JP5609299B2 - Active material, electrode including the same, lithium secondary battery including the electrode, and method for producing active material - Google Patents

Active material, electrode including the same, lithium secondary battery including the electrode, and method for producing active material Download PDF

Info

Publication number
JP5609299B2
JP5609299B2 JP2010139833A JP2010139833A JP5609299B2 JP 5609299 B2 JP5609299 B2 JP 5609299B2 JP 2010139833 A JP2010139833 A JP 2010139833A JP 2010139833 A JP2010139833 A JP 2010139833A JP 5609299 B2 JP5609299 B2 JP 5609299B2
Authority
JP
Japan
Prior art keywords
active material
electrode
secondary battery
moles
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010139833A
Other languages
Japanese (ja)
Other versions
JP2012004043A (en
Inventor
佐野 篤史
篤史 佐野
佳太郎 大槻
佳太郎 大槻
浩司 時田
浩司 時田
友彦 加藤
友彦 加藤
樋口 章二
章二 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2010139833A priority Critical patent/JP5609299B2/en
Priority to US13/160,968 priority patent/US8734987B2/en
Priority to CN2011101703797A priority patent/CN102363523A/en
Priority to CN201310689040.7A priority patent/CN103771386B/en
Publication of JP2012004043A publication Critical patent/JP2012004043A/en
Application granted granted Critical
Publication of JP5609299B2 publication Critical patent/JP5609299B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、活物質、これを含む電極、当該電極を備えるリチウム二次電池、及び活物質の製造方法に関する。   The present invention relates to an active material, an electrode including the active material, a lithium secondary battery including the electrode, and an active material manufacturing method.

構造式LiVOPOで表される結晶においては、リチウムイオンが可逆的に挿入脱離することが知られている。構造式LiVOPOで表される結晶は、α型、β型等の異なる結晶構造を有し、α型はβ型に比して熱力学的に安定な構造であるといわれているが、特許文献1には、β型結晶構造(斜方晶)のLiVOPOに比べて、α型結晶構造(三斜晶)のLiVOPOは放電容量が小さいことが報告されている。 In the crystal represented by the structural formula LiVOPO 4 , it is known that lithium ions are reversibly inserted and desorbed. Crystals represented by the structural formula LiVOPO 4 have different crystal structures such as α-type and β-type, and α-type is said to be a thermodynamically stable structure compared to β-type. Literature 1 reports that LiVOPO 4 having an α-type crystal structure (triclinic crystal) has a smaller discharge capacity than LiVOPO 4 having a β-type crystal structure (orthorhombic crystal).

非特許文献1には、VOPOとLiCOとを炭素の存在下で加熱し、炭素によりVOPOを還元して、β型結晶構造のLiVOPOを作製する方法(カーボサーマルリダクション法(CTR法))が開示されている。非特許文献2には、4価のバナジウムを用いることにより、β型結晶構造のLiVOPOを作製する方法が開示されている。 Non-Patent Document 1 discloses a method for producing LiVOPO 4 having a β-type crystal structure by heating VOPO 4 and Li 2 CO 3 in the presence of carbon and reducing VOPO 4 with carbon (a carbothermal reduction method). CTR method)) is disclosed. Non-Patent Document 2 discloses a method for producing LiVOPO 4 having a β-type crystal structure by using tetravalent vanadium.

特開2004−303527号公報JP 2004-303527 A

J.Baker et al.,J.Electrochem.Soc.,151,A796(2004)J. et al. Baker et al. , J .; Electrochem. Soc. 151, A796 (2004) J.Solid State Chem.,95,352(1991)J. et al. Solid State Chem. , 95, 352 (1991)

しかしながら、特許文献1及び非特許文献1、2に記載された方法により得られたLiVOPOを含む活物質は、十分な放電容量を得られるものではなかった。 However, the active material containing LiVOPO 4 obtained by the methods described in Patent Document 1 and Non-Patent Documents 1 and 2 cannot obtain a sufficient discharge capacity.

そこで、本発明は、十分な放電容量を得られる活物質、これを含む電極、当該電極を備えるリチウム二次電池、及び活物質の製造方法を提供することを目的とする。   Then, an object of this invention is to provide the active material which can obtain sufficient discharge capacity, the electrode containing this, a lithium secondary battery provided with the said electrode, and the manufacturing method of an active material.

本発明者らは、鋭意研究を重ねた結果、リチウム源と、5価のバナジウム源と、リン酸源と、水と、酒石酸とを含む混合物に含まれる酒石酸の濃度、及び、5価のバナジウム源に含まれるバナジウム原子のモル数に対する酒石酸のモル数の割合が特定量となるように調整された混合物を用いて水熱合成を行うことにより、平均粒子径及び結晶子の径が従来の活物質に比べて極めて小さい活物質が得られ、この活物質は、1Cにおいても十分な放電容量が得られることを見出した。   As a result of intensive studies, the present inventors have found that the concentration of tartaric acid contained in a mixture containing a lithium source, a pentavalent vanadium source, a phosphoric acid source, water, and tartaric acid, and pentavalent vanadium. By performing hydrothermal synthesis using a mixture adjusted so that the ratio of the number of moles of tartaric acid to the number of moles of vanadium atoms contained in the source is a specific amount, the average particle diameter and the crystallite diameter are It was found that an extremely small active material was obtained compared to the material, and that this active material could provide a sufficient discharge capacity even at 1C.

すなわち本発明は、リチウム源と、5価のバナジウム源と、リン酸源と、水と、酒石酸とを含む混合物を調整する工程と、混合物を加圧下で200℃以上に加熱することにより、LiVOPOを得る水熱合成工程と、を備え、混合物に含まれる酒石酸の濃度が0.5〜2.0mol/Lであり、かつ、5価のバナジウム源に含まれるバナジウム原子のモル数に対する酒石酸のモル数の割合が10〜150mol%である活物質の製造方法を提供する。 That is, the present invention provides a step of preparing a mixture containing a lithium source, a pentavalent vanadium source, a phosphoric acid source, water, and tartaric acid, and heating the mixture to 200 ° C. or higher under pressure to thereby produce LiVOPO. A hydrothermal synthesis step of obtaining 4 and the concentration of tartaric acid contained in the mixture is 0.5 to 2.0 mol / L, and the amount of tartaric acid relative to the number of moles of vanadium atoms contained in the pentavalent vanadium source Provided is a method for producing an active material having a mole ratio of 10 to 150 mol%.

ここで、上記混合物中、5価のバナジウム源に含まれるバナジウム原子のモル数に対する酒石酸のモル数の割合が25〜125mol%であることが好ましい。このような原料混合物を用いて作製された本発明の活物質によれば、より大きな放電容量を得ることができる。   Here, the ratio of the number of moles of tartaric acid to the number of moles of vanadium atoms contained in the pentavalent vanadium source in the above mixture is preferably 25 to 125 mol%. According to the active material of the present invention produced using such a raw material mixture, a larger discharge capacity can be obtained.

また、上記混合物は、リチウム源、5価のバナジウム源、及び、リン酸源が水に溶解した透明な溶液であることが好ましい。このような溶液を用いると、本発明の活物質を確実に得ることができる。   The mixture is preferably a transparent solution in which a lithium source, a pentavalent vanadium source, and a phosphoric acid source are dissolved in water. When such a solution is used, the active material of the present invention can be obtained reliably.

また、本発明は、平均粒子径が10〜145nmであり、結晶子の径が1〜70nmであり、LiVOPOを主成分として含有する粒子を含む活物質を提供する。 In addition, the present invention provides an active material including particles having an average particle diameter of 10 to 145 nm, a crystallite diameter of 1 to 70 nm, and containing LiVOPO 4 as a main component.

本発明の活物質は上述の方法により得られるが、本発明の活物質によれば、十分な放電容量が得られる。その理由は明らかではないが、平均粒子径及び結晶子の径が従来の活物質と比べて極めて小さいことにより、LiVOPOの結晶格子内へのリチウムイオンの拡散が行われ易くなるため、リチウムイオンの挿入脱離が行われ易くなると考えられる。 The active material of the present invention can be obtained by the above-described method. However, according to the active material of the present invention, a sufficient discharge capacity can be obtained. The reason is not clear, but since the average particle diameter and the crystallite diameter are extremely small compared to the conventional active material, lithium ions are easily diffused into the crystal lattice of LiVOPO 4. It is considered that the insertion and removal of is easier.

ここで、本発明の活物質は、上記粒子が凝集体を形成し、凝集体の平均径が500〜5000nmであるであることが好ましい。凝集体の平均径が上記特定の範囲内の値であることにより、十分な放電容量を得ることができる。   Here, in the active material of the present invention, it is preferable that the particles form an aggregate, and the average diameter of the aggregate is 500 to 5000 nm. A sufficient discharge capacity can be obtained when the average diameter of the aggregate is a value within the specific range.

また、本発明は、集電体と、上記活物質を含み上記集電体上に設けられた活物質層と、を備える電極を提供する。これにより、十分な放電容量の電極が得られる。   The present invention also provides an electrode comprising a current collector and an active material layer including the active material and provided on the current collector. Thereby, an electrode having a sufficient discharge capacity can be obtained.

また、本発明は、上記電極を備えるリチウム二次電池を提供する。これにより、十分な放電容量のリチウム二次電池を得られる。   Moreover, this invention provides a lithium secondary battery provided with the said electrode. Thereby, a lithium secondary battery having a sufficient discharge capacity can be obtained.

本発明によれば、十分な放電容量を得られる活物質、これを含む電極、当該電極を備えるリチウム二次電池、及び活物質の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the active material which can obtain sufficient discharge capacity, the electrode containing this, a lithium secondary battery provided with the said electrode, and the manufacturing method of an active material can be provided.

本実施形態に係る活物質の一例を示す模式図である。It is a schematic diagram which shows an example of the active material which concerns on this embodiment. 本実施形態に係る活物質の一例を示す電子顕微鏡写真である。It is an electron micrograph which shows an example of the active material which concerns on this embodiment. 本実施形態に係るリチウムイオン二次電池の模式断面図である。It is a schematic cross section of the lithium ion secondary battery according to the present embodiment.

以下、図面を参照しながら本発明の好適な実施形態について詳細に説明する。なお、以下の説明では、同一又は相当部分には同一符号を付し、重複する説明は省略する。また、図面の寸法比率は図示の比率に限られるものではない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the following description, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted. Further, the dimensional ratios in the drawings are not limited to the illustrated ratios.

<活物質>
まず、本実施形態に係る活物質について説明する。図1は、本実施形態に係る活物質の一例を示す模式図である。図2は、本実施形態に係る活物質の一例を示す電子顕微鏡写真である。本実施形態に係る活物質2は、平均粒子径が10〜145nmであり、結晶子の径が1〜70nmであり、LiVOPOを主成分として含有する複数の粒子1(粒子群)を含む。ここで、粒子1は、活物質2を構成する一次粒子を意味する。
<Active material>
First, the active material according to the present embodiment will be described. FIG. 1 is a schematic diagram illustrating an example of an active material according to the present embodiment. FIG. 2 is an electron micrograph showing an example of the active material according to the present embodiment. The active material 2 according to this embodiment includes a plurality of particles 1 (particle group) having an average particle diameter of 10 to 145 nm, a crystallite diameter of 1 to 70 nm, and containing LiVOPO 4 as a main component. Here, the particle 1 means a primary particle constituting the active material 2.

ここで、「LiVOPOを主成分とする」とは、一次粒子1全量を基準として、LiVOPOを80質量%以上、好ましくは90質量%以上、より好ましくは95質量%以上含むことを意味する。ここで、LiVOPOは、α型結晶構造のLiVOPOやβ型結晶構造のLiVOPO等の異なる結晶構造を含む。これらの結晶構造は、通常、X線回折法により同定することができる。通常、β型結晶構造のLiVOPOは2θ=27.0度にピークが現れ、α型結晶構造のLiVOPOは2θ=27.2度にピークが現れる。本実施形態に係る活物質2は、後述するように結晶子が極めて小さいため、2θ=27.0度〜2θ=27.2度の間にブロードなピークが現れる。そのため、活物質2が、α型結晶構造のLiVOPO又はβ型結晶構造のLiVOPOのいずれの結晶構造を主に含んでいるのかは必ずしも明らかではない。しかし、本実施形態に係る活物質2のX線回折測定の結果によれば、2θ=27.0度のピーク強度よりも2θ=27.2度のピーク強度のほうが相対的に高く検出されることから、α型結晶構造のLiVOPOが主に含まれるものと推測される。α型の結晶構造はβ型の結晶構造に比して熱力学的に安定な構造であるため、熱に対する安定性、長期使用における耐久性の観点で好ましい。
本実施形態に係る活物質2は、β型結晶構造のLiVOPO及びα型結晶構造のLiVOPO以外にも、未反応の原料成分等を微量含んでもよい。
Here, “having LiVOPO 4 as a main component” means that LiVOPO 4 is contained in an amount of 80% by mass or more, preferably 90% by mass or more, more preferably 95% by mass or more based on the total amount of primary particles 1. . Here, LiVOPO 4 includes different crystal structures 4 such as LiVOPO of LiVOPO 4 and β-type crystal structure of the α-type crystal structure. These crystal structures can usually be identified by an X-ray diffraction method. Usually, LiVOPO 4 of β-type crystal structure peaks appear in 2 [Theta] = 27.0 degrees, LiVOPO 4 of α-type crystal structure peaks appear in 2 [Theta] = 27.2 degrees. Since the active material 2 according to the present embodiment has a very small crystallite as described later, a broad peak appears between 2θ = 27.0 degrees and 2θ = 27.2 degrees. Therefore, the active material 2, any one of the crystal structure are in mainly comprise of LiVOPO 4 of LiVOPO 4 or β-type crystal structure of the α-type crystal structure is not always clear. However, according to the result of the X-ray diffraction measurement of the active material 2 according to this embodiment, the peak intensity at 2θ = 27.2 degrees is detected to be relatively higher than the peak intensity at 2θ = 27.0 degrees. From this, it is presumed that LiVOPO 4 having an α-type crystal structure is mainly contained. Since the α-type crystal structure is a thermodynamically stable structure as compared with the β-type crystal structure, it is preferable in terms of stability to heat and durability in long-term use.
The active material 2 according to the present embodiment may contain a small amount of unreacted raw material components in addition to the β-type crystal structure LiVOPO 4 and the α-type crystal structure LiVOPO 4 .

結晶子の径(以下、「結晶子径」ということがある。)は、1〜70nmであり、好ましくは10〜65nmであり、より好ましくは15〜45nmであり、さらに好ましくは17〜35nmである。なお、結晶子とは、単結晶とみなせる最大の集まりを意味する。
また、活物質2の一次粒子1の平均粒子径は、10〜145nmであり、好ましくは20〜140nmであり、より好ましくは40〜105nmであり、さらに好ましくは42〜80nmである。
The crystallite diameter (hereinafter sometimes referred to as “crystallite diameter”) is 1 to 70 nm, preferably 10 to 65 nm, more preferably 15 to 45 nm, and still more preferably 17 to 35 nm. is there. The crystallite means the largest group that can be regarded as a single crystal.
Moreover, the average particle diameter of the primary particle 1 of the active material 2 is 10-145 nm, Preferably it is 20-140 nm, More preferably, it is 40-105 nm, More preferably, it is 42-80 nm.

ここで、本実施形態に係る結晶子と、この結晶子により構成される活物質2の一次粒子径との関係について、以下に説明する。
本実施形態に係る活物質2においては、一次粒子1が、複数の結晶子により構成されていることが好ましい。一次粒子1が、複数の結晶子により構成されていることにより、隣接する結晶子から形成される結晶粒界も増加することとなる。結晶粒界におけるリチウムイオンの拡散速度は、結晶子内のリチウムイオンの拡散速度よりも早く、LiVOPOの結晶格子内へのリチウムイオンの拡散が行われ易くなるため、リチウムイオンの挿入脱離が行われ易くなると考えられる。
Here, the relationship between the crystallite which concerns on this embodiment, and the primary particle diameter of the active material 2 comprised by this crystallite is demonstrated below.
In the active material 2 according to the present embodiment, it is preferable that the primary particle 1 is composed of a plurality of crystallites. Since the primary particles 1 are composed of a plurality of crystallites, the crystal grain boundaries formed from adjacent crystallites also increase. The diffusion rate of lithium ions in the crystal grain boundary is faster than the diffusion rate of lithium ions in the crystallite, and the diffusion of lithium ions into the crystal lattice of LiVOPO 4 is easy to be performed. It is thought that it becomes easy to be performed.

ただし、活物質2の一次粒子1は必ずしも複数の結晶子により構成されている必要はなく、1つの結晶子によって構成されていてもよい。一次粒子1が1つの結晶子によって構成されている場合には、平均一次粒子径が1つの結晶子径と等しいこととなり、一次粒子1の平均粒子径は小さく、比表面積が増加することとなり、リチウムイオンは拡散し易くなり、リチウムイオンの挿入脱離が行われ易くなると考えられる。   However, the primary particles 1 of the active material 2 do not necessarily need to be composed of a plurality of crystallites, and may be composed of a single crystallite. When the primary particles 1 are composed of one crystallite, the average primary particle diameter is equal to one crystallite diameter, the average particle diameter of the primary particles 1 is small, and the specific surface area is increased. It is considered that lithium ions are easily diffused and lithium ions are easily inserted and desorbed.

結晶子径は、例えば、X線回折装置で半値幅を測定し、下記のScherrerの式に代入することにより算出できる。
結晶子の大きさ(Å)=K・λ/(β・cosθ) …(1)
(上式(1)中、KはScherrer係数であり、λは使用するX線管球の波長であり、βは測定された半値幅であり、θは測定された2θを1/2倍して算出した値である。
The crystallite diameter can be calculated, for example, by measuring the half width with an X-ray diffractometer and substituting it into the following Scherrer equation.
Crystallite size (Å) = K · λ / (β · cos θ) (1)
(In the above formula (1), K is the Scherrer coefficient, λ is the wavelength of the X-ray tube to be used, β is the measured half width, θ is 1/2 times the measured 2θ. This is the calculated value.

活物質2の一次粒子1の平均粒子径は、一次粒子1に対して測定した個数基準の粒度分布における、累積率が50%であるD50の値である。一次粒子1の個数基準の粒度分布は、例えば、高分解能走査型電子顕微鏡で観察したイメージに基づいた一次粒子1の投影面積から投影面積円相当径を測定し、その累積率から算出することができる。なお、投影面積円相当径とは、粒子(一次粒子1)の投影面積と同じ投影面積を持つ球を想定し、その球の直径(円相当径)を粒子径(一次粒子1の粒子径)として表したものである。なお、後述する「凝集体の平均径」とは、上述の平均一次粒子径と同様に、一次粒子1の凝集粒子である活物質2(すなわち、二次粒子)に対して測定した個数基準の粒度分布における、累積率が50%であるD50の値である。   The average particle diameter of the primary particles 1 of the active material 2 is a value of D50 having a cumulative rate of 50% in the number-based particle size distribution measured with respect to the primary particles 1. The particle size distribution based on the number of primary particles 1 can be calculated from, for example, the projected area circle equivalent diameter from the projected area of the primary particle 1 based on the image observed with a high-resolution scanning electron microscope, and the cumulative ratio. it can. The projected area equivalent circle diameter assumes a sphere having the same projected area as the projected area of the particle (primary particle 1), and the diameter (equivalent circle diameter) of the sphere is the particle diameter (particle diameter of the primary particle 1). It is expressed as In addition, the “average diameter of the aggregate” to be described later is the number-based number measured with respect to the active material 2 (that is, the secondary particles) that is the aggregated particles of the primary particles 1, similarly to the average primary particle diameter described above. It is a value of D50 in which the cumulative ratio is 50% in the particle size distribution.

本実施形態に係る活物質2は、一次粒子1が凝集してなり、その凝集体の平均径(すなわち、二次粒子の平均粒子径)は、500〜5000nmであることが好ましい。また、本実施形態に係る活物質2の形状は、より大きな放電容量を得る観点から、図2に示すように、球状であることが好ましい。   In the active material 2 according to this embodiment, the primary particles 1 are aggregated, and the average diameter of the aggregate (that is, the average particle diameter of the secondary particles) is preferably 500 to 5000 nm. Further, the shape of the active material 2 according to the present embodiment is preferably spherical as shown in FIG. 2 from the viewpoint of obtaining a larger discharge capacity.

<活物質の製造方法>
本実施形態に係る活物質の製造方法について説明する。本実施形態に係る活物質の製造方法は、下記の原料調整工程と、水熱合成工程と、を備える。
[原料調整工程]
原料調整工程は、リチウム源と、5価のバナジウム源と、リン酸源と、水と、酒石酸とを含む混合物を調整する工程である。混合物には、酒石酸を、混合物全量を基準として0.5〜2.0mol/L、かつ、5価のバナジウム源に含まれるバナジウム原子のモル数に対する酒石酸のモル数の割合が10〜150mol%となるよう加える。
<Method for producing active material>
A method for producing an active material according to this embodiment will be described. The manufacturing method of the active material which concerns on this embodiment is equipped with the following raw material adjustment process and a hydrothermal synthesis process.
[Raw material adjustment process]
The raw material adjusting step is a step of adjusting a mixture containing a lithium source, a pentavalent vanadium source, a phosphoric acid source, water, and tartaric acid. In the mixture, tartaric acid is 0.5 to 2.0 mol / L based on the total amount of the mixture, and the ratio of the number of moles of tartaric acid to the number of moles of vanadium atoms contained in the pentavalent vanadium source is 10 to 150 mol%. Add to be.

(混合物)
リチウム源としては、例えば、LiNO、LiCO、LiOH、LiCl、LiSO及びCHCOOLi等のリチウム化合物が挙げられる。これらの中でも、LiNO、LiCOが好ましい。
5価のバナジウム源としては、V及びNHVO等のバナジウム化合物が挙げられる。
リン酸源としては、例えば、HPO、NHPO、(NHHPO及びLiPO等のPO含有化合物が挙げられる。これらの中でも、HPO、(NHHPOが好ましい。
(blend)
Examples of the lithium source include lithium compounds such as LiNO 3 , Li 2 CO 3 , LiOH, LiCl, Li 2 SO 4, and CH 3 COOLi. Among these, LiNO 3 and Li 2 CO 3 are preferable.
Examples of the pentavalent vanadium source include vanadium compounds such as V 2 O 5 and NH 4 VO 3 .
Examples of the phosphoric acid source include PO 4 -containing compounds such as H 3 PO 4 , NH 4 H 2 PO 4 , (NH 4 ) 2 HPO 4, and Li 3 PO 4 . Among these, H 3 PO 4 and (NH 4 ) 2 HPO 4 are preferable.

リチウム源は、5価のバナジウム原子のモル数に対するリチウム原子のモル数の割合が0.95〜1.2となるように配合することが好ましい。また、リン酸源は、5価のバナジウム原子のモル数に対するリン原子のモル数の割合が0.95〜1.2となるように配合することが好ましい。リチウム原子及びリン原子の少なくとも一方の配合比率が0.95より少ないと、得られる活物質の放電容量は減少する傾向があり、レート特性は低下する傾向がある。リチウム原子及びリン原子の少なくとも一方の配合比率が1.2よりも多いと、得られる活物質の放電容量は減少する傾向がある。   The lithium source is preferably blended so that the ratio of the number of moles of lithium atoms to the number of moles of pentavalent vanadium atoms is 0.95 to 1.2. Moreover, it is preferable to mix | blend a phosphoric acid source so that the ratio of the number of moles of a phosphorus atom with respect to the number of moles of a pentavalent vanadium atom may be 0.95-1.2. When the blending ratio of at least one of lithium atoms and phosphorus atoms is less than 0.95, the discharge capacity of the obtained active material tends to decrease, and the rate characteristics tend to decrease. When the blending ratio of at least one of lithium atoms and phosphorus atoms is more than 1.2, the discharge capacity of the obtained active material tends to decrease.

酒石酸の濃度は、混合物全量を基準として0.5〜2.0mol/Lであり、かつ、5価のバナジウム源に含まれるバナジウム原子のモル数に対する酒石酸のモル数の割合が10〜150mol%である。酒石酸を上記の割合で配合させると、本実施形態に係る活物質2を得ることができる。また、より大きな放電容量の活物質を得る観点から、混合物全量を基準として0.9〜1.1mol/Lであり、かつ、5価のバナジウム源に含まれるバナジウム原子のモル数に対する酒石酸のモル数の割合が25〜125mol%であることが好ましく、50〜100mol%であることがより好ましい。本実施形態に係る酒石酸には、L−(+)−酒石酸(2R,3R)、D−(−)−酒石酸(2S,3S)、メソ酒石酸(2R,3S)、ならびに、L体とD体の等量混合物であるラセミ混合物含まれるが、L−(+)−酒石酸(2R,3R)が好ましい。   The concentration of tartaric acid is 0.5 to 2.0 mol / L based on the total amount of the mixture, and the ratio of the number of moles of tartaric acid to the number of moles of vanadium atoms contained in the pentavalent vanadium source is 10 to 150 mol%. is there. When tartaric acid is blended in the above ratio, the active material 2 according to this embodiment can be obtained. Further, from the viewpoint of obtaining an active material having a larger discharge capacity, the molar amount of tartaric acid is 0.9 to 1.1 mol / L based on the total amount of the mixture and the number of moles of vanadium atoms contained in the pentavalent vanadium source. The number ratio is preferably 25 to 125 mol%, more preferably 50 to 100 mol%. Tartaric acid according to the present embodiment includes L-(+)-tartaric acid (2R, 3R), D-(-)-tartaric acid (2S, 3S), mesotartaric acid (2R, 3S), and L-form and D-form. A racemic mixture, which is a mixture of equal amounts of L-(+)-tartaric acid (2R, 3R), is preferred.

ところで、得られた活物質を用いて電極の活物質含有層を作製する場合、導電性を高めるべく、通常この活物質の表面に炭素材料等の導電材を接触させることが多い。この方法として、活物質の製造後に活物質と導電材とを混合して活物質含有層を形成してもよいが、例えば、水熱合成の原料となる混合物中に、炭素材料を導電材として添加して活物質に炭素を付着させることもできる。   By the way, when an active material-containing layer of an electrode is produced using the obtained active material, a conductive material such as a carbon material is usually brought into contact with the surface of the active material in order to increase conductivity. As this method, the active material and the conductive material may be mixed after the production of the active material to form the active material-containing layer. For example, the carbon material is used as the conductive material in the mixture as a raw material for hydrothermal synthesis. It can also be added to cause carbon to adhere to the active material.

混合物中に炭素材料である導電材を添加する場合の導電材としては、例えば、活性炭、黒鉛、ソフトカーボン、ハードカーボン等が挙げられる。これらの中でも水熱合成時に炭素粒子を混合物中に容易に分散させることができる、活性炭を用いることが好ましい。ただし、導電材は必ずしも水熱合成時に混合物に全量混合されている必要はなく、少なくとも一部が水熱合成時に混合物に混合されることが好ましい。これにより、活物質含有層を形成する際の結合剤を低減して容量密度を増加させることができる場合がある。   Examples of the conductive material in the case where a conductive material that is a carbon material is added to the mixture include activated carbon, graphite, soft carbon, and hard carbon. Among these, it is preferable to use activated carbon that can easily disperse carbon particles in the mixture during hydrothermal synthesis. However, the conductive material is not necessarily mixed in the mixture at the time of hydrothermal synthesis, and it is preferable that at least a part of the conductive material is mixed in the mixture at the time of hydrothermal synthesis. Thereby, the binder at the time of forming an active material content layer can be reduced, and a capacity density can be increased.

水熱合成工程における混合物中の炭素粒子等の上記導電材の含有量は、炭素粒子を構成する炭素原子のモル数Cと、例えば5価のバナジウム化合物に含まれるバナジウム原子のモル数Mとの比C/Mが、0.04≦C/M≦4を満たすように調製することが好ましい。導電材の含有量(モル数C)が少なすぎる場合、活物質と導電材により構成される電極活物質の電子伝導性及び容量密度が低下する傾向がある。導電材の含有量が多すぎる場合、電極活物質に占める活物質の重量が相対的に減少し、電極活物質の容量密度が減少する傾向がある。導電材の含有量を上記の範囲内とすることにより、これらの傾向を抑制できる。   The content of the conductive material such as carbon particles in the mixture in the hydrothermal synthesis step is as follows: the number of moles C of carbon atoms constituting the carbon particles and the number of moles M of vanadium atoms contained in a pentavalent vanadium compound, for example. It is preferable to prepare such that the ratio C / M satisfies 0.04 ≦ C / M ≦ 4. When there is too little content (mole number C) of an electrically conductive material, there exists a tendency for the electronic conductivity and capacity density of the electrode active material comprised with an active material and an electrically conductive material to fall. When there is too much content of a electrically conductive material, the weight of the active material which occupies for an electrode active material will reduce relatively, and there exists a tendency for the capacity density of an electrode active material to reduce. By setting the content of the conductive material within the above range, these tendencies can be suppressed.

混合物中における水の量は水熱合成が可能であれば特に限定されないが、混合物中の水以外の物質の割合は35質量%以下となることが好ましい。   The amount of water in the mixture is not particularly limited as long as hydrothermal synthesis is possible, but the ratio of substances other than water in the mixture is preferably 35% by mass or less.

混合物を調整する際の原料の投入順序は特に制限されない。例えば、上記混合物に含まれる原料をまとめて混合してもよく、また、最初に、5価のバナジウム化合物と水とPO含有化合物とを混合し、その後、酒石酸を添加し、さらにその後、リチウム化合物を加えてもよい。水熱合成直前の混合物は、十分に混合させ、リチウム化合物、5価のバナジウム化合物、及びPO含有化合物を十分に水に分散させておいても、また、完全に水に溶解させておいてもよいが、リチウム化合物、5価のバナジウム化合物、及びPO含有化合物を水に完全に溶解させた、透明な溶液であることが特に好ましい。 There are no particular restrictions on the order in which the raw materials are charged when adjusting the mixture. For example, the raw materials contained in the above mixture may be mixed together, or first, a pentavalent vanadium compound, water, and a PO 4 -containing compound are mixed, then tartaric acid is added, and then lithium Compounds may be added. The mixture immediately before the hydrothermal synthesis is thoroughly mixed, and the lithium compound, the pentavalent vanadium compound, and the PO 4 -containing compound are sufficiently dispersed in water, or are completely dissolved in water. However, a transparent solution in which a lithium compound, a pentavalent vanadium compound, and a PO 4 -containing compound are completely dissolved in water is particularly preferable.

[水熱合成工程]
水熱合成工程では、まず、内部を加熱、加圧する機能を有する反応容器(例えば、オートクレーブ等)内に、上述した混合物(リチウム化合物、5価のバナジウム化合物、PO含有化合物、水、酒石酸等)を投入する。なお、反応容器内で、混合物を調整してもよい。
[Hydrothermal synthesis process]
In the hydrothermal synthesis step, first, the above-mentioned mixture (lithium compound, pentavalent vanadium compound, PO 4 -containing compound, water, tartaric acid, etc.) is placed in a reaction vessel (for example, autoclave) having a function of heating and pressurizing the inside. ). In addition, you may adjust a mixture within reaction container.

次に、反応容器を密閉して、混合物を加圧しながら200℃以上に加熱することにより、混合物の水熱反応を進行させる。これにより、本実施形態に係るLiVOPOを主成分として含有し、平均粒子径が10〜145nmであり、結晶子の径が1〜70nmである活物質2が水熱合成される。 Next, the reaction vessel is sealed, and the mixture is heated to 200 ° C. or higher while being pressurized, thereby causing the hydrothermal reaction of the mixture to proceed. Thus, contain LiVOPO 4 according to the present embodiment as the main component, an average particle diameter of 10~145Nm, diameter of crystallite active material 2 is hydrothermally synthesized is 1~70Nm.

水熱合成により得られた活物質2は、通常、水熱合成後の液中に分散しており、水熱合成後の液体は懸濁液となっている。そして、水熱合成後の液を、例えば、ろ過して固体を捕集し、捕集された固体を水やアセトン等で洗浄し、その後乾燥させることによりLiVOPOを主成分として含有する活物質2を高純度に得ることができる。 The active material 2 obtained by hydrothermal synthesis is usually dispersed in the liquid after hydrothermal synthesis, and the liquid after hydrothermal synthesis is a suspension. Then, the liquid after hydrothermal synthesis is filtered, for example, to collect solids, and the collected solids are washed with water, acetone, or the like, and then dried to obtain an active material containing LiVOPO 4 as a main component. 2 can be obtained with high purity.

水熱合成工程において、混合物に加える圧力は、0.1〜30MPaとすることが好ましい。混合物に加える圧力が低すぎると、得られるLiVOPOの結晶性が低下し、活物質の容量密度が減少する傾向がある。混合物に加える圧力が高すぎると、反応容器に高い耐圧性が求められ、活物質製造コストが増大する傾向がある。混合物に加える圧力を上記の範囲内とすることによって、これらの傾向を抑制できる。 In the hydrothermal synthesis step, the pressure applied to the mixture is preferably 0.1 to 30 MPa. If the pressure applied to the mixture is too low, the crystallinity of the resulting LiVOPO 4 tends to decrease, and the volume density of the active material tends to decrease. If the pressure applied to the mixture is too high, the reaction vessel is required to have high pressure resistance, and the active material production cost tends to increase. By setting the pressure applied to the mixture within the above range, these tendencies can be suppressed.

水熱合成工程における混合物の温度は、200〜300℃とすることが好ましく、得られた活物質の放電容量を向上させる観点から、220〜280℃とすることがより好ましい。混合物の温度が低すぎると、得られるLiVOPOの結晶性が低下し、活物質の容量密度が減少する傾向がある。混合物の温度が高すぎると、反応容器に高い耐熱性が求められ、活物質の製造コストが増大する傾向がある。混合物の温度を上記の範囲内とすることによって、これらの傾向も抑制できる。 The temperature of the mixture in the hydrothermal synthesis step is preferably 200 to 300 ° C, and more preferably 220 to 280 ° C from the viewpoint of improving the discharge capacity of the obtained active material. If the temperature of the mixture is too low, the crystallinity of the resulting LiVOPO 4 tends to decrease, and the volume density of the active material tends to decrease. When the temperature of the mixture is too high, the reaction vessel is required to have high heat resistance, and the production cost of the active material tends to increase. By setting the temperature of the mixture within the above range, these tendencies can be suppressed.

[焼成工程]
本実施形態に係る活物質の製造方法は、水熱合成により得られた材料を加熱する工程をさらに備えていてもよい(以下、「焼成工程」という場合がある。)。この工程においては、水熱合成工程を経て得られた活物質に残留した不純物等が除去される現象が起こるものと考えられる。
[Baking process]
The method for producing an active material according to the present embodiment may further include a step of heating a material obtained by hydrothermal synthesis (hereinafter may be referred to as a “firing step”). In this step, it is considered that a phenomenon occurs in which impurities remaining in the active material obtained through the hydrothermal synthesis step are removed.

ここで、焼成工程では、上述のLiVOPOを主成分として含む活物質を400℃〜600℃に加熱すればよい。加熱温度が高すぎると、活物質の粒成長が進み粒径(一次粒子径)が増大する結果、活物質におけるリチウムの拡散が遅くなり、活物質の容量密度が減少する傾向がある。一方、加熱温度が低すぎると、焼成の効果が得られない。加熱温度を上記の範囲内とすることによって、これらの傾向を抑制できる。加熱時間は特に限定されないが、3〜8時間とすることが好ましい。 Here, in the firing step, an active material containing the above-described LiVOPO 4 as a main component may be heated to 400 ° C. to 600 ° C. If the heating temperature is too high, grain growth of the active material proceeds and the particle size (primary particle size) increases, so that lithium diffusion in the active material is slowed and the capacity density of the active material tends to decrease. On the other hand, if the heating temperature is too low, the firing effect cannot be obtained. By setting the heating temperature within the above range, these tendencies can be suppressed. The heating time is not particularly limited, but is preferably 3 to 8 hours.

焼成工程の雰囲気は特に限定されないが、酒石酸の除去を行い易くするためには、大気雰囲気であることが好ましい。一方、アルゴンガス、窒素ガス等の不活性雰囲気中で行うこともできる。   The atmosphere of the firing step is not particularly limited, but is preferably an air atmosphere in order to facilitate the removal of tartaric acid. On the other hand, it can also be performed in an inert atmosphere such as argon gas or nitrogen gas.

本実施形態に係る活物質の製造方法によれば、平均粒子径が10〜145nmであり、結晶子の径が1〜70nmであり、LiVOPOを主成分として含有する粒子を含む活物質を得ることができる。そして、このような活物質を用いた電極、及び当該電極を用いたリチウム二次電池は、1Cにおいても大きな放電容量を得ることができる。このような知見は従来得られておらず、このような効果は、従来技術と比較して顕著な効果である。 According to the method for producing an active material according to the present embodiment, an active material including particles having an average particle diameter of 10 to 145 nm, a crystallite diameter of 1 to 70 nm, and containing LiVOPO 4 as a main component is obtained. be able to. An electrode using such an active material and a lithium secondary battery using the electrode can obtain a large discharge capacity even at 1C. Such knowledge has not been obtained so far, and such an effect is a remarkable effect as compared with the prior art.

<電極及び当該電極を用いたリチウム二次電池>
次に、本実施形態に係る活物質を用いた電極、及び当該電極を用いたリチウムイオン二次電池について説明する。本実施形態に係る電極は、集電体と、上記活物質を含み上記集電体上に設けられた活物質層と、を備える電極である。図3は、当該電極を用いた本実施形態に係るリチウムイオン二次電池100の模式断面図である。
<Electrode and lithium secondary battery using the electrode>
Next, an electrode using the active material according to the present embodiment and a lithium ion secondary battery using the electrode will be described. The electrode which concerns on this embodiment is an electrode provided with a collector and the active material layer provided on the said collector containing the said active material. FIG. 3 is a schematic cross-sectional view of a lithium ion secondary battery 100 according to this embodiment using the electrode.

リチウムイオン二次電池100は、主として、積層体30、積層体30を密閉した状態で収容するケース50、及び積層体30に接続された一対のリード60,62を備えている。   The lithium ion secondary battery 100 mainly includes a laminate 30, a case 50 that accommodates the laminate 30 in a sealed state, and a pair of leads 60 and 62 connected to the laminate 30.

積層体30は、一対の正極10、負極20がセパレータ18を挟んで対向配置されたものである。正極10は、板状(膜状)の正極集電体12上に正極活物質層14が設けられたものである。負極20は、板状(膜状)の負極集電体22上に負極活物質層24が設けられたものである。正極活物質層14及び負極活物質層24がセパレータ18の両側にそれぞれ接触している。正極集電体12及び負極集電体22の端部には、それぞれリード60,62が接続されており、リード60,62の端部はケース50の外部にまで延びている。   The laminated body 30 is configured such that a pair of the positive electrode 10 and the negative electrode 20 are opposed to each other with the separator 18 interposed therebetween. The positive electrode 10 is obtained by providing a positive electrode active material layer 14 on a plate-like (film-like) positive electrode current collector 12. The negative electrode 20 is obtained by providing a negative electrode active material layer 24 on a plate-like (film-like) negative electrode current collector 22. The positive electrode active material layer 14 and the negative electrode active material layer 24 are in contact with both sides of the separator 18. Leads 60 and 62 are connected to the end portions of the positive electrode current collector 12 and the negative electrode current collector 22, respectively, and the end portions of the leads 60 and 62 extend to the outside of the case 50.

以下、正極10及び負極20を総称して、電極10、20といい、正極集電体12及び負極集電体22を総称して集電体12、22といい、正極活物質層14及び負極活物質層24を総称して活物質層14、24という。   Hereinafter, the positive electrode 10 and the negative electrode 20 are collectively referred to as electrodes 10 and 20, and the positive electrode current collector 12 and the negative electrode current collector 22 are collectively referred to as current collectors 12 and 22, and the positive electrode active material layer 14 and the negative electrode The active material layers 24 are collectively referred to as active material layers 14 and 24.

まず、電極10、20について具体的に説明する。
(正極10)
正極集電体12は、導電性の板材であればよく、例えば、アルミ、銅、ニッケル箔の金属薄板を用いることができる。
正極活物質層14は、本実施形態に係る活物質、結合剤、必要に応じた量の導電材を含むものである。
First, the electrodes 10 and 20 will be specifically described.
(Positive electrode 10)
The positive electrode current collector 12 may be a conductive plate material, and for example, a thin metal plate of aluminum, copper, or nickel foil can be used.
The positive electrode active material layer 14 includes an active material according to the present embodiment, a binder, and a conductive material in an amount as necessary.

結合剤は、活物質同士を結合すると共に、活物質と正極集電体12とを結合している。   The binder binds the active materials to each other and binds the active material to the positive electrode current collector 12.

結合剤の材質としては、上述の結合が可能であればよく、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン−テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン−クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂が挙げられる。   The binder may be made of any material as long as the above-described bonding is possible. For example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoro Ethylene-perfluoroalkyl vinyl ether copolymer (PFA), ethylene-tetrafluoroethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), ethylene-chlorotrifluoroethylene copolymer (ECTFE), polyvinyl fluoride A fluororesin such as (PVF) is used.

また、上記の他に、結合剤として、例えば、ビニリデンフルオライド−ヘキサフルオロプロピレン系フッ素ゴム(VDF−HFP系フッ素ゴム)、ビニリデンフルオライド−ヘキサフルオロプロピレン−テトラフルオロエチレン系フッ素ゴム(VDF−HFP−TFE系フッ素ゴム)、ビニリデンフルオライド−ペンタフルオロプロピレン系フッ素ゴム(VDF−PFP系フッ素ゴム)、ビニリデンフルオライド−ペンタフルオロプロピレン−テトラフルオロエチレン系フッ素ゴム(VDF−PFP−TFE系フッ素ゴム)、ビニリデンフルオライド−パーフルオロメチルビニルエーテル−テトラフルオロエチレン系フッ素ゴム(VDF−PFMVE−TFE系フッ素ゴム)、ビニリデンフルオライド−クロロトリフルオロエチレン系フッ素ゴム(VDF−CTFE系フッ素ゴム)等のビニリデンフルオライド系フッ素ゴムを用いてもよい。   In addition to the above, as the binder, for example, vinylidene fluoride-hexafluoropropylene fluorine rubber (VDF-HFP fluorine rubber), vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene fluorine rubber (VDF-HFP) -TFE fluorine rubber), vinylidene fluoride-pentafluoropropylene fluorine rubber (VDF-PFP fluorine rubber), vinylidene fluoride-pentafluoropropylene-tetrafluoroethylene fluorine rubber (VDF-PFP-TFE fluorine rubber) , Vinylidene fluoride-perfluoromethyl vinyl ether-tetrafluoroethylene fluorine rubber (VDF-PFMVE-TFE fluorine rubber), vinylidene fluoride-chlorotrifluoroethylene fluorine It may be used vinylidene fluoride-based fluorine rubbers such as beam (VDF-CTFE-based fluorine rubber).

更に、上記の他に、結合剤として、例えば、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、芳香族ポリアミド、セルロース、スチレン・ブタジエンゴム、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム等を用いてもよい。また、スチレン・ブタジエン・スチレンブロック共重合体、その水素添加物、スチレン・エチレン・ブタジエン・スチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体、その水素添加物等の熱可塑性エラストマー状高分子を用いてもよい。更に、シンジオタクチック1,2−ポリブタジエン、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン(炭素数2〜12)共重合体等を用いてもよい。   In addition to the above, for example, polyethylene, polypropylene, polyethylene terephthalate, aromatic polyamide, cellulose, styrene / butadiene rubber, isoprene rubber, butadiene rubber, ethylene / propylene rubber and the like may be used as the binder. Also, thermoplastic elastomeric polymers such as styrene / butadiene / styrene block copolymers, hydrogenated products thereof, styrene / ethylene / butadiene / styrene copolymers, styrene / isoprene / styrene block copolymers, and hydrogenated products thereof. May be used. Further, syndiotactic 1,2-polybutadiene, ethylene / vinyl acetate copolymer, propylene / α-olefin (carbon number 2 to 12) copolymer may be used.

また、結合剤として電子伝導性の導電性高分子やイオン伝導性の導電性高分子を用いてもよい。電子伝導性の導電性高分子としては、例えば、ポリアセチレン等が挙げられる。この場合は、結合剤が導電材の機能も発揮するので導電材を添加しなくてもよい。   Alternatively, an electron conductive conductive polymer or an ion conductive conductive polymer may be used as the binder. Examples of the electron conductive conductive polymer include polyacetylene. In this case, since the binder exhibits the function of the conductive material, it is not necessary to add the conductive material.

イオン伝導性の導電性高分子としては、例えば、リチウムイオン等のイオンの伝導性を有するものを使用することができ、例えば、高分子化合物(ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル系高分子化合物、ポリエーテル化合物の架橋体高分子、ポリエピクロルヒドリン、ポリフォスファゼン、ポリシロキサン、ポリビニルピロリドン、ポリビニリデンカーボネート、ポリアクリロニトリル等)のモノマーと、LiClO、LiBF、LiPF、LiAsF、LiCl、LiBr、Li(CFSON、LiN(CSOリチウム塩又はリチウムを主体とするアルカリ金属塩と、を複合化させたもの等が挙げられる。複合化に使用する重合開始剤としては、例えば、上記のモノマーに適合する光重合開始剤または熱重合開始剤が挙げられる。 As the ion-conductive conductive polymer, for example, those having ion conductivity such as lithium ion can be used. For example, polymer compounds (polyether-based polymer compounds such as polyethylene oxide and polypropylene oxide) A crosslinked polymer of a polyether compound, polyepichlorohydrin, polyphosphazene, polysiloxane, polyvinylpyrrolidone, polyvinylidene carbonate, polyacrylonitrile, etc.) monomers, and LiClO 4 , LiBF 4 , LiPF 6 , LiAsF 6 , LiCl, LiBr, Examples include Li (CF 3 SO 2 ) 2 N, LiN (C 2 F 5 SO 2 ) 2 lithium salt, or a composite of alkali metal salt mainly composed of lithium. Examples of the polymerization initiator used for the combination include a photopolymerization initiator or a thermal polymerization initiator that is compatible with the above-described monomer.

正極活物質層14に含まれる結合剤の含有率は、活物質層の質量を基準として0.5〜6質量%であることが好ましい。結合剤の含有率が0.5質量%未満となると、結合剤の量が少なすぎて強固な活物質層を形成できなくなる傾向が大きくなる。また、結合剤の含有率が6質量%を超えると、電気容量に寄与しない結合剤の量が多くなり、十分な体積エネルギー密度を得ることが困難となる傾向が大きくなる。また、この場合、特に結合剤の電子伝導性が低いと活物質層の電気抵抗が上昇し、十分な電気容量が得られなくなる傾向が大きくなる。   It is preferable that the content rate of the binder contained in the positive electrode active material layer 14 is 0.5-6 mass% on the basis of the mass of an active material layer. When the binder content is less than 0.5% by mass, the amount of the binder is too small and a tendency to fail to form a strong active material layer increases. Moreover, when the content rate of a binder exceeds 6 mass%, the quantity of the binder which does not contribute to an electric capacity will increase, and the tendency for it to become difficult to obtain sufficient volume energy density becomes large. In this case, particularly, when the electronic conductivity of the binder is low, the electric resistance of the active material layer is increased, and a tendency that a sufficient electric capacity cannot be obtained increases.

導電材としては、例えば、カーボンブラック類、炭素材料、銅、ニッケル、ステンレス、鉄等の金属微粉、炭素材料及び金属微粉の混合物、ITO等の導電性酸化物が挙げられる。   Examples of the conductive material include carbon blacks, carbon materials, metal fine powders such as copper, nickel, stainless steel, and iron, a mixture of carbon materials and metal fine powders, and conductive oxides such as ITO.

(負極20)
負極集電体22は、導電性の板材であればよく、例えば、アルミ、銅、ニッケル箔の金属薄板を用いることができる。
負極活物質は特に限定されず、公知の電池用の負極活物質を使用できる。負極活物質としては、例えば、リチウムイオンを吸蔵・放出(インターカレート・デインターカレート、或いはドーピング・脱ドーピング)可能な黒鉛、難黒鉛化炭素、易黒鉛化炭素、低温度焼成炭素等の炭素材料、Al、Si、Sn等のリチウムと化合することのできる金属、SiO、SnO等の酸化物を主体とする非晶質の化合物、チタン酸リチウム(LiTi12)等を含む粒子が挙げられる。
結合材、導電材は、それぞれ、正極と同様のものを使用できる。
(Negative electrode 20)
The negative electrode current collector 22 may be a conductive plate material, and for example, a thin metal plate of aluminum, copper, or nickel foil can be used.
The negative electrode active material is not particularly limited, and a known negative electrode active material for a battery can be used. Examples of the negative electrode active material include graphite, non-graphitizable carbon, graphitizable carbon, and low-temperature calcined carbon that can occlude / release (intercalate / deintercalate, or dope / dedope) lithium ions. Carbon materials, metals that can be combined with lithium such as Al, Si, and Sn, amorphous compounds mainly composed of oxides such as SiO 2 and SnO 2 , lithium titanate (Li 4 Ti 5 O 12 ), etc. The particle | grains containing are mentioned.
As the binder and the conductive material, the same materials as those for the positive electrode can be used.

次に、本実施形態に係る電極10,20の製造方法について説明する。
(電極10,20の製造方法)
本実施形態に係る電極10,20の製造方法は、電極活物質層14,24の原料である塗料を、集体上に塗布する工程(以下、「塗布工程」ということがある。)と、集電体上に塗布された塗料中の溶媒を除去する工程(以下、「溶媒除去工程」ということがある。)と、を備える。
Next, a method for manufacturing the electrodes 10 and 20 according to this embodiment will be described.
(Method for manufacturing electrodes 10 and 20)
The manufacturing method of the electrodes 10 and 20 according to the present embodiment includes a step of applying a coating material, which is a raw material of the electrode active material layers 14 and 24, onto the aggregate (hereinafter, also referred to as “application step”), and a collector. And a step of removing the solvent in the paint applied on the electric body (hereinafter, also referred to as “solvent removal step”).

(塗布工程)
塗料を集電体12、22に塗布する塗布工程について説明する。塗料は、上記活物質、結合剤、及び溶媒を含む。塗料には、これらの成分の他に、例えば、活物質の導電性を高めるための導電材が含まれていてもよい。溶媒としては、溶媒としては、例えば、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド等を用いることができる。
(Coating process)
An application process for applying the paint to the current collectors 12 and 22 will be described. The paint contains the active material, the binder, and the solvent. In addition to these components, the coating material may contain, for example, a conductive material for increasing the conductivity of the active material. As the solvent, for example, N-methyl-2-pyrrolidone, N, N-dimethylformamide and the like can be used.

活物質、結合剤、溶媒、導電材等の塗料を構成する成分の混合方法は特に制限されず、混合順序もまた特に制限されない。例えば、まず、活物質、導電材及び結合剤を混合し、得られた混合物に、N−メチル−2−ピロリドンを加えて混合し、塗料を調整する。   The mixing method of the components constituting the paint such as the active material, the binder, the solvent, and the conductive material is not particularly limited, and the mixing order is not particularly limited. For example, first, an active material, a conductive material, and a binder are mixed, and N-methyl-2-pyrrolidone is added to the obtained mixture and mixed to prepare a paint.

上記塗料を、集電体12、22に塗布する。塗布方法としては、特に制限はなく、通常電極を作製する場合に採用される方法を用いることができる。例えば、スリットダイコート法、ドクターブレード法が挙げられる。   The paint is applied to the current collectors 12 and 22. There is no restriction | limiting in particular as an application | coating method, The method employ | adopted when producing an electrode normally can be used. Examples thereof include a slit die coating method and a doctor blade method.

(溶媒除去工程)
続いて、集電体12、22上に塗布された塗料中の溶媒を除去する。除去法は特に限定されず、塗料が塗布された集電体12、22を、例えば80℃〜150℃の雰囲気下で乾燥させればよい。
(Solvent removal step)
Subsequently, the solvent in the paint applied on the current collectors 12 and 22 is removed. The removal method is not particularly limited, and the current collectors 12 and 22 to which the paint is applied may be dried, for example, in an atmosphere of 80 ° C. to 150 ° C.

そして、このようにして活物質層14、24が形成された電極を、その後、必要に応じて例えば、ロールプレス装置等によりプレス処理すればよい。ロールプレスの線圧は例えば、10〜50kgf/cmとすることができる。   Then, the electrodes on which the active material layers 14 and 24 are formed in this way may then be pressed by a roll press device or the like as necessary. The linear pressure of the roll press can be, for example, 10 to 50 kgf / cm.

以上の工程を経て、本実施形態に係る電極を作製することができる。   The electrode according to this embodiment can be manufactured through the above steps.

本実施形態に係る電極によれば、正極活物質として本実施形態に係る活物質を用いるため、十分な放電容量の電極が得られる。   According to the electrode according to this embodiment, since the active material according to this embodiment is used as the positive electrode active material, an electrode having a sufficient discharge capacity can be obtained.

ここで、上述のように作製した電極を用いたリチウムイオン二次電池100の他の構成要素を説明する。   Here, another component of the lithium ion secondary battery 100 using the electrode manufactured as described above will be described.

電解質は、正極活物質層14、負極活物質層24、及び、セパレータ18の内部に含有させるものである。電解質としては、特に限定されず、例えば、本実施形態では、リチウム塩を含む電解質溶液(電解質水溶液、有機溶媒を使用する電解質溶液)を使用することができる。ただし、電解質水溶液は電気化学的に分解電圧が低いことにより、充電時の耐用電圧が低く制限されるので、有機溶媒を使用する電解質溶液(非水電解質溶液)であることが好ましい。電解質溶液としては、リチウム塩を非水溶媒(有機溶媒)に溶解したものが好適に使用される。リチウム塩としては、例えば、LiPF、LiClO、LiBF、LiAsF、LiCFSO、LiCFCFSO、LiC(CFSO、LiN(CFSO、LiN(CFCFSO、LiN(CFSO)(CSO)、LiN(CFCFCO)、LiBOB等の塩が使用できる。なお、これらの塩は1種を単独で使用してもよく、2種以上を併用してもよい。 The electrolyte is contained in the positive electrode active material layer 14, the negative electrode active material layer 24, and the separator 18. The electrolyte is not particularly limited, and, for example, in the present embodiment, an electrolyte solution containing a lithium salt (electrolyte aqueous solution, electrolyte solution using an organic solvent) can be used. However, the electrolyte aqueous solution is preferably an electrolyte solution (non-aqueous electrolyte solution) using an organic solvent because the electrochemical decomposition voltage is low, and the withstand voltage during charging is limited to a low level. As the electrolyte solution, a lithium salt dissolved in a non-aqueous solvent (organic solvent) is preferably used. Examples of the lithium salt include LiPF 6 , LiClO 4 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiCF 3 CF 2 SO 3 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 SO 2 ) 2 , LiN Salts such as (CF 3 CF 2 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiN (CF 3 CF 2 CO) 2 , LiBOB can be used. In addition, these salts may be used individually by 1 type, and may use 2 or more types together.

また、有機溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、及び、ジエチルカーボネート等が好ましく挙げられる。これらは単独で使用してもよく、2種以上を任意の割合で混合して使用してもよい。   Moreover, as an organic solvent, propylene carbonate, ethylene carbonate, diethyl carbonate, etc. are mentioned preferably, for example. These may be used alone or in combination of two or more at any ratio.

なお、本実施形態において、電解質は液状以外にゲル化剤を添加することにより得られるゲル状電解質であってもよい。また、電解質溶液に代えて、固体電解質(固体高分子電解質又はイオン伝導性無機材料からなる電解質)が含有されていてもよい。   In the present embodiment, the electrolyte may be a gel electrolyte obtained by adding a gelling agent in addition to liquid. Further, instead of the electrolyte solution, a solid electrolyte (a solid polymer electrolyte or an electrolyte made of an ion conductive inorganic material) may be contained.

セパレータ18は、電気絶縁性の多孔体であり、例えば、ポリエチレン、ポリプロピレン又はポリオレフィンからなるフィルムの単層体、積層体や上記樹脂の混合物の延伸膜、或いは、セルロース、ポリエステル及びポリプロピレンからなる群より選択される少なくとも1種の構成材料からなる繊維不織布が挙げられる。   The separator 18 is an electrically insulating porous body, for example, a single layer of a film made of polyethylene, polypropylene or polyolefin, a stretched film of a laminate or a mixture of the above resins, or a group consisting of cellulose, polyester and polypropylene. Examples thereof include a nonwoven fabric made of at least one selected constituent material.

ケース50は、その内部に積層体30及び電解質溶液を密封するものである。ケース50は、電解液の外部への漏出や、外部からの電気化学デバイス100内部への水分等の侵入等を抑止できる物であれば特に限定されない。例えば、ケース50として、図3に示すように、金属箔52を高分子膜54で両側からコーティングした金属ラミネートフィルムを利用できる。金属箔52としては例えばアルミ箔を、高分子膜54としてはポリプロピレン等の膜を利用できる。例えば、外側の高分子膜54の材料としては融点の高い高分子例えばポリエチレンテレフタレート(PET)、ポリアミド等が好ましく、内側の高分子膜54の材料としてはポリエチレン(PE)、ポリプロピレン(PP)等が好ましい。   The case 50 seals the laminate 30 and the electrolyte solution therein. The case 50 is not particularly limited as long as it can prevent leakage of the electrolytic solution to the outside and entry of moisture and the like into the electrochemical device 100 from the outside. For example, as the case 50, as shown in FIG. 3, a metal laminate film in which a metal foil 52 is coated with a polymer film 54 from both sides can be used. For example, an aluminum foil can be used as the metal foil 52 and a film such as polypropylene can be used as the polymer film 54. For example, the material of the outer polymer film 54 is preferably a polymer having a high melting point such as polyethylene terephthalate (PET) or polyamide, and the material of the inner polymer film 54 is polyethylene (PE) or polypropylene (PP). preferable.

リード60,62は、アルミ等の導電材料から形成されている。   The leads 60 and 62 are made of a conductive material such as aluminum.

そして、公知の方法により、リード60、62を正極集電体12、負極集電体22にそれぞれ溶接し、正極10の正極活物質層14と負極20の負極活物質層24との間にセパレータ18を挟んだ状態で、電解液と共にケース50内に挿入し、ケース50の入り口をシールすればよい。   Then, the leads 60 and 62 are welded to the positive electrode current collector 12 and the negative electrode current collector 22 by a known method, respectively, and a separator is provided between the positive electrode active material layer 14 of the positive electrode 10 and the negative electrode active material layer 24 of the negative electrode 20. 18 may be inserted into the case 50 together with the electrolytic solution with the 18 interposed therebetween, and the entrance of the case 50 may be sealed.

以上、本発明の活物質、それを用いた電極、当該電極を備えるリチウムイオン二次電池、及び、それらの製造方法の好適な一実施形態について詳細に説明したが、本発明は上記実施形態に限定されるものではない。   As described above, the preferred embodiment of the active material of the present invention, the electrode using the same, the lithium ion secondary battery including the electrode, and the manufacturing method thereof has been described in detail. It is not limited.

例えば、本発明の活物質を用いた電極は、リチウムイオン二次電池以外の電気化学素子にも用いることができる。電気化学素子としては、金属リチウム二次電池(カソードとして本発明の活物質を用い、アノードに金属リチウムを用いたもの)等のリチウムイオン二次電池以外の二次電池や、リチウムキャパシタ等の電気化学キャパシタ等が挙げられる。これらの電気化学素子は、自走式のマイクロマシン、ICカードなどの電源や、プリント基板上又はプリント基板内に配置される分散電源の用途に使用することが可能である。   For example, the electrode using the active material of the present invention can be used for an electrochemical element other than a lithium ion secondary battery. Electrochemical elements include secondary batteries other than lithium ion secondary batteries such as metal lithium secondary batteries (those using the active material of the present invention as the cathode and metal lithium as the anode), and electric batteries such as lithium capacitors. Examples include chemical capacitors. These electrochemical elements can be used for power sources such as self-propelled micromachines and IC cards, and distributed power sources arranged on or in a printed circuit board.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.

(実施例1)
[原料調整工程]
500mlのマイヤーフラスコに、18.37g(0.10mol)のV(ナカライテスク社製、純度99%)、23.08g(0.20mol)のHPO(ナカライテスク社製、純度85%)、及び、200gの蒸留水(ナカライテスク社製、HPLC用)を入れ、マグネチックスターラーで攪拌した。攪拌を続けながら、30.19g(0.20mol)のL−(+)−酒石酸を上記混合物中に加えた。L−(+)−酒石酸を加えた後、約23時間攪拌を継続したところ、青色の透明な溶液が得られた。
0.5Lオートクレーブのガラス製の円筒容器内に8.48g(0.20mol)のLiOH・HO(ナカライテスク社製、純度99%)を入れ、そこへ、271.53gの上記溶液(仕込み量の96.9%)を加え、攪拌を行ったところ、青色の透明な溶液が維持された。
Example 1
[Raw material adjustment process]
In a 500 ml Meyer flask, 18.37 g (0.10 mol) of V 2 O 5 (Nacalai Tesque, purity 99%), 23.08 g (0.20 mol) of H 3 PO 4 (Nacalai Tesque, purity) 85%) and 200 g of distilled water (manufactured by Nacalai Tesque, for HPLC) were added and stirred with a magnetic stirrer. While continuing to stir, 30.19 g (0.20 mol) of L-(+)-tartaric acid was added into the above mixture. After adding L-(+)-tartaric acid, stirring was continued for about 23 hours to obtain a blue transparent solution.
In a 0.5 L autoclave glass cylindrical container, 8.48 g (0.20 mol) of LiOH.H 2 O (manufactured by Nacalai Tesque, purity 99%) was placed, and 271.53 g of the above solution (preparation) (96.9% of the amount) was added and stirred, and a blue transparent solution was maintained.

[水熱合成工程]
容器を密閉し、5時間かけて、250℃まで昇温し、10時間250℃で保持し、水熱合成を行った。容器内の温度が室温になるまで放冷し、緑色の懸濁液を得た。この物質のpHを測定したところ、pHは3〜4であった。上澄みを除去した後、約300mlの蒸留水を加え、攪拌しながら容器内の沈殿物を洗浄した。その後、吸引濾過を行った(水洗)。この操作を2回繰り返した後、約800mlのアセトンを加え、上記水洗と同様にして沈殿物の洗浄を行った。この物質をシャーレに移し、大気中で乾燥させて、34.60gの褐色の固体を得た。収率は、LiVOPO換算で102.4%であった。
[Hydrothermal synthesis process]
The vessel was sealed, heated to 250 ° C. over 5 hours, held at 250 ° C. for 10 hours, and hydrothermal synthesis was performed. The container was allowed to cool to room temperature to obtain a green suspension. The pH of this substance was measured and found to be 3-4. After removing the supernatant, about 300 ml of distilled water was added, and the precipitate in the container was washed while stirring. Thereafter, suction filtration was performed (washing with water). After repeating this operation twice, about 800 ml of acetone was added, and the precipitate was washed in the same manner as the above water washing. This material was transferred to a petri dish and dried in air to give 34.60 g of a brown solid. The yield was 102.4% in the LiVOPO 4 terms.

[X線回折測定による活物質の同定、及び、結晶子径の測定]
得られた活物質のX線回折測定を行った。複数のピークのうち、2θ=27.21°、27.314°、29.7°において、強度が相対的に高いピークが得られ、活物質は、主にα型の結晶構造を有するLiVOPOを含有することを確認した。
結晶子径は、X線回折装置で半値幅を測定し、下記のScherrerの式代入することにより算出した。
結晶子の径の大きさ(Å)=K・λ/(β・cosθ) …(1)
なお、Scherrer係数は、0.9である。結晶子径の結果を表1に示す。
X線回折チャートは2θ=25°〜29°の付近でブロードであったが、これは、結晶子径が非常に小さいことに起因するものと考えられる。
[Identification of active material by X-ray diffraction measurement and measurement of crystallite diameter]
X-ray diffraction measurement of the obtained active material was performed. Among the plurality of peaks, relatively high peaks are obtained at 2θ = 27.21 °, 27.314 °, and 29.7 °, and the active material is mainly LiVOPO 4 having an α-type crystal structure. It was confirmed to contain.
The crystallite diameter was calculated by measuring the half width with an X-ray diffractometer and substituting the following Scherrer equation.
Size of crystallite diameter (Å) = K · λ / (β · cos θ) (1)
The Scherrer coefficient is 0.9. Table 1 shows the results of the crystallite size.
The X-ray diffraction chart was broad in the vicinity of 2θ = 25 ° to 29 °, which is considered to be caused by the very small crystallite diameter.

[平均一次粒子径の測定]
得られた活物質の一次粒子1について、その粒度分布を、高分解能走査型電子顕微鏡で観察したイメージに基づいた活物質の投影面積(100個)から求められる投影面積円相当径の累積率により算出した。求めた一次粒子1に対する個数基準の粒度分布に基づき、活物質の平均一次粒子径を算出した。結果を表1に示す。
[Measurement of average primary particle size]
About the obtained primary particle 1 of the active material, the particle size distribution is determined by the cumulative ratio of the projected area equivalent circle diameter obtained from the projected area (100) of the active material based on the image observed with the high-resolution scanning electron microscope. Calculated. The average primary particle diameter of the active material was calculated based on the number-based particle size distribution with respect to the obtained primary particles 1. The results are shown in Table 1.

[活物質の形状の観察]
透過型電子顕微鏡(日本電子社製,装置名:JEM−2100F)により活物質の形状を観察した。得られた活物質2は、図2に示すように、非常に小さい一次粒子が凝集した構造を備え、凝集体(二次粒子)の形状は球状であった。
[Observation of active material shape]
The shape of the active material was observed with a transmission electron microscope (manufactured by JEOL Ltd., apparatus name: JEM-2100F). As shown in FIG. 2, the obtained active material 2 had a structure in which very small primary particles were aggregated, and the shape of the aggregate (secondary particles) was spherical.

[放電容量の測定]
実施例1の活物質と、結合剤であるポリフッ化ビニリデン(PVDF)と、導電材であるアセチレンブラックと、を混合したものを、溶媒であるN−メチル−2−ピロリドン(NMP)中に分散させてスラリーを調製した。なお、スラリーにおいて活物質とアセチレンブラックとPVDFとの重量比が84:8:8となるように、スラリーを調製した。このスラリーを集電体であるアルミニウム箔上に塗布し、乾燥させた後、圧延を行い、実施例1の活物質を含む活物質層が形成された電極(正極)を得た。
[Measurement of discharge capacity]
A mixture of the active material of Example 1, polyvinylidene fluoride (PVDF) as a binder, and acetylene black as a conductive material is dispersed in N-methyl-2-pyrrolidone (NMP) as a solvent. To prepare a slurry. The slurry was prepared so that the weight ratio of the active material, acetylene black, and PVDF was 84: 8: 8 in the slurry. This slurry was applied onto an aluminum foil as a current collector, dried, and then rolled to obtain an electrode (positive electrode) on which an active material layer containing the active material of Example 1 was formed.

次に、得られた電極と、その対極であるLi箔とを、それらの間にポリエチレン微多孔膜からなるセパレータを挟んで積層し、積層体(素体)を得た。この積層体を、アルミラミネートパックに入れ、このアルミラミネートパックに、電解液として1MのLiPF溶液を注入した後、真空シールし、実施例1の評価用セルを作製した。 Next, the obtained electrode and the Li foil as the counter electrode were laminated with a separator made of a polyethylene microporous film interposed therebetween to obtain a laminate (element body). This laminate was put in an aluminum laminate pack, and 1M LiPF 6 solution was injected as an electrolyte into the aluminum laminate pack, followed by vacuum sealing to produce an evaluation cell of Example 1.

実施例1の評価用セルを用いて、放電レートを1C(25℃で定電流放電を行ったときに1時間で放電終了となる電流値)とした場合の放電容量(単位:mAh/g)を測定した。結果を表1に示す。   Using the evaluation cell of Example 1, the discharge capacity (unit: mAh / g) when the discharge rate is 1 C (current value at which discharge is completed in 1 hour when constant current discharge is performed at 25 ° C.) Was measured. The results are shown in Table 1.

(実施例2)
水熱合成工程において、水熱合成の温度を280℃、水熱合成時間を15時間とした以外は実施例1と同様にして活物質を作製した。実施例1と同様にして、活物質に対して、電子顕微鏡による観察、ならびにX線回折測定を行い、活物質の結晶子径及び平均一次粒子径を測定した。
得られた活物質を用いて、実施例1と同様に電極、及び評価用セルを作製した。実施例2の評価用セルを用いて、実施例1と同様にして、放電容量(単位:mAh/g)を測定した。結果を表1に示す。
(Example 2)
In the hydrothermal synthesis step, an active material was produced in the same manner as in Example 1 except that the hydrothermal synthesis temperature was 280 ° C. and the hydrothermal synthesis time was 15 hours. In the same manner as in Example 1, the active material was observed with an electron microscope and subjected to X-ray diffraction measurement, and the crystallite size and average primary particle size of the active material were measured.
Using the obtained active material, an electrode and an evaluation cell were produced in the same manner as in Example 1. Using the evaluation cell of Example 2, the discharge capacity (unit: mAh / g) was measured in the same manner as in Example 1. The results are shown in Table 1.

(実施例3)
原料調整工程において、5価のバナジウム源に含まれるバナジウム原子のモル数に対する酒石酸のモル数の割合が25mol%となるように、酒石酸を0.05mol加えた以外は実施例1と同様にして、活物質を作製した。実施例1と同様にして、活物質に対して、電子顕微鏡による観察、ならびにX線回折測定を行い、活物質の結晶子径及び平均一次粒子径を測定した。
得られた活物質を用いて、実施例1と同様に電極、及び評価用セルを作製した。実施例3の評価用セルを用いて、実施例1と同様にして放電容量(単位:mAh/g)を測定した。結果を表1に示す。
(Example 3)
In the raw material adjustment step, in the same manner as in Example 1 except that 0.05 mol of tartaric acid was added so that the ratio of the number of moles of tartaric acid to the number of moles of vanadium atoms contained in the pentavalent vanadium source was 25 mol%, An active material was prepared. In the same manner as in Example 1, the active material was observed with an electron microscope and subjected to X-ray diffraction measurement, and the crystallite size and average primary particle size of the active material were measured.
Using the obtained active material, an electrode and an evaluation cell were produced in the same manner as in Example 1. Using the evaluation cell of Example 3, the discharge capacity (unit: mAh / g) was measured in the same manner as in Example 1. The results are shown in Table 1.

(実施例4)
原料調整工程において、5価のバナジウム源に含まれるバナジウム原子のモル数に対する酒石酸のモル数の割合が125mol%となるように、酒石酸を0.25mol加えた以外は実施例1と同様にして、活物質を作製した。実施例1と同様にして、活物質に対して、電子顕微鏡による観察、ならびにX線回折測定を行い、活物質の結晶子径及び平均一次粒子径を測定した。
得られた活物質を用いて、実施例1と同様に電極、及び評価用セルを作製した。実施例4の評価用セルを用いて、実施例1と同様にして放電容量(単位:mAh/g)を測定した。結果を表1に示す。
Example 4
In the raw material adjustment step, in the same manner as in Example 1 except that 0.25 mol of tartaric acid was added so that the ratio of the number of moles of tartaric acid to the number of moles of vanadium atoms contained in the pentavalent vanadium source was 125 mol%, An active material was prepared. In the same manner as in Example 1, the active material was observed with an electron microscope and subjected to X-ray diffraction measurement, and the crystallite size and average primary particle size of the active material were measured.
Using the obtained active material, an electrode and an evaluation cell were produced in the same manner as in Example 1. Using the evaluation cell of Example 4, the discharge capacity (unit: mAh / g) was measured in the same manner as in Example 1. The results are shown in Table 1.

(実施例5)
水熱合成工程において、水熱合成の温度を220℃とした以外は実施例1と同様にして活物質を作製した。実施例1と同様にして、活物質に対して、電子顕微鏡による観察、ならびにX線回折測定を行い、活物質の結晶子径及び平均一次粒子径を測定した。
得られた活物質を用いて、実施例1と同様に電極、及び評価用セルを作製した。実施例5の評価用セルを用いて、実施例1と同様にして放電容量(単位:mAh/g)を測定した。結果を表1に示す。
(Example 5)
In the hydrothermal synthesis step, an active material was produced in the same manner as in Example 1 except that the hydrothermal synthesis temperature was 220 ° C. In the same manner as in Example 1, the active material was observed with an electron microscope and subjected to X-ray diffraction measurement, and the crystallite size and average primary particle size of the active material were measured.
Using the obtained active material, an electrode and an evaluation cell were produced in the same manner as in Example 1. Using the evaluation cell of Example 5, the discharge capacity (unit: mAh / g) was measured in the same manner as in Example 1. The results are shown in Table 1.

(実施例6)
原料調整工程において、5価のバナジウム源に含まれるバナジウム原子のモル数に対する酒石酸のモル数の割合が50mol%となるように、酒石酸を0.1mol加えた以外は実施例5と同様にして、活物質を作製した。実施例1と同様にして、活物質に対して、電子顕微鏡による観察、ならびにX線回折測定を行い、活物質の結晶子径及び平均一次粒子径を測定した。
得られた活物質を用いて、実施例1と同様に電極、及び評価用セルを作製した。実施例6の評価用セルを用いて、実施例1と同様にして放電容量(単位:mAh/g)を測定した。結果を表1に示す。
(Example 6)
In the raw material preparation step, in the same manner as in Example 5 except that 0.1 mol of tartaric acid was added so that the ratio of the number of moles of tartaric acid to the number of moles of vanadium atoms contained in the pentavalent vanadium source was 50 mol%, An active material was prepared. In the same manner as in Example 1, the active material was observed with an electron microscope and subjected to X-ray diffraction measurement, and the crystallite size and average primary particle size of the active material were measured.
Using the obtained active material, an electrode and an evaluation cell were produced in the same manner as in Example 1. Using the evaluation cell of Example 6, the discharge capacity (unit: mAh / g) was measured in the same manner as in Example 1. The results are shown in Table 1.

(実施例7)
原料調整工程において、5価のバナジウム源に含まれるバナジウム原子のモル数に対する酒石酸のモル数の割合が70mol%となるように、酒石酸を0.14mol加えた以外は実施例5と同様にして、活物質を作製した。実施例1と同様にして、活物質に対して、電子顕微鏡による観察、ならびにX線回折測定を行い、活物質の結晶子径及び平均一次粒子径を測定した。
得られた活物質を用いて、実施例1と同様に電極、及び評価用セルを作製した。実施例7の評価用セルを用いて、実施例1と同様にして放電容量(単位:mAh/g)を測定した。結果を表1に示す。
(Example 7)
In the raw material adjustment step, in the same manner as in Example 5 except that 0.14 mol of tartaric acid was added so that the ratio of the number of moles of tartaric acid to the number of moles of vanadium atoms contained in the pentavalent vanadium source was 70 mol%, An active material was prepared. In the same manner as in Example 1, the active material was observed with an electron microscope and subjected to X-ray diffraction measurement, and the crystallite size and average primary particle size of the active material were measured.
Using the obtained active material, an electrode and an evaluation cell were produced in the same manner as in Example 1. Using the evaluation cell of Example 7, the discharge capacity (unit: mAh / g) was measured in the same manner as in Example 1. The results are shown in Table 1.

(実施例8)
原料調整工程において、5価のバナジウム源に含まれるバナジウム原子のモル数に対する酒石酸のモル数の割合が10mol%となるように、酒石酸を0.02mol加えた以外は実施例1と同様にして、活物質を作製した。実施例1と同様にして、活物質に対して、電子顕微鏡による観察、ならびにX線回折測定を行い、活物質の結晶子径及び平均一次粒子径を測定した。
得られた活物質を用いて、実施例1と同様に電極、及び評価用セルを作製した。実施例8の評価用セルを用いて、実施例1と同様にして放電容量(単位:mAh/g)を測定した。結果を表1に示す。
(Example 8)
In the raw material adjustment step, in the same manner as in Example 1 except that 0.02 mol of tartaric acid was added so that the ratio of the number of moles of tartaric acid to the number of moles of vanadium atoms contained in the pentavalent vanadium source was 10 mol%. An active material was prepared. In the same manner as in Example 1, the active material was observed with an electron microscope and subjected to X-ray diffraction measurement, and the crystallite size and average primary particle size of the active material were measured.
Using the obtained active material, an electrode and an evaluation cell were produced in the same manner as in Example 1. Using the evaluation cell of Example 8, the discharge capacity (unit: mAh / g) was measured in the same manner as in Example 1. The results are shown in Table 1.

(実施例9)
原料調整工程において、5価のバナジウム源に含まれるバナジウム原子のモル数に対する酒石酸のモル数の割合が150mol%となるように、酒石酸を0.3mol加えた以外は実施例1と同様にして、活物質を作製した。実施例1と同様にして、活物質に対して、電子顕微鏡による観察、ならびにX線回折測定を行い、活物質の結晶子径及び平均一次粒子径を測定した。
得られた活物質を用いて、実施例1と同様に電極、及び評価用セルを作製した。実施例9の評価用セルを用いて、実施例1と同様にして放電容量(単位:mAh/g)を測定した。結果を表1に示す。
Example 9
In the raw material adjustment step, in the same manner as in Example 1 except that 0.3 mol of tartaric acid was added so that the ratio of the number of moles of tartaric acid to the number of moles of vanadium atoms contained in the pentavalent vanadium source was 150 mol%, An active material was prepared. In the same manner as in Example 1, the active material was observed with an electron microscope and subjected to X-ray diffraction measurement, and the crystallite size and average primary particle size of the active material were measured.
Using the obtained active material, an electrode and an evaluation cell were produced in the same manner as in Example 1. Using the evaluation cell of Example 9, the discharge capacity (unit: mAh / g) was measured in the same manner as in Example 1. The results are shown in Table 1.

(実施例10)
原料調整工程において、5価のバナジウム源に含まれるバナジウム原子のモル数に対する酒石酸のモル数の割合が100mol%であり、溶液中の酒石酸濃度が0.7mol/Lとなるように、蒸留水を0.285L加えた以外は実施例1と同様にして、活物質を作製した。実施例1と同様にして、活物質に対して、電子顕微鏡による観察、ならびにX線回折測定を行い、活物質の結晶子径及び平均一次粒子径を測定した。
得られた活物質を用いて、実施例1と同様に電極、及び評価用セルを作製した。実施例10の評価用セルを用いて、実施例1と同様にして放電容量(単位:mAh/g)を測定した。結果を表1に示す。
(Example 10)
In the raw material preparation step, distilled water was added so that the ratio of the number of moles of tartaric acid to the number of moles of vanadium atoms contained in the pentavalent vanadium source was 100 mol%, and the tartaric acid concentration in the solution was 0.7 mol / L. An active material was produced in the same manner as in Example 1 except that 0.285 L was added. In the same manner as in Example 1, the active material was observed with an electron microscope and subjected to X-ray diffraction measurement, and the crystallite size and average primary particle size of the active material were measured.
Using the obtained active material, an electrode and an evaluation cell were produced in the same manner as in Example 1. Using the evaluation cell of Example 10, the discharge capacity (unit: mAh / g) was measured in the same manner as in Example 1. The results are shown in Table 1.

(実施例11)
原料調整工程において、5価のバナジウム源に含まれるバナジウム原子のモル数に対する酒石酸のモル数の割合が100mol%であり、溶液中の酒石酸濃度が1.5mol/Lとなるように、蒸留水を0.133L加えた以外は実施例1と同様にして、活物質を作製した。実施例1と同様にして、活物質に対して、電子顕微鏡による観察、ならびにX線回折測定を行い、活物質の結晶子径及び平均一次粒子径を測定した。
得られた活物質を用いて、実施例1と同様に電極、及び評価用セルを作製した。実施例11の評価用セルを用いて、実施例1と同様にして放電容量(単位:mAh/g)を測定した。結果を表1に示す。
(Example 11)
In the raw material adjustment step, distilled water was added so that the ratio of the number of moles of tartaric acid to the number of moles of vanadium atoms contained in the pentavalent vanadium source was 100 mol%, and the tartaric acid concentration in the solution was 1.5 mol / L. An active material was produced in the same manner as in Example 1 except that 0.133 L was added. In the same manner as in Example 1, the active material was observed with an electron microscope and subjected to X-ray diffraction measurement, and the crystallite size and average primary particle size of the active material were measured.
Using the obtained active material, an electrode and an evaluation cell were produced in the same manner as in Example 1. Using the evaluation cell of Example 11, the discharge capacity (unit: mAh / g) was measured in the same manner as in Example 1. The results are shown in Table 1.

(比較例1)
水熱合成工程において、還元剤としてヒドラジンを用いた以外は実施例1と同様にして活物質を作製した。実施例1と同様にして、活物質に対して、電子顕微鏡による観察、ならびにX線回折測定を行い、活物質の結晶子径及び平均一次粒子径を測定した。
得られた活物質を用いて、実施例1と同様に電極、及び評価用セルを作製した。比較例1の評価用セルを用いて、実施例1と同様にして放電容量(単位:mAh/g)を測定した。結果を表1に示す。
(Comparative Example 1)
In the hydrothermal synthesis step, an active material was prepared in the same manner as in Example 1 except that hydrazine was used as a reducing agent. In the same manner as in Example 1, the active material was observed with an electron microscope and subjected to X-ray diffraction measurement, and the crystallite size and average primary particle size of the active material were measured.
Using the obtained active material, an electrode and an evaluation cell were produced in the same manner as in Example 1. Using the evaluation cell of Comparative Example 1, the discharge capacity (unit: mAh / g) was measured in the same manner as in Example 1. The results are shown in Table 1.

(比較例2)
水熱合成工程において、還元剤を用いなかった以外は実施例1と同様にして活物質を作製した。実施例1と同様にして、活物質に対して、電子顕微鏡による観察、ならびにX線回折測定を行い、活物質の結晶子径及び平均一次粒子径を測定した。
得られた活物質を用いて、実施例1と同様に電極、及び評価用セルを作製した。比較例2の評価用セルを用いて、実施例1と同様にして放電容量(単位:mAh/g)を測定した。結果を表1に示す。
(Comparative Example 2)
In the hydrothermal synthesis step, an active material was prepared in the same manner as in Example 1 except that no reducing agent was used. In the same manner as in Example 1, the active material was observed with an electron microscope and subjected to X-ray diffraction measurement, and the crystallite size and average primary particle size of the active material were measured.
Using the obtained active material, an electrode and an evaluation cell were produced in the same manner as in Example 1. Using the evaluation cell of Comparative Example 2, the discharge capacity (unit: mAh / g) was measured in the same manner as in Example 1. The results are shown in Table 1.

(比較例3)
原料調整工程において、5価のバナジウム源に含まれるバナジウム原子のモル数に対する酒石酸のモル数の割合が100mol%であり、溶液中の酒石酸濃度が0.001mol/Lとなるように、V、HPO、LiOH・HO、L−(+)−酒石酸、LiOH・HOの添加量を1000分の1にした以外は実施例1と同様にして、実施例1と同様にして、活物質に対して、電子顕微鏡による観察、ならびにX線回折測定を行い、活物質の結晶子径及び平均一次粒子径を測定した。
得られた活物質を用いて、実施例1と同様に電極、及び評価用セルを作製した。比較例3の評価用セルを用いて、実施例1と同様にして放電容量(単位:mAh/g)を測定した。結果を表1に示す。
(Comparative Example 3)
In the raw material adjusting process, the ratio of moles of tartaric acid to the moles of vanadium atoms in the pentavalent vanadium source is the 100 mol%, as tartaric concentration in the solution is 0.001mol / L, V 2 O 5 , H 3 PO 4 , LiOH · H 2 O, L-(+)-tartaric acid, LiOH · H 2 O Similarly, observation with an electron microscope and X-ray diffraction measurement were performed on the active material, and the crystallite size and average primary particle size of the active material were measured.
Using the obtained active material, an electrode and an evaluation cell were produced in the same manner as in Example 1. Using the evaluation cell of Comparative Example 3, the discharge capacity (unit: mAh / g) was measured in the same manner as in Example 1. The results are shown in Table 1.

(比較例4)
原料調整工程において、5価のバナジウム源に含まれるバナジウム原子のモル数に対する酒石酸のモル数の割合が100mol%であり、溶液中の酒石酸濃度が3mol/Lとなるように、蒸留水を0.065L加えた以外は実施例1と同様にして、活物質を作製した。実施例1と同様にして、活物質に対して、電子顕微鏡による観察、ならびにX線回折測定を行い、活物質の結晶子径及び平均一次粒子径を測定した。
得られた活物質を用いて、実施例1と同様に電極、及び評価用セルを作製した。比較例4の評価用セルを用いて、実施例1と同様にして放電容量(単位:mAh/g)を測定した。結果を表1に示す。
(Comparative Example 4)
In the raw material preparation step, the ratio of the number of moles of tartaric acid to the number of moles of vanadium atoms contained in the pentavalent vanadium source is 100 mol%, and the distilled water is adjusted to 0. An active material was produced in the same manner as in Example 1 except that 065 L was added. In the same manner as in Example 1, the active material was observed with an electron microscope and subjected to X-ray diffraction measurement, and the crystallite size and average primary particle size of the active material were measured.
Using the obtained active material, an electrode and an evaluation cell were produced in the same manner as in Example 1. Using the evaluation cell of Comparative Example 4, the discharge capacity (unit: mAh / g) was measured in the same manner as in Example 1. The results are shown in Table 1.

溶液中の酒石酸濃度が0.5〜2.0mol/Lの範囲内にあり、かつ、5価のバナジウム源に含まれるバナジウム原子のモル数に対する酒石酸のモル数の割合が10〜150mol%の範囲内となるように調整された実施例1〜11は、結晶子径及び平均一次粒子径が極めて小さく、1Cにおいて十分な放電容量が得られた。
また、溶液中、5価のバナジウム源に含まれるバナジウム原子のモル数に対する酒石酸のモル数の割合が1.0mol/Lであり、かつ、25〜125mol%となるように調整された実施例1〜7、中でも特に、5価のバナジウム源に含まれるバナジウム原子のモル数に対する酒石酸のモル数の割合が50〜100mol%となるように調整された実施例1、2、5〜7は、結晶子径及び平均一次粒子径が適切な範囲に制御され、1Cにおいて十分な放電容量が得られた。
The tartaric acid concentration in the solution is in the range of 0.5 to 2.0 mol / L, and the ratio of the number of moles of tartaric acid to the number of moles of vanadium atoms contained in the pentavalent vanadium source is in the range of 10 to 150 mol%. In Examples 1 to 11 adjusted to be inside, the crystallite diameter and the average primary particle diameter were extremely small, and a sufficient discharge capacity was obtained at 1C.
Further, Example 1 in which the ratio of the number of moles of tartaric acid to the number of moles of vanadium atoms contained in the pentavalent vanadium source in the solution was 1.0 mol / L and was adjusted to be 25 to 125 mol%. ~ 7, in particular, Examples 1, 2, and 5-7 adjusted so that the ratio of the number of moles of tartaric acid to the number of moles of vanadium atoms contained in the pentavalent vanadium source is 50 to 100 mol%, The child diameter and the average primary particle diameter were controlled within an appropriate range, and a sufficient discharge capacity was obtained at 1C.

1…活物質、2…活物質群、10…正極、20…負極、12…正極集電体、14…正極活物質層、18…セパレータ、22…負極集電体、24…負極活物質層、30…積層体、50…ケース、52…金属箔、54…高分子膜、60,62…リード、100…リチウムイオン二次電池。
DESCRIPTION OF SYMBOLS 1 ... Active material, 2 ... Active material group, 10 ... Positive electrode, 20 ... Negative electrode, 12 ... Positive electrode collector, 14 ... Positive electrode active material layer, 18 ... Separator, 22 ... Negative electrode collector, 24 ... Negative electrode active material layer 30 ... laminate, 50 ... case, 52 ... metal foil, 54 ... polymer film, 60, 62 ... lead, 100 ... lithium ion secondary battery.

Claims (7)

リチウム源と、5価のバナジウム源と、リン酸源と、水と、酒石酸とを含む混合物を調整する工程と、
前記混合物を加圧下で200℃以上に加熱することにより、LiVOPOを得る水熱合成工程と、を備え、
前記混合物に含まれる前記酒石酸の濃度が0.5〜2.0mol/Lであり、かつ、前記5価のバナジウム源に含まれるバナジウム原子のモル数に対する前記酒石酸のモル数の割合が10〜150mol%であるリチウム二次電池用活物質の製造方法。
Preparing a mixture comprising a lithium source, a pentavalent vanadium source, a phosphate source, water, and tartaric acid;
A hydrothermal synthesis step of obtaining LiVOPO 4 by heating the mixture to 200 ° C. or higher under pressure,
The concentration of the tartaric acid contained in the mixture is 0.5 to 2.0 mol / L, and the ratio of the number of moles of tartaric acid to the number of moles of vanadium atoms contained in the pentavalent vanadium source is 10 to 150 mol. % Manufacturing method of an active material for a lithium secondary battery.
前記5価のバナジウム源に含まれるバナジウム原子のモル数に対する前記酒石酸のモル数の割合が25〜125mol%である請求項1に記載のリチウム二次電池用活物質の製造方法。 2. The method for producing an active material for a lithium secondary battery according to claim 1, wherein the ratio of the number of moles of tartaric acid to the number of moles of vanadium atoms contained in the pentavalent vanadium source is 25 to 125 mol%. 前記混合物は、前記リチウム源、前記5価のバナジウム源、及び、前記リン酸源が前記水に溶解した透明な溶液である、請求項1又は2に記載のリチウム二次電池用活物質の製造方法。 The said mixture is manufacture of the active material for lithium secondary batteries of Claim 1 or 2 whose said lithium source, the said pentavalent vanadium source, and the said phosphoric acid source are the transparent solutions melt | dissolved in the said water. Method. 平均粒子径が10〜145nmであり、結晶子の径が1〜70nmであり、LiVOPOを主成分として含有する粒子を含むリチウム二次電池用活物質 Active material for lithium secondary battery comprising particles having an average particle diameter of 10 to 145 nm, a crystallite diameter of 1 to 70 nm, and containing LiVOPO 4 as a main component 前記粒子は凝集体を形成し、前記凝集体の平均径が500〜5000nmである、請求項4に記載のリチウム二次電池用活物質。 The active material for a lithium secondary battery according to claim 4, wherein the particles form an aggregate, and the average diameter of the aggregate is 500 to 5000 nm. 集電体と、請求項4又は5に記載のリチウム二次電池用活物質を含み前記集電体上に設けられた活物質層と、を備えるリチウム二次電池用電極。 An electrode for a lithium secondary battery, comprising: a current collector; and an active material layer including the active material for a lithium secondary battery according to claim 4 or 5 and provided on the current collector. 請求項6に記載のリチウム二次電池用電極を備えるリチウム二次電池。 A lithium secondary battery comprising the electrode for a lithium secondary battery according to claim 6 .
JP2010139833A 2010-06-18 2010-06-18 Active material, electrode including the same, lithium secondary battery including the electrode, and method for producing active material Active JP5609299B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010139833A JP5609299B2 (en) 2010-06-18 2010-06-18 Active material, electrode including the same, lithium secondary battery including the electrode, and method for producing active material
US13/160,968 US8734987B2 (en) 2010-06-18 2011-06-15 Active material, electrode containing same, lithium-ion secondary battery with the electrode, and method of manufacturing active material
CN2011101703797A CN102363523A (en) 2010-06-18 2011-06-20 Active material, electrode containing same, lithium-ion secondary battery with electrode, and method of manufacturing active material
CN201310689040.7A CN103771386B (en) 2010-06-18 2011-06-20 Active material, the electrode containing it, the manufacture method of the lithium secondary battery for possessing the electrode and active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010139833A JP5609299B2 (en) 2010-06-18 2010-06-18 Active material, electrode including the same, lithium secondary battery including the electrode, and method for producing active material

Publications (2)

Publication Number Publication Date
JP2012004043A JP2012004043A (en) 2012-01-05
JP5609299B2 true JP5609299B2 (en) 2014-10-22

Family

ID=45535799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010139833A Active JP5609299B2 (en) 2010-06-18 2010-06-18 Active material, electrode including the same, lithium secondary battery including the electrode, and method for producing active material

Country Status (1)

Country Link
JP (1) JP5609299B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013206554A (en) * 2012-03-27 2013-10-07 Tdk Corp Active material, electrode, and lithium-ion secondary battery
JP2014154659A (en) * 2013-02-07 2014-08-25 Elna Co Ltd Lithium-based power storage device and negative electrode active material for lithium-based power storage device
JP6585880B2 (en) * 2014-03-20 2019-10-02 Tdk株式会社 Electrode and lithium ion secondary battery using the same
JP6552788B2 (en) * 2014-03-20 2019-07-31 Tdk株式会社 Electrode and lithium ion secondary battery using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090068080A1 (en) * 2007-09-06 2009-03-12 Valence Technology, Inc. Method of Making Active Materials For Use in Secondary Electrochemical Cells
JP5396798B2 (en) * 2008-09-30 2014-01-22 Tdk株式会社 Active material, positive electrode and lithium ion secondary battery using the same
JP5541560B2 (en) * 2008-10-03 2014-07-09 株式会社Gsユアサ Positive electrode material, method for producing positive electrode material, and nonaqueous electrolyte secondary battery provided with positive electrode material produced by the production method
JP5515343B2 (en) * 2009-03-16 2014-06-11 Tdk株式会社 Active material manufacturing method, active material, electrode, and lithium ion secondary battery

Also Published As

Publication number Publication date
JP2012004043A (en) 2012-01-05

Similar Documents

Publication Publication Date Title
JP5699754B2 (en) Active material, electrode, lithium ion secondary battery, and method for producing active material
JP5396942B2 (en) Manufacturing method of active material, active material, electrode using the active material, and lithium ion secondary battery including the electrode
US8734987B2 (en) Active material, electrode containing same, lithium-ion secondary battery with the electrode, and method of manufacturing active material
JP5487676B2 (en) Electrochemical device comprising an active material, an electrode including the active material, and an electrolyte solution including the electrode and a lithium salt
WO2012008423A1 (en) Active material, electrode containing same, lithium secondary battery comprising the electrode, and method for producing active material
WO2012169331A1 (en) Lithium titanate primary particles, lithium titanate aggregate, lithium ion secondary battery using lithium titanate primary particles or lithium titanate aggregate, and lithium ion capacitor using lithium titanate primary particles or lithium titanate aggregate
JP5347605B2 (en) Active material, electrode including the same, lithium ion secondary battery including the electrode, and method for producing active material
JP5347604B2 (en) Active material particles mainly composed of α-type crystal structure LiVOPO4, electrode including the same, lithium secondary battery including the electrode, and method for producing the active material particles
JP5375446B2 (en) Active material, electrode including the same, lithium secondary battery including the electrode, and method for producing active material
CN102005572B (en) Active material, electrode, lithium secondary battery and method for manufacture of active material
JP5609299B2 (en) Active material, electrode including the same, lithium secondary battery including the electrode, and method for producing active material
JP5609300B2 (en) Active material, electrode including the same, lithium secondary battery including the electrode, and method for producing active material
JP5617744B2 (en) Active material particles, active material, electrode, and lithium ion secondary battery
JP2018170249A (en) Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery arranged by use thereof
JP5888046B2 (en) Positive electrode active material, positive electrode and lithium ion secondary battery
JP2012212634A (en) Active material, electrode containing the same, lithium secondary battery comprising the electrode, and method for manufacturing active material
JP2019175658A (en) Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery including the same
JP5818086B2 (en) Secondary battery and manufacturing method thereof
CN108630938B (en) Positive electrode active material, positive electrode using same, and lithium ion secondary battery
JP6349825B2 (en) Positive electrode and lithium ion secondary battery using the same
JP2018156823A (en) Cathode active material, and cathode and lithium ion secondary battery using the same
JP2012212635A (en) Active material, electrode containing the same, lithium secondary battery comprising the electrode, and method for manufacturing active material
JP5709004B2 (en) Secondary battery and manufacturing method thereof
JP2018156930A (en) Positive electrode active material, positive electrode using the same, and lithium ion secondary battery
JP2017183045A (en) Positive electrode active material and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130507

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20131004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140818

R150 Certificate of patent or registration of utility model

Ref document number: 5609299

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150