JP5612380B2 - LED lighting fixtures - Google Patents

LED lighting fixtures Download PDF

Info

Publication number
JP5612380B2
JP5612380B2 JP2010144308A JP2010144308A JP5612380B2 JP 5612380 B2 JP5612380 B2 JP 5612380B2 JP 2010144308 A JP2010144308 A JP 2010144308A JP 2010144308 A JP2010144308 A JP 2010144308A JP 5612380 B2 JP5612380 B2 JP 5612380B2
Authority
JP
Japan
Prior art keywords
led
parabolic
parabolic reflecting
led lighting
reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010144308A
Other languages
Japanese (ja)
Other versions
JP2012009280A (en
Inventor
忠宏 神尾
忠宏 神尾
伸之 馬場
伸之 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eye Lighting Systems Corp
Original Assignee
Eye Lighting Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eye Lighting Systems Corp filed Critical Eye Lighting Systems Corp
Priority to JP2010144308A priority Critical patent/JP5612380B2/en
Priority to PCT/JP2011/064357 priority patent/WO2011162323A1/en
Priority to CN201180007553.4A priority patent/CN102725581B/en
Priority to KR1020127020179A priority patent/KR20130091242A/en
Publication of JP2012009280A publication Critical patent/JP2012009280A/en
Application granted granted Critical
Publication of JP5612380B2 publication Critical patent/JP5612380B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • F21V7/06Optical design with parabolic curvature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • F21S2/005Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V21/00Supporting, suspending, or attaching arrangements for lighting devices; Hand grips
    • F21V21/14Adjustable mountings
    • F21V21/30Pivoted housings or frames
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0083Array of reflectors for a cluster of light sources, e.g. arrangement of multiple light sources in one plane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/10Construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2131/00Use or application of lighting devices or systems not provided for in codes F21W2102/00-F21W2121/00
    • F21W2131/10Outdoor lighting
    • F21W2131/105Outdoor lighting of arenas or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2131/00Use or application of lighting devices or systems not provided for in codes F21W2102/00-F21W2121/00
    • F21W2131/10Outdoor lighting
    • F21W2131/107Outdoor lighting of the exterior of buildings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2103/00Elongate light sources, e.g. fluorescent tubes
    • F21Y2103/10Elongate light sources, e.g. fluorescent tubes comprising a linear array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Description

本発明は、LEDを光源に備えるLED照明器具に係り、特に、遠方の対象物を十分な明るさで演出照明する投光器として用いて好適なLED照明器具に関する。   The present invention relates to an LED lighting apparatus including an LED as a light source, and more particularly to an LED lighting apparatus that is suitable for use as a projector that provides illumination of a distant object with sufficient brightness.

建物等の演出照明に供される照明器具では、その光源に高出力化が容易なHID(High Intensity Discharge)ランプが広く用いられている。近年では、高寿命化、灯具の小型、軽量化が可能なLEDが光源として注目され、また、照明器具として実用化されている。
すなわち、HIDランプを光源とする照明器具においては、配光制御を反射鏡で行っており、器具効率を高めるためにHIDランプの放射光を可能な限り反射する大きさの反射鏡を用いる必要があるから器具が大型、重量化する。これに対し、LEDを光源とする照明器具においては、LEDが、その放射面から光を放射する構造であることから当該放射面にレンズを配して配光制御する構成が一般的である。この構成によれば、LEDの放射光の全てを小型・軽量のレンズで制御することができることから、器具の小型、軽量化が可能になる(例えば、特許文献1参照)。
2. Description of the Related Art HID (High Intensity Discharge) lamps that can easily achieve high output are widely used as light sources for lighting fixtures used for production lighting such as buildings. In recent years, LEDs that can have a long lifetime and can be made smaller and lighter have attracted attention as light sources and have been put into practical use as lighting fixtures.
That is, in a lighting fixture using a HID lamp as a light source, light distribution control is performed by a reflecting mirror, and it is necessary to use a reflecting mirror having a size that reflects the light emitted from the HID lamp as much as possible in order to increase the efficiency of the fixture. As a result, the equipment becomes large and heavy. On the other hand, in the lighting fixture which uses LED as a light source, since LED is a structure which radiates | emits light from the radiation | emission surface, the structure which distribute | arranges a lens to the said radiation | emission surface and controls light distribution is common. According to this configuration, since all of the emitted light of the LED can be controlled by a small and lightweight lens, the instrument can be reduced in size and weight (for example, see Patent Document 1).

特開2006−128217号公報JP 2006-128217 A

しかしながら、照射対象物が数十〜百数十メートル以上離れた遠方にある場合、照射対象物を十分な明るさで照らすためには、非常に高出力なLEDを光源に採用する必要がある。また、従来のように、配光制御にレンズを使用した場合、照射面に色収差が発生する。
この問題を解決するに、配光制御に反射鏡を用いることが考え得るが、反射鏡を単純に用いた場合、レンズに比べて光源の放射光の全てを制御できないため軸光度が低下し、遠方で所望の明るさが確保できない。HIDランプを光源に採用した従来の照明器具では、当該HIDランプ自体が比較的大きいため、反射鏡で反射仕切れない光に起因した軸光度不足が顕著になるものの、HIDランプを高出力化し光軸上の光束を増やすことで軸光度不足を補っていた。しかしながら、LEDにおいては、出力を高めたとしてもHIDランプ程の光束増加は望めないため、そのままでは所望の軸光度が得られない。
However, when the irradiation object is far away from several tens to several hundreds of meters or more, in order to illuminate the irradiation object with sufficient brightness, it is necessary to employ a very high-power LED as a light source. In addition, when a lens is used for light distribution control as in the past, chromatic aberration occurs on the irradiated surface.
In order to solve this problem, it is conceivable to use a reflecting mirror for light distribution control, but when the reflecting mirror is simply used, the axial luminous intensity decreases because all of the emitted light of the light source cannot be controlled compared to the lens, The desired brightness cannot be ensured at a distance. In a conventional lighting fixture that employs an HID lamp as a light source, the HID lamp itself is relatively large, so that the shortage of axial luminous intensity caused by light that is not reflected and partitioned by a reflecting mirror becomes noticeable. Increasing the luminous flux above compensated for the lack of axial luminous intensity. However, in an LED, even if the output is increased, an increase in luminous flux as high as that of an HID lamp cannot be expected, so that a desired axial luminous intensity cannot be obtained as it is.

本発明は、上述した事情に鑑みてなされたものであり、遠方の対象物を十分な明るさで照明することができるLED照明器具を提供することを目的とする。   This invention is made | formed in view of the situation mentioned above, and it aims at providing the LED lighting fixture which can illuminate a far object with sufficient brightness.

上記目的を達成するために、本発明は、複数のLEDと、前記LEDを臨ませる始端開口を底部に設けた放物反射面を前記LEDごとに有する反射ユニットとを備え、前記LEDは、パッケージ基板を備え、このパッケージ基板に、平面視略円形のリフレクタを凹設し、このリフレクタの中心部に複数のLED素子を配置し、これらのLED素子を取り囲む大きさを有した1つの発光点として光学設計上取り扱われるように構成するとともに、前記放物反射面のそれぞれを、前記LEDが配される底部から終端開口までの軸長を超狭角配光が得られる長さとし、前記終端開口の径を1/2ビーム角が5〜7度となる径としつつ、それぞれの前記放物反射面を互いに平行に設け、所定距離離れた照射野で前記放物反射面のそれぞれから放射した光が重なるピッチで前記LED及び放物反射面のそれぞれを配置した、ことを特徴とするLED照明器具を提供する。 In order to achieve the above object, the present invention comprises a plurality of LEDs, and a reflection unit having a parabolic reflection surface provided at the bottom with a starting end opening facing the LEDs, and the LEDs are packaged. As a single light emitting point having a size that surrounds the LED elements, a reflector having a substantially circular shape in plan view is provided in the package substrate, and a plurality of LED elements are arranged in the center of the reflector. Each of the parabolic reflection surfaces is configured to be handled in terms of optical design, and the axial length from the bottom where the LED is disposed to the termination opening is set to a length at which an ultra-small angle light distribution can be obtained. The paraboloidal reflecting surfaces are provided in parallel to each other while the diameter is set to a diameter at which a 1/2 beam angle is 5 to 7 degrees, and the parabolic reflecting surfaces are radiated from each of the parabolic reflecting surfaces at a predetermined distance away from each other. It was disposed each of the LED and the parabolic reflecting surface at a pitch overlapping, to provide an LED lighting apparatus, characterized in that.

また本発明は、前記リフレクタの中心部に前記LED素子を配置し、このLED素子の周囲に他のLED素子を配して1つの発光点として光学設計上取り扱われるように構成したことを特徴とする。
また本発明は、上記LED照明器具において、前記LED及び前記放物反射面を納める熱伝導性材から成る灯体ケースを備え、当該灯体ケースの正面から前記放物反射面の終端開口側を突出させ、当該突出させた部位を樹脂製の透明な前面カバーで覆ったことを特徴とする。
また本発明は、前記反射ユニットはユニット本体が熱伝導性を有する素材により成形され、前記ユニット本体は側面視形状が前記放物反射面に沿った略放物線形状を成し、前記放物反射面を長軸に沿って互いに同一形状に分割して成る分割放物反射面のそれぞれに反射膜を形成し、それぞれの分割放物反射面を合わせて前記放物反射面を構成したことを特徴とする。
また本発明は、前記リフレクタには各LED素子を覆う封入樹脂が充填されていることを特徴とする。
Further, the present invention is characterized in that the LED element is arranged at the center of the reflector, and another LED element is arranged around the LED element so as to be handled as one light emitting point in terms of optical design. To do.
Further, the present invention provides the above-mentioned LED lighting apparatus, comprising: a lamp case made of a heat conductive material that houses the LED and the parabolic reflection surface; and a terminal opening side of the parabolic reflection surface from the front of the lamp case. The protruding portion is covered with a transparent front cover made of resin.
Further, in the present invention, the reflection unit is formed of a material having a unit main body having thermal conductivity, and the unit main body has a substantially parabolic shape in side view along the parabolic reflection surface. Characterized in that a reflective film is formed on each of the divided parabolic reflecting surfaces formed by dividing the same along the major axis, and the parabolic reflecting surfaces are configured by combining the divided parabolic reflecting surfaces. To do.
Further, the invention is characterized in that the reflector is filled with an encapsulating resin that covers each LED element.

本発明によれば、LEDが配される底部から終端開口までの軸長を超狭角配光が得られる長さとし、終端開口の径を1/2ビーム角が5〜7度となる径としたことから、従来のものよりも平行光線が放物反射面の長軸に集められ軸光度を向上させることができる。さらに、遠方での照射野の拡がりが抑えられ十分な照度を維持することができる。
また、かかる放物反射面は、長さが通常よりも非常に長くなることから均一な反射面の形成が困難となるが、本発明では、当該放物反射面を長軸に沿って互いに同一形状に分割して成る分割放物反射面のそれぞれに反射膜を形成し、それぞれの分割放物反射面を合わせて放物反射面を構成するため、均一な放物反射面を簡単に形成することができる。
According to the present invention, the axial length from the bottom portion where the LED is disposed to the termination opening is a length at which an ultra narrow angle light distribution can be obtained, and the diameter of the termination opening is a diameter at which the 1/2 beam angle is 5 to 7 degrees. As a result, parallel rays can be collected on the long axis of the parabolic reflecting surface, and the axial luminous intensity can be improved. Furthermore, the spread of the irradiation field in the distance can be suppressed, and sufficient illuminance can be maintained.
In addition, since the parabolic reflecting surface is much longer than usual, it is difficult to form a uniform reflecting surface. In the present invention, the parabolic reflecting surfaces are identical to each other along the long axis. A reflective film is formed on each of the divided parabolic reflecting surfaces divided into shapes, and each of the divided parabolic reflecting surfaces is combined to form a parabolic reflecting surface, so a uniform parabolic reflecting surface can be easily formed. be able to.

本発明の第1実施形態に係るLED照明器具の外観構成を示す斜視図である。It is a perspective view which shows the external appearance structure of the LED lighting fixture which concerns on 1st Embodiment of this invention. LED照明器具の構成を示す図であり、(A)は正面図、図2は(A)のI−I線における断面視図である。It is a figure which shows the structure of LED lighting fixture, (A) is a front view, FIG. 2 is sectional drawing in the II line | wire of (A). LEDユニットの構成を示す図であり、(A)はLEDユニットの平面図、(B)はLEDユニットが備えるLEDを拡大して示す図、(C)は当該LEDの別例を拡大して示す図である。It is a figure which shows the structure of a LED unit, (A) is a top view of a LED unit, (B) is a figure which expands and shows LED with which a LED unit is equipped, (C) expands and shows another example of the said LED. FIG. 反射ユニットの構成を示す図であり、(A)は正面図、(B)は平面図、(C)は側面図である。It is a figure which shows the structure of a reflection unit, (A) is a front view, (B) is a top view, (C) is a side view. 分割放物反射面の平面図である。It is a top view of a divided parabolic reflection surface. 本発明の第2実施形態に係るLED照明器具の外観構成を示す斜視図である。It is a perspective view which shows the external appearance structure of the LED lighting fixture which concerns on 2nd Embodiment of this invention. LED照明器具の正面図である。It is a front view of LED lighting fixture. LED照明器具の側面図である。It is a side view of LED lighting fixture. LED照明器具を背面側からみた斜視図である。It is the perspective view which looked at the LED lighting fixture from the back side. 本発明の変形例に係る放物反射面の配置例を示す図であり、(A)は多列配置、(B)は同心円状配置を示す。It is a figure which shows the example of arrangement | positioning of the parabolic reflecting surface which concerns on the modification of this invention, (A) shows multi-row arrangement | positioning, (B) shows concentric arrangement | positioning.

以下、図面を参照して本発明の実施形態について説明する。
<第1実施形態>
図1は、本実施形態に係るLED照明器具1の外観構成を示す斜視図である。また、図2はLED照明器具1の構成を示す図であり、図2(A)は正面図、図2(B)は図2(A)のI−I線における断面視図である。
LED照明器具1は、数十メートル〜百数十メートル離れた遠方の対象物のライトアップに用いて好適な器具(投光器)であり、図1及び図2に示すように、LEDユニット3(図2)と、反射ユニット5と、これらを納めた灯体ケース7とを備えている。LEDユニット3は、複数個(図示例では5個)のLED9を一列に配列して構成されている。また、反射ユニット5には、それぞれのLED9に対応して放物反射面11が設けられている。そして各放物反射面11でLED9の放射光が平行光化されて出射される。
以下、各部をより詳細に説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
<First Embodiment>
FIG. 1 is a perspective view showing an external configuration of an LED lighting apparatus 1 according to this embodiment. 2 is a diagram showing the configuration of the LED lighting apparatus 1, FIG. 2 (A) is a front view, and FIG. 2 (B) is a sectional view taken along the line II in FIG. 2 (A).
The LED lighting apparatus 1 is an apparatus (projector) suitable for lighting up a distant object separated by several tens of meters to hundreds of tens of meters. As shown in FIGS. 1 and 2, the LED unit 3 (FIG. 2), a reflection unit 5 and a lamp case 7 in which these are housed. The LED unit 3 is configured by arranging a plurality (five in the illustrated example) of LEDs 9 in a line. In addition, the reflecting unit 5 is provided with a parabolic reflecting surface 11 corresponding to each LED 9. And the radiated light of LED9 is collimated by each parabolic reflecting surface 11, and is radiate | emitted.
Hereinafter, each part will be described in more detail.

図3はLEDユニット3の構成を示す図であり、図3(A)はLEDユニット3の平面図、図3(B)はLEDユニット3が備えるLED9を拡大して示す図、図3(C)は当該LED9の別例を拡大して示す図である。
LEDユニット3は、同図に示すように、横長に延びる一枚の回路基板13に、5個のLED9を一定のピッチP(後に詳述)で一列に配置して構成され、当該回路基板13の裏面側には各LED9の点灯回路が実装されている。本実施形態では、約20W(ワット)の出力のLED9を5個用いることで約100W(ワット)の出力のLEDユニット3を構成している。
3A and 3B are diagrams showing the configuration of the LED unit 3. FIG. 3A is a plan view of the LED unit 3, FIG. 3B is an enlarged view of the LED 9 included in the LED unit 3, and FIG. ) Is an enlarged view showing another example of the LED 9.
As shown in the figure, the LED unit 3 is configured by arranging five LEDs 9 in a row at a constant pitch P (detailed later) on a single circuit board 13 that extends horizontally. A lighting circuit for each LED 9 is mounted on the back side of the LED. In this embodiment, the LED unit 3 having an output of about 100 W (watt) is configured by using five LEDs 9 having an output of about 20 W (watt).

LED9は、図3(B)に示すように、複数個(図示例では4個)のLED素子(LEDチップ)15を1つにパッケージ化して構成されている。すなわち、LED9は、平面視略正方形のパッケージ基板17を備え、このパッケージ基板17の上面17Aに、平面視略円形のリフレクタ19を凹設し、このリフレクタ19の中心部Oに複数のLED素子15を配置し、パッケージ基板17の周囲に設けた正負の電極21、23から各LED素子15に電力を供給し点灯する。また、リフレクタ19には、各LED素子15を一同に覆う封入樹脂25が充填されている。上記LED素子15は、それぞれ略中央に発光点Xを有し、これらのLED素子15が格子状に互いに密接配置されることで、これらLED素子15を取り囲む大きさを有した1つの発光点Qとして光学設計上取り扱われる。
このとき、図3(B)の例では、発光点Qの中心部OにLED素子15の発光点Xが無いことから、これらを1つの発光点Qとして光学設計した際に、照射野の輪郭が不鮮明になり、また、中心部Oが光軸となるので軸光度も低下する。そこで、図3(C)の例に示すように、リフレクタ19の中心部OにLED素子15の発光点Xを配し、このLED素子15の周囲に他のLED素子15を配して発光点Qを構成したLED9Aとすることで照射野の輪郭が鮮明になり、また、軸光度の向上も得られる。
As shown in FIG. 3B, the LED 9 is configured by packaging a plurality (four in the illustrated example) of LED elements (LED chips) 15 into one. That is, the LED 9 includes a package substrate 17 having a substantially square shape in a plan view, and a reflector 19 having a substantially circular shape in a plan view is recessed on an upper surface 17A of the package substrate 17. The LED element 15 is supplied with electric power from the positive and negative electrodes 21 and 23 provided around the package substrate 17 and is lit. The reflector 19 is filled with an encapsulating resin 25 that covers the LED elements 15 together. Each of the LED elements 15 has a light emitting point X at substantially the center, and the LED elements 15 are arranged in close proximity to each other in a lattice shape, so that one light emitting point Q having a size surrounding the LED elements 15 is provided. As an optical design.
At this time, in the example of FIG. 3B, since there is no light emission point X of the LED element 15 in the central portion O of the light emission point Q, when these are optically designed as one light emission point Q, the outline of the irradiation field Becomes unclear, and since the central portion O is the optical axis, the axial luminous intensity is also lowered. Therefore, as shown in the example of FIG. 3C, the light emitting point X of the LED element 15 is arranged at the central portion O of the reflector 19, and another LED element 15 is arranged around the LED element 15 to emit light. By using the LED 9A constituting the Q, the outline of the irradiation field becomes clear and the axial luminous intensity can be improved.

ただし、発光点Qが大きくなると点光源として取り扱えなくなる。したがって、後述する放物反射面11に対して発光点Qが光学設計上点光源と見なせる程度の大きさに収まるように、LED素子15をダウンサイズし、或いは、個数を減らすことが望ましい。しかしながら、LED素子15を小型化し、或いは、個数を減らすと、これらをパッケージ化したLED9の高出力化が難しくなる。このため、数十メートル〜百数十メートルという遠方を十分に照らす光源としては出力が不足することとなる。また、発光点Qが大きくても高出力なLED9を採用すると、上述のように、照射野の輪郭が不鮮明になる。換言すれば、配光制御の精度の低下により器具効率も低下することから、遠方を十分に照らすためには、LED9の出力を無駄に高める必要がある。   However, if the light emission point Q is increased, it cannot be handled as a point light source. Therefore, it is desirable to downsize or reduce the number of LED elements 15 so that the light emitting point Q can be regarded as a point light source in terms of optical design with respect to the parabolic reflecting surface 11 described later. However, if the LED element 15 is downsized or the number of the LED elements 15 is reduced, it is difficult to increase the output of the LED 9 in which these are packaged. For this reason, the output is insufficient as a light source that sufficiently illuminates a distance of several tens of meters to hundreds of tens of meters. Further, when the LED 9 having a high output even when the light emission point Q is large is adopted, the outline of the irradiation field becomes unclear as described above. In other words, since the efficiency of the instrument also decreases due to a decrease in the accuracy of the light distribution control, it is necessary to wastefully increase the output of the LED 9 in order to sufficiently illuminate the distance.

この問題は、放物反射面11を発光点Qが点光源と見なせる程度まで大きくすれば解決できる。しかしながら、放物反射面11が非常に大きくなり、器具の大型・重量化を招き、光源にLED9を採用したメリットが損なわれる。特に、本実施形態においては、後述するように放物反射面11の軸長が長いため、器具の大型化が顕著となる。
そこで本実施形態では、1個のLED9で光源を構成するのではなく、複数(本実施形態では5個)のLED9を用いて1個のLEDユニット3を構成している。この構成によれば、個々のLED9の出力を低くできるので、発光点Qを小さくでき、より正確な配光制御が実現できるとともに放物反射面11の大型化を招くことがない。
This problem can be solved by increasing the parabolic reflection surface 11 to such an extent that the light emitting point Q can be regarded as a point light source. However, the parabolic reflecting surface 11 becomes very large, leading to an increase in the size and weight of the instrument, and the merit of using the LED 9 as the light source is impaired. In particular, in this embodiment, since the axial length of the parabolic reflecting surface 11 is long as will be described later, the increase in size of the instrument becomes significant.
Therefore, in this embodiment, the light source is not constituted by one LED 9 but one LED unit 3 is constituted by using a plurality (five in this embodiment) of LEDs 9. According to this configuration, since the output of each LED 9 can be lowered, the light emission point Q can be reduced, more accurate light distribution control can be realized, and the parabolic reflecting surface 11 is not enlarged.

図4は反射ユニット5の構成を示す図であり、図4(A)はその正面図、図4(B)はその平面図、図4(C)はその側面図である。
反射ユニット5は、ユニット本体30に、LED9のピッチPに合わせて放物反射面11が横並びに設けて構成されている。このユニット本体30は、図4(B)に示すように、側面視形状が上記放物反射面11に沿った略放物線形状を成し、図2(B)に示すように、ユニット本体30の底部31がLEDユニット3の回路基板13上に位置するように灯体ケース7に支持される。また、反射ユニット5は、図4に示すように、それぞれの放物反射面11の長軸Kを通る面で互いに同一形状になるように2分割して成る分割放物反射面ユニット30A、30Bを備え、これらがネジで締結して構成されている。
4A and 4B are diagrams showing the configuration of the reflection unit 5, FIG. 4A is a front view thereof, FIG. 4B is a plan view thereof, and FIG. 4C is a side view thereof.
The reflection unit 5 is configured such that a parabolic reflection surface 11 is provided side by side on the unit body 30 in accordance with the pitch P of the LEDs 9. As shown in FIG. 4B, the unit main body 30 has a substantially parabolic shape in side view along the parabolic reflecting surface 11, and as shown in FIG. It is supported by the lamp case 7 so that the bottom 31 is positioned on the circuit board 13 of the LED unit 3. In addition, as shown in FIG. 4, the reflecting unit 5 is divided into two parabolic reflecting surface units 30A and 30B which are divided into two so as to have the same shape on the surfaces passing through the major axis K of the parabolic reflecting surfaces 11, respectively. These are configured by fastening with screws.

図5は、分割放物反射面ユニット30Aの平面図である。なお、他方の分割放物反射面ユニット30Bもこの図に示す構成と同様であるため図示及び説明は省略する。
分割放物反射面ユニット30Aは、例えばアルミニウム等の高熱伝導性を有する素材から鋳造により成形され、同図に示すように、長軸Kに沿って縦に2分割された放物反射面11を露出した面を有する。この面には、鋳造後に、放物反射面11の反射率を高めるためのアルミ蒸着が施され、その後、分割放物反射面ユニット30A、30Bを接合して上記反射ユニット5が構成される。かかる構成によれば、放物反射面11が深い場合であっても、その表面全体にアルミ蒸着膜を均一に形成することができ、効率の良い反射鏡が簡単に得られる。
FIG. 5 is a plan view of the split parabolic reflecting surface unit 30A. In addition, since the other division | segmentation parabolic reflection surface unit 30B is the same as that of the structure shown in this figure, illustration and description are abbreviate | omitted.
The divided parabolic reflecting surface unit 30A is formed by casting a material having high thermal conductivity such as aluminum, for example, and has a parabolic reflecting surface 11 that is vertically divided along the long axis K as shown in FIG. Has an exposed surface. This surface is subjected to aluminum vapor deposition for enhancing the reflectivity of the parabolic reflecting surface 11 after casting, and then the divided parabolic reflecting surface units 30A and 30B are joined to form the reflecting unit 5. According to this configuration, even when the parabolic reflecting surface 11 is deep, the aluminum vapor deposition film can be uniformly formed on the entire surface, and an efficient reflecting mirror can be easily obtained.

反射ユニット5の放物反射面11は、反射面を放物面とした凹面鏡であって、その底部31には、LED9を臨む始端開口33が設けられており、当該始端開口33から放物反射面11内に臨むLED9が放射した放射光を平行光化して終端開口35から出射する。平行光化して出射することで、遠方での光の拡がりを抑え照度低下を防止できる。
ただし、単に平行光化して出射するだけでは、照射対象物までの距離が遠くなったときの光量不足を解消することはできず、軸光度を如何に高めることが重要となる。そこで、本実施形態では、それぞれの放物反射面11での軸光度を高めるために、各放物反射面11の形状を次ぎのようにしている。
The parabolic reflecting surface 11 of the reflecting unit 5 is a concave mirror having a reflecting surface as a parabolic surface, and a bottom end 31 is provided with a starting end opening 33 facing the LED 9, and parabolic reflection from the starting end opening 33. The emitted light emitted by the LED 9 facing the surface 11 is converted into parallel light and emitted from the terminal opening 35. By collimating and emitting, it is possible to suppress the spread of light at a distance and prevent a decrease in illuminance.
However, simply emitting the light with parallel light cannot solve the shortage of light quantity when the distance to the irradiation object is long, and it is important to increase the axial luminous intensity. Therefore, in the present embodiment, in order to increase the axial luminous intensity at each parabolic reflection surface 11, the shape of each parabolic reflection surface 11 is as follows.

すなわち、図5に示すように、放物反射面11を、LED9が配される底部31から終端開口35までの軸長Lを超狭角配光が得られる長さとし、なおかつ、終端開口35の径D1を1/2ビーム角が5〜7度となる長さに形成している。ここで、本実施形態において、超狭角配光は、数十〜百数十メートル以上離れた箇所を照射するのに使用される配光であり、1/2ビーム角が5〜7度となる配光である。   That is, as shown in FIG. 5, the parabolic reflecting surface 11 has an axial length L from the bottom 31 where the LED 9 is disposed to the terminal opening 35 to a length that can provide an ultra narrow angle light distribution, and The diameter D1 is formed to a length with a 1/2 beam angle of 5 to 7 degrees. Here, in the present embodiment, the super narrow-angle light distribution is a light distribution used for irradiating a place distant from several tens to one hundred and several tens of meters, and a 1/2 beam angle is 5 to 7 degrees. It is a light distribution.

具体的には、本実施形態では、LED9に幅W(図2(A))が約6.4mmのものを採用し、放物反射面11の始端開口33の径D2(図5)を、当該LED9の幅Wと同程度の大きさの約11mmとするとともに、当該始端開口33から終端開口35までの軸長Lを約116.55mmとし、また、終端開口35の径D1(図5)を1/2ビーム角が5〜7度(本実施形態では5度)となる径である約84.9mmとしている。
これにより、放物反射面11の終端開口35の開きである径D1が軸長Lに対して従来よりも非常に小さな形状となり、また、カットオフ角θ(図5)も約13.03度と小さくなることから、従来のものよりも平行光線が放物反射面11の長軸Kに集められ軸光度を向上させることができる。さらに、1/2ビーム角が5〜7度と小さいことから遠方での照射野の拡がりが抑えられ、遠方での照度が高められる。
Specifically, in the present embodiment, the LED 9 having a width W (FIG. 2A) of about 6.4 mm is adopted, and the diameter D2 (FIG. 5) of the starting end opening 33 of the parabolic reflecting surface 11 is The length of the LED 9 is about 11 mm, which is about the same as the width W of the LED 9, the axial length L from the start opening 33 to the end opening 35 is about 116.55 mm, and the diameter D1 of the end opening 35 (FIG. 5). Is about 84.9 mm, which is the diameter at which the 1/2 beam angle is 5 to 7 degrees (5 degrees in this embodiment).
As a result, the diameter D1 which is the opening of the terminal opening 35 of the parabolic reflecting surface 11 is much smaller than the conventional length with respect to the axial length L, and the cut-off angle θ (FIG. 5) is also about 13.03 degrees. Therefore, parallel light rays can be collected on the long axis K of the parabolic reflecting surface 11 and the axial luminous intensity can be improved. Furthermore, since the 1/2 beam angle is as small as 5 to 7 degrees, the spread of the irradiation field in the distance is suppressed, and the illuminance in the distance is increased.

反射ユニット5においては、上記の通り、複数の放物反射面11のそれぞれから光を照射することで総合の出力を高めている。このとき、所定の遠方の照射野で、放物反射面11のそれぞれの光が分離してしまうと、当該照射野で所望の照度が得られない。したがって、放物反射面11(LED9)のピッチPは、各放物反射面11から放射された光の拡がりを考慮し、それぞれの放射光が所定遠方の照射野で重なりを持つように設定されている。これにより、LEDユニット3及び反射ユニット5を備えたLED照明器具1の軸光度が高められ、遠方で十分な照度を維持することができるのである。
このとき、各放物反射面11の長軸Kを互いに平行とすることで、所定距離離れた照射野で集光することもなく、高い軸光度を長距離に亘って維持することができる。
In the reflection unit 5, as described above, the total output is increased by irradiating light from each of the plurality of parabolic reflection surfaces 11. At this time, if each light of the parabolic reflection surface 11 is separated in a predetermined far field, desired illuminance cannot be obtained in the field. Therefore, the pitch P of the parabolic reflecting surfaces 11 (LEDs 9) is set so that each radiated light overlaps in a predetermined far field in consideration of the spread of light emitted from each parabolic reflecting surface 11. ing. Thereby, the axial luminous intensity of the LED lighting fixture 1 provided with the LED unit 3 and the reflection unit 5 is raised, and sufficient illuminance can be maintained in a distant place.
At this time, by making the major axes K of the parabolic reflection surfaces 11 parallel to each other, high axial luminous intensity can be maintained over a long distance without condensing light in an irradiation field separated by a predetermined distance.

前掲図2に戻り、灯体ケース7は、正面視横長の箱形形状に構成され、熱伝導性の高い例えばアルミニウム合金により形成されている。その正面側には、反射ユニット5及びLEDユニット3を収容する収容部41が設けられ、この収容部41の背後側には、電源回路などを納めるスペースが設けられており、また、取付用の支持アーム43が設けられている。また、灯体ケース7の収容部41は、図1及び図2に示すように、反射ユニット5の先端側(終端開口35側)が正面に向けて突出する深さに成形されており、この突出した箇所を覆うように、ポリカーボネイト等の軽量な樹脂製透明カバー(前面カバー)45が設けられている。このように灯体ケース7から反射ユニット5の先端側を突出させることで、意匠性に優れたLED照明器具1が得られる他、灯体ケース7の前後の長さを短縮できるため軽量化及び低コスト化が可能になる。ただし、灯体ケース7の前後の長さは、灯体ケース7からLEDユニット3の発熱を十分に放熱できる程度に設定されている。このとき、反射ユニット5の放物反射面11の軸長Lが従来のものよりも長いため当該反射ユニット5の熱容量が増すことから灯体ケース7の更なる短縮化が可能になる。   Returning to FIG. 2, the lamp case 7 is formed in a box shape that is horizontally long when viewed from the front, and is formed of, for example, an aluminum alloy having high thermal conductivity. On the front side thereof, a housing part 41 for housing the reflection unit 5 and the LED unit 3 is provided. On the back side of the housing part 41, there is provided a space for housing a power supply circuit and the like. A support arm 43 is provided. Further, as shown in FIGS. 1 and 2, the housing portion 41 of the lamp case 7 is formed to a depth such that the front end side (the end opening 35 side) of the reflection unit 5 protrudes toward the front. A lightweight resin transparent cover (front cover) 45 such as polycarbonate is provided so as to cover the protruding portion. Thus, by projecting the front end side of the reflecting unit 5 from the lamp case 7, the LED lighting device 1 with excellent design can be obtained, and the length before and after the lamp case 7 can be shortened. Cost reduction is possible. However, the front and rear lengths of the lamp case 7 are set to such an extent that the heat generated by the LED unit 3 from the lamp case 7 can be sufficiently dissipated. At this time, since the axial length L of the parabolic reflecting surface 11 of the reflecting unit 5 is longer than that of the conventional one, the heat capacity of the reflecting unit 5 is increased, so that the lamp case 7 can be further shortened.

以上説明したように、本実施形態によれば、放物反射面11を、LED9が配される底部31から終端開口35までの軸長Lを超狭角配光が得られる長さとし、終端開口35の径D2を1/2ビーム角が5〜7度となる径とする構成とした。
この構成によれば、従来のものよりも平行光線が放物反射面11の長軸Kに集められ軸光度を向上させることができる。さらに、1/2ビーム角が小さいため遠方での照射野の拡がりが抑えられ十分な照度を維持することができる。これにより、約100W(ワット)の出力のLEDユニット3を光源として、100メートル離れた対象物を十分な明るさで照らすことができるLED照明器具1が得られる。
As described above, according to the present embodiment, the parabolic reflecting surface 11 has the axial length L from the bottom 31 where the LED 9 is disposed to the terminal opening 35 as a length that can provide an ultra narrow angle light distribution, and the terminal opening. The diameter D2 of 35 is set to a diameter at which the 1/2 beam angle is 5 to 7 degrees.
According to this configuration, parallel rays can be collected on the long axis K of the parabolic reflecting surface 11 and the axial luminous intensity can be improved as compared with the conventional one. Furthermore, since the 1/2 beam angle is small, the spread of the irradiation field in the distance can be suppressed and sufficient illuminance can be maintained. Thereby, the LED lighting fixture 1 which can illuminate the object 100 meters away with sufficient brightness using the LED unit 3 having an output of about 100 W (watts) as a light source is obtained.

また本実施形態によれば、複数のLED9を備えてLEDユニット3を構成し、放物反射面11をLED9ごとに有する反射ユニット5を構成し、また、放物反射面11を互いに平行に設け、所定距離離れた照射野で放物反射面11のそれぞれから放射した光が重なるピッチPで複数のLED9及び放物反射面11をそれぞれ配置する構成とした。
この構成により、1つのLED9を無理に高出力化せずとも所定距離離れた照射野で十分な照度が得られる。また、各放物反射面11が互いに平行であるため、所定距離離れた照射野で集光することもなく、高い軸光度を長距離に亘って維持することができる。
According to the present embodiment, the LED unit 3 is configured by including a plurality of LEDs 9, the reflection unit 5 having the parabolic reflection surface 11 for each LED 9 is configured, and the parabolic reflection surfaces 11 are provided in parallel to each other. The plurality of LEDs 9 and the parabolic reflecting surface 11 are respectively arranged at a pitch P at which light emitted from each of the parabolic reflecting surfaces 11 overlaps in an irradiation field separated by a predetermined distance.
With this configuration, sufficient illuminance can be obtained in an irradiation field separated by a predetermined distance without forcibly increasing the output of one LED 9. Further, since the parabolic reflecting surfaces 11 are parallel to each other, high axial luminous intensity can be maintained over a long distance without condensing in an irradiation field separated by a predetermined distance.

また本実施形態によれば、反射ユニット5の放物反射面11の長軸Kに沿って分割して成る互いに同一形状の分割放物反射面ユニット30A、30Bのそれぞれにアルミ蒸着をし、それぞれの分割放物反射面ユニット30A、30Bを合わせて反射ユニット5を構成した。これにより、放物反射面11が深い場合であっても、その表面全体にアルミ蒸着を均一に形成することができ、効率の良い反射鏡が簡単に得られる。   In addition, according to the present embodiment, aluminum is vapor-deposited on each of the divided parabolic reflecting surface units 30A and 30B having the same shape divided along the long axis K of the parabolic reflecting surface 11 of the reflecting unit 5, The reflection unit 5 is configured by combining the divided parabolic reflection surface units 30A and 30B. Thereby, even when the parabolic reflecting surface 11 is deep, aluminum vapor deposition can be uniformly formed on the entire surface, and an efficient reflecting mirror can be easily obtained.

また本実施形態によれば、LEDユニット3及び反射ユニット5を納める熱伝導性材から成る灯体ケース7を備え、当該灯体ケース7の正面から反射ユニット5の放物反射面11の終端開口35側を突出させ、当該突出させた部位を樹脂製透明カバー45で覆う構成とした。この構成により、意匠性に優れたLED照明器具1が得られ、また、灯体ケース7の前後の長さを短縮できるため軽量化及び低コスト化が可能になる。さらに、反射ユニット5の放物反射面11の軸長Lが従来のものよりも長いため当該反射ユニット5の熱容量が増すことから灯体ケース7の更なる短縮化が可能になる。   In addition, according to the present embodiment, the lamp case 7 made of a heat conductive material that houses the LED unit 3 and the reflection unit 5 is provided, and the terminal opening of the parabolic reflection surface 11 of the reflection unit 5 from the front of the lamp case 7 is provided. 35 side was made to project, and the projected part was covered with a resin transparent cover 45. With this configuration, the LED lighting device 1 with excellent design can be obtained, and the length of the lamp case 7 can be shortened before and after, so that weight reduction and cost reduction are possible. Furthermore, since the axial length L of the parabolic reflecting surface 11 of the reflecting unit 5 is longer than that of the conventional one, the heat capacity of the reflecting unit 5 increases, so that the lamp case 7 can be further shortened.

<第2実施形態>
図6〜図9は、本発明の第2実施形態に係るLED照明器具100の構成を示す図であり、図6は正面からみた斜視図、図7は正面図、図8は側面図、及び図9は背面からみた斜視図である。なお、これらの図において、第1実施形態で説明した部材については同一の符号を付して、その説明を省略する。
これらの図に示すように、LED照明器具100においては、3つのLED9及び放物反射面11を1列に配置した反射ユニット105Aと、2つのLED9及び放物反射面11を1列に配置した反射ユニット105Bと、を上下に2段配置した構成としている。各反射ユニット5の製造方法、及び光学特性については、第1実施形態で説明した通りである。
Second Embodiment
6-9 is a figure which shows the structure of the LED lighting fixture 100 which concerns on 2nd Embodiment of this invention, FIG. 6 is the perspective view seen from the front, FIG. 7 is a front view, FIG. 8 is a side view, FIG. 9 is a perspective view seen from the back. In these drawings, the members described in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
As shown in these drawings, in the LED lighting apparatus 100, the reflection unit 105A in which the three LEDs 9 and the parabolic reflection surface 11 are arranged in one row, and the two LEDs 9 and the parabolic reflection surface 11 are arranged in one row. The reflection unit 105 </ b> B is arranged in two stages on the top and bottom. The manufacturing method and optical characteristics of each reflecting unit 5 are as described in the first embodiment.

このLED照明器具100においては、約40W(ワット)の出力のLED9を用いることとし、第1実施形態のLED照明器具1よりも高出力化を図っている。
また本実施形態では、放物反射面11の始端開口33の径D2を、約20.7mmとするとともに、当該始端開口33から終端開口35までの軸長Lを約166mmとし、また、終端開口35の径D1を1/2ビーム角が5〜7度(本実施形態では5度)となる径である約113.6mmとしている。これにより、第1実施形態と同様に、平行光線が放物反射面11の長軸に集められて軸光度が向上し、さらに、1/2ビーム角が5〜7度と小さいことから遠方での照射野の拡がりが抑えられて遠方での照度が高められることとなる。
また、このLED照明器具100においては、図7に示すように、上下の反射ユニット105A、105Bは、全てのLED9及び放物反射面11の離間距離であるピッチPが全て等距離となるように配置されており、照射野での照度ムラ発生を抑制することとしている。
このとき、各列の放物反射面11から放射された光が所定距離離れた照射野で重なりを有するように各列間のピッチPが規定される。これにより、LED照明器具1の更なる高出力化が容易にできる。
In this LED lighting apparatus 100, an LED 9 having an output of about 40 W (watts) is used, and higher output than the LED lighting apparatus 1 of the first embodiment is achieved.
In this embodiment, the diameter D2 of the start end opening 33 of the parabolic reflecting surface 11 is about 20.7 mm, the axial length L from the start end opening 33 to the end opening 35 is about 166 mm, and the end opening The diameter D1 of 35 is about 113.6 mm, which is the diameter at which the 1/2 beam angle is 5 to 7 degrees (5 degrees in the present embodiment). As a result, similar to the first embodiment, parallel rays are collected on the long axis of the parabolic reflecting surface 11 to improve the axial luminous intensity. Further, since the 1/2 beam angle is as small as 5 to 7 degrees, it is far away. The spread of the irradiation field is suppressed, and the illuminance at a distance is increased.
Further, in this LED lighting apparatus 100, as shown in FIG. 7, the upper and lower reflection units 105A and 105B are such that the pitches P, which are the separation distances of all the LEDs 9 and the parabolic reflection surface 11, are all equidistant. It is arranged to suppress the occurrence of uneven illuminance in the irradiation field.
At this time, the pitch P between the rows is defined so that the light emitted from the parabolic reflection surfaces 11 of the rows has an overlap in the irradiation field separated by a predetermined distance. Thereby, the further high output of the LED lighting fixture 1 can be made easy.

なお、上述した実施形態は、あくまでも本発明の一態様を例示したものであって、本発明の趣旨を逸脱しない範囲で任意に変形及び応用が可能である。   The above-described embodiment is merely an example of one aspect of the present invention, and can be arbitrarily modified and applied without departing from the spirit of the present invention.

上述した第2実施形態では、上下段の反射ユニット105A、105BでLED9及び放物反射面11の数を異ならせたが、これに限らず、例えば図10(A)に示すように、同一個数としても良い。このとき、各列の放物反射面11から放射された光が所定距離離れた照射野で重なりを有するように各列間のピッチが規定されることは第2実施形態で説明した通りである。なお、図10(B)に示すように、LED照明器具1の光軸位置に放物反射面11を配し、この放物反射面11を取り囲むように複数の放物反射面11を配した、同心円状の配置構成とすることで、LED照明器具1の軸光度を更に高めることもできる。この場合において、それぞれの放物反射面11から放射された光が所定距離離れた照射野で重なりを有するように配置が規定される。   In the second embodiment described above, the numbers of the LEDs 9 and the parabolic reflection surfaces 11 are made different in the upper and lower reflection units 105A and 105B. However, the present invention is not limited to this. For example, as shown in FIG. It is also good. At this time, as described in the second embodiment, the pitch between the rows is defined so that the light emitted from the parabolic reflecting surfaces 11 of the rows has an overlap in the irradiation field separated by a predetermined distance. . As shown in FIG. 10 (B), a parabolic reflection surface 11 is disposed at the optical axis position of the LED lighting device 1, and a plurality of parabolic reflection surfaces 11 are disposed so as to surround the parabolic reflection surface 11. The axial luminous intensity of the LED lighting device 1 can be further increased by adopting a concentric arrangement. In this case, the arrangement is defined so that the light emitted from each parabolic reflecting surface 11 has an overlap in the irradiation field separated by a predetermined distance.

また上述した実施形態において、超狭角配光以外の配光(例えば狭角配光など)を有する放物反射面を反射ユニット5に付加的に設けても良いことは勿論である。
さらに、上述した実施形態において、1つのLED9により所定距離離れた照射野で十分な照度が得られる場合には、LED9及び放物反射面11の数をそれぞれ1つとしても良い。
In the above-described embodiment, it is needless to say that a parabolic reflection surface having a light distribution other than the super narrow-angle light distribution (for example, a narrow-angle light distribution) may be additionally provided in the reflection unit 5.
Furthermore, in embodiment mentioned above, when sufficient illumination intensity can be obtained in the irradiation field separated by predetermined distance by one LED9, it is good also considering the number of LED9 and the parabolic reflection surface 11 as one, respectively.

また上述した実施形態で説明したLED照明器具1は、数十メートル〜百数十メートル離れた照射野を十分な明るさで照らすことができることから、高層の建物を演出する投光器として好適に用いることができる。またLED照明器具1を複数並べて配置することで、野球場や競技場など、遠方から広範囲を照明する必要があるスタジアム照明にも好適に用いることができる。   Moreover, since the LED lighting fixture 1 demonstrated by embodiment mentioned above can illuminate the irradiation field distant from several dozen meters-hundreds of ten meters with sufficient brightness, it uses suitably as a projector which produces a high-rise building. Can do. Moreover, it can use suitably also for the stadium lighting which needs to illuminate the wide range from a distant place, such as a baseball field and a stadium, by arranging the LED lighting fixture 1 side by side.

1、100 LED照明器具
3 LEDユニット
5 反射ユニット
7 灯体ケース
9、9A LED
D1 終端開口の径
D2 始端開口の径
11 放物反射面
15 LED素子
30A、30B 分割放物反射面ユニット
31 底部
33 始端開口
35 終端開口
45 樹脂製透明カバー(前面カバー)
K 長軸
L 軸長
P ピッチ
DESCRIPTION OF SYMBOLS 1,100 LED lighting fixture 3 LED unit 5 Reflection unit 7 Lamp body case 9, 9A LED
D1 Diameter of terminal opening D2 Diameter of opening of starting edge 11 Parabolic reflecting surface 15 LED element 30A, 30B Dividing parabolic reflecting surface unit 31 Bottom 33 Starting opening 35 End opening 45 Resin transparent cover (front cover)
K long axis L axial length P pitch

Claims (5)

複数のLEDと、前記LEDを臨ませる始端開口を底部に設けた放物反射面を前記LEDごとに有する反射ユニットとを備え、
前記LEDは、パッケージ基板を備え、このパッケージ基板に、平面視略円形のリフレクタを凹設し、このリフレクタの中心部に複数のLED素子を配置し、これらのLED素子を取り囲む大きさを有した1つの発光点として光学設計上取り扱われるように構成するとともに、
前記放物反射面のそれぞれを、前記LEDが配される底部から終端開口までの軸長を超狭角配光が得られる長さとし、前記終端開口の径を1/2ビーム角が5〜7度となる径としつつ、それぞれの前記放物反射面を互いに平行に設け、
所定距離離れた照射野で前記放物反射面のそれぞれから放射した光が重なるピッチで前記LED及び放物反射面のそれぞれを配置した、
ことを特徴とするLED照明器具。
A plurality of LEDs, and a reflection unit having a parabolic reflection surface provided at the bottom with a start end opening facing the LEDs for each LED,
The LED includes a package substrate, and a reflector having a substantially circular shape in plan view is provided in the package substrate, and a plurality of LED elements are arranged at the center of the reflector, and the LED element has a size surrounding the LED elements. It is configured to be handled as a single light emitting point in optical design,
For each of the parabolic reflection surfaces, the axial length from the bottom where the LED is disposed to the termination opening is set to a length at which an ultra-narrow angle light distribution can be obtained, and the diameter of the termination opening is 5 to 7 for a 1/2 beam angle. The parabolic reflecting surfaces are provided in parallel with each other, with the diameter being a degree,
Each of the LED and the parabolic reflecting surface is arranged at a pitch at which light emitted from each of the parabolic reflecting surfaces overlaps with an irradiation field separated by a predetermined distance .
The LED lighting fixture characterized by the above-mentioned.
前記リフレクタの中心部に前記LED素子を配置し、このLED素子の周囲に他のLED素子を配して1つの発光点として光学設計上取り扱われるように構成したことを特徴とする請求項1に記載のLED照明器具。  The LED element is arranged at the center of the reflector, and another LED element is arranged around the LED element so that it can be handled as one light emitting point in terms of optical design. LED lighting fixture of description. 前記LED及び前記放物反射面を納める熱伝導性材から成る灯体ケースを備え、当該灯体ケースの正面から前記放物反射面の終端開口側を突出させ、当該突出させた部位を樹脂製の透明な前面カバーで覆ったことを特徴とする請求項1または2に記載のLED照明器具。  A lamp case made of a heat conductive material that houses the LED and the parabolic reflecting surface; and a terminal opening side of the parabolic reflecting surface protrudes from the front of the lamp case, and the protruding portion is made of resin. The LED lighting apparatus according to claim 1, wherein the LED lighting apparatus is covered with a transparent front cover. 前記反射ユニットはユニット本体が熱伝導性を有する素材により成形され、前記ユニット本体は側面視形状が前記放物反射面に沿った略放物線形状を成し、前記放物反射面を長軸に沿って互いに同一形状に分割して成る分割放物反射面のそれぞれに反射膜を形成し、それぞれの分割放物反射面を合わせて前記放物反射面を構成したことを特徴とする請求項1ないし3の何れか一項に記載のLED照明器具。  The reflection unit is formed of a material having a unit body having thermal conductivity, and the unit body has a substantially parabolic shape in a side view along the parabolic reflection surface, and the parabolic reflection surface along the long axis. 2. The parabolic reflecting surface is formed by forming a reflecting film on each of the divided parabolic reflecting surfaces divided into the same shape, and combining the divided parabolic reflecting surfaces. 4. The LED lighting apparatus according to any one of 3. 前記リフレクタには各LED素子を覆う封入樹脂が充填されていることを特徴とする請求項1ないし4の何れか一項に記載のLED照明器具。  The LED lighting device according to claim 1, wherein the reflector is filled with an encapsulating resin that covers each LED element.
JP2010144308A 2010-06-24 2010-06-24 LED lighting fixtures Active JP5612380B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010144308A JP5612380B2 (en) 2010-06-24 2010-06-24 LED lighting fixtures
PCT/JP2011/064357 WO2011162323A1 (en) 2010-06-24 2011-06-23 Led illumination device
CN201180007553.4A CN102725581B (en) 2010-06-24 2011-06-23 LED illumination utensil
KR1020127020179A KR20130091242A (en) 2010-06-24 2011-06-23 Led illumination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010144308A JP5612380B2 (en) 2010-06-24 2010-06-24 LED lighting fixtures

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014179473A Division JP5914600B2 (en) 2014-09-03 2014-09-03 LED lighting fixtures

Publications (2)

Publication Number Publication Date
JP2012009280A JP2012009280A (en) 2012-01-12
JP5612380B2 true JP5612380B2 (en) 2014-10-22

Family

ID=45371495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010144308A Active JP5612380B2 (en) 2010-06-24 2010-06-24 LED lighting fixtures

Country Status (4)

Country Link
JP (1) JP5612380B2 (en)
KR (1) KR20130091242A (en)
CN (1) CN102725581B (en)
WO (1) WO2011162323A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014086159A (en) 2012-10-19 2014-05-12 Toshiba Lighting & Technology Corp Lighting device
JP2014093129A (en) 2012-10-31 2014-05-19 Toshiba Lighting & Technology Corp Light-emitting unit and luminaire
JP5758424B2 (en) * 2013-03-01 2015-08-05 株式会社アイ・ライティング・システム lighting equipment
JP6179760B2 (en) * 2013-04-01 2017-08-16 東芝ライテック株式会社 lighting equipment
DE202013101790U1 (en) * 2013-04-25 2014-07-28 Zumtobel Lighting Gmbh Luminaire with housing with several light emission openings
JP5753221B2 (en) * 2013-05-31 2015-07-22 株式会社アイ・ライティング・システム lighting equipment
WO2014192920A1 (en) 2013-05-31 2014-12-04 株式会社アイ・ライティング・システム Illumination device
JP6004101B2 (en) * 2013-08-22 2016-10-05 岩崎電気株式会社 lighting equipment
KR101668265B1 (en) 2013-09-06 2016-10-24 주식회사 케이엠더블유 High power LED lighting
JP6187764B2 (en) * 2014-01-31 2017-08-30 東芝ライテック株式会社 Lighting device
DE102015205003B4 (en) 2015-03-19 2016-12-08 Glp German Light Products Gmbh lighting device
JP6944719B2 (en) * 2017-01-13 2021-10-06 株式会社ホタルクス lamp
JP6324552B2 (en) * 2017-01-25 2018-05-16 シチズン時計株式会社 LED package
JP6324553B2 (en) * 2017-01-25 2018-05-16 シチズン時計株式会社 LED package
JP6742384B2 (en) * 2018-11-06 2020-08-19 三菱電機株式会社 lighting equipment

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4497348B2 (en) * 2004-01-13 2010-07-07 株式会社小糸製作所 Vehicle lighting
US7182496B2 (en) * 2004-04-14 2007-02-27 Opto Technology, Inc. Multiple LED focused lighting device
JP3787148B1 (en) * 2005-09-06 2006-06-21 株式会社未来 Lighting unit and lighting device
US8231251B2 (en) * 2005-10-28 2012-07-31 Philips Lumileds Lighting Company Llc Multiple piece reflective angle transformer
JP2007258114A (en) * 2006-03-24 2007-10-04 Jefcom Kk Illumination device
JP2008016412A (en) * 2006-07-10 2008-01-24 Showa Denko Kk Lighting apparatus, and reflector therefor
US7845827B2 (en) * 2007-05-08 2010-12-07 The Coleman Company, Inc. LED spotlight
JP5097916B2 (en) * 2007-10-18 2012-12-12 シーシーエス株式会社 Lighting device
JP2009230856A (en) * 2008-03-19 2009-10-08 Puratekku:Kk Luminaire, cylinder of luminaire, and manufacturing method of luminaire
JP2010073650A (en) * 2008-09-22 2010-04-02 Toshiba Lighting & Technology Corp Luminaire

Also Published As

Publication number Publication date
JP2012009280A (en) 2012-01-12
KR20130091242A (en) 2013-08-16
CN102725581A (en) 2012-10-10
CN102725581B (en) 2015-08-05
WO2011162323A1 (en) 2011-12-29

Similar Documents

Publication Publication Date Title
JP5612380B2 (en) LED lighting fixtures
JP5635495B2 (en) Light source module and planar light emitting device
WO2012124572A1 (en) Illumination device
JP5618097B2 (en) Optical device and light emitting device including the same
TW201333382A (en) Lighting device and light collecting body used in the same
CA2802170C (en) Lamp with a truncated reflector cup
JP6217972B2 (en) lighting equipment
JP2016054140A (en) Inner surface reflection type lighting apparatus
JP2014089868A (en) Lighting appliance
JPWO2009028090A1 (en) Light emitting device for lighting
US20130250543A1 (en) Lighting device
JP2015111497A (en) Lamp
JP2007150255A (en) Light emitting diode illumination module and illumination device
JP6238199B2 (en) lighting equipment
JP5914600B2 (en) LED lighting fixtures
JP6241599B2 (en) Lighting device
JP5742629B2 (en) LIGHT EMITTING DEVICE AND LIGHTING APPARATUS HAVING THE SAME
TWM423203U (en) High-brightness LED lamp structure
TWI409406B (en) Led lamp
JP5558619B1 (en) Lighting device
JP2013045921A (en) Light emitting device and lighting device
TWI524036B (en) Light apparatus
KR101221279B1 (en) LED lamp
JP2008140627A (en) Lighting device
JP6137231B2 (en) lamp

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140904

R150 Certificate of patent or registration of utility model

Ref document number: 5612380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111