JP5596360B2 - Hydrogen catalyst member and manufacturing method thereof - Google Patents

Hydrogen catalyst member and manufacturing method thereof Download PDF

Info

Publication number
JP5596360B2
JP5596360B2 JP2010016602A JP2010016602A JP5596360B2 JP 5596360 B2 JP5596360 B2 JP 5596360B2 JP 2010016602 A JP2010016602 A JP 2010016602A JP 2010016602 A JP2010016602 A JP 2010016602A JP 5596360 B2 JP5596360 B2 JP 5596360B2
Authority
JP
Japan
Prior art keywords
hydrogen
catalyst
oxide film
aluminum foil
porous oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010016602A
Other languages
Japanese (ja)
Other versions
JP2011152527A (en
Inventor
清治 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AAFC Energy Technology Inc.
Hitachi AIC Inc
Original Assignee
AAFC Energy Technology Inc.
Hitachi AIC Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AAFC Energy Technology Inc., Hitachi AIC Inc filed Critical AAFC Energy Technology Inc.
Priority to JP2010016602A priority Critical patent/JP5596360B2/en
Publication of JP2011152527A publication Critical patent/JP2011152527A/en
Application granted granted Critical
Publication of JP5596360B2 publication Critical patent/JP5596360B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、脱水素及び水素付加の水素触媒部材およびその製造方法に関し、特に、金属触媒を多孔質酸化膜に担持した触媒担体による水素触媒部材およびその製造方法に関する。
The present invention relates to a hydrogen catalyst member for dehydrogenation and hydrogenation and a method for producing the same , and more particularly to a hydrogen catalyst member using a catalyst carrier having a metal catalyst supported on a porous oxide film and a method for producing the same .

近年、安全性、運搬性及び貯蔵能力に優れた水素貯蔵方法として、シクロヘキサンやデカリンのような炭化水素を用いた有機ハイドライドシステムが注目されている。これらの炭化水素は、常温で液体であるため、運搬性に優れている。   In recent years, organic hydride systems using hydrocarbons such as cyclohexane and decalin have attracted attention as hydrogen storage methods that are excellent in safety, transportability and storage capacity. Since these hydrocarbons are liquid at room temperature, they are excellent in transportability.

例えば、ベンゼンとシクロヘキサンは同じ炭素数を有する環状炭化水素であるが、ベンゼンは炭素同士の結合が二重結合である不飽和炭化水素であるのに対し、シクロヘキサンは二重結合を持たない飽和炭化水素である。ベンゼンの水素付加反応によりシクロヘキサンが得られ、シクロヘキサンの脱水素反応によりベンゼンが得られる。すなわち、これらの炭化水素の水素付加と脱水素反応を利用することにより、水素の貯蔵とその供給が可能となる。   For example, benzene and cyclohexane are cyclic hydrocarbons having the same carbon number, but benzene is an unsaturated hydrocarbon in which the bonds between carbons are double bonds, whereas cyclohexane is a saturated hydrocarbon having no double bonds. Hydrogen. Cyclohexane is obtained by the hydrogenation reaction of benzene, and benzene is obtained by the dehydrogenation reaction of cyclohexane. That is, hydrogen can be stored and supplied by utilizing hydrogenation and dehydrogenation of these hydrocarbons.

図1は、水素発生装置1を使用した水素反応ユニットであり、水素エンジンへの適用例を示している。反応容器2には白金(触媒金属)を多孔質酸化膜に担持した触媒担体による水素触媒部材が収納されている。反応容器2にはメチルシクロヘキサンなどの水素媒体が導入されるが、燃焼廃ガスの熱交換部分3の燃焼排ガスとの熱交換を反応熱源としてメチルシクロヘキサンは水素とトルエンに分解される。水素、トルエン及び未分解のメチルシクロへキサンは、気液分離容器で分離されトルエン及び未分解のメチルシクロへキサンは廃液タンクに回収される。一方、水素はエンジンの燃料として使用される。   FIG. 1 shows a hydrogen reaction unit using a hydrogen generator 1 and shows an application example to a hydrogen engine. The reaction vessel 2 contains a hydrogen catalyst member made of a catalyst carrier in which platinum (catalyst metal) is supported on a porous oxide film. A hydrogen medium such as methylcyclohexane is introduced into the reaction vessel 2, and methylcyclohexane is decomposed into hydrogen and toluene by using heat exchange with the combustion exhaust gas in the heat exchange portion 3 of the combustion exhaust gas as a reaction heat source. Hydrogen, toluene and undecomposed methylcyclohexane are separated in a gas-liquid separation container, and toluene and undecomposed methylcyclohexane are collected in a waste liquid tank. On the other hand, hydrogen is used as engine fuel.

ところで、特許文献1には、アルミニウム平板表面を陽極酸化して、多孔質酸化膜を設け、その多孔質酸化膜に金属触媒を担持して触媒担体とし、化学的に水素貯蔵・供給を繰り返す媒体を用いて水素を取り出す脱水素触媒部材を得ることが提案されている。また、このアルミニウム平板の脱水素触媒部材を、スペーサを介して積み上げることにより、水素分離の効率を向上させることが提案されている。   By the way, Patent Document 1 discloses a medium in which the surface of an aluminum plate is anodized, a porous oxide film is provided, a metal catalyst is supported on the porous oxide film as a catalyst carrier, and hydrogen storage and supply are chemically repeated. It has been proposed to obtain a dehydrogenation catalyst member for taking out hydrogen by using the above. It has also been proposed to improve the efficiency of hydrogen separation by stacking the aluminum flat plate dehydrogenation catalyst members via spacers.

特開2007−326000公報JP 2007-326000 A

水素を取り出す水素反応システムに合わせて水素反応容器もそれにあった形状にし、その水素反応容器中に入れる水素触媒部材もまたそれに合わせて設計する必要がある。
アルミニウム平板に多孔質酸化皮膜を設けている特許文献1では、熱交換器部分からの熱拡散をアルミニウム平板の熱伝導性に頼っている。ここで触媒担体の体積率を上げるには多孔質酸化皮膜を厚くする必要があるが、多孔質酸化膜は熱伝導率が悪い為、多孔質酸化膜を厚くし過ぎると逆に水素転化率は低下する。また多孔質酸化皮膜が厚い場合、多孔質酸化皮膜の細孔が長くなり表面積が増えるものの、脱水素又は水素付加の反応では水素媒体と水素が細孔内で交換される必要があり、長い細孔では交換効率が悪くなる。
即ち高熱伝導であるアルミニウム金属部と低熱伝導である多孔質酸化膜部は、それぞれ薄肉にて緻密に構成される必要があり、かつガス流路など流動体の隙間部も構成する必要があるが、平板の積層構造では強度を保つためには薄肉化には限界がある。又、水素反応は水素媒体が反応容器を通過する際に水素触媒部材により反応することにより行われるが、水素触媒部材が特許文献1の平板のような平面構造の場合では、水素媒体の流れに層流を生じ、効率的な反応を阻害する。
以上の通り従来技術では、反応容器内の流動体の流れを確保し小形、軽量の水素供給装置を容易に得ることが困難である。
It is necessary to design the hydrogen reaction vessel in accordance with the hydrogen reaction system for taking out hydrogen, and to design the hydrogen catalyst member to be put in the hydrogen reaction vessel accordingly.
In Patent Document 1 in which a porous oxide film is provided on an aluminum flat plate, the thermal diffusion from the heat exchanger portion relies on the thermal conductivity of the aluminum flat plate. Here, in order to increase the volume ratio of the catalyst carrier, it is necessary to increase the thickness of the porous oxide film. However, since the porous oxide film has poor thermal conductivity, if the porous oxide film is too thick, the hydrogen conversion rate is reversed. descend. In addition, when the porous oxide film is thick, the pores of the porous oxide film become longer and the surface area increases, but in the dehydrogenation or hydrogenation reaction, the hydrogen medium and hydrogen must be exchanged in the pores. The exchange efficiency deteriorates at the hole.
In other words, the aluminum metal portion having high thermal conductivity and the porous oxide film portion having low thermal conductivity need to be thin and dense, and it is also necessary to form a gap portion of the fluid such as a gas flow path. In a flat laminated structure, there is a limit to reducing the thickness in order to maintain strength. In addition, the hydrogen reaction is performed by reacting with a hydrogen catalyst member when the hydrogen medium passes through the reaction vessel. However, in the case where the hydrogen catalyst member has a planar structure such as a flat plate of Patent Document 1, the hydrogen medium flows. It creates laminar flow and inhibits efficient reaction.
As described above, according to the conventional technology, it is difficult to secure a flow of the fluid in the reaction vessel and easily obtain a small and lightweight hydrogen supply device.

本発明は、反応容器内の流動体の流れを確保し、軽量化及び小型化を実現しながら、水素供給装置に容易に収納できる水素触媒部材を提供するものである。
The present invention provides a hydrogen catalyst member that can be easily accommodated in a hydrogen supply device while ensuring the flow of a fluid in a reaction vessel and realizing a reduction in weight and size.

本発明は、上記の課題を解決するために、下記の水素触媒部材およびその製造方法を提供するものである。
(1)金属触媒を多孔質酸化膜に担持した触媒担体により、化学的に水素貯蔵・供給を繰り返す媒体を用いて、水素を取り出す脱水素または水素を取り込む水素付加の水素触媒部材において、幅が1mm〜50mmの短冊状のアルミニウム箔の切断面以外の表面に多孔質酸化膜とその多孔質酸化膜に担持した金属触媒とを設けていることを特徴とする水素触媒部材。
(2)アルミニウム箔には貫通する孔を有することを特徴とした(1)に記載の水素触媒部材。
(3)アルミニウム箔は、曲げ形状または凹凸形状の表面を有することを特徴とする(1)または(2)に記載の水素触媒部材。
(4)金属触媒を多孔質酸化膜に担持した触媒担体により、化学的に水素貯蔵・供給を繰り返す媒体を用いて、水素を取り出す脱水素または水素を取り込む水素付加の水素触媒部材の製造方法において、アルミニウム箔の表面に設けた多孔質酸化膜に金属触媒を担持した後に、幅が1mm〜50mmの短冊状に切断することを特徴とする水素触媒部材の製造方法。
In order to solve the above-mentioned problems, the present invention provides the following hydrogen catalyst member and a manufacturing method thereof.
(1) In a hydrogen catalyst member for dehydrogenation to extract hydrogen or hydrogen addition to take in hydrogen using a catalyst carrier in which a metal catalyst is supported on a porous oxide film, which chemically repeats hydrogen storage and supply. A hydrogen catalyst member comprising a porous oxide film and a metal catalyst supported on the porous oxide film on a surface other than a cut surface of a 1 mm to 50 mm strip-shaped aluminum foil.
(2) The hydrogen catalyst member according to (1), wherein the aluminum foil has a through-hole.
(3) The hydrogen catalyst member according to (1) or (2), wherein the aluminum foil has a curved or uneven surface.
(4) In a method for producing a hydrogen catalyst member for dehydrogenation that extracts hydrogen or hydrogen that takes in hydrogen using a catalyst carrier in which a metal catalyst is supported on a porous oxide film, which is repeatedly stored and supplied with hydrogen. A method for producing a hydrogen catalyst member, comprising supporting a metal catalyst on a porous oxide film provided on the surface of an aluminum foil and then cutting the metal catalyst into strips having a width of 1 mm to 50 mm.

本発明によれば、水素触媒部材が、幅が1mmから50mmの短冊状のため、反応熱源からの熱交換効率のよいパイプ形状の反応容器に収納するのに適しており、水素供給装置の流動体の流れを確保し、軽量化及び小型化を実現しながら、反応容器内に容易に収納できる水素触媒部材を提供することができる。
According to the present invention, since the hydrogen catalyst member is a strip having a width of 1 mm to 50 mm, the hydrogen catalyst member is suitable for being housed in a pipe-shaped reaction vessel having a high heat exchange efficiency from the reaction heat source. It is possible to provide a hydrogen catalyst member that can be easily accommodated in a reaction vessel while ensuring a body flow and realizing weight reduction and size reduction.

水素反応ユニット例の概略図を示している。A schematic diagram of an example hydrogen reaction unit is shown. 本発明の形態の水素触媒部材に使用するエッチングされたアルミニウム箔の断面図を示している。The cross-sectional view of the etched aluminum foil used for the hydrogen catalyst member of the form of this invention is shown. アルミニウム箔表面に形成された多孔質酸化膜および、触媒金属の断面図を示している。A cross-sectional view of a porous oxide film formed on an aluminum foil surface and a catalyst metal is shown. 本発明の形態の各種短冊状のアルミニウム箔からなる水素触媒部材の斜視図を示している。The perspective view of the hydrogen catalyst member which consists of various strip-shaped aluminum foil of the form of the present invention is shown. 本発明の形態の短冊状のアルミニウム箔を途中まで挿入した金属パイプの概略部分斜視図を示している。The schematic partial perspective view of the metal pipe which inserted the strip-shaped aluminum foil of the form of this invention to the middle is shown. 本発明の形態の各種短冊状のアルミニウム箔を挿入した水素発生装置例の斜視図を示している。The perspective view of the example of the hydrogen generator which inserted the various strip-shaped aluminum foil of the form of this invention is shown.

本発明に述べるアルミニウム箔は、その厚さ、純度、結晶性を特に限定しないが、エッチングとの相性より、アルミニウム電解コンデンサ用として適用されている仕様が好適であり、厚さ15μmから120μm、純度99%から99.99%で結晶方位が揃えられたもので量産されているものが使用できる。
このアルミニウム箔は、エッチングによる粗面化を施した方が良く、反応表面積が拡大する。エッチング条件は、アルミニウム電解コンデンサ用として適用されている条件を採用できる。但し表面に形成する多孔質酸化膜の厚さに応じて最適なピット径、ピット密度は変わるので、適宜調整する。
The thickness, purity, and crystallinity of the aluminum foil described in the present invention are not particularly limited, but the specification applied for aluminum electrolytic capacitors is preferable because of compatibility with etching, and the thickness is 15 μm to 120 μm, purity. Those with a crystal orientation of 99% to 99.99% and mass-produced can be used.
This aluminum foil is preferably roughened by etching, and the reaction surface area is increased. Etching conditions can be those applied for aluminum electrolytic capacitors. However, since the optimum pit diameter and pit density vary depending on the thickness of the porous oxide film formed on the surface, they are adjusted as appropriate.

本発明に述べる多孔質酸化膜は、アルミニウムを陽極酸化してできる酸化膜のうち、酸化膜が多孔質の膜からなる。
多孔質酸化膜の陽極酸化法として、電解液は、例えば燐酸、クロム酸、蓚酸、硫酸、クエン酸、マロン酸、酒石酸水溶液等を使用することができる。
陽極酸化により形成される細孔の径、細孔の間隔、膜厚は、印加電圧、処理温度、処理時間などの条件により、適宜調整することができる。
多孔質酸化膜の細孔径は、1nm以上とし、担持する金属触媒の大きさに合わせて調整する。但し陽極酸化条件だけで、細孔径を拡大しようとすると、細孔間隔が広がり最適な触媒担持密度が得られない場合があるので、陽極酸化での細孔径は小さいままとし、後の酸性溶液処理で細孔径を整えるのが良い。
The porous oxide film described in the present invention is composed of a porous oxide film among oxide films formed by anodizing aluminum.
As the anodic oxidation method for the porous oxide film, for example, phosphoric acid, chromic acid, oxalic acid, sulfuric acid, citric acid, malonic acid, tartaric acid aqueous solution, or the like can be used as the electrolytic solution.
The diameter of the pores formed by anodization, the interval between the pores, and the film thickness can be appropriately adjusted according to conditions such as applied voltage, processing temperature, and processing time.
The pore diameter of the porous oxide film is 1 nm or more, and is adjusted according to the size of the supported metal catalyst. However, when trying to enlarge the pore size only under anodizing conditions, the pore spacing may be widened and the optimal catalyst loading density may not be obtained. It is better to adjust the pore diameter.

陽極酸化の処理液温度は、0℃から50℃、特に30℃から40℃とすることが好ましい。また、この陽極酸化の処理時間は処理条件や形成したい多孔質酸化膜の膜厚によって異なるが、例えば20℃、4質量%の蓚酸水溶液で15V、40分とした場合には約1.5μmの陽極酸化層を形成することができる。   The treatment liquid temperature for anodization is preferably 0 ° C. to 50 ° C., particularly 30 ° C. to 40 ° C. Further, the treatment time of this anodic oxidation varies depending on the treatment conditions and the thickness of the porous oxide film to be formed. An anodized layer can be formed.

さらに以下に述べる酸(またはアルカリ)性水溶液処理、ベーマイト処理、焼成処理をしてから金属触媒担持処理を行うことが望ましい。
酸(またはアルカリ)水溶液処理は、形成された細孔の径を拡大することが目的であり、例えば燐酸の場合には5質量%から20質量%であることが好ましく、10℃から30℃で10分から2時間、細孔径が適度に拡大されるまで処理する。
ベーマイト処理は、多孔質酸化膜の表面に羽毛状水酸化アルミニウムを形成させることが目的であり、pH6からpH8、好ましくはpH7からpH8の水中で行い、大気圧下であれば90℃から100℃で1時間以上、好ましくは5時間以上処理する。また加圧容器を使用し100℃以上とすれば処理時間を短縮できる。
焼成処理は、γ―アルミナに転化させることが目的であり、水素触媒反応の効率としてγ―アルミナの方が良好なことによる。通常は300℃から550℃で0.1時間から5時間行う。
Furthermore, it is desirable to carry out the metal catalyst supporting treatment after the following acid (or alkali) aqueous solution treatment, boehmite treatment, and firing treatment.
The acid (or alkali) aqueous solution treatment is intended to enlarge the diameter of the formed pores. For example, in the case of phosphoric acid, it is preferably 5% by mass to 20% by mass, and 10 ° C. to 30 ° C. Treatment is performed for 10 minutes to 2 hours until the pore diameter is appropriately expanded.
The boehmite treatment is intended to form feathered aluminum hydroxide on the surface of the porous oxide film, and is performed in water at pH 6 to pH 8, preferably pH 7 to pH 8, and 90 ° C. to 100 ° C. under atmospheric pressure. For 1 hour or longer, preferably 5 hours or longer. Moreover, if a pressurized container is used and the temperature is 100 ° C. or higher, the processing time can be shortened.
The purpose of the calcination treatment is to convert it to γ-alumina, and γ-alumina is better for the efficiency of the hydrogen catalyst reaction. Usually, it is performed at 300 to 550 ° C. for 0.1 to 5 hours.

本発明に述べる金属触媒は、水素触媒用の金属で、ニッケル、パラジウム、白金、ロジウム、イリジウム、レニウム、ルテニウム、モリブデン、タングステン、バナジウム、オスミウム、クロム、コバルト、鉄などの金属及びこれらの合金触媒を用いることができる。
金属触媒を多孔質酸化膜に担持する方法は、触媒金属をコロイド状に分散した液に浸漬したり、触媒金属を無電解めっきしたりして行う。
The metal catalyst described in the present invention is a metal for a hydrogen catalyst, such as nickel, palladium, platinum, rhodium, iridium, rhenium, ruthenium, molybdenum, tungsten, vanadium, osmium, chromium, cobalt, iron, and alloys thereof. Can be used.
The method for supporting the metal catalyst on the porous oxide film is performed by immersing the catalyst metal in a colloidal dispersion or electroless plating of the catalyst metal.

本発明に述べる水素媒体は、水素を放出し貯蔵する媒体で、それ自体が安定であると共に脱水素されて安定な芳香族類となるものであれば特に制限されるものではないが、好ましくはシクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン等の単環式水素化芳香族類や、テトラリン、デカリン、メチルデカリン等の2環式水素化芳香族類や、テトラデカヒドロアントラセン等の3環式水素化芳香族類等を挙げることができ、より好ましくはシクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン等の単環式水素化芳香族類や、テトラリン、デカリン、メチルデカリン等の2環式水素化芳香族類である。
以下、これら水素媒体全体のことを指して有機ハイドライドと呼ぶ。これら有機ハイドライドは、炭素同士の二重結合に水素が付加することにより、水素を貯蔵する。水素付加後の水素供給体は、水素を放出して元の水素貯蔵体に戻る。すなわち、上述の燃料は、水素のリサイクルに適したキャリアとなる。一方、上述の燃料の水素付加反応及び脱水素反応に際して利用される触媒は、既に研究開発されて熟知されているものも適用可能であり、実用的なものである。本発明は、より低温で水素貯蔵、供給が可能な触媒を用いることが好ましく、システム全体の効率を向上することができる。
The hydrogen medium described in the present invention is a medium that releases and stores hydrogen and is not particularly limited as long as it is stable and dehydrogenated to become a stable aromatic. Monocyclic hydrogenated aromatics such as cyclohexane, methylcyclohexane and dimethylcyclohexane, bicyclic hydrogenated aromatics such as tetralin, decalin and methyldecalin, and tricyclic hydrogenated aromatics such as tetradecahydroanthracene More preferred are monocyclic hydrogenated aromatics such as cyclohexane, methylcyclohexane and dimethylcyclohexane, and bicyclic hydrogenated aromatics such as tetralin, decalin and methyldecalin.
Hereinafter, the entire hydrogen medium is referred to as organic hydride. These organic hydrides store hydrogen by adding hydrogen to a double bond between carbon atoms. The hydrogen supply body after hydrogen addition releases hydrogen and returns to the original hydrogen storage body. That is, the above-described fuel is a carrier suitable for hydrogen recycling. On the other hand, as the catalyst used in the hydrogenation reaction and dehydrogenation reaction of the above-mentioned fuel, a catalyst that has already been researched and developed and is well known is applicable and practical. In the present invention, it is preferable to use a catalyst capable of storing and supplying hydrogen at a lower temperature, and the efficiency of the entire system can be improved.

以下、本発明の実施の形態を図面に基づいて説明する。
図2は、本発明の形態の水素触媒部材に使用するエッチングされたアルミニウム箔の断面図を示している。エッチングピットは非貫通ピット4と貫通ピット5に分けられるが、貫通ピット5がある場合の方が通気性が良く、水素媒体、水素の流動体の導出を改善できる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 2 shows a cross-sectional view of an etched aluminum foil used in the hydrogen catalyst member of the embodiment of the present invention. The etching pits are divided into non-penetrating pits 4 and penetrating pits 5. However, the presence of the penetrating pits 5 has better air permeability and can improve the derivation of the hydrogen medium and the hydrogen fluid.

図3は、アルミニウム箔表面に形成された多孔質酸化膜7および、触媒金属9の断面図を示しており、多孔質酸化膜7は細孔8を有し、表面には白金などの金属触媒9が担持される。   FIG. 3 shows a cross-sectional view of the porous oxide film 7 formed on the surface of the aluminum foil and the catalytic metal 9. The porous oxide film 7 has pores 8 on the surface, and a metal catalyst such as platinum. 9 is carried.

図4は、本発明の形態の各種短冊状のアルミニウム箔の斜視図を示している。
図4(a)は、平板状の短冊を示していて、図4(b)、(c)、(d)、(e)または(f)は、通気性をより確保する為に、平板状の短冊を屈曲形状または凹凸形状の表面に加工を加えたものである。すなわち、図4(a)は、平板状で長方形の短冊10を、図4(b)は、ピンを突き刺すことで孔加工を施した短冊状アルミニウム箔11であり、抜きバリにより隙間を確保すると共に、孔により通気性を改善している。図4(c)は、捻り加工を施した短冊状アルミニウム箔12、図4(d)は、エンボス加工を施した短冊状のアルミニウム箔13、図4(d)は、山形加工を施した短冊状のアルミニウム箔14、図4(d)は、波形加工を施した短冊状のアルミニウム箔15を示している。なお、屈曲形状または凹凸形状の間隔は、水素触媒部材どうしがかさならないようにランダムな屈曲角度または間隔が好ましい。また、屈曲形状または凹凸形状の表面に加工は、ひとつの短冊中に上記のような加工を複数種行ってもよい。
FIG. 4 shows perspective views of various strip-shaped aluminum foils according to the embodiment of the present invention.
FIG. 4 (a) shows a flat strip, and FIG. 4 (b), (c), (d), (e) or (f) is a flat strip to ensure better air permeability. This strip is obtained by processing a bent or uneven surface. That is, FIG. 4A shows a flat rectangular strip 10 and FIG. 4B shows a strip-shaped aluminum foil 11 in which a hole is drilled by piercing a pin, and a gap is secured by punching burr. At the same time, the air permeability is improved by the holes. 4 (c) is a strip-shaped aluminum foil 12 that has been twisted, FIG. 4 (d) is a strip-shaped aluminum foil 13 that has been embossed, and FIG. 4 (d) is a strip that has been chevron-shaped. FIG. 4D shows a strip-shaped aluminum foil 15 that has been corrugated. The interval between the bent shape and the uneven shape is preferably a random bend angle or interval so that the hydrogen catalyst members do not overlap each other. Further, a plurality of types of processing as described above may be performed in one strip for processing on the surface of the bent shape or the uneven shape.

使用されるアルミニウム箔は、最初幅500mm程度のコイル状であり、エッチングから金属触媒担持処理までは連続的に処理される。その後図4の通り短冊状に切断される。 切断の幅は1mm〜50mmとする。切断長さは、反応容器に合わせて切断され、例えば切断の幅の1.5倍から1000倍程度と特に限定はない。ここで切断面には金属触媒が担持されていないので、切断幅が狭いと、全表面積に対する金属触媒担持面積が少なくなることに加え、短冊の強度が弱く組立に支障がある。一方切断幅が広い場合、熱伝導に支障がある。本短冊状のアルミニウム箔の切断面以外には、多孔質酸化膜があり、多孔質酸化膜は熱伝導率が低い。従って高温部に位置する切断面から地金に向かって熱が分散することが有効である。脱水素反応は吸熱反応なので熱源を必要とするが、切断幅が広い場合、短冊体積に対する切断面面積が小さく熱伝導に支障がある。
以上により切断幅は、1mm〜50mmが良く、好ましくは2mmから40mm、更により好ましくは3〜30mmが好適である。
また、切断長さは、反応容器に合わせて設定される。また、切断の容易性から長さ方向の切断線は直線であるが、反応容器内の流動体の流れを改善するために、曲線状に切断してもよい。
The aluminum foil used has a coil shape with a width of about 500 mm at the beginning, and is continuously processed from the etching to the metal catalyst supporting treatment. Thereafter, it is cut into strips as shown in FIG. The cutting width is 1 mm to 50 mm. The cutting length is cut according to the reaction vessel, and is not particularly limited, for example, about 1.5 to 1000 times the cutting width. Here, since the metal catalyst is not supported on the cut surface, if the cut width is narrow, the metal catalyst support area with respect to the entire surface area is reduced, and the strength of the strip is weak, which hinders assembly. On the other hand, when the cutting width is wide, the heat conduction is hindered. There is a porous oxide film other than the cut surface of the strip-shaped aluminum foil, and the porous oxide film has a low thermal conductivity. Therefore, it is effective that heat is dispersed from the cut surface located in the high temperature portion toward the metal. Since the dehydrogenation reaction is an endothermic reaction, a heat source is required. However, when the cutting width is wide, the cut surface area with respect to the strip volume is small, which hinders heat conduction.
As described above, the cutting width is preferably 1 mm to 50 mm, preferably 2 mm to 40 mm, and more preferably 3 to 30 mm.
The cutting length is set according to the reaction container. In addition, the cutting line in the length direction is a straight line for ease of cutting, but it may be cut in a curved line in order to improve the flow of the fluid in the reaction vessel.

なお、反応容器に収納する水素触媒部材の形状は、通気度、熱伝導度、反応容器の形状等により設定し、単形状の収納のほか、複数形状を混合したり、反応容器内の反応条件に従って、割り振ったりして収納する。   The shape of the hydrogen catalyst member stored in the reaction vessel is set according to the air permeability, thermal conductivity, reaction vessel shape, etc. In addition to storing a single shape, multiple shapes can be mixed or the reaction conditions in the reaction vessel According to the allocation and storage.

図5は、本発明の形態の短冊状のアルミニウム箔からなる水素触媒部材20を途中まで挿入した金属パイプ21の概略部分斜視図であり、金属パイプ21は図1の反応容器2に相当する。
図5(a)は、同一幅の平板状の短冊を円形の径になるように束ねて途中まで挿入し、図5(b)は、エンボス加工部24を施した短冊状のアルミニウム箔を使用し、金属パイプ21の内径の形になるように短冊の幅を変えて積み重ねて途中まで挿入した状態を示している。
反応容器2は熱交換効率を高める必要があり、このため金属製のパイプ状であることが好ましい。水素触媒部材はパイプへの挿入が容易な形状が選択される。また反応容器である金属パイプ21内には水素媒体及び水素が通過するので、適度な隙間が必要である。
FIG. 5 is a schematic partial perspective view of a metal pipe 21 in which a hydrogen catalyst member 20 made of a strip-shaped aluminum foil according to the embodiment of the present invention is inserted halfway, and the metal pipe 21 corresponds to the reaction vessel 2 of FIG.
FIG. 5 (a) bundles flat strips of the same width so as to have a circular diameter and inserts them halfway, and FIG. 5 (b) uses strip-shaped aluminum foil with an embossed portion 24. In this state, the strips are stacked with different widths so that the inner diameter of the metal pipe 21 is formed.
The reaction vessel 2 needs to increase the heat exchange efficiency, and for this reason, it is preferably a metal pipe. The shape of the hydrogen catalyst member that can be easily inserted into the pipe is selected. Moreover, since a hydrogen medium and hydrogen pass in the metal pipe 21 which is a reaction container, an appropriate clearance is required.

本発明の水素触媒部材は、短冊状であり、パイプ形状に収納するのに適しており、ベース材がアルミニウム箔のため、エッチングによる粗面化が可能でその場合では反応表面積が拡大される。
また反応容器内を通過する反応ガスは水素触媒部材であるアルミニウム箔表面に接触する必要があるが、アルミニウム箔は加工が容易で、貫通する孔を設ける、捻る、エンボス加工、山形加工、波形加工等の曲げ形状または凹凸形状の表面を加えることが可能で、水素触媒部材間に適度な隙間ができやすく、反応容器内の流動体の流れを確保したり、乱流が生じ、反応を活発化したりすることができる。
また、本発明による水素触媒部材は短冊状であるが、ベース材のアルミニウム箔がコイル状で供給されており、そのため途中まで連続処理が可能で、末工程で短冊状に加工すれば良く、殆どの工程が連続処理となることで安価な水素触媒部材を供給できる。
また、本発明による水素触媒部材は、粉体状のものと異なり、表面積と部材間の隙間とを別に設定することが可能でまた、繊維状のものより幅が広いので、表面に曲げ形状または凹凸形状を加えることまた加工形状の維持が容易となる。
The hydrogen catalyst member of the present invention has a strip shape and is suitable for being housed in a pipe shape. Since the base material is aluminum foil, it can be roughened by etching, in which case the reaction surface area is expanded.
The reaction gas that passes through the reaction vessel needs to contact the surface of the aluminum foil, which is a hydrogen catalyst member, but the aluminum foil is easy to process, and is provided with through holes, twisting, embossing, chevron processing, corrugation processing It is possible to add a curved or uneven surface, such as an appropriate gap between the hydrogen catalyst members, ensuring the flow of fluid in the reaction vessel and generating turbulence to activate the reaction. Can be.
In addition, the hydrogen catalyst member according to the present invention is in a strip shape, but the aluminum foil of the base material is supplied in a coil shape, so that it can be continuously processed halfway, and can be processed into a strip shape in the final step, and almost all Since this process is a continuous process, an inexpensive hydrogen catalyst member can be supplied.
Further, the hydrogen catalyst member according to the present invention, unlike the powder-like one, can set the surface area and the gap between the members separately, and is wider than the fiber-like one. It becomes easy to add the uneven shape and maintain the processed shape.

以下、本発明の水素触媒部材の製造方法を実施例に基づいて説明する。
まず初めに、純度99.9%、厚さ80μm、幅500mmのコイル状のアルミニウム箔にエッチングによる粗面化処理を施す。塩酸、硫酸などの酸を用い通電及び浸漬するもので基本技術は、アルミニウム電解コンデンサの陽極箔用に適用されるエッチングと同様である。エッチングによる表面積拡大率は概ね10倍とした。アルミニウム電解コンデンサのエッチング技術では、更に高倍率が可能であるが、後の陽極酸化工程で成長させる多孔質酸化膜の厚さを考慮し、ピット内径を1.5μmと比較的太くしたため約10倍となる。エッチングピットは長いものと、短いものが混在し、図2のように、一部は貫通ピットとした。エッチング処理後、純水洗浄、乾燥とし陽極酸化を行う。但し陽極酸化の処理槽の前にエンボス加工ローラーを設け、半球状、高さ100μm、間隔5mmから10mmのエンボス加工を行った。陽極酸化は20℃、4質量%の蓚酸水溶液で15Vとし、時間は成膜後のピット内径が概ね0.5μmとなるようにした。その後、燐酸水溶液浸漬による多孔質酸化膜細孔の拡大処理、純水洗浄、純水煮沸によるベーマイト処理、ベーキング処理を行い、白金をコロイド状に分散させた液への浸漬、乾燥を繰り返すことで白金を担持させた。以上はコイル状アルミニウム箔であり、連続的に処理される。その後、各種幅(5mmから30mm)にスリットした(図4(d)参照)。
Hereinafter, the method for producing a hydrogen catalyst member of the present invention will be described based on examples.
First, a roughening process by etching is performed on a coiled aluminum foil having a purity of 99.9%, a thickness of 80 μm, and a width of 500 mm. The basic technique is the same as that applied to the anode foil of an aluminum electrolytic capacitor. The surface area expansion rate by etching was approximately 10 times. The etching technology for aluminum electrolytic capacitors allows higher magnification, but considering the thickness of the porous oxide film grown in the subsequent anodic oxidation process, the pit inner diameter was made relatively thick at 1.5 μm, which is about 10 times. It becomes. The etching pits are long and short, and some of them are through pits as shown in FIG. After the etching process, pure water is washed and dried and anodized. However, an embossing roller was provided in front of the anodizing treatment tank, and embossing was performed in a hemispherical shape with a height of 100 μm and an interval of 5 mm to 10 mm. The anodic oxidation was performed at 20 ° C. with a 4 mass% oxalic acid aqueous solution at 15 V, and the pit inner diameter after the film formation was set to approximately 0.5 μm for the time. Then, the porous oxide film pore expansion treatment by immersion in phosphoric acid aqueous solution, pure water washing, boehmite treatment by boiling with pure water, baking treatment, repeated immersion and drying in a colloidal dispersion of platinum Platinum was supported. The above is a coiled aluminum foil, which is processed continuously. Then, it slit to various widths (5 mm to 30 mm) (refer FIG.4 (d)).

得られた短冊状のアルミニウム箔の水素触媒部材は、図5のように束ねられ金属パイプ21に収納される。この水素触媒部材20は、各種幅のものを積み重ねることでパイプ形状に合うようにした。ここで各水素触媒部材20にはエンボス加工が施されているので面が重ならず隙間が確保される。
次に図6のように、金属パイプ21は更に、内径が大きい外周の金属パイプ22に収納され二重金属管構造体23とする。この二重金属管構造体23は折り返した螺旋状に加工され、金属パイプの出口端部21a、金属パイプの入口端部21bは、外周の金属パイプ22の壁から突き出される。ここでエンジンの燃焼排ガスは、外周の金属パイプ入口端部22aから外周の金属パイプ出口端部22bに抜け、内周の金属パイプ21を加熱する。一方金属パイプの入口端部21bよりメチルシクロヘキサンが導入され水素及びトルエンに分解される。金属パイプの螺旋加工において短冊状のアルミニウム箔は折れることがあるが、内部ガスの流れが不連続となり層流を乱すように作用する。従って適度な折れは好ましい。
The obtained strip-shaped aluminum foil hydrogen catalyst member is bundled as shown in FIG. This hydrogen catalyst member 20 was adapted to a pipe shape by stacking members of various widths. Here, since each hydrogen catalyst member 20 is embossed, the surfaces do not overlap and a gap is secured.
Next, as shown in FIG. 6, the metal pipe 21 is further accommodated in an outer peripheral metal pipe 22 having a large inner diameter to form a double metal tube structure 23. This double metal tube structure 23 is processed into a folded spiral shape, and the outlet end 21a of the metal pipe and the inlet end 21b of the metal pipe protrude from the wall of the outer peripheral metal pipe 22. Here, the combustion exhaust gas from the engine passes from the outer peripheral metal pipe inlet end 22a to the outer peripheral metal pipe outlet end 22b, and heats the inner peripheral metal pipe 21. On the other hand, methylcyclohexane is introduced from the inlet end 21b of the metal pipe and decomposed into hydrogen and toluene. In the spiral processing of metal pipes, strip-shaped aluminum foil may break, but the internal gas flow becomes discontinuous and acts to disturb laminar flow. Therefore, moderate folding is preferable.

1…水素発生装置、2…反応容器、3…燃焼廃ガスの熱交換部分、4…エッチング孔(非貫通)、5…エッチング孔(貫通)、6…アルミニウム地金、7…多孔質酸化膜、8…細孔、9…金属触媒、10…短冊状のアルミニウム箔、11…ピンを突き刺し孔加工を施した短冊状のアルミニウム箔、12…捻り加工を施した短冊状のアルミニウム箔、13…エンボス加工を施した短冊状のアルミニウム箔、14…山形加工を施した短冊状アルミニウム箔、15…波形加工を施した短冊状のアルミニウム箔、20…水素触媒部材、21…金属パイプ、21a…金属パイプの出口端部、21b…金属パイプの入口端部、22…外周の金属パイプ、22a…外周の金属パイプの入口端部、22b…外周の金属パイプの出口端部、23…二重金属管構造体、24…エンボス加工部   DESCRIPTION OF SYMBOLS 1 ... Hydrogen generator, 2 ... Reaction container, 3 ... Heat exchange part of combustion waste gas, 4 ... Etching hole (non-penetrating), 5 ... Etching hole (penetrating), 6 ... Aluminum ingot, 7 ... Porous oxide film , 8 ... pores, 9 ... metal catalyst, 10 ... strip-shaped aluminum foil, 11 ... strip-shaped aluminum foil that has been pierced with pins, 12 ... strip-shaped aluminum foil that has been twisted, 13 ... Strip-shaped aluminum foil with embossing, 14 ... Strip-shaped aluminum foil with chevron processing, 15 ... Strip-shaped aluminum foil with corrugation, 20 ... Hydrogen catalyst member, 21 ... Metal pipe, 21a ... Metal Pipe outlet end, 21b ... Metal pipe inlet end, 22 ... Outer metal pipe, 22a ... Outer metal pipe inlet end, 22b ... Outer metal pipe outlet, 23 ... Double metal tube structure , 24 ... embossing unit

Claims (4)

金属触媒を多孔質酸化膜に担持した触媒担体により、化学的に水素貯蔵・供給を繰り返す媒体を用いて、水素を取り出す脱水素または水素を取り込む水素付加の水素触媒部材において、幅が1mm〜50mmの短冊状のアルミニウム箔の切断面以外の表面に多孔質酸化膜とその多孔質酸化膜に担持した金属触媒とを設けていることを特徴とする水素触媒部材。 With a catalyst carrier in which a metal catalyst is supported on a porous oxide film, a hydrogen catalyst member for dehydrogenation to extract hydrogen or hydrogen addition to take in hydrogen using a medium that repeatedly stores and supplies hydrogen chemically has a width of 1 mm to 50 mm. A hydrogen catalyst member, characterized in that a porous oxide film and a metal catalyst supported on the porous oxide film are provided on a surface other than the cut surface of the strip-shaped aluminum foil. アルミニウム箔には貫通する孔を有することを特徴とした請求項1に記載の水素触媒部材。   The hydrogen catalyst member according to claim 1, wherein the aluminum foil has a through-hole. アルミニウム箔は、曲げ形状または凹凸形状の表面を有することを特徴とする請求項1または2に記載の水素触媒部材。   The hydrogen catalyst member according to claim 1 or 2, wherein the aluminum foil has a surface having a bent shape or an uneven shape. 金属触媒を多孔質酸化膜に担持した触媒担体により、化学的に水素貯蔵・供給を繰り返す媒体を用いて、水素を取り出す脱水素または水素を取り込む水素付加の水素触媒部材の製造方法において、アルミニウム箔の表面に設けた多孔質酸化膜に金属触媒を担持した後に、幅が1mm〜50mmの短冊状に切断することを特徴とする水素触媒部材の製造方法。 In a method for producing a hydrogen catalyst member for dehydrogenation that takes out hydrogen or hydrogen that takes in hydrogen using a catalyst carrier in which a metal catalyst is supported on a porous oxide film, which is repeatedly stored and supplied with hydrogen, in an aluminum foil A method for producing a hydrogen catalyst member, comprising: supporting a metal catalyst on a porous oxide film provided on the surface of the metal plate; and then cutting the metal catalyst into strips having a width of 1 mm to 50 mm.
JP2010016602A 2010-01-28 2010-01-28 Hydrogen catalyst member and manufacturing method thereof Expired - Fee Related JP5596360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010016602A JP5596360B2 (en) 2010-01-28 2010-01-28 Hydrogen catalyst member and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010016602A JP5596360B2 (en) 2010-01-28 2010-01-28 Hydrogen catalyst member and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011152527A JP2011152527A (en) 2011-08-11
JP5596360B2 true JP5596360B2 (en) 2014-09-24

Family

ID=44538867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010016602A Expired - Fee Related JP5596360B2 (en) 2010-01-28 2010-01-28 Hydrogen catalyst member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5596360B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5980022B2 (en) * 2012-07-13 2016-08-31 日立エーアイシー株式会社 Catalyst member
JP6334161B2 (en) * 2013-12-25 2018-05-30 日立エーアイシー株式会社 Hydrogen catalyst material
JP6404078B2 (en) 2014-10-15 2018-10-10 三菱重工業株式会社 FUEL SUPPLY SYSTEM, JET ENGINE, AND METHOD FOR MANUFACTURING FUEL SUPPLY SYSTEM
JP6806618B2 (en) 2017-04-10 2021-01-06 三菱重工業株式会社 Ramjet engine regenerative cooler and its manufacturing method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5660646A (en) * 1979-10-22 1981-05-25 Mitsui Toatsu Chem Inc Catalyst for dehydrogenation reaction
JPS62237947A (en) * 1986-04-09 1987-10-17 Toshiaki Kabe Catalyst body
JP2007039312A (en) * 2005-06-30 2007-02-15 National Institute Of Advanced Industrial & Technology Apparatus and method for producing hydrogen
JP5009556B2 (en) * 2006-06-06 2012-08-22 一般財団法人石油エネルギー技術センター Dehydrogenation / hydrogen addition catalyst and hydrogen supply device using the same
JP2008012426A (en) * 2006-07-05 2008-01-24 Fujifilm Corp Catalytic body
JP2008126151A (en) * 2006-11-21 2008-06-05 Alumite Shokubai Kenkyusho:Kk Catalytic body using anodic aluminum oxide film
JP4986240B2 (en) * 2007-12-25 2012-07-25 ニチコン株式会社 Catalytic reactor and catalytic reaction apparatus using the same
JP5127516B2 (en) * 2008-03-14 2013-01-23 Jx日鉱日石エネルギー株式会社 Raw material composition for hydrogen generation and method for producing hydrogen
JP5620077B2 (en) * 2009-06-11 2014-11-05 日立エーアイシー株式会社 Hydrogen catalyst material
JP5620079B2 (en) * 2009-09-04 2014-11-05 日立エーアイシー株式会社 Hydrogen catalyst member and manufacturing method thereof

Also Published As

Publication number Publication date
JP2011152527A (en) 2011-08-11

Similar Documents

Publication Publication Date Title
JP5272320B2 (en) HYDROGEN SUPPLY DEVICE, ITS MANUFACTURING METHOD, AND DISTRIBUTED POWER SUPPLY AND AUTOMOBILE
Chiuta et al. Reactor technology options for distributed hydrogen generation via ammonia decomposition: A review
JP4578867B2 (en) Hydrogen storage / supply device and system thereof, distributed power source using the same, and automobile
JP5596360B2 (en) Hydrogen catalyst member and manufacturing method thereof
JP5122178B2 (en) Supported catalyst for hydrogenation / dehydrogenation reaction, production method thereof, and hydrogen storage / supply method using the catalyst
WO2007074689A1 (en) Catalyst having function of dehydrogenation or hydrogenation, fuel cell employing the catalyst, and apparatus for storing/supplying hydrogen
JP2006248814A (en) Apparatus and method for feeding hydrogen
JP5620079B2 (en) Hydrogen catalyst member and manufacturing method thereof
JP5009556B2 (en) Dehydrogenation / hydrogen addition catalyst and hydrogen supply device using the same
Wang et al. Miniature NH3 cracker based on microfibrous entrapped Ni-CeO2/Al2O3 catalyst monolith for portable fuel cell power supplies
JP5620077B2 (en) Hydrogen catalyst material
JP5489508B2 (en) Hydrogen catalyst material
JP4986240B2 (en) Catalytic reactor and catalytic reaction apparatus using the same
JP5398367B2 (en) Hydrogen generator
JP2015120627A (en) Hydrogen reactor pipe
JP5506270B2 (en) Method for producing hydrogen catalyst member
Idamakanti et al. Electrified Catalysts for Endothermic Chemical Processes: Materials Needs, Advances, and Challenges
JP6783292B2 (en) Composite wire type catalyst member and catalyst reactor for hydrogen production using this
JP2002301381A (en) Supported catalyst and reforming apparatus
JP6334161B2 (en) Hydrogen catalyst material
JP5210782B2 (en) Anodized substrate and catalyst body using the same
JP2012236182A (en) Catalyst carrier, catalyst product using the same, and catalyst module
WO2021049038A1 (en) Treatment member, treatment method, and treatment device
WO2021192156A1 (en) Fuel production device
JP2014030788A (en) Catalyst member laminate and catalytic reaction apparatus using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140807

R150 Certificate of patent or registration of utility model

Ref document number: 5596360

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees