in dilute hydrochloric acid (HCl: H 2 O = 1: 1) at 50 ° C. for 24 hours, and filter into the filtrate. It is a sintered body with a low Ni content that contains 2 to 20% by mass of tungsten with respect to the total amount of metal in the solid solution strengthening the bonding force between the hard phase and the binder phase. In addition, a sintered body having a sufficiently good sinterability can be produced.

なお、前記W元素の最大含有量をW、W元素の表面から1mm以上の深さにおける内部含有量をWとしたとき、W/W=1.3〜2.0となることが、耐塑性変形性を高める点で望ましい。 Incidentally, the W element maximum content of W s of, when the internal content is W i at the surface from above 1mm depth of W element, be a W s / W i = 1.3 to 2.0 However, it is desirable in terms of enhancing the plastic deformation resistance.

なお、本発明において、上記サーメット基体の表面と内部におけるW元素濃度を測定するには、サーメット断面について波長分散型電子分光分析(EPMA(WDS))にて各元素分布を測定することによって特定することができ、サーメット基体の表面(10μm以内)から内部にわたって元素濃度の深さ方向の分布を測定し、元素濃度がバラツキの範囲内で一定となるまでの元素濃度(本発明では表面からの深さが1000μmの地点での深さ2μmの範囲内における元素濃度の平均値と規定する。)分布によって判定することができる。また、表面領域の厚みもサーメット基体の表面から内部に向かって元素濃度の深さ方向の分布から求めることができ、内部の元素濃度に対していずれかの元素濃度が測定データのバラツキの振幅よりも大きくなるよう変化した地点を表面領域の始まりと特定できる。   In the present invention, in order to measure the W element concentration in the surface and inside of the cermet substrate, the cermet cross section is specified by measuring each element distribution by wavelength dispersive electron spectroscopy analysis (EPMA (WDS)). The distribution of the element concentration in the depth direction is measured from the surface (within 10 μm) to the inside of the cermet substrate, and the element concentration until the element concentration becomes constant within the range of variation (in the present invention, the depth from the surface). Is defined as an average value of element concentrations within a range of 2 μm depth at a point of 1000 μm). Also, the thickness of the surface region can be obtained from the distribution of the element concentration in the depth direction from the surface of the cermet substrate to the inside, and any element concentration with respect to the internal element concentration is based on the amplitude of variation in the measurement data. Can be identified as the beginning of the surface area.

また、前記硬質相の平均粒径が2μm以下であることが、サーメットの硬度および強度を高めて、サーメットの耐摩耗性を向上させる点で望ましい。   In addition, it is desirable that the average particle size of the hard phase is 2 μm or less in terms of increasing the hardness and strength of the cermet and improving the wear resistance of the cermet.

ここで、上記サーメットの粒径および組織については、硬質相として、Tiと、Ti以外の周期律表4a、5aおよび6a族金属のうちの1種以上、特にW、Zr、V、Ta、Nb、Mo、Cr、Hfの群から選ればれる少なくとも1種との複合金属炭窒化物からなり、特に、硬質相は、Ti(TiCN)からなる芯部と、Tiと、W、Mo、TaおよびNbのうちの1種以上との複合化合物からなる周辺部とから構成される2重有芯構造、または3重有芯構造をなしていることが、粒成長制御効果を有しサーメット基体が微細で均一な組織となるとともに、結合相との濡れ性に優れてサーメットの高強度化に寄与する点で望ましい。   Here, regarding the particle size and structure of the cermet, as the hard phase, Ti and one or more of Periodic Tables 4a, 5a and 6a metals other than Ti, particularly W, Zr, V, Ta, Nb , Mo, Cr, Hf, and at least one selected from the group consisting of composite metal carbonitrides. In particular, the hard phase includes a core made of Ti (TiCN), Ti, W, Mo, Ta and Having a double-core structure or a triple-core structure composed of a peripheral portion made of a composite compound with one or more of Nb has a grain growth control effect and a fine cermet substrate. It is desirable in that it has a uniform structure and is excellent in wettability with the binder phase and contributes to increasing the strength of the cermet.

詳細には、前記Ti基サーメット任意断面の走査型電子顕微鏡写真(SEM)において、前記硬質相が黒色の第1硬質相と灰白色の第2硬質相とからなり、前記サーメット内部における第1硬質相の平均粒径d1inが0.05〜1.5μmで、前記サーメット内部の全体に占める第1硬質相の面積比率S1inが40〜80面積%からなるとともに、前記サーメット表面に前記第1硬質相の平均粒径d1sfと前記サーメット内部における第1硬質相の平均粒径d1inとの比(d1sf/d1in)が1.1〜3で、前記サーメット表面部に占める第1硬質相の面積比率S1sfと前記サーメット内部における第1硬質相の面積比率S1inとの比(S1sf/S1in)が0.3〜0.7からなる表面領域sfが存在することが、サーメットの耐摩耗性および耐熱衝撃性をともに満足できる点で望ましい。 Specifically, in the scanning electron micrograph (SEM) of the Ti-based cermet arbitrary cross section, the hard phase is composed of a black first hard phase and an off-white second hard phase, and the first hard phase inside the cermet. The average particle diameter d 1in of the cermet is 0.05 to 1.5 μm, the area ratio S 1in of the first hard phase occupying the whole inside of the cermet is 40 to 80% by area, and the first hard is formed on the cermet surface. the ratio between the average particle diameter d 1in the first hard phase in the cermet inner and an average particle diameter d 1SF phase (d 1sf / d 1in) is 1.1 to 3, the first hard phase occupying the cermet surface portion the ratio between the area ratio S 1SF and area ratio S 1in of the first hard phase in the cermet inside the (S 1sf / S 1in) is present the surface region sf consisting 0.3-0.7 However, it is desirable in that it can satisfy both the wear resistance and the thermal shock resistance of the cermet.

さらには、前記サーメット内部における前記第2硬質相の平均粒径d2inが0.6〜2μmで、前記サーメット内部の全体に占める第2硬質相の面積比率S2inが5〜40面積%からなるとともに、前記サーメット表面領域sfにおける前記第2硬質相の平均粒径d2sfが1〜3μmでd2inより大きく、前記サーメット表面部の全体に占める第2硬質相の面積比率S2sfが50〜80面積%からなることが、サーメットの耐摩耗性および耐欠損性の最適化の点で望ましい。 Furthermore, the average particle diameter d 2in of the second hard phase in the cermet is 0.6 to 2 μm, and the area ratio S 2in of the second hard phase in the entire cermet is 5 to 40% by area. In addition, the average particle diameter d 2sf of the second hard phase in the cermet surface region sf is 1 to 3 μm and larger than d 2in , and the area ratio S 2sf of the second hard phase occupying the entire cermet surface portion is 50 to 80. The area% is desirable from the viewpoint of optimizing the wear resistance and fracture resistance of the cermet.

なお、本発明によれば、上記Ti基サーメット基体の表面に、(Ti,M1−x)(C1−y)(ただし、MはTi以外の周期律表4a、5aおよび6a族金属、Al、Siのうちの1種以上、0<x≦1,0≦y≦1)で表わされる硬質被覆層を単層または2層以上の複層被覆してもよい。 According to the present invention, (Ti x , M 1-x ) (C y N 1-y ) (where M is a periodic table other than Ti, 4 a, 5 a and 6 a is provided on the surface of the Ti-based cermet substrate. The hard coating layer represented by one or more of group metals, Al, and Si, 0 <x ≦ 1, 0 ≦ y ≦ 1) may be coated as a single layer or two or more layers.

なお、上述したTi基サーメットは、耐摩耗部材等への応用も可能であるが、特に被削材に切刃を当てて加工する切削工具として好適に利用可能である。   The Ti-based cermet described above can be applied to wear-resistant members and the like, but can be suitably used particularly as a cutting tool for processing by applying a cutting edge to a work material.

(製造方法)
次に、上記本発明のサーメット製切削工具を作製する方法について説明する。
(Production method)
Next, a method for producing the cermet cutting tool of the present invention will be described.

まず、TiCN粉末と、(W,Co)合金粉末、それ以外の周期律表4a、5aおよび6a族金属のうちの1種以上の炭化物粉末、窒化物粉末、炭窒化物粉末の少なくとも1種、を少なくとも混合した混合粉末を準備する。ここで、本発明によれば、Coの原料供給源として(W,Co)合金粉末を用いることが重要であり、これによって、Co含有比率の高いサーメットの硬質相と結合金属相との濡れ性を高めることができるとともに、Wの濃度分布を本発明の構成に制御することができる。   First, TiCN powder, (W, Co) alloy powder, other periodic table 4a, 5a and at least one kind of carbide powder of group 6a metal, nitride powder, carbonitride powder, A mixed powder prepared by mixing at least the above is prepared. Here, according to the present invention, it is important to use (W, Co) alloy powder as a raw material supply source for Co, and thereby, wettability between a hard phase of a cermet having a high Co content ratio and a binder metal phase. And the concentration distribution of W can be controlled to the configuration of the present invention.

すなわち、上記原料粉末のうち、Coの添加方法として一般的なCo粉末を用いた場合には焼結体中のW濃度分布状態を上述した範囲内に制御することができず、また、固溶体強化効果が小さくなる。   That is, among the above raw material powders, when a general Co powder is used as a Co addition method, the W concentration distribution state in the sintered body cannot be controlled within the above-mentioned range, and the solid solution strengthening The effect is reduced.

ここで、前記(W,Co)合金原料粉末のW/Coの比率が15質量%〜50質量%であることが、サーメット中の硬質相と結合金属との濡れ性を高めることができるとともに、上記Wの濃度分布に制御する点で望ましい。   Here, while the W / Co ratio of the (W, Co) alloy raw material powder is 15% by mass to 50% by mass, the wettability between the hard phase in the cermet and the binding metal can be improved, This is desirable in terms of controlling the concentration distribution of W.

また、本発明によれば、表面領域のW濃度分布を制御するためにはTiCN原料粉末として平均粒径1.0μm以下、特に0.7μm以下の粉末を、(W,Co)合金原料粉末として平均粒径2.0μm以下、特に1.0μm以下の原料粉末を用いることが望ましく、これに加えて後述する焼成条件にて焼成することにより前述の表面領域に制御することができる。   According to the present invention, in order to control the W concentration distribution in the surface region, a powder having an average particle size of 1.0 μm or less, particularly 0.7 μm or less is used as the (W, Co) alloy raw material powder as the TiCN raw material powder. It is desirable to use a raw material powder having an average particle size of 2.0 μm or less, particularly 1.0 μm or less. In addition, it can be controlled to the above-mentioned surface region by firing under firing conditions described later.

次に、上記混合粉末を所定形状に成形した後、真空中で1200℃まで加熱し、1200℃から0.7〜2℃/minの昇温速度aで1250〜1350℃の昇温速度Aまで昇温し、次いで不活性ガスを0.3MPa〜3.0MPaで導入しながら15〜25℃/minの昇温速度bで1400〜1550℃の焼成温度Bまで昇温し、真空中で所定時間維持した後、80〜100℃/minの冷却速度cで最高焼結温度から1200℃まで不活性ガスを0.3MPa〜3.0MPaで導入し、室温まで真空で冷却する。   Next, after forming the mixed powder into a predetermined shape, it is heated to 1200 ° C. in a vacuum, and from 1200 ° C. to a temperature increase rate A of 1250 to 1350 ° C. at a temperature increase rate a of 0.7 to 2 ° C./min. The temperature was raised, and then the inert gas was introduced at 0.3 MPa to 3.0 MPa, the temperature was raised to a firing temperature B of 1400 to 1550 ° C. at a temperature raising rate b of 15 to 25 ° C./min, and a predetermined time in vacuum After the maintenance, an inert gas is introduced at 0.3 to 3.0 MPa from the maximum sintering temperature to 1200 ° C. at a cooling rate c of 80 to 100 ° C./min, and cooled in vacuum to room temperature.

そして、得られたサーメット基体に対して所望により研磨等の表面加工処理した後、所望により化学的蒸着法または物理的蒸着法等のコーティング法を用いて硬質被覆層を単層または2層以上被覆することにより、本発明のサーメット製切削工具を作製することができる。   Then, after subjecting the obtained cermet substrate to surface processing such as polishing as desired, a hard coating layer is coated as a single layer or two or more layers using a coating method such as chemical vapor deposition or physical vapor deposition as desired. By doing so, the cermet cutting tool of this invention can be produced.

また、コーティング法として、従来のNiを含有するサーメットでは化学蒸着法によって硬質被覆層を形成すると硬質被覆層中に異常粒成長が発生して被覆層の耐摩耗性が損なわれるという不具合が発生する場合があったが、本発明においてはサーメット基体中のNi含有量が少ないために化学蒸着法にて形成した硬質被覆層においても良好な膜質の被覆層となる。   In addition, as a coating method, in a conventional cermet containing Ni, when a hard coating layer is formed by a chemical vapor deposition method, abnormal grain growth occurs in the hard coating layer, and the wear resistance of the coating layer is impaired. In some cases, in the present invention, since the Ni content in the cermet substrate is small, the hard coating layer formed by the chemical vapor deposition method has a good film quality.

原料粉末として、平均粒径0.7μmのTiCN粉末と、いずれも0.5〜2μmのTiN粉末、TaC粉末、NbC粉末、WC粉末、ZrC粉末、VC粉末、および平均粒径0.5μmのNi粉末、Co粉末およびおよびその他鉄族金属を含む結合金属相に表1に示すW含有量(W重量/(Co重量+W重量))を有する(W,Co)固溶体粉末を用い、これら原料粉末を表1に示される配合組成に配合し、ボールミルで54時間湿式混合し、乾燥した。   As raw material powder, TiCN powder with an average particle size of 0.7 μm, TiN powder with 0.5 to 2 μm, TaC powder, NbC powder, WC powder, ZrC powder, VC powder, and Ni with an average particle size of 0.5 μm (W, Co) solid solution powder having the W content (W weight / (Co weight + W weight)) shown in Table 1 is used for the powder, Co powder, and other binding metal phase containing iron group metal. It mix | blended with the compounding composition shown by Table 1, and wet-mixed for 54 hours with the ball mill, and dried.

次に、上記混合粉末を用いて、成形圧98MPaでプレス成形し、この成形体を1200℃まで2〜15℃/minで制御しながら昇温した後、表1の焼成条件で昇温して焼成温度Bで1時間焼成し、表1に示す条件で冷却してCNMG120408形状のサーメット工具を作製した。   Next, after press-molding with the above-mentioned mixed powder at a molding pressure of 98 MPa, this molded body was heated up to 1200 ° C. while controlling at 2 to 15 ° C./min, and then heated under the firing conditions shown in Table 1. A cermet tool having a CNMG120408 shape was produced by firing at a firing temperature B for 1 hour and cooling under the conditions shown in Table 1.

得られたサーメット製切削工具に対して、断面について、サーメット基体の表面近傍について走査型電子顕微鏡(SEM)に付随の波長分散型電子分光分析法(EPMA)を用いて、表面から50μm深さまでを5μm深さ×500μmの領域ごとで面分析し、50〜400μm深さまでを20μm深さ×500μm、400〜1000μm深さまでを100μm深さ×500μmで測定して各領域におけるW元素濃度を測定し、これをマッピングして表面領域の厚みを定量化するとともに、1000μmでの値をW(内部におけるW濃度)として、内部濃度W基準に対する表面領域の最大W濃度を質量%(表中wt%と表記)表示で、またその比(W/W)を表示した。 Using the wavelength dispersive electron spectroscopy (EPMA) attached to the scanning electron microscope (SEM), the cross section of the obtained cermet cutting tool was measured in the vicinity of the surface of the cermet substrate to a depth of 50 μm from the surface. Surface analysis is performed for each region of 5 μm depth × 500 μm, 20 μm depth × 500 μm up to 50-400 μm depth, and 100 μm depth × 500 μm up to 400-1000 μm depth to measure the W element concentration in each region, The surface area thickness is quantified by mapping this, and the maximum W s concentration of the surface area with respect to the internal concentration W i standard is expressed as mass% (wt in the table) with the value at 1000 μm as W i (inside W concentration). %) And the ratio (W s / W i ).

また、サーメットをダイヤモンド砥石によって加工し、下記条件にて切削性能を評価した。また、各試料について走査型電子顕微鏡(SEM)観察を行い、7000倍の写真任意5箇所について市販の画像解析ソフトを用いて7mm×7mmの領域で画像解析を行い、硬質相(第1硬質相、第2硬質相)の存在状態を確認した。結果は表2に示した。   Further, the cermet was processed with a diamond grindstone, and the cutting performance was evaluated under the following conditions. In addition, each sample was observed with a scanning electron microscope (SEM), and image analysis was performed in a 7 mm × 7 mm area using commercially available image analysis software for five arbitrary photographs at a magnification of 7000 × to obtain a hard phase (first hard phase). , The second hard phase) was confirmed. The results are shown in Table 2.

さらに、上記サーメットを粉砕し#20メッシュを通した粉砕粉末1gに塩酸(HCl:HO=1:1)溶液を加え、スターラーにて攪拌し24時間50℃で加熱溶解した溶液をろ過した。この溶液に希塩酸(HCl:HO=1:1)溶液を加えて50ml定容とし、このろ液について、ICP法によってろ液中のWを含む各金属の含有量および含有比率を測定した。結果は表2に示した。 Furthermore, the hydrochloric acid (HCl: H 2 O = 1: 1) solution was added to 1 g of the pulverized powder obtained by pulverizing the cermet and passing through # 20 mesh, and the solution dissolved by heating at 50 ° C. for 24 hours with stirring with a stirrer was filtered. . Dilute hydrochloric acid (HCl: H 2 O = 1: 1) solution was added to this solution to make a constant volume of 50 ml, and the content and content ratio of each metal including W in the filtrate were measured for this filtrate by the ICP method. . The results are shown in Table 2.

また、得られた切削工具について、下記切削条件A、Bにて切削評価を行った。結果は表2に耐摩耗性および耐欠損性として表記した。   Moreover, about the obtained cutting tool, cutting evaluation was performed on the following cutting conditions A and B. The results are shown in Table 2 as wear resistance and fracture resistance.

切削条件A(耐摩耗性試験)
被削材:SCM435
切削速度:300m/min
送り:0.30mm/rev
切込み:2.0mm
切削時間:30分
切削油:エマルジョン(湿式)
評価項目:試験後の逃げ面摩耗幅
切削条件B(耐欠損性試験)
被削材:S45C
被削材:4本溝入り丸棒
切削速度:120m/min
送りおよび切削時間:0.1mm/revで10秒間切削後、送りを0.05mm/revずつ上げて各10秒間ずつ切削(最大送り0.5mm/revまで)
切込み:2mm
評価項目:欠損するまでの総切削時間

Figure 0004703122
Figure 0004703122
Cutting condition A (Abrasion resistance test)
Work material: SCM435
Cutting speed: 300 m / min
Feed: 0.30mm / rev
Cutting depth: 2.0mm
Cutting time: 30 minutes Cutting oil: Emulsion (wet)
Evaluation item: Flank wear width after test Cutting condition B (fracture resistance test)
Work material: S45C
Work material: Round groove with 4 grooves Cutting speed: 120 m / min
Feeding and cutting time: After cutting at 0.1 mm / rev for 10 seconds, feed is increased by 0.05 mm / rev and cut for 10 seconds each (up to a maximum feed of 0.5 mm / rev)
Cutting depth: 2mm
Evaluation item: Total cutting time until chipping
Figure 0004703122
Figure 0004703122

表1、2に示される結果から、本発明の範囲内である試料No.1〜6では、いずれも連続切削および断続切削のいずれでも高速切削にもかかわらず、摩耗が少なく、突発欠損が発生することなく優れた切削特性を示している。これに対して、結合金属中のCo含有率が80モル%より少ない試料No.7、8では、靭性が低くて突発欠損が発生してしまい、また、原料粉末として(W,Co)固溶体原料粉末でなくCo粉末を用いた試料No.10でも固溶体強化が不十分で摩耗量が多く、かつ突発欠損が発生した。さらに、試料No.9においては、降温時の雰囲気を真空としたために所定のW元素濃度分布ができず、やはり突発欠損の発生を止めることはできなかった。   From the results shown in Tables 1 and 2, sample Nos. Within the scope of the present invention. In Nos. 1 to 6, both continuous cutting and interrupted cutting exhibit excellent cutting characteristics with little wear and no sudden defects despite high-speed cutting. On the other hand, Sample No. with a Co content of less than 80 mol% in the binding metal. In Nos. 7 and 8, the toughness is low and sudden defects occur, and Sample No. using Co powder instead of (W, Co) solid solution raw material powder as raw material powder. No. 10, solid solution strengthening was insufficient, the amount of wear was large, and a sudden defect occurred. Furthermore, sample no. In No. 9, since the atmosphere at the time of cooling was made vacuum, a predetermined W element concentration distribution could not be obtained, and the occurrence of sudden defects could not be stopped.

Claims (2)

TiCN粉末と、(W,Co)合金粉末と、それ以外の周期律表4a、5aおよび6a族金属のうちの1種以上の炭化物粉末、窒化物粉末、炭窒化物粉末の少なくとも1種と、を少なくとも混合した混合粉末を成形し、真空もしくは100Torr以下の不活性雰囲気中で室温から1200℃まで加熱し、1200℃から0.7〜2℃/minの昇温速度aで1250〜1350℃の焼成温度Aまで昇温し、次いで15〜25℃/minの昇温速度bで1400〜1550℃の焼成温度Bまで昇温し、所定時間維持後、80〜100℃/minの冷却速度cで最高焼結温度から1200℃まで不活性ガスを0.3MPa〜3.0MPaで導入し、室温まで真空で冷却することを特徴とするTiCN基サーメットの製造方法。 TiCN powder, (W, Co) alloy powder, and at least one kind of carbide powder, nitride powder, carbonitride powder of one or more kinds of other periodic table 4a, 5a and 6a group metals, A mixed powder at least mixed is molded, heated in a vacuum or an inert atmosphere of 100 Torr or less from room temperature to 1200 ° C., and heated from 1200 ° C. to 0.7 to 2 ° C./min at 1250 to 1350 ° C. The temperature is raised to the firing temperature A, and then the temperature is raised to a firing temperature B of 1400 to 1550 ° C. at a heating rate b of 15 to 25 ° C./min. After maintaining for a predetermined time, the cooling rate c is 80 to 100 ° C./min. A method for producing a TiCN- based cermet, wherein an inert gas is introduced at 0.3 MPa to 3.0 MPa from a maximum sintering temperature to 1200 ° C. and cooled to room temperature in a vacuum. 前記(W,Co)合金原料粉末のW/Coの比率が15質量%〜50質量%であることを特徴とする請求項記載のTiCN基サーメットの製造方法。 Wherein (W, Co) method for producing a TiCN-base cermet according to claim 1, wherein a ratio of W / Co alloy raw material powder is 15 wt% to 50 wt%.
JP2004084626A 2004-03-23 2004-03-23 Method for producing TiCN-based cermet Expired - Fee Related JP4703122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004084626A JP4703122B2 (en) 2004-03-23 2004-03-23 Method for producing TiCN-based cermet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004084626A JP4703122B2 (en) 2004-03-23 2004-03-23 Method for producing TiCN-based cermet

Publications (2)

Publication Number Publication Date
JP2005272877A JP2005272877A (en) 2005-10-06
JP4703122B2 true JP4703122B2 (en) 2011-06-15

Family

ID=35172855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004084626A Expired - Fee Related JP4703122B2 (en) 2004-03-23 2004-03-23 Method for producing TiCN-based cermet

Country Status (1)

Country Link
JP (1) JP4703122B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7811683B2 (en) * 2006-09-27 2010-10-12 Kyocera Corporation Cutting tool
JP5297381B2 (en) 2007-09-14 2013-09-25 住友電気工業株式会社 Cutting tool insert and coated cutting tool
KR101701186B1 (en) * 2013-02-27 2017-02-01 쿄세라 코포레이션 Cutting tool
JP6169913B2 (en) * 2013-07-26 2017-07-26 京セラ株式会社 Cutting tools
JP6380016B2 (en) * 2014-11-05 2018-08-29 株式会社タンガロイ Cermet tools and coated cermet tools
JP6603061B2 (en) * 2015-07-29 2019-11-06 京セラ株式会社 Cermet and cutting tools
WO2019181791A1 (en) * 2018-03-20 2019-09-26 京セラ株式会社 Tool and cutting tool provided with same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62170452A (en) * 1986-01-22 1987-07-27 Hitachi Carbide Tools Ltd Ticn-base cermet
JPH05178666A (en) * 1991-05-24 1993-07-20 Sandvik Ab Sintered titanium carbonitride and preparation thereof
JPH08176719A (en) * 1994-12-27 1996-07-09 Sumitomo Electric Ind Ltd Nitrogen-containing sintered hard alloy
JPH10298695A (en) * 1997-04-24 1998-11-10 Sumitomo Electric Ind Ltd Titanium-carbonitride-base alloy
JPH10317088A (en) * 1997-05-14 1998-12-02 Hitachi Tool Eng Co Ltd Coated cermet
JP2001524886A (en) * 1997-05-15 2001-12-04 サンドビック アクティエボラーグ Titanium-based carbonitride alloy with nitrided surface area
JP2002292507A (en) * 2001-03-29 2002-10-08 Kyocera Corp Cutting tool made of cermet and its manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62170452A (en) * 1986-01-22 1987-07-27 Hitachi Carbide Tools Ltd Ticn-base cermet
JPH05178666A (en) * 1991-05-24 1993-07-20 Sandvik Ab Sintered titanium carbonitride and preparation thereof
JPH08176719A (en) * 1994-12-27 1996-07-09 Sumitomo Electric Ind Ltd Nitrogen-containing sintered hard alloy
JPH10298695A (en) * 1997-04-24 1998-11-10 Sumitomo Electric Ind Ltd Titanium-carbonitride-base alloy
JPH10317088A (en) * 1997-05-14 1998-12-02 Hitachi Tool Eng Co Ltd Coated cermet
JP2001524886A (en) * 1997-05-15 2001-12-04 サンドビック アクティエボラーグ Titanium-based carbonitride alloy with nitrided surface area
JP2002292507A (en) * 2001-03-29 2002-10-08 Kyocera Corp Cutting tool made of cermet and its manufacturing method

Also Published As

Publication number Publication date
JP2005272877A (en) 2005-10-06

Similar Documents

Publication Publication Date Title
JP5221951B2 (en) Cemented carbide and cutting tools
EP1409757B1 (en) Fine grained sintered cemented carbide, process for manufacturing and use thereof
WO2011002008A1 (en) Cermet and coated cermet
WO2011136197A1 (en) Cermet and coated cermet
JP2004292905A (en) Compositionally graded sintered alloy and method of producing the same
JP5559575B2 (en) Cermet and coated cermet
JP4703122B2 (en) Method for producing TiCN-based cermet
JP2005213599A (en) TiCN-BASED CERMET AND ITS MANUFACTURING METHOD
WO2006100939A1 (en) TiCN BASE CERMET AND CUTTING TOOL AND METHOD FOR MANUFACTURING CUT ARTICLE USING THE SAME
KR101302374B1 (en) Cemented carbide having good wear resistance and chipping resistance
JP7385829B2 (en) WC-based cemented carbide cutting tools and surface-coated WC-based cemented carbide cutting tools with excellent plastic deformation resistance and fracture resistance
JP4069749B2 (en) Cutting tool for roughing
JP4703123B2 (en) Method for producing surface-coated TiCN-based cermet
JP2006111947A (en) Ultra-fine particle of cermet
JP3648758B2 (en) Nitrogen-containing sintered hard alloy
JP5031610B2 (en) TiCN-based cermet
JP7441420B2 (en) Cutting tools that exhibit excellent fracture resistance and plastic deformation resistance
JP2003342667A (en) TiCN GROUP CERMET AND ITS MANUFACTURING METHOD
JP4284153B2 (en) Cutting method
JP7441418B2 (en) WC-based cemented carbide cutting tools and surface-coated WC-based cemented carbide cutting tools with excellent plastic deformation resistance and fracture resistance
JP7209216B2 (en) WC-based cemented carbide cutting tools and surface-coated WC-based cemented carbide cutting tools with excellent plastic deformation resistance and chipping resistance
JP7307394B2 (en) WC-based cemented carbide cutting tools and surface-coated WC-based cemented carbide cutting tools with excellent plastic deformation resistance and chipping resistance
JP7161677B2 (en) WC-Based Cemented Carbide Cutting Tool and Surface-Coated WC-Based Cemented Carbide Cutting Tool with Excellent Fracture Resistance
JP7473871B2 (en) WC-based cemented carbide cutting tool with excellent wear resistance and chipping resistance and surface-coated WC-based cemented carbide cutting tool
JP2022133540A (en) Cutter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110308

LAPS Cancellation because of no payment of annual fees