JP5604268B2 - Heat recovery apparatus for exhaust gas from vacuum hot water machine and heat recovery method using the same - Google Patents

Heat recovery apparatus for exhaust gas from vacuum hot water machine and heat recovery method using the same Download PDF

Info

Publication number
JP5604268B2
JP5604268B2 JP2010250139A JP2010250139A JP5604268B2 JP 5604268 B2 JP5604268 B2 JP 5604268B2 JP 2010250139 A JP2010250139 A JP 2010250139A JP 2010250139 A JP2010250139 A JP 2010250139A JP 5604268 B2 JP5604268 B2 JP 5604268B2
Authority
JP
Japan
Prior art keywords
water
heat recovery
exhaust gas
heat
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010250139A
Other languages
Japanese (ja)
Other versions
JP2012102907A (en
Inventor
聡 吉本
伸章 林本
智郎 三浦
孝幸 正野
淳 坂倉
真 赤池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2010250139A priority Critical patent/JP5604268B2/en
Publication of JP2012102907A publication Critical patent/JP2012102907A/en
Application granted granted Critical
Publication of JP5604268B2 publication Critical patent/JP5604268B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
  • Details Of Fluid Heaters (AREA)

Description

本発明は、真空式温水機排ガスの熱回収装置およびこれを用いた熱回収方法に関し、特に、産業用の温水発生装置である真空式温水機における排ガスの熱回収装置およびこれを用いた熱回収方法に有用である。   TECHNICAL FIELD The present invention relates to a heat recovery apparatus for a vacuum hot water machine exhaust gas and a heat recovery method using the same, and more particularly, to a heat recovery apparatus for exhaust gas in a vacuum hot water machine that is an industrial hot water generator and a heat recovery using the same. Useful in the method.

従来、産業用の温水発生装置として多種多様な方式が利用されているが、100℃以下の温水を得る温水発生装置として、真空式温水機が多用されている。真空式温水機は、都市ガスや灯油、ペレットなどの燃料を燃焼し、その燃焼熱および排ガスを燃焼室の周囲に存在する熱媒水と熱交換させる。熱媒水は、大気圧下に減圧された減圧蒸発室で75℃〜85℃程度で減圧沸騰し、同室内にある熱交換器を介して給温水を加温する。熱媒水は燃焼室内に設けた伝熱管で燃焼排ガスと熱交換するが、通常は110℃〜200℃程度の排ガス温度まで熱回収する。熱効率は概ね85%〜95%程度である。   Conventionally, various types of industrial hot water generators are used, but vacuum hot water machines are frequently used as hot water generators for obtaining hot water of 100 ° C. or less. The vacuum water heater combusts fuels such as city gas, kerosene, and pellets, and exchanges heat of the combustion heat and exhaust gas with heat transfer water existing around the combustion chamber. The heat transfer water boils under reduced pressure at about 75 ° C. to 85 ° C. in a reduced pressure evaporation chamber that has been depressurized under atmospheric pressure, and warms the hot water through a heat exchanger in the same chamber. The heat transfer water exchanges heat with the combustion exhaust gas through a heat transfer tube provided in the combustion chamber, but usually recovers heat up to an exhaust gas temperature of about 110 ° C to 200 ° C. The thermal efficiency is approximately 85% to 95%.

こうした真空式温水機として、具体的には、例えば図5に示すような構成を有する真空式温水ボイラが挙げられる。上部に蒸気室102が形成されるよう熱媒水103を封入した熱媒水貯槽(缶体)101の下部内側に、上記熱媒水103に没するように燃焼室104を設けてバーナ105を設置し、且つ上記熱媒水貯槽101の頂部に、真空ポンプ106を、開閉弁108を備えた真空引きライン107を介し接続すると共に、上記蒸気室102となる熱媒水貯槽101内の上部位置に、加熱対象となる水109を外部から流通させることができるようにした熱交換器としての伝熱管110を設けた構成として、真空ポンプ106の作動により熱媒水貯槽101の内部を真空に引いた状態において、バーナ105を燃焼させることにより燃焼室104の壁面を介して熱媒水103を加熱し、これにより真空中にある熱媒水103を100℃以下の温度、たとえば、約80℃にて急速に沸騰、蒸発させ、発生した減圧蒸気を、蒸気室102に充満させると共に伝熱管110の表面で凝縮させることにより、該伝熱管110を流通する水109と熱交換を行わせて、該伝熱管110の出口より上記減圧蒸気の温度まで加熱された温水109aを回収できるようにしてある。なお、111は燃焼室104の排気口、112は燃焼室104内の中央部にてバーナ105に対峙するよう設置した火堰、113は火堰112の後方の煙道となる部分に燃焼室104を上下方向に貫通するよう設けた伝熱用水管である。凝縮伝熱を利用することで伝熱面積を小さくできると共に、減圧下における熱媒水103の凝縮領域の温度を制御温度とすることにより、加熱対象流体である水109を間欠的に熱交換させるような場合であっても、熱媒水103の温度が大きく変化することはなく、したがって、常に一定温度に加熱された温水109aを製造できるという特徴を有している。   Specific examples of such a vacuum hot water machine include a vacuum hot water boiler having a configuration as shown in FIG. A combustion chamber 104 is provided so as to be immersed in the heat medium water 103 inside the heat medium water storage tank (can body) 101 in which the heat medium water 103 is sealed so that the steam chamber 102 is formed in the upper part, and a burner 105 is provided. The top position of the heat transfer water storage tank 101 is connected to the top of the heat transfer water storage tank 101 via a vacuum line 107 provided with an on-off valve 108, and the upper position in the heat transfer water storage tank 101 serving as the steam chamber 102 The heat transfer pipe 110 as a heat exchanger that allows the water 109 to be heated to circulate from the outside is provided, and the inside of the heat transfer water storage tank 101 is evacuated by the operation of the vacuum pump 106. In this state, by burning the burner 105, the heat transfer water 103 is heated through the wall surface of the combustion chamber 104, so that the heat transfer water 103 in the vacuum has a temperature of 100 ° C. or lower. For example, by boiling and evaporating rapidly at about 80 ° C., the generated reduced-pressure steam fills the steam chamber 102 and condenses on the surface of the heat transfer tube 110, thereby exchanging heat with the water 109 flowing through the heat transfer tube 110. Thus, the hot water 109a heated up to the temperature of the reduced-pressure steam from the outlet of the heat transfer tube 110 can be recovered. In addition, 111 is an exhaust port of the combustion chamber 104, 112 is a fire weir installed at the center of the combustion chamber 104 so as to face the burner 105, and 113 is a combustion chamber 104 in a portion that becomes a flue behind the fire weir 112. Is a water pipe for heat transfer provided so as to penetrate through in the vertical direction. By using condensation heat transfer, the heat transfer area can be reduced, and the temperature of the condensation region of the heat transfer water 103 under reduced pressure is set as the control temperature, so that the water 109 that is the heating target fluid is intermittently heat-exchanged. Even in such a case, the temperature of the heat transfer water 103 does not change greatly, and therefore, the hot water 109a that is always heated to a constant temperature can be produced.

特開2003−279160号公報JP 2003-279160 A

しかし、上記のような真空式温水機では、以下に挙げるような問題点や課題が生じることがあった。
(i)従来方式では、熱媒水の温度を通常75℃〜85℃に加熱した状態で保持し、減圧蒸気室の熱交換器で冷水を温水に熱交換する。排ガス中の水分から潜熱を回収する場合、排ガス温度を露点以下に冷却する必要があるが、従来の構造では排ガス温度を熱媒水温度以下にすることができないため、構造的に潜熱回収はできないという課題があった。
(ii)燃焼式の温水機においては、燃焼エネルギーを伝熱用水管により吸収することによって温水を得ると同時に、該水管によって燃焼排ガスの温度を低下させる働きがある。従って、水管での熱交換(吸収)が十分にできない状態(例えば、温水用供給水の停止や減少、水管表面でのスケールの発生等に伴う水管の熱交換効率の低下あるいは真空圧力の上昇等の異常な状態等)になった場合には、燃焼排ガス温度の上昇により、燃焼室から排出された燃焼排ガスの処理機能(低温処理や中和処理等)の低下や損傷等の可能性があり、こうした危険性を回避することが課題となる。
(iii)所望の温水が複数の異なる温度である場合(例えば、暖房用と給湯用)には、減圧蒸気室に、複数の熱交換器(伝熱菅)が配設され、各々所望の温度の温水が取出される。しかしながら、例えば給湯温水より高温で循環使用する暖房用温水のみへの切替え等、燃焼条件の変更を必要とする場合、過渡的に水管からの熱吸収量の減少に伴う燃焼排ガス温度の上昇が発生する可能性があり、上記(ii)と同様の課題が生じる。
However, the vacuum hot water machine as described above sometimes has the following problems and problems.
(I) In the conventional system, the temperature of the heat transfer water is normally maintained in a state heated to 75 ° C. to 85 ° C., and the cold water is heat-exchanged with the hot water in the heat exchanger in the vacuum steam chamber. When recovering latent heat from moisture in the exhaust gas, it is necessary to cool the exhaust gas temperature below the dew point. However, in the conventional structure, the exhaust gas temperature cannot be reduced below the heat transfer medium water temperature, so the latent heat cannot be recovered structurally. There was a problem.
(Ii) In a combustion-type hot water machine, hot water is obtained by absorbing combustion energy through a heat transfer water pipe, and at the same time, the temperature of the combustion exhaust gas is lowered by the water pipe. Therefore, heat exchange (absorption) in the water pipe cannot be sufficiently performed (for example, stoppage or reduction of hot water supply water, decrease in heat exchange efficiency of the water pipe due to generation of scale on the surface of the water pipe, increase in vacuum pressure, etc.) In the case of abnormal conditions, etc., there is a possibility that the processing function (low temperature processing, neutralization processing, etc.) of the combustion exhaust gas discharged from the combustion chamber may be reduced or damaged due to the increase of the combustion exhaust gas temperature. The challenge is to avoid these dangers.
(Iii) When the desired hot water has a plurality of different temperatures (for example, for heating and hot water supply), a plurality of heat exchangers (heat transfer tanks) are disposed in the decompression steam chamber, and each desired temperature Hot water is taken out. However, when it is necessary to change combustion conditions, such as switching to heating hot water that circulates at a higher temperature than hot water supply hot water, the combustion exhaust gas temperature rises transiently due to a decrease in the amount of heat absorbed from the water pipe. The same problem as in (ii) above arises.

本発明の目的は、産業用の温水発生装置である真空式温水機から排出する低温の燃焼排ガスから顕熱を回収し、さらに燃焼排ガス中に含まれる水分の潜熱を回収し、真空式温水機の熱効率を向上させるとともに、簡便かつ効果的に熱回収装置の過熱を防止し、熱回収装置内部の温度・圧力の上昇を防ぐことが可能な真空式温水機排ガスの熱回収装置およびこれを用いた熱回収方法を提供することにある。   An object of the present invention is to recover sensible heat from a low-temperature combustion exhaust gas discharged from a vacuum hot water machine that is an industrial hot water generator, and further recover latent heat of moisture contained in the combustion exhaust gas. A heat recovery device for exhaust gas from a hot water heater that can easily and effectively prevent overheating of the heat recovery device and prevent the temperature and pressure inside the heat recovery device from rising. It is to provide a heat recovery method.

本発明者らは、鋭意研究を重ねた結果、以下に示す真空式温水機排ガスの熱回収装置およびこれを用いた熱回収方法によって上記目的を達成できることを見出し、本発明を完成するに到った。   As a result of intensive studies, the present inventors have found that the above object can be achieved by the heat recovery apparatus for exhaust gas from a vacuum hot water machine and a heat recovery method using the same, and have completed the present invention. It was.

本発明は、真空式温水機から燃焼排ガスが給送されるダクトの一端部で、該真空式温水機と接続する熱回収装置であって、
前記真空式温水機が、燃焼バーナ、内部に熱媒体が流通し燃焼熱を吸収する複数の水管および燃焼排ガスの排気部が備えられた燃焼室と、該燃焼室を囲むように隣接し前記熱媒体が充填された熱媒体槽、内部に給温水が流通する熱交換器および減圧手段に接続される減圧部が備えられた減圧蒸気室と、該給温水が供出される給湯部と、前記排気部からの燃焼排ガスが給送されるダクトと、を有し、
前記熱回収装置が、内部に供給水が流通する複数段かつ複数列設置したフィン水管からなる熱回収器を備えた熱回収室と、前記ダクトが接続される該熱回収室の上部に、燃焼排ガスに対して噴霧水を吹き付ける噴霧器と、該噴霧器の下部に温度検出器と、前記熱回収室の下部に配置され凝縮水および噴霧水を回収し中和処理する中和槽と、処理された燃焼排ガスが排出される排出部と、前記中和槽からの処理された排水が排出される排水部と、を有し、
供給水を導入する流路Aを設け、該流路Aを前記熱回収装置に給水する流路Cと前記噴霧器に給水する流路Eとに分岐するとともに、該流路Eに流量調整器を設け、前記温度検出器の出力に基づき前記噴霧器への供給水の流量の調整可能な構成を有し、
給送された燃焼排ガスを前記噴霧水によって低温化し、さらに前記熱回収室の上部から下部に流下させた状態で、前記熱回収器内部に前記供給水を下部から上部に流通させて給送された燃焼排ガスと熱交換し、燃焼排ガスの顕熱および該燃焼排ガス中に含まれる水蒸気の潜熱を回収するとともに、前記供給水が加温され、加温水として前記熱交換器に供給することを特徴とする。
The present invention is a heat recovery device connected to the vacuum hot water machine at one end of a duct to which combustion exhaust gas is fed from the vacuum hot water machine,
The vacuum water heater includes a combustion burner, a combustion chamber provided with a plurality of water pipes through which a heat medium flows and absorbs combustion heat, and an exhaust section for combustion exhaust gas. The heat chamber is adjacent to and surrounds the combustion chamber. A heat medium tank filled with a medium, a heat exchanger through which hot water is circulated, and a decompression steam chamber provided with a decompression section connected to decompression means; a hot water supply section through which the hot water is supplied; and the exhaust A duct to which combustion exhaust gas from the section is fed,
The heat recovery device is combusted in a heat recovery chamber having a heat recovery device including fin water pipes arranged in a plurality of stages and a plurality of rows through which supply water flows, and an upper portion of the heat recovery chamber to which the duct is connected. A sprayer that sprays spray water against the exhaust gas, a temperature detector at the bottom of the sprayer, a neutralization tank that is disposed at the bottom of the heat recovery chamber, collects condensed water and spray water, and neutralizes the processed water. A discharge section from which combustion exhaust gas is discharged, and a drain section from which the treated waste water from the neutralization tank is discharged,
A flow path A for introducing supply water is provided, and the flow path A branches into a flow path C for supplying water to the heat recovery device and a flow path E for supplying water to the sprayer, and a flow rate regulator is provided in the flow path E. And having a configuration capable of adjusting the flow rate of water supplied to the sprayer based on the output of the temperature detector,
The supplied combustion exhaust gas is cooled by the spray water, and further supplied to the inside of the heat recovery unit by circulating the supply water from the lower part to the upper part in a state of flowing down from the upper part to the lower part of the heat recovery chamber. Heat exchange with the combustion exhaust gas, and recovering the sensible heat of the combustion exhaust gas and the latent heat of the water vapor contained in the combustion exhaust gas, and the supply water is heated and supplied to the heat exchanger as warm water And

既述のように、真空式温水機においては、燃料排ガスの温度が低く、顕熱回収は比較的容易であるが、含有する水分からの潜熱の回収は難しい。本発明は、真空式温水機の燃焼排ガスの排出ダクトに熱回収装置を接続し、熱回収装置への燃焼排ガス導入時に噴霧水を吹き付け所定温度まで低下させる燃焼排ガスの冷却機能、装置上部から流下する燃焼排ガスと複数設置されたフィン水管を上昇する供給水との効率的な熱交換機能、流下するガス流によるフィン水管の表面に発生する凝縮水の排除機能、および回収した熱エネルギーによる真空式温水機の給温水の加温機能によって、効率のよく真空式温水機から排出する低温の燃焼排ガスから顕熱を回収し、さらに燃焼排ガス中に含まれる水分の潜熱を回収し、真空式温水機の熱効率を向上させることが可能となった。特に、熱回収装置へ導入される燃焼排ガスの初段階での低温処理化は、後段での処理を非常に安定かつ効率的に行うことができるという優れた効果を生み出した。つまり、本発明は、噴霧水を供給し、燃焼排ガスの初段階での低温処理化を図り、真空式温水機および熱回収装置からなるシステム全体としての熱的な均衡のより安定性を高めたものである。このとき、噴霧処理された燃焼排ガスの温度のモニタリングは、真空式温水機および熱回収装置からなるシステム全体の管理を行う上でも、重要な指標となる。ここで、「給温水」とは真空式温水機において熱交換され給湯用や暖房用として利用される供給水をいう。   As described above, in the vacuum water heater, the temperature of the fuel exhaust gas is low and sensible heat recovery is relatively easy, but it is difficult to recover latent heat from the contained water. The present invention provides a cooling function for combustion exhaust gas, which is connected to a discharge duct for combustion exhaust gas of a vacuum hot water machine and sprayed with spray water when the combustion exhaust gas is introduced into the heat recovery apparatus, and flows down from the upper part of the device. Efficient heat exchange function between the flue gas exhausted and the feed water rising up the multiple finned water pipes, the function of eliminating condensed water generated on the surface of the fin water pipes by the flowing down gas flow, and the vacuum type based on the recovered thermal energy The hot water heater's hot water heating function efficiently recovers sensible heat from the low-temperature combustion exhaust gas discharged from the vacuum hot water heater, and further recovers the latent heat of moisture contained in the combustion exhaust gas. It became possible to improve the thermal efficiency of the. In particular, the low-temperature treatment at the initial stage of the flue gas introduced into the heat recovery device has produced an excellent effect that the treatment at the latter stage can be performed very stably and efficiently. In other words, the present invention supplies spray water, lowers the temperature of the combustion exhaust gas at the initial stage, and improves the stability of the thermal balance of the entire system including the vacuum water heater and the heat recovery device. Is. At this time, monitoring of the temperature of the sprayed combustion exhaust gas is an important index for managing the entire system including the vacuum hot water machine and the heat recovery device. Here, “hot water” refers to supply water that is heat-exchanged in a vacuum hot water machine and used for hot water supply or heating.

また、本発明は、真空式温水機から燃焼排ガスが給送されるダクトの一端部で、該真空式温水機と接続する熱回収装置であって、
前記真空式温水機が、燃焼バーナ、内部に熱媒体が流通し燃焼熱を吸収する複数の水管および燃焼排ガスの排気部が備えられた燃焼室と、該燃焼室を囲むように隣接し前記熱媒体が充填された熱媒体槽、内部に給温水が流通する熱交換器および減圧手段に接続される減圧部が備えられた減圧蒸気室と、該給温水が供出される給湯部と、前記排気部からの燃焼排ガスが給送されるダクトと、を有し、
前記熱回収装置が、内部に供給水が流通する複数段かつ複数列設置したフィン水管からなる熱回収器を備えた熱回収室と、前記ダクトが接続される該熱回収室の上部に、燃焼排ガスに対して噴霧水を吹き付ける噴霧器と、該噴霧器の下部に温度検出器と、前記熱回収室の下部に配置され凝縮水および噴霧水を回収し中和処理する中和槽と、処理された燃焼排ガスが排出される排出部と、前記中和槽からの処理された排水が排出される排水部と、を有し、
供給水を導入する流路Aと、該流路Aと接続し前記熱回収装置に該供給水を給水する流路Cと、排水給送手段を設けて前記排水部からの排水を前記噴霧器に給水する流路Eとを設けるとともに、前記温度検出器の出力に基づき前記噴霧器への給水流量の調整可能な構成を有し、
給送された燃焼排ガスを前記噴霧水によって低温化し、さらに前記熱回収室の上部から下部に流下させた状態で、前記熱回収器内部に前記供給水を下部から上部に流通させて給送された燃焼排ガスと熱交換し、燃焼排ガスの顕熱および該燃焼排ガス中に含まれる水蒸気の潜熱を回収するとともに、前記供給水が加温され、加温水として前記熱交換器に供給することを特徴とする。
こうした構成は、上記発明の構成における噴霧水として、熱回収装置から排出される中和処理された排水を利用することによって、供給水の使用量の低減を図るものであり、効果的に熱回収装置の過熱を防止することができるとともに、よりエネルギー効率の高い真空式温水機排ガスからの熱回収を可能にした。
Further, the present invention is a heat recovery apparatus connected to the vacuum hot water machine at one end of a duct to which combustion exhaust gas is fed from the vacuum hot water machine,
The vacuum water heater includes a combustion burner, a combustion chamber provided with a plurality of water pipes through which a heat medium flows and absorbs combustion heat, and an exhaust section for combustion exhaust gas. The heat chamber is adjacent to and surrounds the combustion chamber. A heat medium tank filled with a medium, a heat exchanger through which hot water is circulated, and a decompression steam chamber provided with a decompression section connected to decompression means; a hot water supply section through which the hot water is supplied; and the exhaust A duct to which combustion exhaust gas from the section is fed,
The heat recovery device is combusted in a heat recovery chamber having a heat recovery device including fin water pipes arranged in a plurality of stages and a plurality of rows through which supply water flows, and an upper portion of the heat recovery chamber to which the duct is connected. A sprayer that sprays spray water against the exhaust gas, a temperature detector at the bottom of the sprayer, a neutralization tank that is disposed at the bottom of the heat recovery chamber, collects condensed water and spray water, and neutralizes the processed water. A discharge section from which combustion exhaust gas is discharged, and a drain section from which the treated waste water from the neutralization tank is discharged,
A flow path A for introducing the feed water, and the flow path C for supplying water to 該供water connected to the flow path A in the heat recovery device, the atomizer drainage from the drainage unit is provided drainage feeding means A flow path E for supplying water , and having a configuration capable of adjusting the flow rate of water supplied to the sprayer based on the output of the temperature detector,
The supplied combustion exhaust gas is cooled by the spray water, and further supplied to the inside of the heat recovery unit by circulating the supply water from the lower part to the upper part in a state of flowing down from the upper part to the lower part of the heat recovery chamber. Heat exchange with the combustion exhaust gas, and recovering the sensible heat of the combustion exhaust gas and the latent heat of the water vapor contained in the combustion exhaust gas, and the supply water is heated and supplied to the heat exchanger as warm water And
Such a configuration is intended to reduce the amount of supplied water by using the neutralized drainage discharged from the heat recovery device as the spray water in the configuration of the above invention, and effectively recovering heat. It was possible to prevent overheating of the equipment, and to recover heat from the exhaust gas of the hot water heater with higher energy efficiency.

本発明は、上記真空式温水機排ガスの熱回収装置であって、前記中和槽に中和処理された排水を貯留する貯留槽を設け、前記流路Aを前記熱回収装置に給水する流路Cと該貯留槽に給水する流路Fに分岐し、前記噴霧器への給水の補充を行うことを特徴とする。
上記のように、噴霧水として中和処理された排水を利用することによって、よりエネルギー効率の高い真空式温水機排ガスからの熱回収が可能になる一方、循環的に排水を使用すると排水温度も徐々に上昇する可能性がある。本発明は、排水利用の循環系に新たな供給水を付加することによって、より安定的に噴霧水による冷却機能を確保することを可能にした。
The present invention is a heat recovery apparatus for exhaust gas from the above-described vacuum hot water machine, wherein the neutralization tank is provided with a storage tank for storing neutralized drainage, and the flow path A is supplied to the heat recovery apparatus. branches to the flow path F for supplying water to the road C and該貯Tomeso, and performs replenishment of water to the sprayer.
As described above, by using the neutralized waste water as spray water, heat recovery from the exhaust gas of the hot water heater with higher energy efficiency becomes possible. May rise gradually. The present invention makes it possible to secure a cooling function by spray water more stably by adding new supply water to a circulation system using drainage.

本発明は、上記真空式温水機排ガスの熱回収装置であって、前記流路Cを、熱回収装置に給水するまでの流路において前記真空式温水機に給水する流路Bと熱回収装置に給水するC1に分岐し、該流路Bの中間に設けられた分岐路に流路C1の末端を接続し、前記熱回収装置から供出された前記加温水を前記真空式温水機へ給水可能な構成を有するとともに、流路C−流路Bの接続と流路C−流路C1の接続の切換えを行う切換弁を設け、かつ、前記流路C1において、熱回収装置に給水するまでの流路に設けられた分岐路に流路Dが接続され、該流路Dに開閉弁が設けられるとともに、前記流路C内の供給水または加温水の一部を前記中和槽に放出可能に構成する。
上記熱回収装置においては、燃焼排ガスによる真空式温水機から熱回収装置への熱移動と同時に、加温水による熱回収装置から真空式温水機への熱移動が行なわれる。このとき、いずれか一方が過熱量となり各装置の機能低下や損傷等を生じるという不測の場合の防止するために、過熱された加温水の真空式温水機への供給を停止して、供給水を直接真空式温水機へ供給できる構成を有することを特徴とする。これによって、後者における真空式温水機への過量の熱移動を防止するとともに、真空式温水機における熱媒体から給温水への移動熱量を増加させることができ、これによって、さらに燃焼熱の熱媒体への移動熱量を増加させることができることから、燃料排ガスの温度を低減させることができる。つまり、前者における熱回収装置への過量の熱移動を防止することができる。本発明は、さらに安全性を高めるために、熱回収装置への供給水を停止した状態において、熱回収装置への供給流路内の水の一部を放出して熱回収装置内のフィン水管内部の水が沸騰することを防ぎ、給湯開始時に高温に過熱された加温水が真空式温水機の給湯用熱交換器に流入することを防止する。このように、真空式温水機に過大な機能を必要とせずに、簡便かつ効果的に熱回収装置の過熱を防止し、真空式温水機および熱回収装置内部の温度・圧力の上昇を防ぐことが可能となった。
The present invention is a heat recovery apparatus for exhaust gas from the above-described vacuum type hot water machine, wherein the flow path C is used to supply water to the vacuum type hot water machine in the flow path until the heat recovery apparatus is supplied with water. Branches to C1 that supplies water, and connects the end of the flow path C1 to a branch path provided in the middle of the flow path B, so that the heated water delivered from the heat recovery device can be supplied to the vacuum hot water machine And a switching valve for switching between the connection between the flow path C and the flow path B and the connection between the flow path C and the flow path C1, and until the water is supplied to the heat recovery device in the flow path C1. A flow path D is connected to a branch path provided in the flow path, an on-off valve is provided in the flow path D, and a part of the supply water or warm water in the flow path C can be discharged to the neutralization tank Configure.
In the heat recovery device, heat transfer from the vacuum water heater to the heat recovery device by combustion exhaust gas is performed simultaneously with heat transfer from the heat recovery device to the vacuum water heater by heated water. At this time, in order to prevent an unexpected situation in which one of the devices becomes overheated, resulting in functional deterioration or damage of each device, the supply of heated hot water to the vacuum water heater is stopped, It has the structure which can supply directly to a vacuum-type hot water machine. This prevents an excessive amount of heat transfer to the vacuum water heater in the latter and increases the amount of heat transferred from the heat medium to the hot water in the vacuum water heater, thereby further increasing the heat medium of the combustion heat. Therefore, the temperature of the fuel exhaust gas can be reduced. That is, excessive heat transfer to the heat recovery apparatus in the former can be prevented. In order to further improve safety, the present invention releases a part of the water in the supply flow path to the heat recovery device in a state where the supply water to the heat recovery device is stopped, and the fin water pipe in the heat recovery device The internal water is prevented from boiling, and the heated water heated to a high temperature at the start of hot water supply is prevented from flowing into the hot water supply heat exchanger of the vacuum water heater. In this way, overheating of the heat recovery device can be easily and effectively prevented without requiring excessive functions in the vacuum water heater, and the temperature and pressure inside the vacuum water heater and heat recovery device can be prevented. Became possible.

また、本発明は、上記のいずれかの熱回収装置を用い、真空式温水機からの燃焼排ガス中の熱エネルギーである顕熱および潜熱を回収する方法であって、
該熱回収装置において、該真空式温水機からの燃焼排ガスに対して噴霧水を吹き付けて所定温度以下に制御された燃焼排ガスと、熱回収装置に設けられたフィン水管中の供給水とを向流的に熱交換させ、加温された該供給水を熱回収装置から加温水として真空式温水機に供給することを特徴とする。
上記熱回収装置は、真空式温水機からの廃熱を効率のよく回収し、真空式温水機の熱効率を向上させるという基本機能を有するもので、熱回収装置に導入される燃焼排ガスの初段階での噴霧水による低温化は、真空式温水機および熱回収装置からなるシステム全体としての熱的なバランスに対しても非常に有効に機能する。本発明は、こうした優れた機能を生かすことによって、従来難しかった燃料排ガス中の水分を効率的に凝縮させることができ、高い収率で熱回収を行うことができる熱回収方法の提供することが可能となった
Further, the present invention is a method for recovering sensible heat and latent heat, which is thermal energy in combustion exhaust gas from a vacuum hot water machine, using any of the heat recovery devices described above,
In the heat recovery apparatus, sprayed water is sprayed on the combustion exhaust gas from the vacuum hot water machine to control the combustion exhaust gas controlled to a predetermined temperature or lower, and supply water in a fin water pipe provided in the heat recovery apparatus. It is characterized by supplying the heated supply water that has been subjected to heat exchange and heated from a heat recovery device to a vacuum hot water machine as heated water.
The heat recovery device has the basic function of efficiently recovering waste heat from the vacuum water heater and improving the heat efficiency of the vacuum water heater, and is the first stage of the combustion exhaust gas introduced into the heat recovery device The low temperature by spray water in the above works very effectively also for the thermal balance of the entire system consisting of a vacuum water heater and a heat recovery device. The present invention provides a heat recovery method capable of efficiently condensing moisture in fuel exhaust gas, which has been difficult in the past, by utilizing such excellent functions, and capable of recovering heat with high yield. It has become possible

本発明は、上記の真空式温水機排ガスの熱回収方法であって、前記噴霧水として、前記熱回収装置において発生した凝縮水および吹き付けられた噴霧水を回収し中和処理された排水を利用、あるいは該排水に新たな供給水が補充されて利用されるとともに、前記加温水の温度が予め設定された温度以上に上昇した場合、真空式温水機への該加温水の供給を停止し、前記供給水を直接真空式温水機に供給するとともに、前記供給水または加温水を熱回収装置に設けられた燃焼排ガスの凝縮水中和用の中和槽に放出することを特徴とする。
こうした操作によって、熱回収装置から排出される中和処理された排水を利用することによる供給水の使用量の低減を図り、効果的に熱回収装置の過熱を防止することができるとともに、よりエネルギー効率の高い真空式温水機排ガスからの熱回収を可能にするとともに、高い安全性を有しつつ、真空式温水機に過大な機能を必要とせずに、簡便かつ効果的に熱回収装置の過熱を防止し、真空式温水機および熱回収装置内部の温度・圧力の上昇を防ぐことが可能となった。
The present invention is a heat recovery method for the exhaust gas of the above-described vacuum type hot water machine, wherein the spray water is recovered from the condensed water generated in the heat recovery device and the spray water sprayed and neutralized. Or, when the drainage water is replenished with new supply water and used, and when the temperature of the warming water rises above a preset temperature, the supply of the warming water to the vacuum hot water machine is stopped, The supply water is directly supplied to a vacuum hot water machine, and the supply water or warm water is discharged to a neutralization tank for neutralizing condensed water of combustion exhaust gas provided in a heat recovery device.
Through these operations, the amount of supply water can be reduced by using the neutralized waste water discharged from the heat recovery device, effectively preventing overheating of the heat recovery device and more energy. Heat recovery from the exhaust gas of a hot water heater with high efficiency is possible and overheating of the heat recovery device is simple and effective without requiring excessive functions of the vacuum hot water machine while having high safety. It was possible to prevent the temperature and pressure from rising inside the vacuum water heater and heat recovery device.

本発明に係る真空式温水機排ガスの熱回収装置の基本構成を例示する全体構成図。The whole block diagram which illustrates the basic composition of the heat recovery device of the vacuum type hot water machine exhaust gas concerning the present invention. 本発明に係る熱回収装置の具体的な構成を例示する構成図。The block diagram which illustrates the specific structure of the heat recovery apparatus which concerns on this invention. 本発明に係る熱回収装置の第2構成例を示す構成図。The block diagram which shows the 2nd structural example of the heat recovery apparatus which concerns on this invention. 本発明に係る熱回収装置の第3構成例を示す構成図。The block diagram which shows the 3rd structural example of the heat recovery apparatus which concerns on this invention. 従来技術に係る真空式温水ボイラの概略を例示する全体構成図。The whole block diagram which illustrates the outline of the vacuum type hot water boiler which concerns on a prior art.

本発明に係る真空式温水機排ガスの熱回収装置(以下「本装置」という)は、真空式温水機(特に断りがない限り「温水機」という)とダクトによって接続され、
温水機が、燃焼バーナ、内部に熱媒体が流通し燃焼熱を吸収する複数の水管および燃焼排ガスの排気部が備えられた燃焼室と、該燃焼室を囲むように隣接し熱媒体が充填された熱媒体槽、内部に給温水が流通する熱交換器および減圧手段に接続される減圧部が備えられた減圧蒸気室と、該給温水が供出される給湯部と、排気部からの燃焼排ガスが給送されるダクトと、を有し、
本装置が、内部に供給水が流通する複数段かつ複数列設置したフィン水管からなる熱回収器を備えた熱回収室と、ダクトが接続される熱回収室の上部に、燃焼排ガスに対して噴霧水を吹き付ける噴霧器と、噴霧器の下部に温度検出器と、熱回収室の下部に配置され凝縮水および噴霧水を回収し中和処理する中和槽と、処理された燃焼排ガスが排出される排出部と、中和槽からの処理された排水が排出される排水部と、を有し、
供給水を導入する流路Aを設け、流路Aを熱回収装置に給水する流路Cと噴霧器に給水する流路Eとに分岐するとともに、流路Eに流量調整器を設け、温度検出器の出力に基づき噴霧器への供給水の流量の調整可能な構成を有し、
給送された燃焼排ガスを噴霧水によって低温化し、さらに熱回収室の上部から下部に流下させた状態で、熱回収器内部に供給水を下部から上部に流通させて給送された燃焼排ガスと熱交換し、燃焼排ガスの顕熱および該燃焼排ガス中に含まれる水蒸気の潜熱を回収するとともに、供給水が加温され、加温水として熱交換器に供給することを特徴とする。以下、本発明の実施の形態について、図面を参照しながら説明する。
A heat recovery apparatus for exhaust gas from a vacuum hot water machine according to the present invention (hereinafter referred to as “the present apparatus”) is connected to a vacuum hot water machine (referred to as “hot water machine” unless otherwise specified) by a duct,
A hot water machine is a combustion burner, a combustion chamber provided with a plurality of water tubes through which a heat medium flows and absorbs combustion heat, and an exhaust part for combustion exhaust gas, and an adjacent heat medium filled with the combustion chamber so as to surround the combustion chamber The heat medium tank, the heat exchanger in which the hot water is circulated, and the decompression steam chamber provided with the decompression section connected to the decompression means, the hot water supply section to which the warm water is supplied, and the combustion exhaust gas from the exhaust section A duct to be fed, and
This device is equipped with heat recovery chambers with heat recovery devices consisting of fin water tubes installed in multiple stages and multiple rows through which the feed water circulates, and the upper part of the heat recovery chamber to which the duct is connected to the combustion exhaust gas. A sprayer that sprays spray water, a temperature detector at the bottom of the sprayer, a neutralization tank that is disposed at the bottom of the heat recovery chamber, collects condensed water and spray water, and neutralizes them, and the treated combustion exhaust gas is discharged A discharge section and a drain section from which the treated waste water from the neutralization tank is discharged;
A flow path A for introducing supply water is provided, and the flow path A is branched into a flow path C for supplying water to the heat recovery device and a flow path E for supplying water to the sprayer, and a flow rate regulator is provided in the flow path E to detect temperature. The flow rate of water supplied to the sprayer can be adjusted based on the output of the sprayer,
Combustion exhaust gas supplied by circulating the supply water from the lower part to the upper part inside the heat recovery unit in a state where the supplied combustion exhaust gas is cooled by the spray water and further flowed down from the upper part to the lower part of the heat recovery chamber. Heat exchange is performed to recover the sensible heat of the combustion exhaust gas and the latent heat of water vapor contained in the combustion exhaust gas, and the supplied water is heated and supplied to the heat exchanger as heated water. Hereinafter, embodiments of the present invention will be described with reference to the drawings.

<本装置の第1構成例>
本装置の1つの実施態様として、その基本構成の概略を図1に示す(第1構成例)。本装置10は、温水機20とダクト30によって接続され、ダクト30には、温水機20から燃焼排ガスが給送される。本装置10は、熱回収室1と、噴霧器10aと、温度検出器Saと、中和槽2と、排出部3と、排水部10bと、を有する一方、温水機20は、燃焼室4と、減圧蒸気室5と、ダクト30と、を有する。
<First configuration example of the apparatus>
As an embodiment of the present apparatus, an outline of the basic configuration is shown in FIG. 1 (first configuration example). The apparatus 10 is connected to a hot water machine 20 by a duct 30, and combustion exhaust gas is fed to the duct 30 from the hot water machine 20. The apparatus 10 includes a heat recovery chamber 1, a sprayer 10 a, a temperature detector Sa, a neutralization tank 2, a discharge unit 3, and a drainage unit 10 b, while the water heater 20 includes a combustion chamber 4 , The decompression steam chamber 5 and the duct 30.

ここで、供給水を導入する流路Aを設け、流路Aを本装置10に給水する流路Cと噴霧器10aに給水する流路Eとに分岐するとともに、流路Eに流量調整器Faを設け、温度検出器Saの出力に基づき噴霧器10aへの供給水の流量が調整される。ダクト30が熱回収室1の上部に接続され、給送された燃焼排ガスを噴霧水によって低温化し、さらに熱回収室1の上部から下部に流下させた状態で、熱回収室1に設けられた熱交換部(フィン水管)内部に供給水を下部から上部に流通させて給送された燃焼排ガスと熱交換し、燃焼排ガスの顕熱および該燃焼排ガス中に含まれる水蒸気の潜熱を回収する。加温された供給水は、加温水として温水機20の減圧蒸気室5に設けられた熱交換器に供給され、給湯用や暖房用等の給温水となる。熱エネルギーの循環系を形成する燃焼排ガスと加温水の加温機能によって、回収された廃熱を温水機の熱源として利用し、温水機の熱効率を向上させることができる。   Here, a flow path A for introducing the supply water is provided, and the flow path A branches into a flow path C for supplying water to the apparatus 10 and a flow path E for supplying water to the sprayer 10a. And the flow rate of water supplied to the sprayer 10a is adjusted based on the output of the temperature detector Sa. A duct 30 is connected to the upper portion of the heat recovery chamber 1 and is provided in the heat recovery chamber 1 in a state in which the fed flue gas is cooled by spray water and further flows down from the upper portion of the heat recovery chamber 1 to the lower portion. Heat is exchanged with the combustion exhaust gas fed through the supply water flowing from the lower part to the upper part inside the heat exchange part (fin water pipe), and the sensible heat of the combustion exhaust gas and the latent heat of the water vapor contained in the combustion exhaust gas are recovered. The heated supply water is supplied to the heat exchanger provided in the decompression steam chamber 5 of the water heater 20 as warm water, and becomes hot water supply for hot water supply or heating. With the heating function of the combustion exhaust gas and the heated water forming the thermal energy circulation system, the recovered waste heat can be used as a heat source of the water heater, and the thermal efficiency of the water heater can be improved.

〔熱回収装置〕
本装置10は、図2(A)に例示するように、熱回収室1、噴霧器10a、温度検出器Sa、中和槽2、排出部3、排水部10bから構成される。本装置10には、ダクト30によって給送された燃焼排ガスが、噴霧器10aによって噴霧水が吹き付けられた後、熱回収室1の上部から導入される。噴霧器10aと熱回収室1の間には、温度検出器Saが設けられ、燃焼排ガスの温度が検出される。熱回収室1には、内部に供給水が流通する複数段かつ複数列設置したフィン水管1bからなる熱回収器1aが備えられる。中和槽2は、熱回収室1の下部に配置され、凝縮水を回収し中和処理する。排出部3は、熱回収室1から流下した燃焼排ガスが中和槽2の表面で折り返すように上昇させる構成が好ましい。流下によって低温化を促進し、中和槽2表面との接触によってガス中の酸性成分が処理された燃焼排ガスとして排出することができる。排水部10bからは、中和処理された排水が排出される。
[Heat recovery device]
As illustrated in FIG. 2A, the apparatus 10 includes a heat recovery chamber 1, a sprayer 10a, a temperature detector Sa, a neutralization tank 2, a discharge unit 3, and a drainage unit 10b. The combustion exhaust gas fed by the duct 30 is introduced into the apparatus 10 from the upper part of the heat recovery chamber 1 after spray water is sprayed by the sprayer 10a. A temperature detector Sa is provided between the sprayer 10a and the heat recovery chamber 1, and the temperature of the combustion exhaust gas is detected. The heat recovery chamber 1 is provided with a heat recovery device 1a including fin water pipes 1b installed in a plurality of stages and a plurality of rows through which supply water circulates. The neutralization tank 2 is arrange | positioned at the lower part of the heat recovery chamber 1, collect | recovers condensed water, and neutralizes. The exhaust unit 3 is preferably configured to raise so that the combustion exhaust gas flowing down from the heat recovery chamber 1 is folded back on the surface of the neutralization tank 2. Lowering the temperature can be promoted by flowing down, and it can be discharged as a combustion exhaust gas in which acidic components in the gas are treated by contact with the surface of the neutralization tank 2. The neutralized drainage is discharged from the drainage unit 10b.

本装置10に給送された燃焼排ガスが、噴霧器10aによって噴霧水が吹き付けられ、低温化されるとともに、噴霧処理された燃焼排ガスの温度が温度検出器Saによって検出される。燃焼排ガスの低温化に伴い含有される水蒸気によって発生した凝縮水は、噴霧水とともに流下し、下部の熱回収室1において新たに発生する凝縮水とともに、中和槽2に貯留される。噴霧処理された燃焼排ガスの温度は、100℃以下、好ましくは80〜90℃で制御される。80℃以下まで冷却すると、熱回収室1での熱回収効率が低下する。具体的には、流路Aから流路Eを経由して噴霧器10aに供給される供給水(冷却水)の流量を、温度検出器Saによって検出された温度の指標として、流路Eに設けられた流量調整器Faによって調整される。   The combustion exhaust gas fed to the apparatus 10 is sprayed with spray water by the sprayer 10a to lower the temperature, and the temperature of the sprayed combustion exhaust gas is detected by the temperature detector Sa. The condensed water generated by the water vapor contained in the combustion exhaust gas at a low temperature flows down together with the spray water and is stored in the neutralization tank 2 together with the condensed water newly generated in the lower heat recovery chamber 1. The temperature of the sprayed combustion exhaust gas is controlled to 100 ° C. or less, preferably 80 to 90 ° C. If it cools to 80 degrees C or less, the heat recovery efficiency in the heat recovery chamber 1 will fall. Specifically, the flow rate of the supply water (cooling water) supplied from the flow channel A to the sprayer 10a via the flow channel E is provided in the flow channel E as an index of the temperature detected by the temperature detector Sa. The flow rate regulator Fa is adjusted.

また、噴霧水の吹き付けによる本装置10へ導入される燃焼排ガスの初段階での低温処理化は、後段での処理を非常に安定かつ効率的に行うことができる。つまり、温水機20から供出される給温水の使用量が多くなれば、生成される燃焼熱量も多くなり、燃焼排ガス温度の上昇が生じる。このとき、本装置10において熱交換される供給水は給温水の使用量に応じて増加することから、温水機20および本装置10からなるシステム全体として、熱的なバランスがとれた状態が維持される。本装置10は、こうした均衡のより安定性を高めるために、噴霧処理された燃焼排ガスの温度を指標として、噴霧水を供給し、燃焼排ガスの初段階での低温処理化を図った。   Further, the low temperature treatment at the initial stage of the combustion exhaust gas introduced into the apparatus 10 by spraying of spray water can perform the treatment at the subsequent stage very stably and efficiently. That is, if the amount of hot water supplied from the hot water machine 20 increases, the amount of generated combustion heat also increases, and the combustion exhaust gas temperature rises. At this time, the supply water heat-exchanged in the apparatus 10 increases according to the amount of hot water used, so that the thermal balance is maintained as the entire system including the water heater 20 and the apparatus 10. Is done. In order to improve the stability of the balance, the present apparatus 10 supplies spray water using the temperature of the sprayed combustion exhaust gas as an index to achieve low temperature treatment at the initial stage of the combustion exhaust gas.

噴霧器10aは、燃焼排ガスが導入されるホ装置10の上部全体に吹き付けができるように、複数の細孔を有するノズルを所定の間隔に均等に配設された構成を有することが好ましい。   The sprayer 10a preferably has a configuration in which nozzles having a plurality of pores are evenly arranged at predetermined intervals so that the entire upper portion of the device 10 into which combustion exhaust gas is introduced can be sprayed.

熱回収室1に導入された燃焼排ガスは、フィン水管1bにおいて供給水と熱交換し、冷却されて顕熱を放出するとともに、含有される水蒸気は、その潜熱を放出しながらフィン水管1bの表面で凝縮し凝縮水を形成する。凝縮水は、所定の大きさに拡大した状態で、熱回収室1の上部から流下する燃焼排ガスの流れに沿って落下し、中和槽2に貯留される。このとき、フィン水管1bの表面への水滴の付着は、フィン水管1bの伝熱機能を阻害することから、燃焼排ガスによる水滴の落下を促進する機能は、本装置10の熱効率向上に対して有効である。多くの水分が除去された燃焼排ガスは、低温化処理および酸性成分の除去処理をされた清浄ガスとして排出部3から排出される。中和槽2に貯留された凝縮水は、所定量貯留後あるいは連続的にpH調整剤によって中和処理された後、系外に排出される。なお、本装置10は、導入された燃焼排ガスを清浄化されたガスと液体をして排出する自己完結処理型の装置を構成するが、別途中和処理や排出処理の機能を、系外の装置において行なうことも可能である。   The flue gas introduced into the heat recovery chamber 1 exchanges heat with the feed water in the fin water pipe 1b, and is cooled to release sensible heat, and the contained water vapor releases the latent heat of the surface of the fin water pipe 1b. Condensed to form condensed water. The condensed water falls along the flow of the combustion exhaust gas flowing down from the upper part of the heat recovery chamber 1 in a state of being enlarged to a predetermined size, and is stored in the neutralization tank 2. At this time, the adhesion of water droplets to the surface of the fin water tube 1b inhibits the heat transfer function of the fin water tube 1b. Therefore, the function of promoting the drop of water droplets from combustion exhaust gas is effective for improving the thermal efficiency of the apparatus 10. It is. The combustion exhaust gas from which much moisture has been removed is discharged from the discharge unit 3 as a clean gas that has been subjected to a low-temperature treatment and an acidic component removal treatment. The condensed water stored in the neutralization tank 2 is discharged out of the system after being neutralized by a pH adjusting agent after a predetermined amount of storage or continuously. The device 10 constitutes a self-contained processing type device that discharges the introduced combustion exhaust gas as purified gas and liquid. However, the neutralization processing and exhaust processing functions are separately provided outside the system. It can also be done in the apparatus.

一方、本装置10には、熱回収室1内部のフィン水管1bに供給水が導入され、下部から上部に流通される。流下する燃焼排ガスと向流式熱交換を行なうことによって、効率的な熱交換機能を形成し、凝縮水の発生を促進すると同時に、上述の水滴の落下を促進する機能によって、より低温状態のフィン水管1b下部での供給水の冷却機能を活かすことができる。フィン水管1bは、複数段かつ複数列備えられ、熱回収器1aを構成する。図2(B)に示す平断面図のように、最密充填状に配設することによって、フィン水管1bのフィン表面を有効に活かすことができるとともに、均等に分布された燃焼排ガスの流れを形成し、ショートパスの発生による熱交換効率の低下を防止することができる。   On the other hand, the supply water is introduced into the fin water pipe 1b inside the heat recovery chamber 1 and circulated from the lower part to the upper part of the apparatus 10. By performing counter-current heat exchange with the flue gas that flows down, an efficient heat exchange function is formed, and the generation of condensed water is promoted. The cooling function of the feed water at the lower part of the water pipe 1b can be utilized. The fin water pipe 1b is provided in a plurality of stages and a plurality of rows, and constitutes the heat recovery unit 1a. As shown in the plane cross-sectional view of FIG. 2 (B), the fin surface of the fin water pipe 1b can be effectively utilized by being arranged in a close-packed state, and the flow of the combustion exhaust gas evenly distributed can be utilized. It is possible to prevent the heat exchange efficiency from being lowered due to the occurrence of a short path.

〔温水機〕
温水機20は、燃焼室4と、減圧蒸気室5と、ダクト30とから構成される。燃焼室4には、燃焼バーナ4a、内部に熱媒体が流通し燃焼熱を吸収する複数の水管4b、および燃焼排ガスが排気される排気部4cが備えられる。減圧蒸気室5には、燃焼室4を囲むように隣接し、熱媒体5aが充填された熱媒体槽5b、内部に給温水が流通する熱交換器5c、および減圧手段(図示せず)に接続される減圧部5dが備えられる。ダクト30には、排気部4cからの燃焼排ガスが給送される。給温水は、給湯部5eを介して温水機20から給出される。
[Hot water machine]
The hot water machine 20 includes a combustion chamber 4, a decompression steam chamber 5, and a duct 30. The combustion chamber 4 includes a combustion burner 4a, a plurality of water pipes 4b through which a heat medium flows and absorbs combustion heat, and an exhaust part 4c from which combustion exhaust gas is exhausted. Adjacent to the decompression steam chamber 5 so as to surround the combustion chamber 4, a heat medium tank 5 b filled with the heat medium 5 a, a heat exchanger 5 c through which the hot water is circulated, and decompression means (not shown). A decompression unit 5d to be connected is provided. The combustion exhaust gas from the exhaust part 4 c is fed to the duct 30. Hot water is supplied from the hot water machine 20 through the hot water supply section 5e.

温水機20では、燃焼室4において、別途供給された燃料と燃焼空気(図示せず)が燃焼バーナ4aにおいて燃焼反応を生じ、発熱反応による熱エネルギーの放射と高温の火炎4dを発生させる。これらの燃焼熱は、複数の水管4b内を流通する熱媒体5aによって吸収されるとともに、燃焼室4を囲むように隣接した熱媒体5aによって吸収される。つまり、燃焼室4の上下左右を囲むように伝熱性の高い材料を使用した熱媒体槽5bが配設され、複数の水管4b内部と連通して熱媒体5aが充填されている。従って、火炎4dの燃焼熱は、主として水管4bを介して吸収され、火炎4dの燃焼熱の一部および放射熱エネルギーは、伝熱性の高い材料を介して吸収される。燃焼反応によって発生した燃焼排ガスは、低温化されて排気部4cから排気され、ダクト30に給送される。   In the water heater 20, in the combustion chamber 4, separately supplied fuel and combustion air (not shown) cause a combustion reaction in the combustion burner 4a, generating thermal energy radiation by the exothermic reaction and a high-temperature flame 4d. These combustion heats are absorbed by the heat medium 5 a that circulates in the plurality of water tubes 4 b, and are also absorbed by the heat medium 5 a adjacent to surround the combustion chamber 4. That is, the heat medium tank 5b using a material having high heat conductivity is provided so as to surround the upper, lower, left, and right sides of the combustion chamber 4, and the heat medium 5a is filled in communication with the inside of the plurality of water pipes 4b. Therefore, the combustion heat of the flame 4d is mainly absorbed through the water pipe 4b, and a part of the combustion heat of the flame 4d and the radiant heat energy are absorbed through a material having high heat conductivity. The combustion exhaust gas generated by the combustion reaction is lowered in temperature, exhausted from the exhaust part 4 c, and fed to the duct 30.

減圧蒸気室5には、熱媒体槽5bの上層を減圧条件(例えば−3kPa〜−5kPa)に維持された空間が設けられ、該空間に内部に給温水が流通する熱交換器5cが配設される。上記のように、燃焼室4で発生した燃焼熱の多くは、熱媒体5aに吸収される。熱媒体5aは、通常市水等の水が利用される。このとき、熱媒体槽5bおよび水管4bの内部の温度には、殆どバラツキがないことが確認されている。燃焼室4との隔壁での伝熱効果と水管4bの内部を含む熱媒体5aの対流効果によるものである。また、減圧蒸気室5では、減圧条件における熱媒体の温度を通常75〜85℃に加熱した状態(減圧沸騰した状態)で維持され、熱媒体5aに吸収された燃焼熱は、減圧条件下の飽和蒸気を介して熱交換器5cに伝達される。熱交換器5c内部には、予め熱回収室1において加温された加温水が流通しており、75〜85℃に加熱され給温水となる。   The decompression steam chamber 5 is provided with a space in which the upper layer of the heat medium tank 5b is maintained under decompression conditions (for example, −3 kPa to −5 kPa), and a heat exchanger 5c through which the hot water is circulated is disposed in the space. Is done. As described above, most of the combustion heat generated in the combustion chamber 4 is absorbed by the heat medium 5a. As the heat medium 5a, water such as city water is usually used. At this time, it has been confirmed that there is almost no variation in the temperature inside the heat medium tank 5b and the water pipe 4b. This is due to the heat transfer effect at the partition wall with the combustion chamber 4 and the convection effect of the heat medium 5a including the inside of the water pipe 4b. Further, in the reduced pressure steam chamber 5, the temperature of the heat medium in the reduced pressure condition is normally maintained in a state heated to 75 to 85 ° C. (a state where the reduced pressure is boiled), and the combustion heat absorbed by the heat medium 5a is reduced under the reduced pressure condition. It is transmitted to the heat exchanger 5c via saturated steam. Warm water preheated in the heat recovery chamber 1 circulates inside the heat exchanger 5c and is heated to 75 to 85 ° C. to become hot water supply.

〔本装置の給水機能〕
本装置10には、給水ポンプ6によって流路Aを経由して供給水が圧送され、流路Cを経由して熱回収室1に供給され、流路Eを経由して噴霧器10aに供給される。噴霧器10aへの供給水の流量は、流量調整器Faによって調整される。温水機20には、本装置10の熱回収室1において加温された加温水が給送され、所望の温度に加熱された給温水として供出される。つまり、燃焼排ガスによる温水機20から本装置10への熱移動と同時に、加温水による本装置10から温水機20への熱移動が行なわれる。このとき、供給水の供給量は、給水ポンプ6による昇圧および絞り弁7によって調整される。また供給水として使用する水は、通常市水等を用いることができる。
[Water supply function of this device]
Supply water is pumped to the apparatus 10 via the flow path A by the water supply pump 6, supplied to the heat recovery chamber 1 via the flow path C, and supplied to the sprayer 10 a via the flow path E. The The flow rate of the supply water to the sprayer 10a is adjusted by the flow rate regulator Fa. Warm water heated in the heat recovery chamber 1 of the apparatus 10 is fed to the hot water machine 20 and supplied as hot water heated to a desired temperature. That is, simultaneously with the heat transfer from the hot water machine 20 to the present apparatus 10 by the combustion exhaust gas, the heat transfer from the present apparatus 10 to the hot water machine 20 by the heated water is performed. At this time, the supply amount of the supply water is adjusted by the pressure increase by the water supply pump 6 and the throttle valve 7. Moreover, the city water etc. can be used for the water used as supply water.

このとき、熱回収室1の上部、排気部4c、熱媒体槽5bのいずれかあるいはそのいくつかに温度検出器を設け、それぞれの予め設定された温度を指標に、供給水の流量あるいは供給流路を制御することが好ましい。具体的には、図1に例示するように、熱回収室1の上部として熱回収室1から供出された加温水の温度を検出する温度検出器S1、排気部4cからの燃焼排ガスの温度を検出する温度検出器S2、熱媒体槽5b内の熱媒体5aの温度を検出する温度検出器S3が該当する。例えば、給温水の供給温度を約75〜85℃で制御された場合、供給水の温度を約20〜30℃とすれば、加温水の温度は約40〜50℃が適切であり、燃焼排ガスの温度は100℃以下、好ましくは80〜90℃が適切であり、熱媒体5aの温度は給温水の供給温度とほぼ同じである。これらの温度は、各々他の装置の水温やガス温度と密接な関係を有し、相互に関連することから、予めその相関関係が把握できる場合には、代表する1または2の温度検出器を設置することができる。このような特定箇所の水温やガス温度をモニタすることによって、システム全体の管理が可能であることを見出したものであり、こうした指標を基に、供給水の流量あるいは供給流路を制御することによって、本装置10および温水機20の適正な稼動状態を確保することができる。   At this time, a temperature detector is provided in any one or some of the upper part of the heat recovery chamber 1, the exhaust part 4c, the heat medium tank 5b, and the flow rate or the supply flow of the supply water using the preset temperature as an index. It is preferable to control the path. Specifically, as illustrated in FIG. 1, a temperature detector S <b> 1 that detects the temperature of heated water supplied from the heat recovery chamber 1 as an upper portion of the heat recovery chamber 1, and the temperature of the combustion exhaust gas from the exhaust unit 4 c The temperature detector S2 to detect and the temperature detector S3 to detect the temperature of the heat medium 5a in the heat medium tank 5b correspond to this. For example, when the supply temperature of the hot water is controlled at about 75 to 85 ° C., if the temperature of the supply water is about 20 to 30 ° C., the temperature of the warm water is appropriately about 40 to 50 ° C., and the combustion exhaust gas The temperature is 100 ° C. or less, preferably 80 to 90 ° C., and the temperature of the heat medium 5a is substantially the same as the supply temperature of the hot water. Each of these temperatures has a close relationship with the water temperature and gas temperature of other devices, and since they are related to each other, if the correlation can be grasped in advance, the representative temperature detector 1 or 2 is used. Can be installed. We have discovered that monitoring the water temperature and gas temperature at such a specific location makes it possible to manage the entire system. Based on these indicators, we can control the flow rate of the supply water or the supply flow path. Thus, it is possible to ensure an appropriate operating state of the device 10 and the water heater 20.

<本装置の第2構成例>
本装置10は、上記第1構成例に代え、図3に例示するような給水機能を有する構成とすることができる(第2構成例)。第2構成例は噴霧水として、本装置10から排出される中和処理された排水を利用する。該排水は供給水と同レベルの清浄処理された水であり、噴霧水として循環的に使用することによって、新たな供給水の供給量の低減を図ることができる。具体的には、本装置10に供給水を給水する流路Cと別に、排水給送手段(給水ポンプ6a)を設けて排水部10bからの排水を噴霧器10aに給水する流路Eとを設けるとともに、噴霧器10aへの給水流量が、温度検出器Saの出力に基づき流量調整器Faによって調整される。
<Second configuration example of the apparatus>
The apparatus 10 can be configured to have a water supply function as illustrated in FIG. 3 instead of the first configuration example (second configuration example). The second configuration example uses neutralized drainage discharged from the apparatus 10 as spray water. The drainage water is purified water at the same level as the supply water, and can be used as spray water cyclically to reduce the supply amount of new supply water. Specifically, in addition to the channel C for supplying the supply water to the apparatus 10, a drainage feeding means (water supply pump 6a) is provided, and a channel E for supplying the drainage from the drainage unit 10b to the sprayer 10a is provided. At the same time, the feed water flow rate to the sprayer 10a is adjusted by the flow rate regulator Fa based on the output of the temperature detector Sa.

また、第2構成例は、中和槽2において中和処理された排水を排出する前に一旦貯留する貯留槽2aを設け、流路Aを本装置10に給水する流路Cと貯留槽2aに給水する流路Fに分岐し、流路Fを経由して流路Aからの新たな供給水を噴霧器10aへの給水として補充することができる構成を有している。噴霧水として中和処理された排水を循環的に使用すると、排水温度も徐々に上昇する可能性があることから、排水利用の循環系に新たな供給水を付加することによって、より安定的に噴霧水による冷却機能を確保することができる。新たな供給水の補充流量は、温度検出器Saの出力と噴霧水として供給される給水流量に基づき、決定される。
Moreover, the 2nd structural example provides the storage tank 2a which temporarily stores before discharging | emitting the waste water neutralized in the neutralization tank 2, and the flow path C and the storage tank 2a which supply the flow path A to this apparatus 10 branches to the flow path F to the water supply, has a configuration that can be replenished through the flow path F a new water supply from the flow path a as feedwater to the atomizer 10a are in. Since the wastewater temperature may gradually rise when the neutralized wastewater is used as spray water, it is more stable by adding new supply water to the circulation system for wastewater use. The cooling function by spray water can be secured. The replenishment flow rate of new supply water is determined based on the output of the temperature detector Sa and the feed water flow rate supplied as spray water.

<本装置の第3構成例>
本装置10は、図4に例示するような給水機能を有する構成とすることができる(第3構成例)。本装置10における効率的な熱回収は、燃焼排ガスによる温水機20から本装置10への熱移動と、加温水による本装置10から温水機20への熱移動のバランスにより成立する。このとき、いずれか一方が過熱量となれば、各装置の機能低下や損傷等を生じる可能性がある。こうした不測の場合の防止するために、具体的には、本装置10に供給水を導入する流路Cを温水機20に給水する流路Bと本装置10に給水する流路C1に分岐し、流路Bにおいて温水機20に給水するまでの流路に設けられた分岐路Baに流路C1の末端を接続し、本装置10から供出された加温水を温水機20へ給水可能な構成を有するとともに、流路C−流路Bの接続と流路C−流路C1の接続の切換えを行う切換弁Vaを設けることが好ましい。例えば、燃焼排ガス温度の上昇によって加温水が過熱状態となった場合、温水機20への過熱された加温水の供給は、給温水への燃焼熱の移動熱量を減少させ、燃焼排ガスの更なる温度上昇を招来する可能性がある。本装置10においては、通常流路C−流路C1の接続状態にある切換弁Vaを、流路C−流路Bの接続に切換えることによって、過熱された加温水の温水機20への供給が停止され、供給水を直接温水機20へ供給できることができる。これによって、温水機20への過量の熱移動を防止することができ、温水機20への加温水の供給に伴う燃焼排ガスの更なる温度上昇を未然に防止できる。
<Third configuration example of the apparatus>
This apparatus 10 can be set as the structure which has a water supply function which is illustrated in FIG. 4 (3rd structural example). Efficient heat recovery in the present apparatus 10 is established by a balance between heat transfer from the hot water machine 20 to the present apparatus 10 by combustion exhaust gas and heat transfer from the present apparatus 10 to the hot water machine 20 by heated water. At this time, if any one of them becomes the amount of overheating, there is a possibility that the function of each device is deteriorated or damaged. In order to prevent such an unexpected situation, specifically, the flow path C for introducing the supply water to the apparatus 10 is branched into a flow path B for supplying water to the hot water machine 20 and a flow path C1 for supplying water to the apparatus 10. In the flow path B, the end of the flow path C1 is connected to the branch path Ba provided in the flow path until the hot water machine 20 is supplied with water, and the heated water supplied from the apparatus 10 can be supplied to the hot water machine 20 It is preferable to provide a switching valve Va for switching the connection between the flow path C and the flow path B and the connection between the flow path C and the flow path C1. For example, when the heated water becomes overheated due to an increase in the temperature of the combustion exhaust gas, the supply of the heated water heated to the water heater 20 reduces the amount of heat transferred from the combustion heat to the hot water and further increases the combustion exhaust gas. There is a possibility of causing temperature rise. In this apparatus 10, the switching valve Va in the connection state of the normal flow path C and the flow path C1 is switched to the connection of the flow path C and the flow path B, thereby supplying overheated warm water to the hot water machine 20. Is stopped, and the supply water can be directly supplied to the water heater 20. Thereby, an excessive amount of heat transfer to the hot water machine 20 can be prevented, and further increase in the temperature of the combustion exhaust gas accompanying the supply of warm water to the hot water machine 20 can be prevented.

また、第3構成例にあっては、流路C1において熱回収装置に給水するまでの流路に設けられた分岐路Cbに流路Dが接続され、流路Dに開閉弁Vbが設けられ、流路C1内の供給水または加温水の一部を中和槽2に放出可能に構成することが好ましい。上記のように、燃料排ガスの温度上昇によるリスク等に対する固有の未然防止機能を有している一方、本装置10への一時的な供給水の停止および燃焼排ガスの温度上昇は、熱回収器1a内の流路C1の加温水の沸騰を生じる可能性があり、流路C1内の供給水または加温水の一部を放出することによって、こうしたリスクを未然に防止し、さらに高い安全性を確保することができる。このとき、流路C1に設けられた絞り弁7は、供給水の流れを、流路Bへの流れを主とするとともに、流路C1にその一部を逆送させて熱回収器1aの熱交換機能を維持させることができる。さらに、以上の機能は、温水機20において給温水が停止状態になった時においても、流路Aを介して流路Cに供給水を供給することによって実行することができることから、熱回収器1aの熱交換機能を維持し、安全性を確保するためにおいても有効である。また、流路Dから放出される供給水または加温水は、中和槽2に貯留され、適宜放出されることが好ましい。中和剤および放出水の清浄に寄与することができる。また、第2構成例のように、排水を噴霧水として循環利用する場合には、こうした流路Dから放出される供給水は、新たな供給水の補充に近い効果を得ることができる。   Further, in the third configuration example, the flow path D is connected to the branch path Cb provided in the flow path until the water is supplied to the heat recovery device in the flow path C1, and the on-off valve Vb is provided in the flow path D. It is preferable that a part of the supply water or the warm water in the flow path C1 can be discharged to the neutralization tank 2. As described above, while having an inherent prevention function against a risk caused by the temperature rise of the fuel exhaust gas, the temporary stop of the supply water to the apparatus 10 and the temperature rise of the combustion exhaust gas are caused by the heat recovery device 1a. There is a possibility that the heated water in the flow channel C1 will boil, and by releasing part of the supply water or heated water in the flow channel C1, this risk can be prevented and higher safety can be ensured. can do. At this time, the throttle valve 7 provided in the flow path C1 mainly feeds the flow of the supply water to the flow path B, and reversely feeds a part of the flow to the flow path C1 so that the heat recovery unit 1a The heat exchange function can be maintained. Further, the above function can be executed by supplying the supply water to the flow path C through the flow path A even when the hot water in the hot water machine 20 is stopped. It is also effective in maintaining the heat exchange function of 1a and ensuring safety. Moreover, it is preferable that the supply water or warm water discharged | emitted from the flow path D is stored in the neutralization tank 2, and is discharge | released suitably. It can contribute to the cleaning of the neutralizing agent and discharged water. Further, when the wastewater is circulated and used as the spray water as in the second configuration example, the supply water released from the flow path D can obtain an effect close to replenishment of new supply water.

<本装置を用いた熱回収方法>
次に、本装置10を用いた熱回収方法を、各装置における熱エネルギーの授受・収支を主に詳述する。本装置10において、以下の操作が行なわれ、温水機20からの燃焼排ガスの熱エネルギーを効果的に回収することができる。操作は、制御器(図示せず)によって自動的に行なわれる。図1に例示された第1構成例を基に説明する。
<Heat recovery method using this device>
Next, the heat recovery method using the present apparatus 10 will be described in detail mainly on the transfer and balance of thermal energy in each apparatus. In the present apparatus 10, the following operation is performed, and the thermal energy of the combustion exhaust gas from the hot water machine 20 can be effectively recovered. The operation is automatically performed by a controller (not shown). A description will be given based on the first configuration example illustrated in FIG.

〔第1構成例における操作〕
(1)本装置および温水機の起動
予め減圧部5dから減圧手段(図示せず)によって減圧蒸気室5内部を所定圧力まで減圧しておく。温水機20の燃焼バーナ4aへの燃料および助燃空気の供給を行うと同時に着火して、本装置10および温水機20を起動する。
[Operation in First Configuration Example]
(1) Start-up of the apparatus and the water heater The pressure inside the vacuum steam chamber 5 is reduced to a predetermined pressure from the pressure reducing unit 5d by a pressure reducing means (not shown) in advance. At the same time as supplying fuel and auxiliary combustion air to the combustion burner 4a of the water heater 20, the apparatus 10 and the water heater 20 are started.

(2)本装置への供給水の供給
排気部4cあるいは熱媒体槽5bの温度上昇が確認できると同時に、給水ポンプ6を駆動させ、供給水を本装置10および噴霧器10aに供給する。温度検出器Saによる噴霧器10a下部の燃焼排ガスの温度の検出を行う。
(2) The temperature rise of the supply exhaust section 4c or the heat medium tank 5b of the supply water to the apparatus can be confirmed, and at the same time, the feed water pump 6 is driven to supply the supply water to the apparatus 10 and the sprayer 10a. The temperature of the combustion exhaust gas in the lower part of the sprayer 10a is detected by the temperature detector Sa.

(3)本装置での燃焼排ガスとの熱交換
温水機20からの燃焼排ガスは、噴霧水が吹き付けられ、所定温度以下に冷却される。導入された燃焼排ガスの初段階での噴霧水による低温化は、温水機20および本装置10からなるシステム全体としての熱的なバランスに対しても非常に有効に機能する。噴霧処理された燃焼排ガスと本装置10に設けられたフィン水管1b中の供給水が向流的に熱交換される。燃焼排ガスは冷却され、含有する水分がフィン水管1bの表面で凝縮され水滴を生じさせる。これによって、燃焼排ガス中の熱エネルギーである顕熱および潜熱を回収することができる。供給水は回収されたエネルギーによって加温され、加温水として供出される。フィン水管1b表面の凝縮水は、上方からの燃焼排ガスの流れによって排除され、熱交換効率が維持される。
(3) The combustion exhaust gas from the heat exchange water heater 20 with the combustion exhaust gas in this apparatus is sprayed with spray water and cooled to a predetermined temperature or lower. The lowering of the temperature of the introduced combustion exhaust gas by the spray water at the initial stage functions very effectively for the thermal balance of the entire system including the hot water machine 20 and the apparatus 10. The sprayed combustion exhaust gas and the feed water in the fin water pipe 1b provided in the apparatus 10 are heat-exchanged countercurrently. The combustion exhaust gas is cooled, and the contained water is condensed on the surface of the fin water pipe 1b to generate water droplets. Thereby, sensible heat and latent heat, which are thermal energy in the combustion exhaust gas, can be recovered. The supplied water is heated by the recovered energy and supplied as heated water. The condensed water on the surface of the fin water pipe 1b is removed by the flow of the combustion exhaust gas from above, and the heat exchange efficiency is maintained.

(4)温水機での給温水の作製
本装置10から給送された加温水が、温水機20の減圧蒸気室5に導入され、熱交換器5cにおいて減圧状態の気相熱媒体5bと熱交換され、熱媒体5bとほぼ同温度の給温水を作製することができる。熱を奪われた気相熱媒体5bは、熱交換器5c表面で液化し、熱媒体槽5aに滴下する。気相熱媒体5bの減少熱量は、循環系を構成する熱媒体槽5aから蒸発した気相熱媒体5bで補充される。熱媒体槽5aにおける減少熱量は、熱媒体槽5a周囲および水管4bから燃焼室4において発生する燃焼熱で補充される。
(4) Production of hot water in the hot water machine Heated water fed from the main device 10 is introduced into the reduced pressure steam chamber 5 of the hot water machine 20, and the reduced pressure vapor phase heat medium 5b and the heat in the heat exchanger 5c. It is exchanged and hot water having substantially the same temperature as the heat medium 5b can be produced. The vapor phase heat medium 5b deprived of heat is liquefied on the surface of the heat exchanger 5c and dropped into the heat medium tank 5a. The reduced heat quantity of the gas phase heat medium 5b is supplemented with the gas phase heat medium 5b evaporated from the heat medium tank 5a constituting the circulation system. The amount of reduced heat in the heat medium tank 5a is supplemented with combustion heat generated in the combustion chamber 4 from the periphery of the heat medium tank 5a and the water pipe 4b.

こうした、熱エネルギーの流れによって、安定した給温水の供給ができるとともに、こうした熱エネルギーの流れによって、温水機20からの燃焼排ガス中の熱エネルギーである顕熱および潜熱を本装置10において効率のよく回収することができる。   Such a flow of thermal energy makes it possible to stably supply hot water, and with this flow of thermal energy, the sensible heat and latent heat, which are thermal energy in the combustion exhaust gas from the water heater 20, can be efficiently used in the present apparatus 10. It can be recovered.

〔第2構成例における操作〕
また、本装置10の第2構成例においては、本装置10からの排水を噴霧水として循環利用され、清浄化された排水の有効活用と供給水の低減を図ることができるとともに、上記第1構成例と同様に、温水機20からの燃焼排ガスの熱エネルギーを効果的に回収することができる。図3に例示された構成を基に説明する。基本操作は、第1構成例と同様であり、異なる操作のみを挙げる。
[Operation in Second Configuration Example]
Further, in the second configuration example of the device 10, the waste water from the device 10 is circulated and used as spray water, and effective use of the purified waste water and reduction of the supplied water can be achieved, and the first described above. Similar to the configuration example, the thermal energy of the combustion exhaust gas from the water heater 20 can be effectively recovered. Description will be made based on the configuration illustrated in FIG. Basic operations are the same as those in the first configuration example, and only different operations are listed.

(1)噴霧水としての排水の供給
第1構成例における「(3)本装置での燃焼排ガスとの熱交換」操作において、給水ポンプ6aを駆動させ、本装置10の中和槽2において中和処理され排水部10bから排出される排水を吸引し、流路Eを経由して噴霧器10aに供給する。噴霧器10aにおいて本装置10に導入された燃焼排ガスに噴霧水を吹き付ける。
(1) Supply of drainage water as spray water In the operation of “(3) Heat exchange with combustion exhaust gas in this device” in the first configuration example, the feed water pump 6a is driven, and in the neutralization tank 2 of this device 10 The waste water discharged from the drainage section 10b is sucked and supplied to the sprayer 10a via the flow path E. Spray water is sprayed on the combustion exhaust gas introduced into the apparatus 10 in the sprayer 10a.

(2)供給水の補充
実際に駆動した状態において、温度検出器Saの出力から、循環使用している噴霧水(排水)の温度が高い(例えば50℃以上)となった場合、給水ポンプ6によって供給される供給水を流路Fを経由して貯留槽2aに供給する。安定的に噴霧水による冷却機能を確保することができる。
(2) Supply water replenishment When the temperature of spray water (drainage) being circulated is high (for example, 50 ° C. or higher) from the output of the temperature detector Sa in the actually driven state, the feed water pump 6 Is supplied to the storage tank 2a via the flow path F. The cooling function by spray water can be secured stably.

上記の通り、本装置10は、燃焼排ガス導入時に噴霧水を吹き付け所定温度まで低下させる燃焼排ガスの冷却機能を確保するとともに、装置上部から流下する燃焼排ガスと複数設置されたフィン水管を上昇する供給水との効率的な熱交換機能、流下するガス流によるフィン水管の表面に発生する凝縮水の排除機能、および回収した熱エネルギーによる温水機20の給温水の加温機能を有するとともに、加温水の温度が予め設定された温度以上に上昇した場合等のリスクを回避することもできる。   As described above, the present apparatus 10 ensures the cooling function of the combustion exhaust gas that sprays spray water at the time of introduction of the combustion exhaust gas and lowers it to a predetermined temperature, and also supplies the combustion exhaust gas flowing down from the upper part of the apparatus and a plurality of fin water tubes installed It has a function of efficiently exchanging heat with water, a function of removing condensed water generated on the surface of the fin water pipe by the flowing down gas flow, and a function of heating the hot water of the water heater 20 by the recovered thermal energy, It is also possible to avoid a risk such as when the temperature rises above a preset temperature.

〔第3構成例における操作〕
また、本装置10の第3構成例においては、燃料排ガスあるいは加温水の温度が予め設定された温度以上に上昇した場合、以下の操作が行なわれ、上記第1構成例と同様に、温水機20からの燃焼排ガスの熱エネルギーを効果的に回収することができる。図4に例示された構成を基に説明する。
[Operation in the third configuration example]
Further, in the third configuration example of the present apparatus 10, when the temperature of the fuel exhaust gas or warming water rises above a preset temperature, the following operation is performed, and the hot water machine is the same as in the first configuration example. The thermal energy of the combustion exhaust gas from 20 can be effectively recovered. Description will be made based on the configuration illustrated in FIG.

(1)設定温度を超える給温水の温度,燃料排ガスあるいは加温水の温度の検知
温度検出器S1による加温水の温度の検出、温度検出器S2による排気部4cからの燃焼排ガスの温度の検出、温度検出器S3による熱媒体5a(給温水)の温度の検出、のいずれかあるいはそのいくつかを行う。特に設定温度を超える場合には、既述のような本装置10と温水機20との間における熱移動のバランスがずれ、いずれか一方が過熱量となっている可能性がある
(1) Detection of temperature of hot water exceeding set temperature, temperature of fuel exhaust gas or temperature of warm water, detection of temperature of warm water by temperature detector S1, detection of temperature of combustion exhaust gas from exhaust section 4c by temperature detector S2, One or some of detection of the temperature of the heat medium 5a (hot water) is performed by the temperature detector S3. In particular, when the temperature exceeds the set temperature, the balance of heat transfer between the apparatus 10 and the hot water machine 20 as described above may be off, and either one may be overheated.

(2)温水機への加温水の供給の停止
本装置10と温水機20との間における熱移動のバランスがずれた場合(燃焼排ガスあるいは加温水の温度上昇)、切換弁Vaを操作し、温水機20への加温水の供給を停止し、熱交換器5cからの温水機20への過量の熱移動を防止する。同時に、供給水を直接温水機20に供給し、温水機20に供給する熱量を減少させ、温水機20から供出する熱量(燃焼排ガスの温度)を減少させる。
(2) Stopping the supply of warm water to the hot water machine When the balance of heat transfer between the apparatus 10 and the hot water machine 20 is off (increase in temperature of combustion exhaust gas or warm water), the switching valve Va is operated, The supply of warm water to the hot water machine 20 is stopped, and an excessive amount of heat transfer from the heat exchanger 5c to the hot water machine 20 is prevented. At the same time, the supplied water is directly supplied to the hot water machine 20, the amount of heat supplied to the hot water machine 20 is reduced, and the amount of heat supplied from the hot water machine 20 (temperature of combustion exhaust gas) is reduced.

(3)本装置からの供給水または加温水の放出
開閉弁Vbを操作し、流路C1に流通した供給水または加温水を本装置10に設けられた中和槽2に放出する。温水機20に供給水または加温水が供給されないときは、熱回収器1a内の流路C1の加温水の沸騰を回避することができる。温水機20に供給水が供給されたときは、供給水の一部が熱回収器1a内の流路C1にも供給されることから、熱回収器1aの熱交換機能を維持することができる。
(3) The supply water or warming water discharge opening / closing valve Vb from this apparatus is operated, and the supply water or warming water circulated through the flow path C1 is discharged into the neutralization tank 2 provided in the present apparatus 10. When supply water or warm water is not supplied to the hot water machine 20, boiling of the warm water in the flow path C1 in the heat recovery device 1a can be avoided. When the supply water is supplied to the hot water machine 20, a part of the supply water is also supplied to the flow path C1 in the heat recovery device 1a, so that the heat exchange function of the heat recovery device 1a can be maintained. .

上記の通り、本装置10は、装置上部から流下する燃焼排ガスと複数設置されたフィン水管を上昇する供給水との効率的な熱交換機能、流下するガス流によるフィン水管の表面に発生する凝縮水の排除機能、および回収した熱エネルギーによる温水機20の給温水の加温機能を有するとともに、加温水の温度が予め設定された温度以上に上昇した場合等のリスクを回避することもできる。   As described above, the present apparatus 10 has an efficient heat exchange function between the combustion exhaust gas flowing down from the upper part of the apparatus and the feed water rising up the plurality of fin water pipes, and the condensation generated on the surface of the fin water pipe due to the flowing gas flow In addition to having a function of removing water and a function of heating hot water supplied from the hot water machine 20 using the recovered thermal energy, it is possible to avoid risks such as when the temperature of the heated water rises above a preset temperature.

10 熱回収装置(本装置)
10a 噴霧器
10b 排水部
20 真空式温水機(温水機)
30 ダクト
1 熱回収室
1a 熱回収器
1b フィン水管
2 中和槽
3 排出部
4 燃焼室
4a 燃焼バーナ
4b 水管
4c 排気部
4d 火炎
5 減圧蒸気室
5a 熱媒体
5b 熱媒体槽
5c 熱交換器
5d 減圧部
5e 給湯部
6 給水ポンプ
7 絞り弁
A〜F,C1 流路
Ba,Ca 分岐路
Fa 流量調整器
S1〜S3,Sa 温度検出器
Va 切換弁
Vb 開閉弁
10 Heat recovery device (this device)
10a Sprayer 10b Drainage unit 20 Vacuum hot water machine (hot water machine)
30 Duct 1 Heat recovery chamber 1a Heat recovery unit 1b Fin water pipe 2 Neutralization tank 3 Discharge section 4 Combustion chamber 4a Combustion burner 4b Water pipe 4c Exhaust section 4d Flame 5 Decompression steam chamber 5a Heat medium 5b Heat medium tank 5c Heat exchanger 5d Depressurization 5e Hot water supply unit 6 Water supply pump 7 Throttle valves A to F, C1 Channel Ba, Ca Branch channel Fa Flow rate regulators S1 to S3, Sa Temperature detector Va Switching valve Vb Open / close valve

Claims (6)

真空式温水機から燃焼排ガスが給送されるダクトの一端部で、該真空式温水機と接続する熱回収装置であって、
前記真空式温水機が、燃焼バーナ、内部に熱媒体が流通し燃焼熱を吸収する複数の水管および燃焼排ガスの排気部が備えられた燃焼室と、該燃焼室を囲むように隣接し前記熱媒体が充填された熱媒体槽、内部に給温水が流通する熱交換器および減圧手段に接続される減圧部が備えられた減圧蒸気室と、該給温水が供出される給湯部と、前記排気部からの燃焼排ガスが給送されるダクトと、を有し、
前記熱回収装置が、内部に供給水が流通する複数段かつ複数列設置したフィン水管からなる熱回収器を備えた熱回収室と、前記ダクトが接続される該熱回収室の上部に、燃焼排ガスに対して噴霧水を吹き付ける噴霧器と、該噴霧器の下部に温度検出器と、前記熱回収室の下部に配置され凝縮水および噴霧水を回収し中和処理する中和槽と、処理された燃焼排ガスが排出される排出部と、前記中和槽からの処理された排水が排出される排水部と、を有し、
供給水を導入する流路Aを設け、該流路Aを前記熱回収装置に給水する流路Cと前記噴霧器に給水する流路Eとに分岐するとともに、該流路Eに流量調整器を設け、前記温度検出器の出力に基づき前記噴霧器への供給水の流量の調整可能な構成を有し、
給送された燃焼排ガスを前記噴霧水によって低温化し、さらに前記熱回収室の上部から下部に流下させた状態で、前記熱回収器内部に前記供給水を下部から上部に流通させて給送された燃焼排ガスと熱交換し、燃焼排ガスの顕熱および該燃焼排ガス中に含まれる水蒸気の潜熱を回収するとともに、前記供給水が加温され、加温水として前記熱交換器に供給することを特徴とする真空式温水機排ガスの熱回収装置。
A heat recovery device connected to the vacuum water heater at one end of a duct to which combustion exhaust gas is fed from the vacuum water heater,
The vacuum water heater includes a combustion burner, a combustion chamber provided with a plurality of water pipes through which a heat medium flows and absorbs combustion heat, and an exhaust section for combustion exhaust gas. The heat chamber is adjacent to and surrounds the combustion chamber. A heat medium tank filled with a medium, a heat exchanger through which hot water is circulated, and a decompression steam chamber provided with a decompression section connected to decompression means; a hot water supply section through which the hot water is supplied; and the exhaust A duct to which combustion exhaust gas from the section is fed,
The heat recovery device is combusted in a heat recovery chamber having a heat recovery device including fin water pipes arranged in a plurality of stages and a plurality of rows through which supply water flows, and an upper portion of the heat recovery chamber to which the duct is connected. A sprayer that sprays spray water against the exhaust gas, a temperature detector at the bottom of the sprayer, a neutralization tank that is disposed at the bottom of the heat recovery chamber, collects condensed water and spray water, and neutralizes the processed water. A discharge section from which combustion exhaust gas is discharged, and a drain section from which the treated waste water from the neutralization tank is discharged,
A flow path A for introducing supply water is provided, and the flow path A branches into a flow path C for supplying water to the heat recovery device and a flow path E for supplying water to the sprayer, and a flow rate regulator is provided in the flow path E. And having a configuration capable of adjusting the flow rate of water supplied to the sprayer based on the output of the temperature detector,
The supplied combustion exhaust gas is cooled by the spray water, and further supplied to the inside of the heat recovery unit by circulating the supply water from the lower part to the upper part in a state of flowing down from the upper part to the lower part of the heat recovery chamber. Heat exchange with the combustion exhaust gas, and recovering the sensible heat of the combustion exhaust gas and the latent heat of the water vapor contained in the combustion exhaust gas, and the supply water is heated and supplied to the heat exchanger as warm water A heat recovery system for exhaust gas from a vacuum hot water machine.
真空式温水機から燃焼排ガスが給送されるダクトの一端部で、該真空式温水機と接続する熱回収装置であって、
前記真空式温水機が、燃焼バーナ、内部に熱媒体が流通し燃焼熱を吸収する複数の水管および燃焼排ガスの排気部が備えられた燃焼室と、該燃焼室を囲むように隣接し前記熱媒体が充填された熱媒体槽、内部に給温水が流通する熱交換器および減圧手段に接続される減圧部が備えられた減圧蒸気室と、該給温水が供出される給湯部と、前記排気部からの燃焼排ガスが給送されるダクトと、を有し、
前記熱回収装置が、内部に供給水が流通する複数段かつ複数列設置したフィン水管からなる熱回収器を備えた熱回収室と、前記ダクトが接続される該熱回収室の上部に、燃焼排ガスに対して噴霧水を吹き付ける噴霧器と、該噴霧器の下部に温度検出器と、前記熱回収室の下部に配置され凝縮水および噴霧水を回収し中和処理する中和槽と、処理された燃焼排ガスが排出される排出部と、前記中和槽からの処理された排水が排出される排水部と、を有し、
供給水を導入する流路Aと、該流路Aと接続し前記熱回収装置に該供給水を給水する流路Cと、排水給送手段を設けて前記排水部からの排水を前記噴霧器に給水する流路Eとを設けるとともに、前記温度検出器の出力に基づき前記噴霧器への給水流量の調整可能な構成を有し、
給送された燃焼排ガスを前記噴霧水によって低温化し、さらに前記熱回収室の上部から下部に流下させた状態で、前記熱回収器内部に前記供給水を下部から上部に流通させて給送された燃焼排ガスと熱交換し、燃焼排ガスの顕熱および該燃焼排ガス中に含まれる水蒸気の潜熱を回収するとともに、前記供給水が加温され、加温水として前記熱交換器に供給することを特徴とする真空式温水機排ガスの熱回収装置。
A heat recovery device connected to the vacuum water heater at one end of a duct to which combustion exhaust gas is fed from the vacuum water heater,
The vacuum water heater includes a combustion burner, a combustion chamber provided with a plurality of water pipes through which a heat medium flows and absorbs combustion heat, and an exhaust section for combustion exhaust gas. The heat chamber is adjacent to and surrounds the combustion chamber. A heat medium tank filled with a medium, a heat exchanger through which hot water is circulated, and a decompression steam chamber provided with a decompression section connected to decompression means; a hot water supply section through which the hot water is supplied; and the exhaust A duct to which combustion exhaust gas from the section is fed,
The heat recovery device is combusted in a heat recovery chamber having a heat recovery device including fin water pipes arranged in a plurality of stages and a plurality of rows through which supply water flows, and an upper portion of the heat recovery chamber to which the duct is connected. A sprayer that sprays spray water against the exhaust gas, a temperature detector at the bottom of the sprayer, a neutralization tank that is disposed at the bottom of the heat recovery chamber, collects condensed water and spray water, and neutralizes the processed water. A discharge section from which combustion exhaust gas is discharged, and a drain section from which the treated waste water from the neutralization tank is discharged,
A flow path A for introducing the feed water, and the flow path C for supplying water to 該供water connected to the flow path A in the heat recovery device, the atomizer drainage from the drainage unit is provided drainage feeding means A flow path E for supplying water , and having a configuration capable of adjusting the flow rate of water supplied to the sprayer based on the output of the temperature detector,
The supplied combustion exhaust gas is cooled by the spray water, and further supplied to the inside of the heat recovery unit by circulating the supply water from the lower part to the upper part in a state of flowing down from the upper part to the lower part of the heat recovery chamber. Heat exchange with the combustion exhaust gas, and recovering the sensible heat of the combustion exhaust gas and the latent heat of the water vapor contained in the combustion exhaust gas, and the supply water is heated and supplied to the heat exchanger as warm water A heat recovery system for exhaust gas from a vacuum hot water machine.
前記中和槽に中和処理された排水を貯留する貯留槽を設け、前記流路Aを前記熱回収装置に給水する流路Cと該貯留槽に給水する流路Fに分岐し、前記噴霧器への給水の補充を行うことを特徴とする請求項2記載の真空式温水機排ガスの熱回収装置。 The neutralization tank is provided with a storage tank for storing neutralized waste water, the flow path A is branched into a flow path C for supplying water to the heat recovery device and a flow path F for supplying water to the storage tank, and the sprayer The heat recovery apparatus for exhaust gas from a vacuum hot water machine according to claim 2, wherein the water supply is replenished. 前記流路Cを、熱回収装置に給水するまでの流路において前記真空式温水機に給水する流路Bと熱回収装置に給水するC1に分岐し、該流路Bの中間に設けられた分岐路に流路C1の末端を接続し、前記熱回収装置から供出された前記加温水を前記真空式温水機へ給水可能な構成を有するとともに、流路C−流路Bの接続と流路C−流路C1の接続の切換えを行う切換弁を設け、かつ、前記流路C1において、熱回収装置に給水するまでの流路に設けられた分岐路に流路Dが接続され、該流路Dに開閉弁が設けられるとともに、前記流路C内の供給水または加温水の一部を前記中和槽に放出可能に構成することを特徴とする請求項1〜3いずれかに記載の真空式温水機排ガスの熱回収装置。 The flow path C branches into a flow path B for supplying water to the vacuum hot water machine and a C1 for supplying water to the heat recovery apparatus in the flow path until the heat recovery apparatus is supplied with water, and is provided in the middle of the flow path B. The end of the flow path C1 is connected to the branch path, and the heated water delivered from the heat recovery device can be supplied to the vacuum hot water machine, and the connection between the flow path C and the flow path B and the flow path A switching valve for switching the connection of the C-flow path C1 is provided, and the flow path D is connected to a branch path provided in the flow path C1 until water is supplied to the heat recovery device. The on-off valve is provided in the path D, and a part of the supply water or the heated water in the flow path C is configured to be able to be discharged to the neutralization tank. Heat recovery equipment for vacuum hot water exhaust gas. 請求項1〜4のいずれかの熱回収装置を用い、真空式温水機からの燃焼排ガス中の熱エネルギーである顕熱および潜熱を回収する方法であって、
該熱回収装置において、該真空式温水機からの燃焼排ガスに対して噴霧水を吹き付けて所定温度以下に制御された燃焼排ガスと、熱回収装置に設けられたフィン水管中の供給水とを向流的に熱交換させ、加温された該供給水を熱回収装置から加温水として真空式温水機に供給することを特徴とする真空式温水機排ガスの熱回収方法。
A method for recovering sensible heat and latent heat, which is thermal energy in combustion exhaust gas from a vacuum hot water machine, using the heat recovery device according to claim 1,
In the heat recovery apparatus, sprayed water is sprayed on the combustion exhaust gas from the vacuum hot water machine to control the combustion exhaust gas controlled to a predetermined temperature or lower, and supply water in a fin water pipe provided in the heat recovery apparatus. A heat recovery method for exhaust gas from a vacuum hot water machine, characterized in that the heated water is fluidly exchanged and supplied to the vacuum hot water machine as heated water from a heat recovery device.
前記噴霧水として、前記熱回収装置において発生した凝縮水および吹き付けられた噴霧水を回収し中和処理された排水を利用、あるいは該排水に新たな供給水が補充されて利用されるとともに、
前記加温水の温度が予め設定された温度以上に上昇した場合、真空式温水機への該加温水の供給を停止し、前記供給水を直接真空式温水機に供給するとともに、前記供給水または加温水を熱回収装置に設けられた燃焼排ガスの凝縮水中和用の中和槽に放出することを特徴とする請求項5記載の真空式温水機排ガスの熱回収方法。
As the sprayed water, the condensed water generated in the heat recovery device and the sprayed water sprayed are collected and neutralized drainage is used, or the drainage is supplemented with new supply water and used.
When the temperature of the warming water rises above a preset temperature, supply of the warming water to the vacuum hot water machine is stopped, and the supply water is directly supplied to the vacuum hot water machine. 6. The method of claim 5, wherein the warm water is discharged to a neutralization tank for neutralizing the condensed water of the combustion exhaust gas provided in the heat recovery device.
JP2010250139A 2010-11-08 2010-11-08 Heat recovery apparatus for exhaust gas from vacuum hot water machine and heat recovery method using the same Active JP5604268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010250139A JP5604268B2 (en) 2010-11-08 2010-11-08 Heat recovery apparatus for exhaust gas from vacuum hot water machine and heat recovery method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010250139A JP5604268B2 (en) 2010-11-08 2010-11-08 Heat recovery apparatus for exhaust gas from vacuum hot water machine and heat recovery method using the same

Publications (2)

Publication Number Publication Date
JP2012102907A JP2012102907A (en) 2012-05-31
JP5604268B2 true JP5604268B2 (en) 2014-10-08

Family

ID=46393518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010250139A Active JP5604268B2 (en) 2010-11-08 2010-11-08 Heat recovery apparatus for exhaust gas from vacuum hot water machine and heat recovery method using the same

Country Status (1)

Country Link
JP (1) JP5604268B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101975888B1 (en) * 2017-09-05 2019-05-08 인하대학교 산학협력단 Waste Heat Recovery Boiler for Additionally Spraying Water

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6441611A (en) * 1987-07-11 1989-02-13 Osaka Gas Co Ltd Waste heat recovery device for internal combustion engine
JPH0933024A (en) * 1995-07-14 1997-02-07 Kubota Corp Heat recovering method in exhaust gas treatment
JP3754560B2 (en) * 1998-05-21 2006-03-15 株式会社タクマ Boiler furnace structure
JP2002235992A (en) * 2000-12-06 2002-08-23 Osaka Gas Co Ltd Heat exchanger and combustion device using it
JP2006272173A (en) * 2005-03-29 2006-10-12 Osaka Gas Co Ltd Drain neutralizing apparatus
JP2007093114A (en) * 2005-09-29 2007-04-12 Noritz Corp Combustion device
JP2009036476A (en) * 2007-08-03 2009-02-19 Gastar Corp Combustion device

Also Published As

Publication number Publication date
JP2012102907A (en) 2012-05-31

Similar Documents

Publication Publication Date Title
JP5604267B2 (en) Heat recovery apparatus for exhaust gas from vacuum hot water machine and heat recovery method using the same
JP5722594B2 (en) Heat recovery apparatus for exhaust gas from vacuum hot water machine and heat recovery method using the same
JP2005321190A (en) Exhaust heat recovery device of heat generation furnace
JP5710453B2 (en) Heat recovery apparatus for exhaust gas from vacuum hot water machine and heat recovery method using the same
US20190072332A1 (en) Vacuum condensation system by using evaporative condenser and air removal system coupled to condensing turbines in thermoelectric plants
KR101052776B1 (en) Water heating system using high efficiency absorbtion heat pump having heat exchanger
KR20120108205A (en) A vacuum boiler
KR101871791B1 (en) The hot water boiler of a vacuum type
KR101739442B1 (en) The hot water boiler of a vacuum type
JP6359321B2 (en) Vacuum water heater
JP2009097790A (en) Steam generator
JP5604268B2 (en) Heat recovery apparatus for exhaust gas from vacuum hot water machine and heat recovery method using the same
JP5580225B2 (en) Vacuum water heater
JP2006226540A (en) Heating/cooling device
JP5634552B2 (en) Seawater heating device
JP2006226541A (en) Heating/cooling device
JP3139784U (en) Honeycomb seawater desalination processor
JP2013079778A (en) Heat recovery device for voc treatment device and heat recovery method
JP5580224B2 (en) Vacuum water heater
JP5653861B2 (en) Water heater
JP2006255503A (en) Heating/cooling apparatus
JP2006329513A (en) Evaporative cooling device
JP2006223929A (en) Steam-heating apparatus
JP2006223928A (en) Steam-heating apparatus
JP6053952B2 (en) Heat exchange system and method for starting the heat exchange system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140825

R150 Certificate of patent or registration of utility model

Ref document number: 5604268

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250