JP5610563B2 - Glass substrate for solar cell - Google Patents

Glass substrate for solar cell Download PDF

Info

Publication number
JP5610563B2
JP5610563B2 JP2008290897A JP2008290897A JP5610563B2 JP 5610563 B2 JP5610563 B2 JP 5610563B2 JP 2008290897 A JP2008290897 A JP 2008290897A JP 2008290897 A JP2008290897 A JP 2008290897A JP 5610563 B2 JP5610563 B2 JP 5610563B2
Authority
JP
Japan
Prior art keywords
glass substrate
temperature
solar cell
dpa
strain point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008290897A
Other languages
Japanese (ja)
Other versions
JP2010118505A (en
Inventor
寛典 高瀬
寛典 高瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2008290897A priority Critical patent/JP5610563B2/en
Publication of JP2010118505A publication Critical patent/JP2010118505A/en
Application granted granted Critical
Publication of JP5610563B2 publication Critical patent/JP5610563B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Description

本発明は、太陽電池用ガラス基板に関し、具体的にはカルコパイライト系薄膜多結晶太陽電池または色素増感型太陽電池に好適な太陽電池用ガラス基板に関する。   The present invention relates to a glass substrate for a solar cell, and specifically relates to a glass substrate for a solar cell suitable for a chalcopyrite thin film polycrystalline solar cell or a dye-sensitized solar cell.

近年、環境的観点から、太陽電池の需要が高まっている。単結晶シリコン、多結晶シリコンまたはアモルファスシリコン太陽電池は、主に家庭用発電、商業用発電等に利用されている。その他の太陽電池として、カルコパイライト系薄膜多結晶太陽電池、CdTe太陽電池、色素増感型太陽電池、有機薄膜太陽電池等が開発されており、これらも実用化されつつある。   In recent years, the demand for solar cells has increased from an environmental viewpoint. Single crystal silicon, polycrystalline silicon, or amorphous silicon solar cells are mainly used for household power generation, commercial power generation, and the like. As other solar cells, chalcopyrite thin film polycrystalline solar cells, CdTe solar cells, dye-sensitized solar cells, organic thin film solar cells and the like have been developed, and these are also being put into practical use.

カルコパイライト系薄膜多結晶太陽電池は、IB−IIIB−VIB族の化合物を用いた太陽電池を指し、CuInSe:CIS系、Cu(In,Ga)Se:CIGS系、Cu(In,Ga)(Se,S):CIGSS系等の光吸収層を有する太陽電池を指す(以下同様)。一般的に、これらの光吸収層は、300〜650℃に基板を加熱した状態で成膜される(特許文献1、2参照)。 A chalcopyrite thin film polycrystalline solar cell refers to a solar cell using a compound of the IB-IIIB-VIB group, CuInSe 2 : CIS system, Cu (In, Ga) Se 2 : CIGS system, Cu (In, Ga). (Se, S): refers to a solar cell having a light absorption layer such as CIGSS (the same applies hereinafter). Generally, these light absorption layers are formed in the state which heated the board | substrate to 300-650 degreeC (refer patent document 1, 2).

色素増感型太陽電池は、Ru錯体等の有機色素を用いた太陽電池であり、この光増感色素を酸化物半導体多孔質膜に担持させて作製される。酸化物半導体多孔質膜は、透明導電膜を成膜した基板上に酸化物半導体微粒子を塗布した後、微粒子間の電子的なコンタクトの向上、透明導電膜との密着性の向上、膜強度の向上を目的として高温の熱処理工程を経る(特許文献3参照)。また、特許文献4には、酸化物半導体多孔質膜の作製に際し、可視光応答性を高めるために、400〜600℃で熱処理することが記載されている。
特開2002−217213号公報 国際公開第05/098968号パンフレット 特開2008−71749号公報 国際公開第08/072595号パンフレット 特表2003−525830号公報
The dye-sensitized solar cell is a solar cell using an organic dye such as a Ru complex, and is produced by supporting this photosensitizing dye on an oxide semiconductor porous film. An oxide semiconductor porous film is formed by applying oxide semiconductor fine particles on a substrate on which a transparent conductive film is formed, improving electronic contact between the fine particles, improving adhesion with the transparent conductive film, and improving film strength. A high-temperature heat treatment process is performed for the purpose of improvement (see Patent Document 3). Patent Document 4 describes that heat treatment is performed at 400 to 600 ° C. in order to enhance visible light responsiveness in the production of an oxide semiconductor porous film.
JP 2002-217213 A International Publication No. 05/098968 Pamphlet JP 2008-71749 A WO08 / 072595 pamphlet Special table 2003-525830 gazette

従来、太陽電池の基板として、窓板ガラス(ソーダライムガラス)が使用されてきた。しかし、窓板ガラスの歪点は510℃程度である。   Conventionally, window glass (soda lime glass) has been used as a substrate for solar cells. However, the strain point of the window glass is about 510 ° C.

上記の通り、カルコパイライト系薄膜多結晶太陽電池や色素増感型太陽電池は、特性向上を目的として、高温で熱処理される場合がある。この場合、窓板ガラスは、熱処理時または冷却時に、軟化変形し、成膜に支障をきたすおそれがある。   As described above, chalcopyrite thin film polycrystalline solar cells and dye-sensitized solar cells may be heat-treated at high temperatures for the purpose of improving characteristics. In this case, the window glass is softened and deformed at the time of heat treatment or cooling, and there is a risk of hindering film formation.

また、特許文献5には、耐熱性が高いガラス基板を太陽電池に用いることが記載されているが、このガラス基板は、高温粘度104.0dPa・sにおける温度が1220℃を超えているため、ガラス基板に成形し難く、ガラス基板の生産性が劣っており、結果として、ガラス基板の作製コストが高騰してしまう。 Patent Document 5 describes that a glass substrate having high heat resistance is used for a solar cell, but this glass substrate has a temperature at a high temperature viscosity of 10 4.0 dPa · s exceeding 1220 ° C. Therefore, it is difficult to mold the glass substrate, and the productivity of the glass substrate is inferior. As a result, the production cost of the glass substrate increases.

上記事情に鑑み、本発明は、耐熱性が高く、且つ生産性に優れる太陽電池用ガラス基板を創案することにより、カルコパイライト系薄膜多結晶太陽電池や色素増感型太陽電池の特性を高めることを技術的課題とする。   In view of the above circumstances, the present invention improves the characteristics of chalcopyrite thin film polycrystalline solar cells and dye-sensitized solar cells by creating a glass substrate for solar cells that has high heat resistance and excellent productivity. Is a technical issue.

本発明者は、鋭意検討した結果、ガラス組成を所定範囲に規制するとともに、歪点および高温粘度10dPa・sにおける温度を所定範囲に規制することにより、上記技術的課題を解決できることを見出し、本発明として、提案するものである。すなわち、本発明の太陽電池用ガラス基板は、ガラス組成として、質量%で、SiO 50〜60.8%、Al 〜10%、RO(MgO+CaO+SrO+BaO:MgO、CaO、SrOおよびBaOの合量、以下同様) 10〜30%、CaO 3〜12%、SrO 1〜15%、R’O(NaO+KO:NaOとKOの合量、以下同様) 5〜20%、ZrO 0〜10、B 0〜1%未満を含有し、歪点が560℃以上、高温粘度104.0dPa・sにおける温度が1200℃以下であることを特徴とする。ここで、「高温粘度104.0dPa・sにおける温度」は、白金球引き上げ法で測定した値を指す。また、「歪点」は、ASTM C336−71の方法に基づいて測定した値を指す。 As a result of intensive studies, the present inventors have found that the above technical problem can be solved by regulating the glass composition to a predetermined range and regulating the strain point and the temperature at a high temperature viscosity of 10 4 dPa · s to a predetermined range. This is proposed as the present invention. That is, the glass substrate for solar cells of the present invention has, as a glass composition, mass%, SiO 2 50 to 60.8%, Al 2 O 3 1 to 10%, RO (MgO + CaO + SrO + BaO: MgO, CaO, SrO and BaO). 10-30%, CaO 3-12%, SrO 1-15%, R ′ 2 O (total amount of Na 2 O + K 2 O: Na 2 O and K 2 O, the same applies hereinafter) 20%, ZrO 2 0 to 10 % , B 2 O 3 0 to less than 1% , strain point is 560 ° C. or higher, and temperature at high temperature viscosity of 10 4.0 dPa · s is 1200 ° C. or lower. And Here, the “temperature at a high temperature viscosity of 10 4.0 dPa · s” refers to a value measured by a platinum ball pulling method. Further, the “strain point” refers to a value measured based on the method of ASTM C336-71.

カルコパイライト系薄膜多結晶太陽電池は、まずガラス基板上にスパッタリング等により電極(例えばMo)を成膜した後、スパッタリング法、蒸着法等により光吸収層の前駆体を作製し、300〜650℃に熱処理して光吸収層を成膜する。続いて、バッファー層(例えばCdS)を化学析出法等で形成するとともに、窓層(例えばZnO)および透明導電膜(例えばITO)をスパッタリング法等で形成する。光吸収層を成膜する際、熱処理温度を高温にすると、熱拡散による粒子の再構成等を促進することができる。本発明の太陽電池用ガラス基板は、歪点が560℃以上であるため、高温で熱処理してもガラス基板が変形し難く、ガラス基板上に光吸収層を安定して成膜することができ、結果として、カルコパイライト系薄膜多結晶太陽電池の特性を高めることができる。   In the chalcopyrite thin film polycrystalline solar cell, an electrode (for example, Mo) is first formed on a glass substrate by sputtering or the like, and then a precursor of a light absorption layer is prepared by sputtering or vapor deposition. Then, a light absorption layer is formed by heat treatment. Subsequently, a buffer layer (for example, CdS) is formed by a chemical deposition method or the like, and a window layer (for example, ZnO) and a transparent conductive film (for example, ITO) are formed by a sputtering method or the like. When the light absorption layer is formed, if the heat treatment temperature is set to a high temperature, the reconfiguration of particles by thermal diffusion can be promoted. Since the glass substrate for solar cells of the present invention has a strain point of 560 ° C. or higher, the glass substrate is hardly deformed even when heat-treated at a high temperature, and a light absorption layer can be stably formed on the glass substrate. As a result, the characteristics of the chalcopyrite thin film polycrystalline solar cell can be enhanced.

色素増感型太陽電池は、まずガラス基板上に透明導電膜(例えばITO、FTO、ATO)をスパッタリング法等で成膜した後、酸化物半導体微粒子をガラス基板上に塗布し、熱処理することで酸化物半導体多孔質膜を成膜する。上記の通り、酸化物半導体多孔質膜を成膜する際の熱処理温度は600℃を超える場合もある。次に、酸化物半導体多孔質膜に色素を吸着させる。続いて、酸化物半導体多孔質膜を成膜したガラス基板と透明導電膜を成膜したガラス基板により、セルを作製し、ヨウ素レドックス等の酸化還元対を含む電解質溶液でセル内を満たす。本発明の太陽電池用ガラス基板は、歪点が560℃以上であるため、高温で熱処理温度してもガラス基板が変形し難く、ガラス基板上に酸化物半導体多孔質膜を安定して成膜することができ、結果として、色素増感型太陽電池の特性を高めることができる。   In a dye-sensitized solar cell, a transparent conductive film (for example, ITO, FTO, ATO) is first formed on a glass substrate by a sputtering method, and then oxide semiconductor fine particles are applied on the glass substrate and heat-treated. An oxide semiconductor porous film is formed. As described above, the heat treatment temperature in forming the oxide semiconductor porous film may exceed 600 ° C. in some cases. Next, a dye is adsorbed on the oxide semiconductor porous film. Subsequently, a cell is manufactured using a glass substrate on which an oxide semiconductor porous film is formed and a glass substrate on which a transparent conductive film is formed, and the inside of the cell is filled with an electrolyte solution containing a redox pair such as iodine redox. Since the glass substrate for solar cells of the present invention has a strain point of 560 ° C. or higher, the glass substrate is not easily deformed even at a high temperature by heat treatment, and the oxide semiconductor porous film is stably formed on the glass substrate. As a result, the characteristics of the dye-sensitized solar cell can be enhanced.

本発明の太陽電池用ガラス基板は、高温粘度104.0dPa・sにおける温度が1200℃以下である。このようにすれば、大型のガラス基板を安定して作製することができ、結果として、ガラス基板の作製コストを低廉化することができる。 A glass substrate for a solar cell of the present invention, the temperature in the high temperature viscosity 10 4.0 dPa · s is 1200 ° C. or less. In this way, a large glass substrate can be stably manufactured, and as a result, the manufacturing cost of the glass substrate can be reduced.

発明の太陽電池用ガラス基板は、[RO+2R’O−Al−ZrO]の値が30%以上であることが好ましい The glass substrate for solar cell of the present invention preferably has a value of [RO + 2R ′ 2 O—Al 2 O 3 —ZrO 2 ] of 30% or more.

発明の太陽電池用ガラス基板は、[2NaO+KO−Al−MgO−CaO−ZrO]の値が2%以下であることが好ましい The glass substrate for solar cell of the present invention preferably has a value of [2Na 2 O + K 2 O—Al 2 O 3 —MgO—CaO—ZrO 2 ] of 2% or less.

本発明の太陽電池用ガラス基板は、ガラス組成として、質量%で、SiO 50〜60%、Al 4〜9%、RO(MgO+CaO+SrO+BaO) 17〜25%、CaO 〜6%、SrO 1〜10%、BaO 0〜10%、R’O(NaO+KO) 5〜15%、NaO 1〜6%、KO 3〜9%、ZrO 0〜4%、B 0〜1%未満を含有することが好ましい。 A glass substrate for a solar cell of the present invention has a glass composition, in mass%, SiO 2 50~60%, Al 2 O 3 4~9%, RO (MgO + CaO + SrO + BaO) 17~25%, CaO 3 ~6%, SrO 1~10%, BaO 0~10%, R '2 O (Na 2 O + K 2 O) 5~15%, Na 2 O 1~6%, K 2 O 3~9%, ZrO 2 0~4%, preferably contains B less than 2 O 3 0~1%.

発明の太陽電池用ガラス基板は、カルコパイライト系薄膜多結晶太陽電池に用いることが好ましい The glass substrate for a solar cell of the present invention is preferably used for a chalcopyrite thin film polycrystalline solar cell.

発明の太陽電池用ガラス基板は、色素増感型太陽電池に用いることが好ましい The glass substrate for solar cell of the present invention is preferably used for a dye-sensitized solar cell.

本発明の太陽電池用ガラス基板において、ガラス組成を上記範囲に限定した理由を以下に説明する。なお、以下の%表示は、特に断りがある場合を除き、質量%を指す。   The reason for limiting the glass composition to the above range in the glass substrate for solar cell of the present invention will be described below. In addition, the following% display points out the mass% except the case where there is particular notice.

SiOは、ガラスネットワークを構成する成分であり、その含有量は50〜60.8%、好ましくは52〜60%である。SiOの含有量が50%より少ないと、歪点が低下しやすくなり、歪点が560℃未満になりやすい。一方、SiOの含有量が60.8%より多いと、高温粘度104.0dPa・sにおける温度や溶融温度が上昇する傾向にあり、溶融性や成形性が低下しやすくなる。 SiO 2 is a component constituting a glass network, and its content is 50 to 60.8 %, preferably 52 to 60%. When the content of SiO 2 is less than 50%, the strain point tends to decrease and the strain point tends to be less than 560 ° C. On the other hand, the content of SiO 2 is the greater than 60.8%, there is a tendency that the temperature and the melting temperature of the high temperature viscosity 10 4.0 dPa · s is increased, the melting property and formability tends to decrease.

Alは、歪点を高める成分であり、その含有量は〜10%、好ましくは4〜9%である。Alの含有量が少なくなると、歪点が低下しやすくなり、歪点が560℃未満になりやすい。一方、Alの含有量が10%より多いと、高温粘度104.0dPa・sにおける温度や溶融温度が上昇する傾向にあり、溶融性や成形性が低下しやすくなる。 Al 2 O 3 is a component that increases the strain point, and its content is 1 to 10%, preferably 4 to 9%. When the content of Al 2 O 3 decreases, the strain point tends to decrease, and the strain point tends to be less than 560 ° C. On the other hand, when the content of Al 2 O 3 is more than 10%, the temperature and melting temperature at a high temperature viscosity of 10 4.0 dPa · s tend to increase, and the meltability and moldability tend to decrease.

ROは、高温粘度104.0dPa・sにおける温度や溶融温度を低下させる成分であり、その含有量は10〜30%、好ましくは15〜25%、より好ましくは17〜25%である。ROの含有量が10%より少ないと、歪点が低下する傾向にあり、高温粘度104.0dPa・sにおける温度や溶融温度が上昇する傾向にある。一方、ROの含有量が30%より多いと、ガラスが失透しやすくなり、ガラス基板に成形し難くなる。 RO is a component to lower the temperature and the melting temperature of the high temperature viscosity 10 4.0 dPa · s, the content thereof is 10-30%, preferably 15-25%, more preferably 17 to 25%. When the content of RO is less than 10%, there is a tendency that the strain point is lowered, there is a tendency that the temperature and the melting temperature of the high temperature viscosity 10 4.0 dPa · s is increased. On the other hand, if the content of RO is more than 30%, the glass tends to be devitrified, and it becomes difficult to form the glass substrate.

MgOは、歪点を高めるとともに、高温粘度104.0dPa・sにおける温度や溶融温度を低下させる成分であり、その含有量は0〜12%、好ましくは0〜4%である。MgOの含有量が少なくなると、歪点が低下する傾向にあり、高温粘度104.0dPa・sにおける温度や溶融温度が上昇する傾向にある。一方、MgOの含有量が12%より多いと、ガラスが失透しやすくなり、ガラス基板に成形し難くなる。 MgO is to increase the strain point is a component to lower the temperature and the melting temperature of the high temperature viscosity 10 4.0 dPa · s, the content of 0 to 12%, preferably 0 to 4%. When the content of MgO is reduced, there is a tendency that the strain point is lowered, there is a tendency that the temperature and the melting temperature of the high temperature viscosity 10 4.0 dPa · s is increased. On the other hand, if the content of MgO is more than 12%, the glass tends to be devitrified, and it is difficult to form the glass substrate.

CaOは、MgOと同様にして、歪点を高めるとともに、高温粘度104.0dPa・sにおける温度や溶融温度を低下させる成分であり、その含有量は〜12%、好ましくは〜7%、より好ましくは〜6%である。CaOの含有量が少なくなると、歪点が低下する傾向にあり、高温粘度104.0dPa・sにおける温度や溶融温度が上昇する傾向にある。一方、CaOの含有量が12%より多いと、ガラスが失透しやすくなり、ガラス基板に成形し難くなる。 CaO, similarly to the MgO, to increase the strain point is a component to lower the temperature and the melting temperature of the high temperature viscosity 10 4.0 dPa · s, the content thereof is 3-12%, preferably 3-7 %, More preferably 3 to 6%. When the content of CaO is reduced, there is a tendency that the strain point is lowered, there is a tendency that the temperature and the melting temperature of the high temperature viscosity 10 4.0 dPa · s is increased. On the other hand, if the content of CaO is more than 12%, the glass tends to be devitrified, and it becomes difficult to form the glass substrate.

SrOは、高温粘度104.0dPa・sにおける温度や溶融温度を低下させる成分であり、その含有量は〜15%、好ましくは〜10%である。SrOの含有量が少なくなると、高温粘度104.0dPa・sにおける温度や溶融温度が上昇する傾向にある。一方、SrOの含有量が15%より多いと、ガラスが失透しやすくなり、ガラス基板に成形し難くなる。 SrO is a component to lower the temperature and the melting temperature of the high temperature viscosity 10 4.0 dPa · s, the content thereof is 1 to 15%, preferably 1 10%. When the content of SrO decreases, the temperature and melting temperature at a high temperature viscosity of 10 4.0 dPa · s tend to increase. On the other hand, if the SrO content is more than 15%, the glass tends to be devitrified, and it becomes difficult to form the glass substrate.

BaOは、SrOと同様にして、高温粘度104.0dPa・sにおける温度や溶融温度を低下させる成分であり、その含有量は0〜15%、好ましくは0〜10%である。BaOの含有量が少なくなると、高温粘度104.0dPa・sにおける温度や溶融温度が上昇する傾向にある。一方、BaOの含有量が15%より多いと、ガラスが失透しやすくなり、ガラス基板に成形し難くなる。 BaO, in the same manner as SrO, is a component to lower the temperature and the melting temperature of the high temperature viscosity 10 4.0 dPa · s, the content of 0 to 15%, preferably 0 to 10%. When the content of BaO is reduced, there is a tendency that the temperature and the melting temperature of the high temperature viscosity 10 4.0 dPa · s is increased. On the other hand, when the content of BaO is more than 15%, the glass tends to be devitrified, and it becomes difficult to form the glass substrate.

R’Oは、融剤として働き、溶融性を高める成分であるとともに、熱膨張係数を調整する成分であり、その含有量は5〜20%、好ましくは5〜15%である。R’Oの含有量が5%より少なくなると、高温粘度104.0dPa・sにおける温度や溶融温度が上昇したり、融剤としての作用が期待できなくなり、溶融性が低下して、ガラス基板を作製し難くなる。また、R’Oの含有量が5%より少ないと、熱膨張係数が低下し、ガラス基板と膜材料の熱膨張係数差が大きくなり過ぎて、ガラス基板上に膜材料を成膜し難くなる。一方、R’Oの含有量が20%より多いと、歪点が低下する傾向にある。 R ′ 2 O is a component that works as a flux and improves the meltability, and is a component that adjusts the thermal expansion coefficient, and its content is 5 to 20%, preferably 5 to 15%. When the content of R ′ 2 O is less than 5%, the temperature and melting temperature at a high temperature viscosity of 10 4.0 dPa · s are increased, the action as a flux cannot be expected, and the meltability is reduced. It becomes difficult to produce a glass substrate. On the other hand, if the content of R ′ 2 O is less than 5%, the thermal expansion coefficient decreases, the difference in thermal expansion coefficient between the glass substrate and the film material becomes too large, and it is difficult to form the film material on the glass substrate. Become. On the other hand, when the content of R ′ 2 O is more than 20%, the strain point tends to decrease.

NaOは、高温粘度104.0dPa・sにおける温度や溶融温度を低下させる成分であるとともに、熱膨張係数を調整する成分であるが、歪点を下げる成分でもあり、その含有量は0〜6%、好ましくは1〜6%である。NaOの含有量が少なくなると、高温粘度104.0dPa・sにおける温度や溶融温度が上昇する傾向にある。なお、カルコパイライト系薄膜多結晶太陽電池の場合、NaOの含有量を1%以上にすれば、Naの拡散により、エネルギー変換効率を高めることができる。一方、NaOの含有量が6%より多いと、歪点が低下する傾向に顕著になり、歪点が560℃未満になりやすい。 Na 2 O is a component that lowers the temperature and melting temperature at a high temperature viscosity of 10 4.0 dPa · s, and is a component that adjusts the thermal expansion coefficient, but is also a component that lowers the strain point, and its content is 0 to 6%, preferably 1 to 6%. When the content of Na 2 O decreases, the temperature and melting temperature at a high temperature viscosity of 10 4.0 dPa · s tend to increase. In the case of a chalcopyrite thin film polycrystalline solar cell, if the Na 2 O content is 1% or more, the energy conversion efficiency can be increased by diffusion of Na. On the other hand, when the content of Na 2 O is more than 6%, the strain point tends to decrease, and the strain point tends to be lower than 560 ° C.

Oは、NaOと同様にして、高温粘度104.0dPa・sにおける温度や溶融温度を低下させる成分であるとともに、熱膨張係数を調整する成分であるが、歪点を下げる成分でもあり、その含有量は0〜12%、好ましくは3〜9%である。KOの含有量が少なくなると、高温粘度104.0dPa・sにおける温度や溶融温度が上昇する傾向にある。一方、KOの含有量が6%より多いと、歪点が低下する傾向に顕著になり、歪点が560℃未満になりやすい。 K 2 O is a component that lowers the temperature and melting temperature at a high temperature viscosity of 10 4.0 dPa · s and adjusts the coefficient of thermal expansion in the same way as Na 2 O, but lowers the strain point. It is also a component, and its content is 0 to 12%, preferably 3 to 9%. When the content of K 2 O decreases, the temperature and melting temperature at a high temperature viscosity of 10 4.0 dPa · s tend to increase. On the other hand, if the content of K 2 O is more than 6%, the strain point tends to decrease, and the strain point tends to be lower than 560 ° C.

ZrOは、Alと同様にして、歪点を高める成分であり、その含有量は0〜10%である。ZrOの含有量が少なくなると、歪点が低下しやすくなり、歪点が560℃未満になりやすい。一方、ZrOの含有量が10%より多いと、高温粘度104.0dPa・sにおける温度や溶融温度が上昇する傾向にあり、溶融性や成形性が低下しやすくなる。 ZrO 2 is a component that increases the strain point in the same manner as Al 2 O 3, and its content is 0 to 10 %. When the content of ZrO 2 decreases, the strain point tends to decrease and the strain point tends to be less than 560 ° C. On the other hand, when the content of ZrO 2 is more than 10%, there is a tendency that the temperature and the melting temperature of the high temperature viscosity 10 4.0 dPa · s is increased, the melting property and formability tends to decrease.

[RO+2R’O−Al−ZrO]の値を調整すれば、高温粘度104.0dPa・sにおける温度を調整することができる。[RO+2R’O−Al−ZrO]の値は30%以上であることが好ましい。このようにすれば、高温粘度104.0dPa・sにおける温度を低下させることができる。[2NaO+KO−Al−MgO−CaO−ZrO]の値を調整すれば、歪点を調整することができる。[2NaO+KO−Al−MgO−CaO−ZrO]の値は2%、特に1%以下であることが好ましい。このようにすれば、歪点を高めることができる。よって、[RO+2R’O−Al−ZrO]の値および[2NaO+KO−Al−MgO−CaO−ZrO]の値を所定範囲内に規制すれば、歪点を560℃以上および高温粘度104.0dPa・sにおける温度を1200℃以下にしやすくなる。ここで、AlとZrOは、歪点を高める成分であるが、高温粘度104.0dPa・sにおける温度が上昇してしまう。MgOやCaOは歪点を高め、高温粘度104.0dPa・sの温度を下げる成分である。SrOやBaOは高温粘度104.0dPa・sにおける温度を低下させる成分である。R’Oは、歪点を低下させるとともに、高温粘度104.0dPa・sにおける温度を低下させる成分である。 If the value of [RO + 2R ′ 2 O—Al 2 O 3 —ZrO 2 ] is adjusted, the temperature at the high temperature viscosity of 10 4.0 dPa · s can be adjusted. The value of [RO + 2R ′ 2 O—Al 2 O 3 —ZrO 2 ] is preferably 30% or more. In this way, it is possible to lower the temperature in the high temperature viscosity 10 4.0 dPa · s. The strain point can be adjusted by adjusting the value of [2Na 2 O + K 2 O—Al 2 O 3 —MgO—CaO—ZrO 2 ]. The value of [2Na 2 O + K 2 O—Al 2 O 3 —MgO—CaO—ZrO 2 ] is preferably 2%, particularly preferably 1% or less. In this way, the strain point can be increased. Therefore, if the value of [RO + 2R ′ 2 O—Al 2 O 3 —ZrO 2 ] and the value of [2Na 2 O + K 2 O—Al 2 O 3 —MgO—CaO—ZrO 2 ] are regulated within a predetermined range, the strain The temperature at a point of 560 ° C. or higher and a high temperature viscosity of 10 4.0 dPa · s tends to be 1200 ° C. or lower. Here, Al 2 O 3 and ZrO 2 are components that increase the strain point, but the temperature at a high temperature viscosity of 10 4.0 dPa · s increases. MgO and CaO increases the strain point is a component to lower the temperature of the high temperature viscosity 10 4.0 dPa · s. SrO and BaO are components to reduce the temperature in the high temperature viscosity 10 4.0 dPa · s. R ′ 2 O is a component that lowers the strain point and lowers the temperature at a high temperature viscosity of 10 4.0 dPa · s.

は、高温粘度104.0dPa・sにおける温度や溶融温度を低下させる成分であるが、歪点も下げる成分であり、その含有量は1%未満である。の含有量が1%より多いと、歪点が低する傾向に顕著になり、歪点が560℃未満になりやすい。 B 2 O 3 is a component that lowers the temperature and melting temperature at a high temperature viscosity of 10 4.0 dPa · s, but also lowers the strain point, and its content is less than 1% . When the content of B 2 O 3 is more than 1%, the strain point tends to be low, and the strain point tends to be less than 560 ° C.

上記成分以外にも、例えば液相温度を低下させて成形性を高めるためにY、La、Nbを各3%まで、着色剤としてFe、CoO、NiO、Cr、Ndを各2%まで、清澄剤としてSnO、SO、F、Clなどを合量で1%まで添加することができる。 In addition to the above components, for example, Y 2 O 3 , La 2 O 3 , and Nb 2 O 3 are added up to 3% in order to lower the liquidus temperature and improve the moldability, and Fe 2 O 3 , CoO, NiO, Cr 2 O 3 , Nd 2 O 3 can be added up to 2% each, and SnO 2 , SO 3 , F, Cl, etc. can be added as a clarifier up to 1% in total.

本発明の太陽電池用ガラス基板において、歪点は560℃以上であり、好ましくは570℃以上である。歪点が560℃より低いと、高温の熱処理工程でガラス基板が熱変形しやすくなる。   In the glass substrate for a solar cell of the present invention, the strain point is 560 ° C. or higher, preferably 570 ° C. or higher. When the strain point is lower than 560 ° C., the glass substrate tends to be thermally deformed in a high-temperature heat treatment process.

本発明の太陽電池用ガラス基板において、高温粘度104.0dPa・sにおける温度は1200℃以下、好ましくは1170℃以下である。このようにすれば、フロート法、オーバーフローダウンドロー法、ロールアウト法等でガラス基板に成形しやすくなる。高温粘度104.0dPa・sにおける温度が1200℃より高いと、成形の際に成分揮発によって溶融ガラスが変質しやすく、また成形温度が高温になるため、成形装置への負荷が大きくなり、結果として、成形装置のライフが短くなり、ガラス基板の作製コストが高騰する。なお、高温粘度104.0dPa・sにおける温度が低過ぎると、歪点が低下する傾向があるため、高温粘度104.0dPa・sにおける温度を1050℃以上とするのが好ましい。 In the glass substrate for a solar cell of the present invention, the temperature in the high temperature viscosity 10 4.0 dPa · s 1200 ℃ or less, preferably 1170 ° C. or less. If it does in this way, it will become easy to shape | mold on a glass substrate by the float method, the overflow downdraw method, the rollout method, etc. If the temperature at a high temperature viscosity of 10 4.0 dPa · s is higher than 1200 ° C., the molten glass tends to deteriorate due to component volatilization during molding, and the molding temperature becomes high, so the load on the molding equipment increases. As a result, the life of the molding apparatus is shortened and the production cost of the glass substrate is increased. Note that if the temperature at a high temperature viscosity of 10 4.0 dPa · s is too low, the strain point tends to decrease. Therefore, the temperature at a high temperature viscosity of 10 4.0 dPa · s is preferably 1050 ° C. or higher.

本発明の太陽電池用ガラス基板において、熱膨張係数は75〜95×10−7/℃、特に80〜90×10−7/℃が好ましい。このようにすれば、ガラス基板の熱膨張係数が、CIS等の光吸収層または酸化チタン等の酸化物半導体多孔質膜の熱膨張係数に整合し、材料間の残留応力を低減することができ、結果として、これらの材料の剥離を防止することができる。ここで、「熱膨張係数」は、直径5.0mm、長さ20mmの円柱を測定試料とし、ディラトメーターで30〜380℃の温度範囲における線熱膨張係数の平均値を指す。 In the glass substrate for a solar cell of the present invention, the thermal expansion coefficient is preferably 75 to 95 × 10 −7 / ° C., particularly preferably 80 to 90 × 10 −7 / ° C. In this way, the thermal expansion coefficient of the glass substrate matches the thermal expansion coefficient of the light absorbing layer such as CIS or the oxide semiconductor porous film such as titanium oxide, and the residual stress between the materials can be reduced. As a result, peeling of these materials can be prevented. Here, “thermal expansion coefficient” refers to an average value of linear thermal expansion coefficient in a temperature range of 30 to 380 ° C. with a dilatometer using a cylinder having a diameter of 5.0 mm and a length of 20 mm as a measurement sample.

本発明の太陽電池用ガラス基板において、液相温度は1150℃以下、1100℃以下、特に1050℃以下が好ましい。液相温度が上昇すると、成形時にガラスが失透しやすくなり、ガラス基板の成形性が低下しやすくなる。ここで、「液相温度」は、ガラスを粉砕し、標準篩30メッシュ(篩目開き500μm)を通過し、50メッシュ(篩目開き300μm)に残るガラス粉末を白金ボートに入れ、温度勾配炉中に24時間保持して、結晶が析出する温度を測定した値である。   In the glass substrate for a solar cell of the present invention, the liquidus temperature is preferably 1150 ° C. or lower, 1100 ° C. or lower, particularly preferably 1050 ° C. or lower. When the liquidus temperature rises, the glass tends to devitrify during molding, and the moldability of the glass substrate tends to decrease. Here, “liquid phase temperature” refers to a temperature gradient furnace in which glass is crushed, passed through a standard sieve 30 mesh (a sieve opening of 500 μm), and glass powder remaining in a 50 mesh (a sieve opening of 300 μm) is placed in a platinum boat. It is the value which measured the temperature which hold | maintains for 24 hours and crystal | crystallization precipitates.

本発明の太陽電池用ガラス基板において、液相粘度は104.5dPa・s以上、特に105.0dPa・s以上が好ましい。液相粘度が低下すると、成形時にガラスが失透しやすくなり、ガラス基板の成形性が低下しやすくなる。ここで、「液相粘度」は、液相温度におけるガラスの粘度を白金球引き上げ法で測定した値である。 In the glass substrate for a solar cell of the present invention, the liquid phase viscosity is preferably 10 4.5 dPa · s or more, particularly preferably 10 5.0 dPa · s or more. When the liquid phase viscosity is lowered, the glass is easily devitrified during molding, and the moldability of the glass substrate is likely to be lowered. Here, the “liquid phase viscosity” is a value obtained by measuring the viscosity of the glass at the liquid phase temperature by a platinum ball pulling method.

本発明の太陽電池用ガラス基板は、種々の成形方法、例えばフロート法、オーバーフローダウンドロー法、スロットダウンドロー法、リドロー法、ロールアウト法、プレス法等により作製することができる。特に、フロート法は、大型のガラス基板を安価に作製することができる。フロート法を用いる場合、ガラス組成中に、清澄剤として、As、Sbを添加しないことが好ましい。このようにすれば、As、Sbがフロートバス中で還元されて、金属異物が析出する事態を防止することができる。 The glass substrate for solar cells of the present invention can be produced by various molding methods such as a float method, an overflow downdraw method, a slot downdraw method, a redraw method, a rollout method, a press method and the like. In particular, the float method can produce a large glass substrate at low cost. When using the float process, it is preferable not to add As 2 O 3 or Sb 2 O 3 as a fining agent in the glass composition. In this way, it is possible to As 2 O 3, Sb 2 O 3 is reduced in the float bath, to prevent the foreign metal substance is precipitated.

本発明の太陽電池用ガラス基板は、板厚が4mm以下、3mm以下、特に2mm未満が好ましい。ガラス基板の板厚が小さい程、太陽電池を薄型化、軽量化することができる。   The glass substrate for a solar cell of the present invention preferably has a thickness of 4 mm or less, 3 mm or less, particularly less than 2 mm. As the plate thickness of the glass substrate is smaller, the solar cell can be made thinner and lighter.

本発明の太陽電池用ガラス基板は、光が入射しない側に使用する基板のみならず、光が入射する側の基板(カバーガラス)に使用してもよい。光が入射する側の基板に使用する場合、紫外線着色を防止するために、ガラス組成中にTiOを0.1〜5%添加してもよい。また、機械的強度を高めるために、ガラス基板の表面を強化処理(物理強化または化学強化)してもよい。 The glass substrate for a solar cell of the present invention may be used not only for a substrate used on a side where light does not enter but also for a substrate (cover glass) on a side where light enters. When used for a substrate on which light is incident, 0.1 to 5% of TiO 2 may be added to the glass composition in order to prevent ultraviolet coloring. In order to increase the mechanical strength, the surface of the glass substrate may be subjected to a strengthening process (physical strengthening or chemical strengthening).

以下、本発明を実施例に基づいて説明する。なお、本発明は、これらの実施例に限定されるものではない。   Hereinafter, the present invention will be described based on examples. The present invention is not limited to these examples.

表1、2は、試料No.1〜11を示している。 Tables 1 and 2 show Sample No. 1 to 11 are shown.

次のように、表中に記載の各試料を作製した。まず、表中のガラス組成となるようにガラス原料を調合し、白金ポットを用いて1550℃で4時間溶融した。なお、Feは着色剤または不純物であり、SOは清澄剤である。次に、溶融ガラスをカーボン板の上に流し出して、ガラス基板に成形し、徐冷することで各試料を得た。得られた各試料について、歪点、高温粘度104.0dPa・sにおける温度、熱膨張係数、液相温度および液相粘度を測定した。その結果を表1、2に示す。 Each sample described in the table was prepared as follows. First, the glass raw material was prepared so that it might become the glass composition in a table | surface, and it melted at 1550 degreeC for 4 hours using the platinum pot. Note that Fe 2 O 3 is a colorant or an impurity, and SO 3 is a fining agent. Next, molten glass was poured out on the carbon plate, formed into a glass substrate, and gradually cooled to obtain each sample. For each sample obtained, the strain point, temperature, thermal expansion coefficient, the liquidus temperature and liquidus viscosity measured at high temperature viscosity 10 4.0 dPa · s. The results are shown in Tables 1 and 2.

歪点は、ASTM C336−71に基づいて測定した値である。    The strain point is a value measured based on ASTM C336-71.

高温粘度104.0dPa・sにおける温度は、白金球引き上げ法により測定した値である。 Temperature at the high temperature viscosity 10 4.0 dPa · s is a value measured by a platinum ball pulling method.

熱膨張係数は、直径5.0mm、長さ20mmの円柱を測定試料とし、ディラトメーターで30〜380℃の温度範囲における線熱膨張係数の平均値である。    The thermal expansion coefficient is an average value of linear thermal expansion coefficients in a temperature range of 30 to 380 ° C. with a dilatometer using a cylinder having a diameter of 5.0 mm and a length of 20 mm as a measurement sample.

液相温度は、ガラスを粉砕し、標準篩30メッシュ(篩目開き500μm)を通過し、50メッシュ(篩目開き300μm)に残るガラス粉末を白金ボートに入れ、温度勾配炉中に24時間保持して、結晶が析出する温度を測定した値である。液相粘度は、液相温度におけるガラスの粘度を白金球引き上げ法で測定した値である。なお、液相温度が低い程、また液相粘度が高い程、成形性が良好であり、大型のガラス基板を安価に作製することができる。    The liquid phase temperature is obtained by crushing glass, passing through a standard sieve 30 mesh (a sieve opening of 500 μm), putting the glass powder remaining at 50 mesh (a sieve opening of 300 μm) in a platinum boat, and keeping it in a temperature gradient furnace for 24 hours. The value at which the temperature at which crystals precipitate is measured. The liquid phase viscosity is a value obtained by measuring the viscosity of glass at the liquid phase temperature by a platinum ball pulling method. In addition, the lower the liquidus temperature and the higher the liquidus viscosity, the better the moldability, and a large glass substrate can be produced at low cost.

表1、2から明らかなように、試料No.1〜9は、歪点が560℃以上、且つ高温粘度104.0dPa・sにおける温度が1200℃以下であり、カルコパイライト系薄膜多結晶太陽電池または色素増感型太陽電池に好適であると考えられる。一方、試料No.10は、歪点が510℃であり、カルコパイライト系薄膜多結晶太陽電池または色素増感型太陽電池に不適であると考えられる。また、試料No.11は、高温粘度104.0dPa・sにおける温度が1260℃であり、ガラス基板の作製コストが高騰するため、カルコパイライト系薄膜多結晶太陽電池または色素増感型太陽電池に不適であると考えられる。
As apparent from Tables 1 and 2, Sample No. Nos. 1 to 9 have a strain point of 560 ° C. or higher and a temperature at a high temperature viscosity of 10 4.0 dPa · s of 1200 ° C. or lower, and are suitable for chalcopyrite thin film polycrystalline solar cells or dye-sensitized solar cells. it is conceivable that. On the other hand, sample No. No. 10 has a strain point of 510 ° C. and is considered to be unsuitable for chalcopyrite thin film polycrystalline solar cells or dye-sensitized solar cells. Sample No. And 11, the temperature in the high temperature viscosity 10 4.0 dPa · s is is 1260 ° C., since the manufacturing cost of the glass substrate is soaring, unsuitable for chalcopyrite thin film polycrystalline solar cell or dye-sensitized solar cell Conceivable.

Claims (6)

ガラス組成として、質量%で、SiO 50〜60.8%、Al 〜10%、RO(MgO+CaO+SrO+BaO) 10〜30%、CaO 3〜12%、SrO 1〜15%、R’O(NaO+KO) 5〜20%、ZrO 0〜10、B 0〜1%未満を含有し、歪点が560℃以上、高温粘度104.0dPa・sにおける温度が1200℃以下であることを特徴とする太陽電池用ガラス基板。 As a glass composition, in mass%, SiO 2 50~60.8%, Al 2 O 3 1 ~10%, RO (MgO + CaO + SrO + BaO) 10~30%, CaO 3~12%, SrO 1~15%, R '2 O (Na 2 O + K 2 O) 5 to 20%, ZrO 2 0 to 10 % , B 2 O 3 0 to less than 1% , a strain point of 560 ° C. or higher, and a high temperature viscosity of 10 4.0 dPa · s The glass substrate for solar cells, wherein the temperature is 1200 ° C. or lower. [RO+2R’O−Al−ZrO]の値が30%以上であることを特徴とする請求項1に記載の太陽電池用ガラス基板。 [RO + 2R '2 O- Al 2 O 3 -ZrO 2] glass substrate for a solar cell according to claim 1, wherein the value of 30% or more. [2NaO+KO−Al−MgO−CaO−ZrO]の値が2%以下であることを特徴とする請求項1または2に記載の太陽電池用ガラス基板。 [2Na 2 O + K 2 O -Al 2 O 3 -MgO-CaO-ZrO 2] glass substrate for a solar cell according to claim 1 or 2, characterized in that the value is less than 2 percent. ガラス組成として、質量%で、SiO 50〜60%、Al 4〜9%、RO(MgO+CaO+SrO+BaO) 17〜25%、CaO 〜6%、SrO 1〜10%、R’O(NaO+KO) 5〜15%、NaO 1〜6%、KO 3〜9%、ZrO 0〜4%、B 0〜1%未満を含有することを特徴とする請求項1〜3のいずれかに記載の太陽電池用ガラス基板。 As a glass composition, in mass%, SiO 2 50~60%, Al 2 O 3 4~9%, RO (MgO + CaO + SrO + BaO) 17~25%, CaO 3 ~6%, SrO 1~10%, R '2 O ( Na 2 O + K 2 O) 5 to 15%, Na 2 O 1 to 6%, K 2 O 3 to 9%, ZrO 2 0 to 4% , B 2 O 3 0 to less than 1%, The glass substrate for solar cells according to any one of claims 1 to 3. カルコパイライト系薄膜多結晶太陽電池に用いることを特徴とする請求項1〜4のいずれかに記載の太陽電池用ガラス基板。   It uses for a chalcopyrite thin film polycrystalline solar cell, The glass substrate for solar cells in any one of Claims 1-4 characterized by the above-mentioned. 色素増感型太陽電池に用いることを特徴とする請求項1〜4のいずれかに記載の太陽電池用ガラス基板。   It uses for a dye-sensitized solar cell, The glass substrate for solar cells in any one of Claims 1-4 characterized by the above-mentioned.
JP2008290897A 2008-11-13 2008-11-13 Glass substrate for solar cell Expired - Fee Related JP5610563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008290897A JP5610563B2 (en) 2008-11-13 2008-11-13 Glass substrate for solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008290897A JP5610563B2 (en) 2008-11-13 2008-11-13 Glass substrate for solar cell

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013190440A Division JP5831850B2 (en) 2013-09-13 2013-09-13 Glass substrate for solar cell

Publications (2)

Publication Number Publication Date
JP2010118505A JP2010118505A (en) 2010-05-27
JP5610563B2 true JP5610563B2 (en) 2014-10-22

Family

ID=42305992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008290897A Expired - Fee Related JP5610563B2 (en) 2008-11-13 2008-11-13 Glass substrate for solar cell

Country Status (1)

Country Link
JP (1) JP5610563B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009050988B3 (en) * 2009-05-12 2010-11-04 Schott Ag Thin film solar cell
WO2011158841A1 (en) * 2010-06-18 2011-12-22 旭硝子株式会社 Cigs-type solar cell, and electrode-attached glass substrate for use in the solar cell
US10343946B2 (en) 2010-10-26 2019-07-09 Schott Ag Highly refractive thin glasses
US10308545B2 (en) 2010-10-26 2019-06-04 Schott Ag Highly refractive thin glasses
KR101062180B1 (en) 2010-11-12 2011-09-05 영남대학교 산학협력단 Method for manufacturing solar cell and solar cell manufactured by the same
JP5850392B2 (en) * 2011-09-20 2016-02-03 日本電気硝子株式会社 Glass plate
JP6040699B2 (en) * 2012-10-22 2016-12-07 日本電気硝子株式会社 Glass plate for thin film solar cell
JP6090705B2 (en) * 2012-11-09 2017-03-08 日本電気硝子株式会社 Glass plate for thin film solar cell
JP6128418B2 (en) * 2013-01-10 2017-05-17 日本電気硝子株式会社 Glass plate for thin film solar cell

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4320823B2 (en) * 1998-02-27 2009-08-26 旭硝子株式会社 Substrate glass composition
JP5605736B2 (en) * 2006-05-25 2014-10-15 日本電気硝子株式会社 Tempered glass and manufacturing method thereof
JP5071878B2 (en) * 2006-09-12 2012-11-14 日本電気硝子株式会社 Alkali-free glass and alkali-free glass substrate using the same
JP5875133B2 (en) * 2006-10-10 2016-03-02 日本電気硝子株式会社 Tempered glass substrate

Also Published As

Publication number Publication date
JP2010118505A (en) 2010-05-27

Similar Documents

Publication Publication Date Title
JP5610563B2 (en) Glass substrate for solar cell
US8497220B2 (en) Glass substrate for solar cell
JP5733811B2 (en) Manufacturing method of glass substrate for solar cell
JP5915892B2 (en) Glass plate for thin film solar cell
JP2008280189A (en) Glass substrate for solar cell, and method of manufacturing the same
JP6048490B2 (en) Glass substrate for Cu-In-Ga-Se solar cell and solar cell using the same
JP5429949B2 (en) Glass substrate for thin film compound solar cell and method for producing the same
JP5664891B2 (en) Glass substrate
KR101554532B1 (en) Glass plate for thin film solar cell
JP6254345B2 (en) Glass substrate for solar cell
JP6497576B2 (en) Glass plate for solar cell
JP6128418B2 (en) Glass plate for thin film solar cell
JP6040699B2 (en) Glass plate for thin film solar cell
JP2011088794A (en) Glass plate for solar cell
JP5831850B2 (en) Glass substrate for solar cell
JPWO2015076208A1 (en) Glass plate
JP2013063910A (en) Glass substrate for solar cell
JP5660522B2 (en) Glass substrate for thin film compound solar cell
JP2015231936A (en) Glass for solar battery
JP5648982B2 (en) Glass substrate for solar cell
JP5742084B2 (en) Glass substrate for solar cell
TW201412677A (en) Glass substrate for Cu-In-Ga-Se solar cell, and solar cell using same
JP2018197191A (en) Glass sheet fro solar battery
JP2018203616A (en) Glass sheet fro solar battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130913

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131111

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140829

R150 Certificate of patent or registration of utility model

Ref document number: 5610563

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees