JP5595044B2 - 炭素膜の製造方法 - Google Patents

炭素膜の製造方法 Download PDF

Info

Publication number
JP5595044B2
JP5595044B2 JP2009552956A JP2009552956A JP5595044B2 JP 5595044 B2 JP5595044 B2 JP 5595044B2 JP 2009552956 A JP2009552956 A JP 2009552956A JP 2009552956 A JP2009552956 A JP 2009552956A JP 5595044 B2 JP5595044 B2 JP 5595044B2
Authority
JP
Japan
Prior art keywords
carbon film
carbon
water
membrane
pores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009552956A
Other languages
English (en)
Other versions
JPWO2009150903A1 (ja
Inventor
明昌 市川
省吾 武野
哲哉 内川
鉄也 酒井
秀之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2009552956A priority Critical patent/JP5595044B2/ja
Publication of JPWO2009150903A1 publication Critical patent/JPWO2009150903A1/ja
Application granted granted Critical
Publication of JP5595044B2 publication Critical patent/JP5595044B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0067Inorganic membrane manufacture by carbonisation or pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/06Tubular membrane modules
    • B01D63/066Tubular membrane modules with a porous block having membrane coated passages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0095Drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/028Molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/28Degradation or stability over time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/36Pervaporation; Membrane distillation; Liquid permeation
    • B01D61/362Pervaporation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Water Supply & Treatment (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Description

本発明は、炭素膜の製造方法に関し、更に詳しくは、高い分離性能を有するとともに分離性能の経時変化が少ない炭素膜を得ることができる炭素膜の製造方法に関する。
従来、環境や省エネルギ一の観点から、各種ガス等の混合物から特定のガス等を分離する分離膜として、また、アルコール等の各種有機溶剤の混合液や水溶液から特定の成分を分離する分離膜として、耐熱性及び化学的安定性に優れる炭素膜を用いることが提案されている(例えば、特許文献1,2参照)。
特開2003−286018号公報 特開2006−212480号公報
炭素膜を室温で放置しておくと、炭素膜表面に極わずかに存在する含酸素官能基等に水分などが吸着して、炭素膜の透過性能及び分離性能が低下することがあった。これに対し、特許文献1に記載の発明は、炭素膜の表面にシリル化処理を施し、炭素膜に疎水性を付与することにより、水分子の吸着を防止し、透過性能の低下を防止しようとするものである。特許文献1に記載の発明は、炭素膜表面への水分子の吸着を効果的に防止することができるものであったが、シリル化により炭素膜の細孔径が小さくなる結果、透過速度が低下するため、更に検討の余地があった。また、特許文献2に記載の発明は、炭素膜を酸性水溶液に浸漬し、酸性物質の分子を吸着させることにより膜の親水性が向上することで、水とアルコールなどの有機溶剤との分離において水の選択性が向上するものである。これは、分離対象が水を含む有機溶剤である場合に特に効果を発揮するものであるが、有機溶剤の混合液やガスに対しての効果は不明であり、また酢酸、塩酸等の酸性物質を使用するため臭気や安全性等の問題があった。
本発明は、上述の問題に鑑みてなされたものであり、高い透過性能及び分離性能を有するとともに分離性能の経時変化が少ない炭素膜の製造方法を提供することを特徴とする。
上記課題を達成するため、本発明によって以下の炭素膜の製造方法が提供される。
[1] 中空糸状または多孔質基材の表面に炭素膜を形成して処理前炭素膜を作製し、前記処理前炭素膜に、アルコール、エーテル、若しくはケトン、若しくは水のみを透過させ、又は前記処理前炭素膜を、アルコール、エーテル、若しくはケトン、若しくは水のみに浸漬し、その後50〜200℃で加熱乾燥させて各種成分を表面、細孔内、又は表面及び細孔内の両方に担持させる炭素膜の製造方法。
] 前記処理前炭素膜に水、アルコール、エーテル、またはケトンを、透過流束0.01〜10kg/m・時間、0〜200℃で、1秒〜5時間透過させ、その後50〜200℃で加熱乾燥させる操作を、1〜10回行って炭素膜を得る[]に記載の炭素膜の製造方法。
] 前記処理前炭素膜を水、アルコール、エーテル、またはケトンに、50〜100℃で、1分〜24時間浸漬させ、その後50〜200℃で加熱乾燥させる操作を1〜10回行って炭素膜を得る[]に記載の炭素膜の製造方法。
] 前記炭素膜の厚さが、0.01〜10μmである[]〜[]のいずれかに記載の炭素膜の製造方法。
] 前記多孔質基材が、平均細孔径0.01〜10μm、気孔率30〜70%のセラミック多孔質体である[]〜[]のいずれかに記載の炭素膜の製造方法。
] 前記多孔質基材の表面に炭素膜の前駆体を配設して前駆体を形成し、前記前駆体を400〜1200℃で熱処理し、前記前駆体を炭化して処理前炭素膜を作製する[]〜[]のいずれかに記載の炭素膜の製造方法。
本発明の炭素膜の製造方法によって製造された炭素膜によれば、細孔内に水、アルコール、エーテル、またはケトンが担持されているため、炭素膜の細孔が、所望の分子が透過し易く、他の分子が透過し難い構造であり、高い選択性と透過性を併せ持ったものである。そして、本発明の炭素膜の製造方法によって製造された炭素膜は、上記水やアルコール等があらかじめ細孔内に担持されているため、空気中の水分子等を更に吸着することを防止でき、更に炭素膜の使用による細孔の閉塞を防止でき、分離性能の経時変化が少ないものである。本発明の炭素膜の製造方法によれば、処理前炭素膜を水、アルコール、エーテル、またはケトンに浸漬し、その後50〜200℃で加熱乾燥させることで、炭素膜の細孔内に水、アルコール、エーテル、またはケトンを担持させることにより、炭素膜を効率的に作製することができる。
素膜に形成されたスリット状の細孔の一部であり、細孔内に担持成分が担持される前の状態を示す斜視図である。 素膜に形成されたスリット状の細孔の一部であり、細孔内に担持成分が担持された状態を示す斜視図である。
1:スリット状の細孔、2:担持成分。
以下、本発明を実施するための最良の形態を具体的に説明するが、本発明は以下の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、適宜設計の変更、改良等が加えられることが理解されるべきである。
素膜の一実施形態は、表面、細孔内、又は表面及び細孔内の両方に、水、アルコール、エーテル、またはケトンが担持成分として担持された多孔質性の炭素膜である。本発明の炭素膜の製造方法によって製造された多孔質性の炭素膜は、分子ふるい性炭素膜であり、分子ふるい性炭素膜とは、特定の分子を透過させ、又は透過させないことにより、当該特定の分子を含む混合物から当該特定の分子を分離する性質を有する炭素膜のことである。
炭素膜の細孔形状は一般的に図1Aに示すようなスリット形状をしていると考えられている。発明者らは、先ず炭素膜に水、アルコール、エーテル、またはケトンを担持させることで選択性が向上することを見出した。さらにこれらの実験で得られた数々の知見から、炭素膜に水、アルコール、エーテル、またはケトンを担持させることで選択性が向上する原因は、これらの成分がスリット状の細孔1内に吸着あるいは付加反応等により担持されることで、図1Bに示すようにスリット状の細孔1内にくさび状の立体障害(担持成分2)を形成し、これにより分子径の大きな成分、特に直線状や平面状の成分が細孔内を通りにくくなることにあると考えた。この考えに基づき、担持成分2としては直鎖状のアルコールまたは直鎖状のエーテルが好適であり、メタノール、エタノール、n−プロパノール、n−ブタノールから選ばれる少なくとも一つが更に好適であり、これらを担持成分とすることで、高い選択性と透過性を併せ持つ炭素膜が得られることをも見出すに至った。尚、図1Aは、炭素膜に形成されたスリット状の細孔の一部であり、細孔内に担持成分が担持される前の状態を示す斜視図である。図1Bは、炭素膜に形成されたスリット状の細孔の一部であり、細孔内に担持成分が担持された状態を示す斜視図である。図1A及び図1Bにおいては、スリット状の細孔1については、細孔の空間が現されており、炭素膜自体(炭素膜の壁)は現されていない。
担持成分の分子量は100以下であることが好ましく、30〜100であることが更に好ましく、40〜100であることが特に好ましい。担持成分の分子量が100を超えると細孔を閉塞して対象物質の透過量が低下することがある。また、分子量が30未満であると、立体障害としての効果が低下することがある。
本実施形態の炭素膜は、膜の質量に対する担持成分の質量が100ppm以上であることが好ましい。100ppm未満であると、選択性向上の効果が低下することがある。また、膜の質量に対する担持成分の質量が5000ppm以下であることが好ましい。5000ppmを超えると、細孔を閉塞して対象物質の透過量が低下することがある。
本実施形態の炭素膜は、平均細孔径が0.2〜1.0nmであることが好ましい。平均細孔径が0.2nm未満であると、担持成分が細孔を閉塞して対象物質の透過量が低下することがあり、1.0nmを超えると選択性向上の効果が低下することがある。
本実施形態の炭素膜の厚さは、0.01〜10μmであることが好ましく、0.01〜0.5μmであることが更に好ましい。0.01μmより薄いと、選択性が低下することがあり、また強度が低下することがある。10μmより厚いと、流体の透過性が低下することがある。
本実施形態の炭素膜は、多孔質基材の表面に形成されたものであることが好ましい。これにより、炭素膜の強度、耐久性を向上させることができる。多孔質基材は、特に限定されないが、平均細孔径0.01〜10μm、気孔率30〜70%のセラミック多孔質体であることが好ましい。平均細孔径が0.01μmより小さいと圧力損失が高くなることがあり、10μmより大きいと多孔質基材の強度が低下することがある。また、気孔率が30%より小さいと分離対象成分の透過性が低下することがあり、70%より大きいと多孔質基材の強度が低下することがある。多孔質基材の材質としては、アルミナ、シリカ、コージェライト等を挙げることができる。また、多孔質基材の形状は、特に限定されず、炭素膜の使用目的に応じて適宜選択でき、例えば、モノリス形状、ハニカム形状、円板状、多角形板状、円筒、角筒等の筒状、円柱、角柱等の柱状等を挙げることができる。容積、重量に対する膜面積比率が大きいことから、特にモノリス形状やハニカム形状であることが望ましい。また、多孔質基体の大きさは、特に限定されず、支持体として必要な強度を満たすとともに、分離する気体の透過性を損なわない範囲で、目的に合わせてその大きさを決定することができる。
本実施形態の炭素膜は、300℃、1時間の加熱処理によって担持成分を除去することで、「水の透過流束が加熱処理前の200%以下となり、かつエタノールの透過流束が加熱処理前の200%以上となる」ものであることが好ましい。このような条件をみたすことにより、所望とする成分同士を効率的に分離することが可能となる。
本発明の炭素膜の製造方法の一実施形態は、中空糸状または多孔質基材の表面に炭素膜を形成して処理前炭素膜を作製し、処理前炭素膜に水、アルコール、エーテル、またはケトンを透過させ、又は処理前炭素膜を水、アルコール、エーテル、またはケトンに浸漬し、その後50〜200℃で加熱乾燥させて各種成分を表面、細孔内又は表面及び細孔内の両方に担持させるものである。以下、各工程毎に説明する。
(処理前炭素膜の作製)
処理前炭素膜の作製方法は特に限定されないが、例えば、多孔質基材の表面に、多孔質の炭素膜を形成して得ることができる。また、多孔質基材を用いずに、中空糸膜を製膜する等の方法により単独の膜として形成することができる。多孔質基材の表面に、多孔質の炭素膜を形成する方法は以下の通りである。
まず、多孔質基材の表面に炭素膜の前駆体を配設して前駆体配設体を形成することが好ましい。処理前炭素膜配設体を作製する方法において、多孔質基材は、特に限定されないが、上記炭素膜において用いられる多孔質基材と同様であることが好ましい。
多孔質基材の表面に配設する炭素膜の前駆体としては、例えば、ポリイミド樹脂、リグニン、フェノール樹脂、ポリ塩化ビニリデン、ポリアクリロニトリル、ポリフルフリルアルコール、ポリフェニレンオキシド、セルロース等を好適に用いることができる。炭素膜の前駆体としては、炭素膜と成り得るものであれば、特に限定はされない。
多孔質基材の表面にポリイミド樹脂、フェノール樹脂前駆体を配設させる方法を更に詳細に説明すると、まず、ポリイミド樹脂の前駆体であるポリアミド酸、あるいはフェノール樹脂の溶液を多孔質基材の表面にスピンコート法、ディップ法等により塗布して配設することが好ましい。そして、多孔質基材の表面にポリアミド酸、あるいはフェノール樹脂を塗布したものを、90〜300℃、0.5〜60時間の条件で熱処理し、炭素膜の前駆体であるポリイミド樹脂、あるいはフェノール樹脂を表面に配設した前駆体配設体を得る。炭素膜の前駆体の厚さは、0.01〜10μmであることが好ましく、0.01〜0.5μmであることが更に好ましい。
次に、炭素膜の前駆体を所定の条件で熱処理することにより炭化して多孔質基材の表面に炭素膜が配設された処理前炭素膜を得る。前駆体を熱処理するときの雰囲気は、非酸化性雰囲気であることが好ましい。非酸化性雰囲気とは、炭素膜の前駆体が、熱処理時の温度範囲で加熱されても酸化されない雰囲気をいい、具体的には、窒素、アルゴン等の不活性ガス中や真空中等の雰囲気をいう。
また、炭素膜の前駆体を熱処理するときの温度は、400〜1200℃であることが好ましく、600〜900℃であることが更に好ましい。400℃より低いと炭化が不十分で細孔が形成されず分離性能が発現しないことがあり、1200℃より高いと強度が低下したり、膜が緻密化し過ぎて分離性能が低下したりすることがある。
また、得られた処理前炭素膜配設体において、処理前炭素膜の厚さが0.01〜10μmであることが好ましく、0.01〜0.5μmであることが更に好ましい。
尚、炭素膜を、多孔質基材を用いずに、中空糸膜やフィルムを作製する等の方法により単独の膜として形成する方法は以下の通りである。まず、炭素膜の原料であるポリイミド樹脂の前駆体であるポリアミド酸やフェノール樹脂などの溶液を調整し、紡糸用ノズルから中空糸状に押し出し、凝固溶媒に浸漬して凝固させる等の方法で中空糸膜を形成する。その後、所定の条件で熱処理することにより炭化して処理前炭素膜を得る。
(炭素膜の製造)
次に、得られた処理前炭素膜に、水、アルコール、エーテル、またはケトンを透過させるか、又は、炭素膜を水、アルコール、エーテル、またはケトンに浸漬する。これにより、炭素膜の細孔内に、上記水、アルコール、エーテル、またはケトン(以下、これらの成分を「担持成分」ということがある)を担持させる。これにより、各種混合ガスや混合液を分離する際、所望の成分の選択性を向上させることができる。また、得られた炭素膜を保管するとき、及び炭素膜を分離対象物質の分離に使用するときに、保管雰囲気中の水分や、分離対象物質中の各種成分等が、更に細孔内に吸着して細孔を閉塞することを防止することができ、高い透過性能を安定して維持することができる。また、担持成分を直鎖状のアルコール、または直鎖状のエーテル、特に好ましくはメタノール、エタノール、n−プロパノール、n−ブタノールから選ばれるうちの少なくとも一つとすることで、高い選択性と透過性を併せ持つ炭素膜を得ることができる。
処理前炭素膜に水、アルコール、エーテル、またはケトン(以下、「透過させる物質」ということがある)を透過させる条件としては、透過流束0.01〜10kg/m・時間、温度0〜200℃、透過時間1秒〜5時間とすることが好ましく、透過流束0.1〜1kg/m・時間、温度20〜100℃、透過時間10秒〜1時間とすることが更に好ましい。透過流速が0.01kg/m・時間より小さいと処理時間が長時間になることがあり、10kg/m・時間より大きいと透過させる物質が大量に必要になる。また、透過させる物質の温度が0℃より低いと透過流束が得られないことがあり、200℃より高いと透過物質に引火するなどの危険性が高くなる。透過させる時間が1秒より短いと担持成分が炭素膜の細孔内に吸着し難くなることがあり、5時間より長いと不必要に長時間かけることになることがある。
また、処理前炭素膜を水、アルコール、エーテル、またはケトンに浸漬するときの条件としては、温度50〜100℃、浸漬時間1分〜24時間とすることが好ましい。浸漬させるときの温度が50℃より低いと担持成分が担持され難いことがあり、100℃より高いと担持成分に引火する等の危険性が高くなることがある。浸漬させる時間が1分より短いと担持成分が炭素膜の細孔内に吸着し難くなることがあり、24時間より長いと不必要に長時間かけることになることがある。
次に、処理前炭素膜の細孔内に担持成分を吸着させた後、加熱することでより強固に担持成分を結合させて、炭素膜を得る。加熱の温度は、50〜200℃である。50℃より低いと担持成分が炭素膜に結合し難いことがある。また、200℃より高い高温条件は必要ない。炭素膜の平均細孔径が0.2〜1.0nmであることが好ましい。
更に、処理前炭素膜に水、アルコール、エーテル、またはケトンを、透過流束0.01〜10kg/m・時間、0〜200℃で、1秒〜5時間透過させ、その後50〜200℃で加熱乾燥させる操作(以下、「透過担持操作」ということがある)を、1〜10回行って炭素膜を得ることが好ましい。上記透過担持操作の回数が10回より多いと不必要に多くの操作をすることになることがある。
また、処理前炭素膜を水、アルコール、エーテル、またはケトンに、50〜100℃で、1分〜24時間浸漬させ、その後50〜200℃で加熱乾燥させる操作(以下、「浸漬担持操作」ということがある)を1〜10回行って炭素膜を得ることが好ましい。上記浸漬担持操作の回数が10回より多いと不必要に多くの操作をすることになることがある。
炭素膜の細孔内に、上記担持成分を担持させるときには、担持量が飽和に達し、それ以上担持されない状態にすることが好ましい。これにより、炭素膜を保管又は使用するときに、より安定して高い分離性能を維持することができる。
担持成分のアルコールとしては、メタノール、エタノール、n−プロパノール、n−ブタノールから選択される少なくとも一種が好ましい。
得られた炭素膜の厚さは、0.01〜10μmであることが好ましく、0.01〜0.5μmであることが更に好ましい。0.01μmより薄いと強度、耐久性が低下することがあり、10μmより厚いと分離対象物質を透過させるときの圧力損失が大きくなることがある。
以下、本発明を実施例によって更に具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。
(多孔質基材表面への炭素膜の形成)
以下の方法により、多孔質基材表面に炭素膜を形成した。市販のポリイミド樹脂前駆体ワニス(宇部興産製U−ワニスA)、又はフェノール樹脂(エア・ウォーター製ベルパールS899)をN−メチル−2−ピロリドンに希釈または溶解させて濃度10質量%に調製した。これらの溶液を表面の平均細孔径が0.1μmのモノリス形状アルミナ多孔質基材にディップコートし乾燥させて、それぞれの樹脂から成る炭素膜前駆体を得た。これら前駆体を真空または窒素雰囲気下で500〜1200℃にて1時間熱処理し、炭素膜1〜31を得た。前駆体、炭化雰囲気及び炭化温度を表1に示す。得られた炭素膜は、モノリス形状の多孔質基材の複数の流路の壁面に炭素膜が形成された構造である。このうち炭素膜1〜26に対して次項で述べる担持処理を行った。炭素膜27〜31については担持処理を行わず、比較例1〜5とした。
(担持処理)
それぞれの炭素膜を、表1に示すそれぞれの担持成分(水、メタノール、エタノール、n−プロパノール、i−プロパノール、n−ブタノール、n−オクタノール、ジエチルエーテル、アセトン、メチルエチルケトン)で5分間の浸透処理を行い、その後100℃で64時間加熱した。ここで浸透処理とは炭素膜の一方の表面を大気圧または加圧状態の各種液体またはそれらの蒸気で満たし、他方を減圧して強制的に各成分を膜に通過させる処理方法を指す。以上の担持処理操作を実施例3については3回、実施例14では5回、それ以外では1回行い、各種成分を担持させた炭素膜を得た(実施例1〜26)。炭素膜はそれぞれ担持成分濃度分析用、および分離性能・耐久性能評価用に二個ずつ作製した。
(担持成分濃度の定量)
これらの炭素膜から基材上に形成された膜部分のみを削り取り、粉末状の分析用試料を作製した。各試料を精秤し、熱脱離用ガラス管に入れた後、両端にガラスウールで栓をしたものを試料とした。80℃で5分間予備乾燥後、280℃まで5分間で昇温し脱離したガスをGC−FIDにより分析した。一方でCHN分析を行って試料中のCHN量を測定し、これらの総量に対する担持成分の濃度を算出した。担持処理回数及び担持成分濃度を表1に示す。
(分離性能、耐久性能評価)
上記の方法で得られた実施例1〜26、比較例1〜5の炭素膜について、水/エタノール浸透気化分離(供給液組成水/エタノール=10/90質量%、供給液温度70℃、透過側圧力50Torr)を行い、分離係数α及び透過流束(Flux)(kg/mh)を求めた。更に、上記炭素膜について、単成分ガスの透過係数(加圧0.1MPa)(ガス透過係数(nmol/Pa・m・s))を求めた。「nmol」は、「10−9mol」を示す。また、それぞれの炭素膜を大気中で3日間放置した後、再度、単成分ガスのうちHe、O、CHのガス透過係数を測定することで、膜の耐久性能を評価した(大気放置後(nmol/Pa・m・s))。結果を表2に示す。また、比較例2、および実施例5〜12については、水/酢酸浸透気化分離(供給液組成水/酢酸=30/70質量%、供給液温度70℃、透過側圧力50Torr)を行い、分離係数α及び透過流束(Flux)(kg/mh)を求めた。更に、比較例2、および実施例5〜12については、水/i−プロパノール浸透気化分離(供給液組成水/i−プロパノール=10/90質量%、供給液温度70℃、透過側圧力50Torr)を行い、分離係数α及び透過流束(Flux)(kg/mh)を求めた。結果を表3に示す。
(担持物質の有無による透過流束の変化量測定)
各炭素膜の水、エタノールそれぞれに対する透過流束(Flux)を供給液温度70℃、透過側圧力50Torrで測定(加熱処理前)した後、大気中300℃で1時間加熱し、担持物質を除去した後に再び加熱前と同様に透過流束(Flux)を測定(加熱処理後)し、透過流束(Flux)の変化量を評価した。結果を表4に示す。
Figure 0005595044
Figure 0005595044
Figure 0005595044
Figure 0005595044
表1〜4に示すように、担持処理を行った実施例1〜26では未処理の比較例1〜5に比べて水/エタノール、水/酢酸、水/i−プロパノールの選択性が大幅に向上したことがわかった。また単成分ガスについてもH/COなどの選択性が向上したことがわかった。さらに担持成分としてケトン類や分岐のあるアルコール類よりも直鎖状のアルコール類やエーテル類を担持させた場合のほうが選択性、透過量ともに高い傾向が見られた。このように分離性能が向上する原因としては、図1Aに示すように炭素膜にはスリット状の分子ふるい細孔が形成されており、この細孔内に担持された成分がくさび状の立体障害を形成することによって細孔構造が変化するためと考えている。図1Bに示すように、くさび状の立体障害が形成される結果、球状に近い形状の分子よりも、より直線状や平板状で長軸が長い分子のほうが、細孔を通り難くなるため、選択性が向上すると考えられる。例えば、水よりもエタノール、ガスではHeやHよりもCOなどの分子が、上記細孔構造の変化により細孔を通りにくくなるため、水/エタノールやHe/COなどの選択性が向上すると考えられる。
本発明に係る炭素膜の製造方法によって製造された炭素膜は、複数の物質(ガス、液体)の混合物から特定の物質(ガス、液体)を選択的に分離するフィルタ用途等に、広く用いることが出来る。

Claims (6)

  1. 中空糸状または多孔質基材の表面に炭素膜を形成して処理前炭素膜を作製し、
    前記処理前炭素膜に、アルコール、エーテル、若しくはケトン、若しくは水のみを透過させ、又は前記処理前炭素膜を、アルコール、エーテル、若しくはケトン、若しくは水のみに浸漬し、
    その後50〜200℃で加熱乾燥させて各種成分を表面、細孔内、又は表面及び細孔内の両方に担持させる炭素膜の製造方法。
  2. 前記処理前炭素膜に水、アルコール、エーテル、またはケトンを、透過流束0.01〜10kg/m・時間、0〜200℃で、1秒〜5時間透過させ、その後50〜200℃で加熱乾燥させる操作を、1〜10回行って炭素膜を得る請求項に記載の炭素膜の製造方法。
  3. 前記処理前炭素膜を水、アルコール、エーテル、またはケトンに、50〜100℃で、1分〜24時間浸漬させ、その後50〜200℃で加熱乾燥させる操作を1〜10回行って炭素膜を得る請求項に記載の炭素膜の製造方法。
  4. 前記炭素膜の厚さが、0.01〜10μmである請求項のいずれかに記載の炭素膜の製造方法。
  5. 前記多孔質基材が、平均細孔径0.01〜10μm、気孔率30〜70%のセラミック多孔質体である請求項のいずれかに記載の炭素膜の製造方法。
  6. 前記多孔質基材の表面に炭素膜の前駆体を配設して前駆体を形成し、
    前記前駆体を400〜1200℃で熱処理し、前記前駆体を炭化して処理前炭素膜を作製する請求項のいずれかに記載の炭素膜の製造方法。
JP2009552956A 2008-06-10 2009-04-23 炭素膜の製造方法 Active JP5595044B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009552956A JP5595044B2 (ja) 2008-06-10 2009-04-23 炭素膜の製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008152081 2008-06-10
JP2008152081 2008-06-10
PCT/JP2009/058075 WO2009150903A1 (ja) 2008-06-10 2009-04-23 炭素膜及びその製造方法
JP2009552956A JP5595044B2 (ja) 2008-06-10 2009-04-23 炭素膜の製造方法

Publications (2)

Publication Number Publication Date
JPWO2009150903A1 JPWO2009150903A1 (ja) 2011-11-10
JP5595044B2 true JP5595044B2 (ja) 2014-09-24

Family

ID=41416614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009552956A Active JP5595044B2 (ja) 2008-06-10 2009-04-23 炭素膜の製造方法

Country Status (6)

Country Link
US (1) US8257468B2 (ja)
EP (1) EP2298437B1 (ja)
JP (1) JP5595044B2 (ja)
CN (1) CN101801509B (ja)
CA (1) CA2691305C (ja)
WO (1) WO2009150903A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2554246B1 (en) 2010-03-26 2019-01-23 NGK Insulators, Ltd. Method for pervaporation separation using carbon membrane
JP5467909B2 (ja) * 2010-03-26 2014-04-09 日本碍子株式会社 炭素膜の製造方法
CN104168989A (zh) * 2012-03-16 2014-11-26 日本碍子株式会社 分离膜的制造方法、分离膜复合体的制造方法以及分离膜复合体
WO2013145863A1 (ja) 2012-03-30 2013-10-03 日本碍子株式会社 炭素膜、炭素膜の製造方法、及び炭素膜フィルタ
JP6051830B2 (ja) * 2012-12-11 2016-12-27 東亞合成株式会社 有機溶剤水溶液からイソプロピルアルコールを回収する方法
EP3429730A1 (en) * 2016-03-16 2019-01-23 Dow Global Technologies, LLC Separation of gases via carbonized vinylidene chloride copolymer gas separation membranes and process for the preparation of the membranes
CN106082164B (zh) * 2016-06-09 2018-03-27 周虎 一种碳膜及其生产方法与生产设备
DE102018216163A1 (de) * 2018-09-21 2020-03-26 Forschungszentrum Jülich GmbH CMS-Membran, Verfahren zu ihrer Herstellung und ihre Verwendung
WO2021116319A1 (en) * 2019-12-11 2021-06-17 Fundacion Tecnalia Research & Innovation Carbon molecular sieve membrane and its use in separation processes

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05220360A (ja) * 1992-02-07 1993-08-31 Ube Ind Ltd 非対称性中空糸炭素膜及びその製法
JPH1052629A (ja) * 1996-08-09 1998-02-24 Kanebo Ltd 分子ふるい炭素膜およびその製造法
JP2000237562A (ja) * 1999-02-23 2000-09-05 Kanebo Ltd 分子ふるい炭素膜およびその製造法、並びに浸透気化分離方法
JP2001232156A (ja) * 2000-02-23 2001-08-28 Kanebo Ltd 分子ふるい炭素膜を用いた浸透気化分離方法または蒸気分離方法
JP2006212480A (ja) * 2005-02-01 2006-08-17 Ngk Insulators Ltd 炭素膜及び炭素膜を用いた水と有機溶剤との分離方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6004374A (en) * 1997-10-10 1999-12-21 Air Products And Chemicals, Inc. Carbonaceous adsorbent membranes for gas dehydration
DE19849216A1 (de) * 1998-10-26 2000-04-27 Andreas Noack Verfahren und Vorrichtung zur Trennung von Fluidgemischen (Thermomembranverfahren)
WO2001070379A1 (en) * 2000-03-17 2001-09-27 Koch Membrane Systems, Inc. Filtration element for severe service applications
US6890483B2 (en) * 2000-07-05 2005-05-10 Cuno Incorporated Non-luminescent substrate
CN1172041C (zh) * 2002-01-11 2004-10-20 清华大学 沥青基炭膜人工肺的制备方法
JP4253459B2 (ja) 2002-03-27 2009-04-15 日本碍子株式会社 炭素膜構造体及びその製造方法
US7767068B2 (en) * 2002-12-02 2010-08-03 Epocal Inc. Heterogeneous membrane electrodes
GB0516154D0 (en) * 2005-08-05 2005-09-14 Ntnu Technology Transfer As Carbon membranes
JP5135671B2 (ja) * 2005-09-28 2013-02-06 三菱化学株式会社 ゼオライト分離膜の製造方法
JP5251130B2 (ja) * 2006-02-02 2013-07-31 宇部興産株式会社 生体分子固定化炭素膜
EP2174921B1 (en) * 2007-07-26 2015-04-08 NGK Insulators, Ltd. Bonding material for honeycomb structure and honeycomb structure utilizing the material
US7938890B2 (en) * 2008-07-08 2011-05-10 Palo Alto Research Center Incorporated Separating gas using immobilized buffers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05220360A (ja) * 1992-02-07 1993-08-31 Ube Ind Ltd 非対称性中空糸炭素膜及びその製法
JPH1052629A (ja) * 1996-08-09 1998-02-24 Kanebo Ltd 分子ふるい炭素膜およびその製造法
JP2000237562A (ja) * 1999-02-23 2000-09-05 Kanebo Ltd 分子ふるい炭素膜およびその製造法、並びに浸透気化分離方法
JP2001232156A (ja) * 2000-02-23 2001-08-28 Kanebo Ltd 分子ふるい炭素膜を用いた浸透気化分離方法または蒸気分離方法
JP2006212480A (ja) * 2005-02-01 2006-08-17 Ngk Insulators Ltd 炭素膜及び炭素膜を用いた水と有機溶剤との分離方法

Also Published As

Publication number Publication date
US20100083837A1 (en) 2010-04-08
CN101801509A (zh) 2010-08-11
CN101801509B (zh) 2016-06-15
EP2298437B1 (en) 2020-04-08
EP2298437A4 (en) 2013-12-04
CA2691305C (en) 2013-06-25
JPWO2009150903A1 (ja) 2011-11-10
WO2009150903A1 (ja) 2009-12-17
CA2691305A1 (en) 2009-12-17
EP2298437A1 (en) 2011-03-23
US8257468B2 (en) 2012-09-04

Similar Documents

Publication Publication Date Title
JP5595044B2 (ja) 炭素膜の製造方法
JP5897458B2 (ja) 浸透気化分離方法
JP5368981B2 (ja) 分離膜多孔質体複合体の製造方法及び多孔質体の表面への分離膜形成方法
JP5469453B2 (ja) セラミックフィルタ及びその再生方法
JP6723265B2 (ja) 水及びガス分離のための炭素含有膜
JP5394234B2 (ja) セラミック多孔質膜及びセラミックフィルタ
US9108166B2 (en) Silica membrane and method for manufacturing the same
JP5523560B2 (ja) 炭素膜複合体およびその製造方法ならびに分離膜モジュール
AU2007330155A1 (en) Carbon membrane laminated body and method for manufacturing the same
WO2013042262A1 (ja) 炭素膜の製造方法
WO2017068517A1 (en) A carbon molecular sieve membrane, method of preparation and uses thereof
WO2020075075A1 (en) Process for preparation of cellulose based carbon molecular sieve membranes and membranes thereof
JP5467909B2 (ja) 炭素膜の製造方法
JP2009183814A (ja) 分離膜及びその製造方法
KR101047345B1 (ko) 소수성 무기막의 제조방법
JP2013193053A (ja) 浸透気化膜の製造方法および浸透気化法
JP5897334B2 (ja) シリカ膜の製造方法
JP5853529B2 (ja) 中空糸炭素膜およびその製造方法
JPWO2013145863A1 (ja) 炭素膜、炭素膜の製造方法、及び炭素膜フィルタ
JP2013027823A (ja) 炭素膜付き多孔質体およびその製造方法
JP2011194283A (ja) シリカ膜の処理方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130909

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140626

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140805

R150 Certificate of patent or registration of utility model

Ref document number: 5595044

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150