JP5592810B2 - Refractory material for gas shielded arc welding - Google Patents

Refractory material for gas shielded arc welding Download PDF

Info

Publication number
JP5592810B2
JP5592810B2 JP2011013288A JP2011013288A JP5592810B2 JP 5592810 B2 JP5592810 B2 JP 5592810B2 JP 2011013288 A JP2011013288 A JP 2011013288A JP 2011013288 A JP2011013288 A JP 2011013288A JP 5592810 B2 JP5592810 B2 JP 5592810B2
Authority
JP
Japan
Prior art keywords
refractory material
mass
arc welding
shielded arc
gas shielded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011013288A
Other languages
Japanese (ja)
Other versions
JP2012152776A (en
Inventor
智紀 柿崎
秀司 笹倉
正樹 島本
斉 石田
浩一 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2011013288A priority Critical patent/JP5592810B2/en
Priority to CN201110414185.7A priority patent/CN102601491B/en
Priority to KR1020120006128A priority patent/KR101278737B1/en
Publication of JP2012152776A publication Critical patent/JP2012152776A/en
Application granted granted Critical
Publication of JP5592810B2 publication Critical patent/JP5592810B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/70Door leaves
    • E06B3/72Door leaves consisting of frame and panels, e.g. of raised panel type
    • E06B3/78Door leaves consisting of frame and panels, e.g. of raised panel type with panels of plastics
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/26Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups
    • E04C2/284Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating
    • E04C2/292Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating composed of insulating material and sheet metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B5/00Doors, windows, or like closures for special purposes; Border constructions therefor
    • E06B5/02Doors, windows, or like closures for special purposes; Border constructions therefor for out-buildings or cellars; Other simple closures not designed to be close-fitting
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B5/00Doors, windows, or like closures for special purposes; Border constructions therefor
    • E06B5/10Doors, windows, or like closures for special purposes; Border constructions therefor for protection against air-raid or other war-like action; for other protective purposes
    • E06B5/12Doors, windows, or like closures for special purposes; Border constructions therefor for protection against air-raid or other war-like action; for other protective purposes against air pressure, explosion, or gas

Description

本発明は、チタニヤ系フラックス入りワイヤを用いたガスシールドアーク溶接に裏当て材として使用されるガスシールドアーク溶接用耐火材に関するものである。   The present invention relates to a refractory material for gas shield arc welding used as a backing material in gas shield arc welding using a titania-based flux cored wire.

造船業界をはじめとする各種業界の溶接施工において、鋼板を片面(片側)のみから溶接する片面溶接が行われている。この片面溶接では、狭開先化に伴う溶接速度の向上や鋼板からの強い拘束力により初層溶接部分に発生する高温割れが問題視されている。
この溶接金属の高温割れの発生を抑制するために、以下のような溶接方法が提案されている。
In welding construction in various industries including the shipbuilding industry, single-side welding is performed in which a steel plate is welded from only one side (one side). In this single-sided welding, hot cracking that occurs in the first layer weld due to the improvement in welding speed accompanying narrowing of the groove and the strong restraining force from the steel sheet is regarded as a problem.
In order to suppress the occurrence of hot cracks in the weld metal, the following welding methods have been proposed.

例えば、耐高温割れ性を改善する方法として、溶接速度を下げ、溶接電流を低くする等の溶接手段を特定する方法(例えば、特許文献1)が提案されている。また、耐高温割れ性を改善する方法として、溶接金属中のB量、または、S量を低減させるといったB、S量を特定する方法(例えば、特許文献1)が提案されている。   For example, as a method for improving hot cracking resistance, a method for specifying welding means such as lowering the welding speed and lowering the welding current (for example, Patent Document 1) has been proposed. Further, as a method for improving the hot crack resistance, a method for specifying the B and S amounts such as reducing the B amount or the S amount in the weld metal (for example, Patent Document 1) has been proposed.

しかし、前記の溶接手段を特定する方法によれば、溶接作業の時間を大幅に増大させてしまい、溶接効率を犠牲にすることとなる。また、前記の溶接金属中のB、S量を特定する方法によれば、B量を低減した場合は低温靭性が確保できなくなるといった問題が生じてしまい、一方、S量を低減しようとした場合は、S等の不純物元素の低減には限界があるといった障害が存在する。   However, according to the above-described method for specifying the welding means, the time for the welding operation is greatly increased, and the welding efficiency is sacrificed. Further, according to the method for specifying the B and S amounts in the weld metal, when the B amount is reduced, there is a problem that the low temperature toughness cannot be secured. However, there is an obstacle that there is a limit to the reduction of impurity elements such as S.

そこで、前記のような問題を回避しつつ、耐高温割れ性を改善する方法として、所定の成分からなるフラックス入りワイヤと所定の成分からなる耐火材とを用いることを特徴とする以下のようなガスシールドアーク溶接方法が提案されている。   Therefore, as a method for improving the hot cracking resistance while avoiding the above-mentioned problems, a flux-cored wire made of a predetermined component and a refractory material made of a predetermined component are used as follows. Gas shielded arc welding methods have been proposed.

詳細には、特許文献2では、フラックス入りワイヤとして、ワイヤ全質量に対する各成分の質量比(質量%)が、Sn≦0.010質量%、B≦0.005質量%、Bi+Pb≦0.005質量%、2.5≦Mn≦3.0質量%、7.0≦TiO+ZrO+SiO≦8.0質量%以下となるものを使用し、耐火材として、耐火材全質量に対する質量比(質量%)が、P≦0.10質量%、S≦0.10質量%となるものを使用するという技術が開示されている。 Specifically, in Patent Document 2, as a flux-cored wire, the mass ratio (mass%) of each component to the total mass of the wire is Sn ≦ 0.010 mass%, B ≦ 0.005 mass%, Bi + Pb ≦ 0.005. Mass%, 2.5 ≦ Mn ≦ 3.0% by mass, 7.0 ≦ TiO 2 + ZrO 2 + SiO 2 ≦ 8.0% by mass or less, and as a refractory material, mass ratio to the total mass of the refractory material A technique is disclosed in which (mass%) satisfies P ≦ 0.10 mass% and S ≦ 0.10 mass%.

特開昭54−130452号公報Japanese Patent Laid-Open No. 54-130552 特開2003−311416号公報JP 2003-31416 A

しかしながら、特許文献2に開示された技術は、ワイヤと耐火材の両方について、それぞれを構成する各成分を所定の範囲内とする必要があるとともに、各成分の所定の範囲が狭く限定された範囲となっている。よって、溶接金属の耐高温割れ性の向上という効果を得るためには、各成分が狭く限定された範囲に該当するワイヤと耐火材の両方を選別し使用する必要があった。
特に、ワイヤについては、チタニヤ系フラックス入りワイヤの中でも、7.0≦TiO+ZrO+SiO≦8.0質量%以下という極めて狭い成分範囲を満たすもののみに限られており、その条件を満たさないチタニヤ系フラックス入りワイヤを使用した場合については、溶接金属の耐高温割れ性の向上を確保することができなかった。
However, the technique disclosed in Patent Document 2 requires that each component constituting each of the wire and the refractory material be within a predetermined range, and the predetermined range of each component is narrowly limited. It has become. Therefore, in order to obtain the effect of improving the hot cracking resistance of the weld metal, it is necessary to select and use both the wire and the refractory material corresponding to the range in which each component is narrowly limited.
In particular, the wire is limited to only those satisfying a very narrow component range of 7.0 ≦ TiO 2 + ZrO 2 + SiO 2 ≦ 8.0% by mass or less among titania-based flux-cored wires, and the conditions are satisfied. When no titania-based flux-cored wire was used, it was not possible to ensure the improvement of hot cracking resistance of the weld metal.

本発明は、前記の問題に鑑みてなされたものであり、その課題は、ガスシールドアーク溶接において、使用するチタニヤ系フラックス入りワイヤの成分に限定されることなく、溶接金属の耐高温割れ性を向上させることができるガスシールドアーク溶接用耐火材を提供することにある。   The present invention has been made in view of the above-mentioned problems, and the subject thereof is not limited to the components of the titania-based flux-cored wire used in gas shielded arc welding, but the hot crack resistance of the weld metal is improved. The object is to provide a refractory material for gas shielded arc welding which can be improved.

本発明者らは、TiNが溶接金属の凝固組織の微細化に有効であることに着眼した。そして、耐火材中の成分を制御することで、溶接金属中にTiNを生成させ耐高温割れ性を著しく改善させると同時に、良好なビード形状(アンダーカット、ブローホール、ピットのような欠陥が無いビード形状)を保持することができるという知見を得た。   The present inventors have noticed that TiN is effective for refining the solidification structure of the weld metal. And by controlling the components in the refractory material, TiN is generated in the weld metal and the hot crack resistance is remarkably improved, and at the same time, there is no good bead shape (such as undercut, blowhole, pit) The knowledge that bead shape) can be maintained was obtained.

すなわち、前記課題を解決するために、本発明に係るガスシールドアーク溶接用耐火材は、チタニヤ系フラックス入りワイヤを用いたガスシールドアーク溶接に裏当て材として使用されるガスシールドアーク溶接用耐火材であって、耐火材全質量に対して、N(窒化物中のN):0.001〜0.100質量%、SiO:30〜60質量%、Al:15〜40質量%、MgO:5〜25質量%、を含有し、残部が不可避的不純物からなることを特徴とする。 That is, in order to solve the above-described problem, the refractory material for gas shielded arc welding according to the present invention is a refractory material for gas shielded arc welding used as a backing material for gas shielded arc welding using a titania-based flux cored wire. a is, relative to the refractory material total mass, N (N in nitride): 0.001 to 0.100 mass%, SiO 2: 30 to 60 wt%, Al 2 O 3: 15 to 40 wt% MgO: 5 to 25% by mass, with the balance being inevitable impurities.

このように、本発明に係るガスシールドアーク溶接用耐火材は、所定量のN(窒化物中のN)を含有しているため、このNとチタニヤ系フラックス入りワイヤ中のTi源が反応することにより、溶接金属中に核生成促進に効果的であるTiNが生成される。その結果、溶接金属の凝固組織が微細化し、溶接金属の耐高温割れ性を向上させることができる。   Thus, since the refractory material for gas shielded arc welding according to the present invention contains a predetermined amount of N (N in nitride), this N reacts with the Ti source in the titania-based flux-cored wire. As a result, TiN that is effective in promoting nucleation is produced in the weld metal. As a result, the solidification structure of the weld metal is refined, and the hot crack resistance of the weld metal can be improved.

また、本発明に係るガスシールドアーク溶接用耐火材は、所定量のSiO、Al、MgOを含有することにより、良好なビード形状(アンダーカット、ブローホール、ピットのような欠陥が無いビード形状)を保持することができる。 Further, the refractory material for gas shielded arc welding according to the present invention contains a predetermined amount of SiO 2 , Al 2 O 3 , and MgO, so that it has a good bead shape (undercuts, blowholes, pits and other defects). No bead shape) can be retained.

そして、本発明に係るガスシールドアーク溶接用耐火材は、より好ましい範囲として、前記N(窒化物中のN)が、0.003〜0.050質量%、であることが好ましい。
このように、本発明に係るガスシールドアーク溶接用耐火材は、より好ましい量のNを含有することにより、溶接金属中にTiNが生成されることによる耐高温割れ性の向上を確保することができる。
And as for the refractory material for gas shielded arc welding which concerns on this invention, it is preferable that said N (N in nitride) is 0.003-0.050 mass% as a more preferable range.
As described above, the refractory material for gas shielded arc welding according to the present invention contains a more preferable amount of N, thereby ensuring an improvement in hot cracking resistance due to TiN being generated in the weld metal. it can.

そして、本発明に係るガスシールドアーク溶接用耐火材は、さらに、耐火材全質量に対して、TiO:5〜40質量%を含有することが好ましい。 The gas shielded arc welding refractory material according to the present invention, further, with respect to the refractory material total mass, TiO 2: preferably contains 5 to 40 mass%.

このように、本発明に係るガスシールドアーク溶接用耐火材は、所定量のTiOを含有することにより、このTiOが溶接金属凝固の核生成サイトとなるとともに、Nと反応することで確実に溶接金属中にTiNが生成されることとなるため、溶接金属の耐高温割れ性の向上を確保することができる。 As described above, the refractory material for gas shielded arc welding according to the present invention contains a predetermined amount of TiO 2 , so that the TiO 2 becomes a nucleation site for weld metal solidification and reacts with N reliably. In addition, since TiN is generated in the weld metal, it is possible to ensure the improvement of the hot crack resistance of the weld metal.

そして、本発明に係るガスシールドアーク溶接用耐火材は、より好ましい範囲として、前記TiOが、10〜30質量%であることが好ましい。
このように、本発明に係るガスシールドアーク溶接用耐火材は、より好ましい量のTiOを含有することにより、溶接金属中にTiNが生成されることによる耐高温割れ性の向上を確保することができる。
The gas shielded arc welding refractory material according to the present invention, a more preferred range, the TiO 2 is preferably 10 to 30 wt%.
As described above, the refractory material for gas shielded arc welding according to the present invention includes a more preferable amount of TiO 2 , thereby ensuring improvement in hot crack resistance due to TiN being generated in the weld metal. Can do.

本発明に係るガスシールドアーク溶接用耐火材は、所定量のN(窒化物中のN)を含有しているため、このNとチタニヤ系フラックス入りワイヤ中のTiが反応することにより、溶接金属中にTiNが生成し、溶接金属の耐高温割れ性を向上させることができる。
また、所定量のSiO、Al、MgOを含有することにより、良好なビード形状(アンダーカット、ブローホール、ピットのような欠陥が無いビード形状)を保持することができる。
さらに、本発明に係るガスシールドアーク溶接用耐火材によると、使用するワイヤがTiを含有すれば溶接金属中にTiNを生成させることができる。よって、使用するワイヤがチタニヤ系フラックス入りワイヤであれば、特に成分に限定されることなく溶接金属の耐高温割れ性の向上という効果を得ることができる。したがって、新たにチタニヤ系フラックス入りワイヤを作製しなくとも、市販のチタニヤ系フラックス入りワイヤを使用することにより溶接金属の耐高温割れ性を向上させることができる。
Since the refractory material for gas shielded arc welding according to the present invention contains a predetermined amount of N (N in nitride), this N and Ti in the titania-based flux-cored wire react to produce a weld metal. TiN is generated therein, and the hot crack resistance of the weld metal can be improved.
Further, by containing a predetermined amount of SiO 2 , Al 2 O 3 , and MgO, a good bead shape (bead shape free from defects such as undercut, blowhole, and pit) can be maintained.
Furthermore, according to the refractory material for gas shielded arc welding according to the present invention, TiN can be generated in the weld metal if the wire used contains Ti. Therefore, if the wire to be used is a titania-based flux-cored wire, the effect of improving the hot cracking resistance of the weld metal can be obtained without being particularly limited to the components. Therefore, the hot crack resistance of the weld metal can be improved by using a commercially available titania-based flux cored wire without newly preparing a titania-based flux cored wire.

本発明に係るガスシールドアーク溶接用耐火材(裏当て材)の断面図である。It is sectional drawing of the refractory material (backing material) for gas shielded arc welding which concerns on this invention. 本発明に係るガスシールドアーク溶接用耐火材(裏当て材)をアルミテープ表面に並べた状態の模式図である。It is a schematic diagram of the state which arranged the fireproof material (backing material) for gas shielded arc welding concerning this invention on the aluminum tape surface.

以下、本発明に係るガスシールドアーク溶接用耐火材を実施するための形態について、詳細に説明する。   Hereinafter, the form for implementing the refractory material for gas shielded arc welding which concerns on this invention is demonstrated in detail.

≪ガスシールドアーク溶接用耐火材≫
まず、本発明に係るガスシールドアーク溶接用耐火材(以下、適宜、耐火材という)について説明する。
≪Refractory material for gas shielded arc welding≫
First, the refractory material for gas shielded arc welding according to the present invention (hereinafter, appropriately referred to as refractory material) will be described.

本発明に係る耐火材は、チタニヤ系フラックス入りワイヤを用いたガスシールドアーク溶接に裏当て材として使用されるガスシールドアーク溶接用耐火材であって、所定量のN、SiO、Al、MgOを含有し、残部が不可避的不純物からなる。 The refractory material according to the present invention is a refractory material for gas shielded arc welding used as a backing material in gas shielded arc welding using a titania-based flux-cored wire, and has a predetermined amount of N, SiO 2 , Al 2 O. 3 , MgO is contained, and the balance consists of inevitable impurities.

なお、本発明に係る耐火材(裏当て材)1の形状については特に限定されず、所定の厚さを有する略板形状であっても良いし、図1に示すように、溶接金属の裏ビード形状を良好にすべく上面に溝が形成されているものであっても良い。また、本発明に係る耐火材1を使用する際は、アルミテープ2に耐火材1を並べ(図2参照)、溶接母材の開先部分に対し、片面溶接を行う面とは反対側から貼り付けて使用すればよい。なお、溶接母材の長さに合わせて、アルミテープ2に並べる耐火材1の数を決定すればよい。
以下に、本発明に係る耐火材に含まれる各成分を数値限定した理由について説明する。
The shape of the refractory material (backing material) 1 according to the present invention is not particularly limited, and may be a substantially plate shape having a predetermined thickness. As shown in FIG. A groove may be formed on the upper surface in order to improve the bead shape. Moreover, when using the refractory material 1 according to the present invention, the refractory material 1 is arranged on the aluminum tape 2 (see FIG. 2), and the groove portion of the weld base material is from the side opposite to the surface on which single-side welding is performed. Paste and use. In addition, what is necessary is just to determine the number of the refractory materials 1 arranged in the aluminum tape 2 according to the length of a welding base material.
The reason why the respective components included in the refractory material according to the present invention are numerically limited will be described below.

<N(窒化物中のN):0.001〜0.100質量%>
Nを耐火材に含有させることにより、耐火材から初層溶接金属に間接的にNを添加することとなり、このNがチタニヤ系フラックス入りワイヤ中のTiと反応することにより、核生成促進に効果的であるTiNが育成される。その結果、溶接金属の凝固組織が微細化し、溶接金属の耐高温割れ性が向上する。N(窒化物中のN)量が0.001質量%未満では、上記効果が十分に得られず、N(窒化物中のN)量が0.100質量%を超えると、溶接金属にブローホールの発生が確認される。したがって、N(窒化物中のN)量は、0.001〜0.100質量%とする。
ここで、N(窒化物中のN)とは、窒化物全体を示すものではなく、窒化物の中のNのみを示すものである。そして、この窒化物とは、例えば、N−Cr、Fe−N−Cr、N−Si、N−Mn、N−Ti、N−Al等である。
<N (N in nitride): 0.001 to 0.100 mass%>
By containing N in the refractory material, N is indirectly added to the first layer weld metal from the refractory material, and this N reacts with Ti in the titania-based flux-cored wire, which is effective in promoting nucleation. The target TiN is grown. As a result, the solidification structure of the weld metal is refined and the hot crack resistance of the weld metal is improved. If the amount of N (N in the nitride) is less than 0.001% by mass, the above effect cannot be obtained sufficiently. If the amount of N (N in the nitride) exceeds 0.100% by mass, the weld metal is blown. The generation of holes is confirmed. Therefore, the amount of N (N in nitride) is 0.001 to 0.100 mass%.
Here, N (N in nitride) does not indicate the entire nitride, but indicates only N in the nitride. And this nitride is N-Cr, Fe-N-Cr, N-Si, N-Mn, N-Ti, N-Al, etc., for example.

<SiO:30〜60質量%>
SiOは、耐火材の主構成成分である。SiO量が30質量%未満では熱衝撃性に劣るため裏ビードが出すぎてしまい、SiO量が60質量%を超えると生成スラグの流動性が過大となり、均一な裏ビードが劣化してしまう。したがって、SiO量は30〜60質量%とする。
なお、SiO源としては、シリカ、ろう石、シャモット、コージライト、ムライト等を使用すればよい。
<SiO 2: 30~60 mass%>
SiO 2 is a main component of the refractory material. If the amount of SiO 2 is less than 30% by mass, the thermal shock resistance is inferior and the back bead is excessively produced. If the amount of SiO 2 exceeds 60% by mass, the fluidity of the generated slag becomes excessive, and the uniform back bead deteriorates. End up. Therefore, the amount of SiO 2 is 30 to 60% by mass.
As the SiO 2 source, silica, wax, chamotte, cordierite, mullite or the like may be used.

<Al:15〜40質量%>
Alは、耐火材の融点を高め、かつ生成スラグの粘性を高めて裏ビード形状を整える上で不可欠の成分である。Al量が15質量%未満では熱衝撃性に劣り上記特性が発現せず、Al量が40質量%を超えると耐火性が上がり過ぎるため裏ビードが劣化し、生成スラグの粘性が過大となることでガス抜けが悪くなりピットやブローホール等の欠陥が生じ易くなる。したがって、Al量は15〜40質量%とする。
なお、Al源としては、アルミナ、長石、マイカ、シャモット、コージライト、ムライト、ろう石等を使用すればよい。
<Al 2 O 3: 15~40 wt%>
Al 2 O 3 is an indispensable component for increasing the melting point of the refractory material and increasing the viscosity of the generated slag to adjust the back bead shape. When the amount of Al 2 O 3 is less than 15% by mass, the thermal shock resistance is inferior and the above characteristics are not exhibited, and when the amount of Al 2 O 3 exceeds 40% by mass, the fire resistance is excessively increased and the back bead deteriorates, If the viscosity is excessive, outgassing becomes worse and defects such as pits and blowholes are likely to occur. Therefore, the amount of Al 2 O 3 is 15 to 40% by mass.
As the Al 2 O 3 source, alumina, feldspar, mica, chamotte, cordierite, mullite, wax, etc. may be used.

<MgO:5〜25質量%>
MgOは、耐火性調整材としての機能を有するとともに、他スラグ剥離性を改善する効果を有する成分である。この効果を発現させるには耐火材にMgOを5質量%以上含有させる必要がある。しかし、MgO量が25質量%を越えると耐火度が上がりすぎて生成スラグの粘性が過大となり、ガス抜けが悪くなり、ピットやブローホール等の欠陥が生じ易くなる。したがって、MgO量は5〜25質量%とする。
なお、MgO源としては、マグネシア、タルク、ドロマイト、スピネル、フォルステライト等を使用すればよい。
<MgO: 5 to 25% by mass>
MgO is a component having an effect of improving other slag peelability while having a function as a fire resistance adjusting material. In order to exhibit this effect, it is necessary to contain 5% by mass or more of MgO in the refractory material. However, if the amount of MgO exceeds 25% by mass, the fire resistance is excessively increased, the viscosity of the generated slag becomes excessive, the outgassing becomes worse, and defects such as pits and blowholes are likely to occur. Therefore, the amount of MgO is 5 to 25% by mass.
As the MgO source, magnesia, talc, dolomite, spinel, forsterite or the like may be used.

<不可避的不純物>
残部の不可避的不純物としては、P、S、W、Ta、Cr、Cu、Nb、V等が挙げられ、本発明の効果を妨げない範囲で含有することが許容される。P量は0.1質量%以下が好ましく、S量は0.1質量%以下が好ましく、W量は1.0質量%以下が好ましく、Ta量は0.1質量%以下が好ましく、Cr量は0.5質量%以下が好ましく、Cu量は1.0質量%以下が好ましく、Nb量は0.1質量%以下が好ましく、V量は0.1質量%以下が好ましい。P、Sが上限値を超えると、耐高温割れ性が劣化し、W、Ta、Cr、Cu、Nb、Vが上記値を超えると、溶接金属の強度が大きくなり、靭性が低下するからである。
<Inevitable impurities>
Examples of the remaining inevitable impurities include P, S, W, Ta, Cr, Cu, Nb, V, and the like, and it is allowed to be contained within a range that does not hinder the effects of the present invention. P amount is preferably 0.1% by mass or less, S amount is preferably 0.1% by mass or less, W amount is preferably 1.0% by mass or less, Ta amount is preferably 0.1% by mass or less, Cr amount Is preferably 0.5 mass% or less, the Cu content is preferably 1.0 mass% or less, the Nb content is preferably 0.1 mass% or less, and the V content is preferably 0.1 mass% or less. When P and S exceed the upper limit, hot cracking resistance deteriorates, and when W, Ta, Cr, Cu, Nb, and V exceed the above values, the strength of the weld metal increases and the toughness decreases. is there.

また、前記耐火材の成分に加えて、所定量のTiOを、さらに含有することが好ましい。
<TiO:5〜40質量%>
TiOを耐火材に含有させることにより、耐火材から初層溶接金属に間接的にTiOを添加することとなり、このTiOが溶接金属凝固の核生成サイトとなるとともに、溶接中にNと反応することでTiNを形成する。その結果、溶接金属の凝固組織が一層微細化し、溶接金属の耐高温割れ性が向上する。TiO量が5%未満では上記効果が十分ではなく、TiO量が40%を超えると、耐火性が上がり過ぎるため裏ビードが出にくく、生成スラグの粘性が過大となることでガス抜けが悪くなり、ピットやブローホール等の欠陥が生じ易くなる。したがって、TiOを耐火材に含有させる場合は、TiO量は5〜40質量%とするのが好ましい。
なお、TiO源としては、例えばルチール等を使用すればよい。
Moreover, it is preferable to further contain a predetermined amount of TiO 2 in addition to the components of the refractory material.
<TiO 2: 5~40 mass%>
By incorporating the TiO 2 in the refractory material, indirectly it becomes adding TiO 2 to the first layer weld metal from a refractory material, with the TiO 2 is a nucleation site of the weld metal solidification, and N in the weld By reacting, TiN is formed. As a result, the solidification structure of the weld metal is further refined, and the hot crack resistance of the weld metal is improved. When the amount of TiO 2 is less than 5%, the above effect is not sufficient. When the amount of TiO 2 exceeds 40%, the fire resistance is excessively increased, so that the back bead is difficult to be produced, and the viscosity of the generated slag is excessively increased. It becomes worse and defects such as pits and blowholes are likely to occur. Therefore, if the inclusion of TiO 2 in the refractory material, TiO 2 amount is preferably 5 to 40 mass%.
For example, rutile or the like may be used as the TiO 2 source.

また、前記耐火材に含有するN(窒化物中のN)、TiOのうち少なくとも1つが、下記量であることが好ましい。
<N(窒化物中のN):0.003〜0.050質量%、TiO:10〜30質量%>
N(窒化物中のN)が0.003〜0.050質量%、TiOが10〜30質量%、のうち少なくとも1つを満たすことで、十分な量のTiNを溶接金属中に生成させることができる。その結果、溶接金属の凝固組織が微細化し、溶接金属の耐高温割れ性の向上を確保することができるからである。
Further, it is preferable that at least one of N (N in the nitride) and TiO 2 contained in the refractory material is the following amount.
<N (N in nitride): 0.003 to 0.050 wt%, TiO 2: 10 to 30 wt%>
By satisfying at least one of N (N in nitride) of 0.003 to 0.050 mass% and TiO 2 of 10 to 30 mass%, a sufficient amount of TiN is generated in the weld metal. be able to. As a result, the solidification structure of the weld metal is refined, and the improvement of the hot crack resistance of the weld metal can be ensured.

次に、本発明を実施する際に使用するチタニヤ系フラックス入りワイヤ、および溶接母材について説明する。
≪チタニヤ系フラックス入りワイヤ≫
チタニヤ系フラックス入りワイヤとは、TiOを含んだフラックス入りワイヤである。Ti源を含有しているものであれば、耐火材のNと反応することにより、溶接金属中にTiNが形成されるため、溶接金属の耐高温割れ性を向上させることができる。よって、使用するワイヤはチタニヤ系フラックス入りワイヤであれば、溶接金属の耐高温割れ性の向上という効果を得ることができるため、その他の組成については、特に限定されない。例えば、JIS Z3313 T49J0T1−1CA−Uの規格分類のもの等を用いることができる。
Next, a titania-based flux-cored wire and a welding base material used when carrying out the present invention will be described.
≪Titanya flux cored wire≫
A titania-based flux cored wire is a flux cored wire containing TiO 2 . If it contains a Ti source, TiN is formed in the weld metal by reacting with N of the refractory material, so the hot crack resistance of the weld metal can be improved. Therefore, if the wire to be used is a titania-based flux-cored wire, the effect of improving the hot cracking resistance of the weld metal can be obtained, and the other compositions are not particularly limited. For example, those according to JIS Z3313 T49J0T1-1CA-U standard classification can be used.

チタニヤ系フラックス入りワイヤのフラックス充填率は、特に限定されず、ワイヤの生産性、例えば成型および伸線時の断線等を考慮して適宜設定することができる。また、チタニヤ系フラックス入りワイヤの断面形状は特に限定されず、例えば、合わせ目はあっても無くても良い。   The flux filling rate of the titania-based flux-cored wire is not particularly limited, and can be set as appropriate in consideration of wire productivity, for example, wire breakage during molding and wire drawing. Moreover, the cross-sectional shape of the titania-based flux-cored wire is not particularly limited, and for example, there may or may not be a joint.

≪溶接母材≫
溶接母材の組成は特に限定されないが、例えば、下記の表1に化学成分例を示すようなJIS G3106 SM400A〜C鋼等を用いることができる。
≪Welding base material≫
The composition of the welding base material is not particularly limited, and for example, JIS G3106 SM400A-C steel and the like shown in Table 1 below as examples of chemical components can be used.

Figure 0005592810
Figure 0005592810

次に、本発明に係るガスシールドアーク溶接用耐火材を製造する方法、およびガスシールドアーク溶接について説明する。
≪ガスシールドアーク溶接用耐火材の製造方法≫
耐火材の製造方法については、特に限定されない。例えば、原料粉末を配合し、粘結剤を添加し混錬したものをプレス成形する。そして、プレス成形したものを乾燥させた後、窒化物に適する焼成方法を行い、耐火材を製造すればよい。
Next, a method for producing a refractory material for gas shielded arc welding according to the present invention and gas shielded arc welding will be described.
≪Method of manufacturing refractory material for gas shielded arc welding≫
The method for producing the refractory material is not particularly limited. For example, a raw material powder is blended, and a kneaded material added with a binder is press-molded. And after drying what was press-molded, the baking method suitable for nitride should be performed, and a refractory material should be manufactured.

≪ガスシールドアーク溶接≫
溶接方法に関しては、溶接効率等を考慮すると、ガスシールドアーク溶接を行うことが好ましい。
ガスシールドアーク溶接の方法は、特に限定されず、通常用いられる方法を採用することができる。例えば、シールドガスとしては、100%COガスの他、ArガスとCOガスとの混合ガス、ArガスとOガスとの混合ガス、ArガスとCOガスとOガスとの3種類の混合ガス等が用いられる。
ただし、本発明に用いられる溶接方法は、上記のガスシールドアーク溶接法のみに限定されず、例えば、被覆アーク溶接法、ティグ溶接、サブマージアーク溶接法等のいずれの溶接法にも適用可能である。
≪Gas shield arc welding≫
Regarding the welding method, it is preferable to perform gas shielded arc welding in consideration of welding efficiency and the like.
The method of gas shield arc welding is not particularly limited, and a commonly used method can be adopted. For example, as the shielding gas, in addition to 100% CO 2 gas, a mixed gas of Ar gas and CO 2 gas, a mixed gas of Ar gas and O 2 gas, Ar gas, CO 2 gas, and O 2 gas 3 A kind of mixed gas or the like is used.
However, the welding method used in the present invention is not limited to the above gas shielded arc welding method, and can be applied to any welding method such as a covering arc welding method, a TIG welding, a submerged arc welding method, and the like. .

以上、本発明の実施形態について説明したが、本発明は前記実施形態に限定されず、特許請求の範囲に記載した本発明の要旨を逸脱しない範囲で適宜設計変更可能である。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and the design can be appropriately changed without departing from the gist of the present invention described in the claims.

以下、本発明に係るガスシールドアーク溶接用耐火材について、本発明の要件を満たす実施例(No.1〜42)と、本発明の要件を満たさない比較例(No.43〜60)と、を対比して具体的に説明する。   Hereinafter, with respect to the refractory material for gas shielded arc welding according to the present invention, Examples (No. 1-42) satisfying the requirements of the present invention, Comparative Examples (No. 43-60) not satisfying the requirements of the present invention, This will be described in detail by comparing the above.

耐火材は、原料粉末を配合し、粘結剤を添加し混錬したものをプレス成形し乾燥させた後、窒化物に適する焼成方法を行い作製した。
前記方法により、表2に示す本発明の要件を満たす耐火材(耐火材No.1〜21)と、表3に示す本発明の要件を満たさない耐火材(耐火材No.22〜30)を作製した。
The refractory material was prepared by mixing a raw material powder, adding a binder and kneading a kneaded material, followed by press molding and drying, followed by a firing method suitable for nitride.
By the said method, the refractory material (refractory material No. 1-21) which satisfy | fills the requirements of this invention shown in Table 2, and the refractory material (refractory material No. 22-30) which does not satisfy the requirements of this invention shown in Table 3. Produced.

Figure 0005592810
Figure 0005592810

Figure 0005592810
Figure 0005592810

表4に示すチタニヤ系フラックス入りワイヤ(JIS Z3313 T49J0T1−1CA−Uの規格分類のもの)を用い、JIS G3106 SM400B鋼(C:0.12質量%、Si:0.2質量%、Mn:1.1質量%、P:0.008質量%、S:0.003質量%を含有し、残部はFeおよび不可避的不純物)からなる溶接母材を、表2、3に示す耐火材を用いて、表5に示す溶接条件で片面溶接(下向突合せ溶接)した。   Using titania-based flux-cored wires shown in Table 4 (JIS Z3313 T49J0T1-1CA-U standard classification), JIS G3106 SM400B steel (C: 0.12 mass%, Si: 0.2 mass%, Mn: 1 0.1% by mass, P: 0.008% by mass, S: 0.003% by mass with the balance being Fe and unavoidable impurities) using the refractory materials shown in Tables 2 and 3 One-side welding (downward butt welding) was performed under the welding conditions shown in Table 5.

Figure 0005592810
Figure 0005592810

Figure 0005592810
Figure 0005592810

(耐高温割れ性)
溶接終了後、初層溶接部(クレータ部を除く)について、X線透過試験(JIS Z 3104)にて、内部割れの有無を確認し、割れ発生部分のトータル長さを測定し、割れ率を算出した。ここで、割れ率は、割れ率W=(割れ発生部分のトータル長さ)/(初層溶接部長さ(クレータ部を除く))×100により算出される。その割れ率で耐高温割れ性を評価した。
なお、評価基準は、溶接電流240Aで割れ率0%かつ溶接電流260Aで割れ率0%の場合を「より一層優れている:◎」とし、溶接電流240Aで割れ率0%かつ溶接電流260Aで割れ率5%以下の場合を「優れている:○〜◎」とし、溶接電流240Aで割れ率0%かつ溶接電流260Aで割れ率5%超の場合を「良好である:○」とし、溶接電流240Aで割れ有りかつ溶接電流260Aで割れ有りの場合を「劣っている:×」とした。
(High temperature crack resistance)
After welding, the first layer welded part (excluding the crater part) is checked for the presence of internal cracks in the X-ray transmission test (JIS Z 3104), the total length of the cracked part is measured, and the crack rate is determined. Calculated. Here, the cracking rate is calculated by the cracking rate W = (total length of cracked portion) / (first layer welded portion length (excluding crater portion)) × 100. The hot crack resistance was evaluated based on the crack rate.
The evaluation criteria are “much better: ◎” when the cracking rate is 0% at the welding current 240A and the cracking rate 0% at the welding current 260A, and the cracking rate 0% and the welding current 260A at the welding current 240A. The case where the cracking rate is 5% or less is “excellent: ○ to ◎”, the case where the welding current 240A is 0% and the welding current 260A is more than 5% is “good: ○”. The case where there was a crack at a current 240A and a crack at a welding current 260A was defined as “inferior: x”.

(ビード形状)
溶接終了後、初層溶接部(クレータ部を除く)について、ビード形状の評価を実施(目視による観察)した。裏面ビード形状が欠陥なしの場合は「良好である:○」とし、アンダーカット、ピット、ブローホール等の欠陥が生じた場合は「劣っている:×」とした。
(Bead shape)
After the welding, the bead shape was evaluated (observed by visual observation) for the first layer weld (excluding the crater). When the backside bead shape had no defect, it was judged as “good”, and when a defect such as an undercut, pit, blowhole, etc. occurred, it was judged as “inferior: x”.

(総合評価)
総合評価の評価基準は、前記評価項目のうち、耐高温割れ性が「◎」であり、ビード形状が「○」である場合を、「より一層優れている:◎」とし、耐高温割れ性が「○〜◎」であり、ビード形状が「○」である場合を、「優れている:○〜◎」とし、耐高温割れ性が「○」であり、ビード形状が「○」である場合を、「良好である:○」とし、前記評価項目の少なくとも1つが「×」の場合を、「劣っている:×」とした。
(Comprehensive evaluation)
The evaluation criteria for the comprehensive evaluation are as follows. Among the above evaluation items, when the hot crack resistance is “、” and the bead shape is “◯”, it is set as “much better: ◎” and the hot crack resistance is Is “○ to ◎” and the bead shape is “○”, it is defined as “Excellent: ○ to ◎”, the hot crack resistance is “○”, and the bead shape is “○”. The case was defined as “good: ○”, and the case where at least one of the evaluation items was “x” was defined as “inferior: x”.

Figure 0005592810
Figure 0005592810

Figure 0005592810
Figure 0005592810

表6に示すように、実施例No.1〜42は、本発明の範囲を満足するため、耐高温割れ性、ビード形状の全てにおいて「良好である」以上の結果となった。特に、TiOを所定量含有する耐火材No.15を使用した実施例No.15、36は、耐高温割れ性の評価が「優れている」という結果となった。また、TiOを所定量含有するとともに、N量、TiO量のいずれかが最適な範囲内であった耐火材No.16、17、18、19、20を使用した実施例No.16、17、18、19、20、37、38、39、40、41は、耐高温割れ性の評価が「優れている」という結果となった。さらに、N量、TiO量が共に最適な範囲内であった耐火材No.21を使用した実施例No.21、42は耐高温割れ性の評価が「より一層優れている」という結果となった。
一方、表7に示すように、比較例No.43〜60は、本発明の規定するいずれかの要件を満たさないため、良好な結果とならなかった。
As shown in Table 6, Example No. In order to satisfy the scope of the present invention, Nos. 1-42 were “good” or better in all of hot cracking resistance and bead shape. In particular, refractory material No. 1 containing a predetermined amount of TiO 2 . No. 15 using No. 15 Nos. 15 and 36 resulted in the evaluation of hot crack resistance being “excellent”. Moreover, while containing a predetermined amount of TiO 2 , the refractory material No. 1 in which either the N amount or the TiO 2 amount was within the optimum range. Examples Nos. 16, 17, 18, 19, and 20 were used. Nos. 16, 17, 18, 19, 20, 37, 38, 39, 40, and 41 resulted in an evaluation of “high temperature crack resistance” being “excellent”. Further, the refractory material No. 2 in which both the N amount and the TiO 2 amount were within the optimum ranges. Example No. 21 using No. 21 Nos. 21 and 42 resulted in the evaluation of hot cracking resistance being “much better”.
On the other hand, as shown in Table 7, Comparative Example No. Since 43-60 did not satisfy any of the requirements defined in the present invention, good results were not obtained.

具体的には、比較例No.43、52は、耐火材のN量が下限値未満であったため、耐高温割れ性が劣っていた。一方、比較例No.44、53は、耐火材のN量が上限値を超えていたため、ブローホールが発生してしまい、溶接を中止せざるを得なかった。   Specifically, Comparative Example No. Nos. 43 and 52 were inferior in hot cracking resistance because the N amount of the refractory material was less than the lower limit. On the other hand, Comparative Example No. In Nos. 44 and 53, since the N amount of the refractory material exceeded the upper limit, blow holes were generated, and welding had to be stopped.

比較例No.45、54は、耐火材のSiO量が下限値未満であったため、溶接中に耐火材が割れてしまった。一方、比較例No.46、55は、耐火材のSiO量が上限値を超えていたため、アンダーカットが生じてしまいビード形状が劣っていた。 Comparative Example No. In Nos. 45 and 54, since the amount of SiO 2 in the refractory material was less than the lower limit, the refractory material was cracked during welding. On the other hand, Comparative Example No. In Nos. 46 and 55, since the amount of SiO 2 in the refractory material exceeded the upper limit, undercut occurred and the bead shape was inferior.

比較例No.47、56は、耐火材のAl量が下限値未満であったため、溶接中に耐火材が割れてしまった。一方、比較例No.48、57は、耐火材のAl量が上限値を超えていたため、アンダーカットとピットが生じてしまいビード形状が劣っていた。 Comparative Example No. In Nos. 47 and 56, since the amount of Al 2 O 3 in the refractory material was less than the lower limit, the refractory material was cracked during welding. On the other hand, Comparative Example No. In Nos. 48 and 57, since the amount of Al 2 O 3 of the refractory material exceeded the upper limit value, undercuts and pits were generated and the bead shape was inferior.

比較例No.49、58は、耐火材のMgO量が下限値未満であったため、溶接中に耐火材が割れてしまった。一方、比較例No.50、59は、耐火材のMgO量が上限値を超えていたため、アンダーカットとピットが生じてしまいビード形状が劣っていた。   Comparative Example No. In Nos. 49 and 58, since the MgO amount of the refractory material was less than the lower limit, the refractory material was cracked during welding. On the other hand, Comparative Example No. In Nos. 50 and 59, the amount of MgO in the refractory material exceeded the upper limit value, so that undercuts and pits were generated and the bead shape was inferior.

比較例No.51、60は、耐火材のTiO量が上限値を超えていたため、アンダーカットとピットが生じてしまいビード形状が劣っていた。 Comparative Example No. In Nos. 51 and 60, since the amount of TiO 2 of the refractory material exceeded the upper limit, undercuts and pits were generated, and the bead shape was inferior.

以上の結果から、本発明の要件を満たす実施例(No.1〜42)は、本発明の要件を満たさない比較例(No.43〜60)と比べて、総合評価(耐高温割れ性・ビード形状)において優れていることが確認された。
また、本発明に係る耐火材を用いると、成分の異なるチタニヤ系フラックス入りワイヤ(ワイヤNo.1、2)を使用した場合であっても、耐高温割れ性とビード形状について同じように良好な結果が得られることがわかった。
From the above results, the examples (No. 1-42) satisfying the requirements of the present invention are compared with the comparative examples (No. 43-60) not satisfying the requirements of the present invention. It was confirmed that the bead shape was excellent.
Moreover, when the refractory material according to the present invention is used, even when a titania-based flux-cored wire (wire No. 1 or 2) having different components is used, the hot crack resistance and the bead shape are equally good. It turns out that a result is obtained.

1 耐火材(裏当て材)
2 アルミテープ
1 Refractory material (backing material)
2 Aluminum tape

Claims (4)

チタニヤ系フラックス入りワイヤを用いたガスシールドアーク溶接に裏当て材として使用されるガスシールドアーク溶接用耐火材であって、
耐火材全質量に対して、
N(窒化物中のN):0.001〜0.100質量%、
SiO:30〜60質量%、
Al:15〜40質量%、
MgO:5〜25質量%、を含有し、残部が不可避的不純物からなることを特徴とするガスシールドアーク溶接用耐火材。
A refractory material for gas shielded arc welding used as a backing material for gas shielded arc welding using a titania-based flux-cored wire,
For the total mass of refractory material,
N (N in nitride): 0.001 to 0.100% by mass,
SiO 2: 30~60% by weight,
Al 2 O 3: 15~40 wt%,
A refractory material for gas shielded arc welding characterized by containing MgO: 5 to 25% by mass, the balance being inevitable impurities.
より好ましい範囲として、前記N(窒化物中のN)が、0.003〜0.050質量%、であることを特徴とする請求項1に記載のガスシールドアーク溶接用耐火材。   The refractory material for gas shielded arc welding according to claim 1, wherein the N (N in nitride) is 0.003 to 0.050 mass% as a more preferable range. さらに、耐火材全質量に対して、TiO:5〜40質量%を含有することを特徴とする請求項1または請求項2に記載のガスシールドアーク溶接用耐火材。 Further, with respect to the refractory material total mass, TiO 2: claim, characterized in that it contains 5 to 40% by mass 1 or gas shielded arc welding refractory material according to claim 2. より好ましい範囲として、前記TiOが、10〜30質量%であることを特徴とする請求項3に記載のガスシールドアーク溶接用耐火材。 A more preferable range, the TiO 2 is gas shielded arc welding refractory material according to claim 3, characterized in that 10 to 30 wt%.
JP2011013288A 2011-01-25 2011-01-25 Refractory material for gas shielded arc welding Expired - Fee Related JP5592810B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011013288A JP5592810B2 (en) 2011-01-25 2011-01-25 Refractory material for gas shielded arc welding
CN201110414185.7A CN102601491B (en) 2011-01-25 2011-12-13 Refractory material for gas-shielded arc welding
KR1020120006128A KR101278737B1 (en) 2011-01-25 2012-01-19 Fire-resistant material for gas shielded arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011013288A JP5592810B2 (en) 2011-01-25 2011-01-25 Refractory material for gas shielded arc welding

Publications (2)

Publication Number Publication Date
JP2012152776A JP2012152776A (en) 2012-08-16
JP5592810B2 true JP5592810B2 (en) 2014-09-17

Family

ID=46519469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011013288A Expired - Fee Related JP5592810B2 (en) 2011-01-25 2011-01-25 Refractory material for gas shielded arc welding

Country Status (3)

Country Link
JP (1) JP5592810B2 (en)
KR (1) KR101278737B1 (en)
CN (1) CN102601491B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103008831B (en) * 2012-11-23 2017-01-25 象山焊接衬垫厂 Welding gasket for stainless steel CO2 single-sided welding
CN104625327A (en) * 2015-01-04 2015-05-20 武汉天高熔接股份有限公司 Flux backing material for all-position welding and production process thereof
CN105127610B (en) * 2015-09-29 2018-01-19 武汉天高熔接股份有限公司 A kind of alkaline welding backing material
KR102164347B1 (en) * 2019-05-17 2020-10-12 정무수 Ceramic backing material for welding

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5961595A (en) * 1982-09-29 1984-04-07 Nippon Steel Corp Backing strip for welding
JPS59137193A (en) * 1983-01-27 1984-08-07 Nippon Steel Corp Backing material for welding
JPS61206590A (en) * 1985-03-08 1986-09-12 Kobe Steel Ltd Backing strip for one-side welding
JP3889897B2 (en) * 1999-04-09 2007-03-07 新日本製鐵株式会社 Two-electrode vertical electrogas arc welding method with excellent welding workability and back bead appearance
KR100357723B1 (en) * 2000-09-27 2002-10-25 정무수 Ceramic packing material for high temperature garbon dioxide gas arc welding
JP2002336990A (en) * 2001-05-11 2002-11-26 Daido Steel Co Ltd Weld zone of ferritic stainless steel having excellent high temperature tensile strength, elongation, cracking resistance and toughness, and welding method therefor
JP3986357B2 (en) * 2002-04-25 2007-10-03 株式会社神戸製鋼所 One-side welding method by carbon dioxide arc welding
JP3758040B2 (en) * 2002-07-26 2006-03-22 株式会社神戸製鋼所 Flux-cored wire for gas shielded arc welding for low alloy heat resistant steel
CN1276896C (en) * 2004-05-27 2006-09-27 武汉天高熔接材料有限公司 Arc fusion-welding ceramic lining materials and method for making same
JP4767580B2 (en) * 2005-04-15 2011-09-07 武漢天高溶接材料有限公司 Ceramic backup material for gas shielded arc welding
JP2009262206A (en) * 2008-04-25 2009-11-12 Kobe Steel Ltd Backing flux for one-side submerged arc welding and one-side submerged arc welding method using the same

Also Published As

Publication number Publication date
JP2012152776A (en) 2012-08-16
CN102601491B (en) 2015-04-01
CN102601491A (en) 2012-07-25
KR20120099182A (en) 2012-09-07
KR101278737B1 (en) 2013-06-25

Similar Documents

Publication Publication Date Title
JP5198481B2 (en) Ni-based alloy flux cored wire
JP4970802B2 (en) Ni-based alloy flux cored wire
JP5890280B2 (en) Low hydrogen coated arc welding rod
KR101854033B1 (en) Ni BASED ALLOY FLUX CORED WIRE
JP2009061474A (en) Flux-cored wire for gas-shielded arc welding
JP5345770B2 (en) Titanya flux cored wire
KR101764008B1 (en) Ni-based alloy coated arc welding rod
JP5400461B2 (en) Flux cored wire
JP5592810B2 (en) Refractory material for gas shielded arc welding
JP2006272432A (en) Coated arc welding electrode for 9% ni steel
JP5802624B2 (en) Covered arc welding rod
JP6140069B2 (en) Stainless steel flux cored wire
JP5314414B2 (en) Flux cored wire
JP2014193472A (en) Flux-cored wire for gas shield arc welding
JP5912969B2 (en) Fused flux used for submerged arc welding and welding method using the same
KR102456990B1 (en) Flux-cored wire for gas shielded arc welding of low temperature steel
JP5824403B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP2011062745A (en) Flux-cored wire for welding
JP5096062B2 (en) Weld metal and titania-based flux-cored wire
JP4993933B2 (en) Backing flux for single-sided submerged arc welding
JP2544611B2 (en) Coated arc welding rod for cryogenic steel
CN113613829A (en) Ni-based alloy flux-cored wire
JP6669680B2 (en) Lime titania coated arc welding rod
JP2020131234A (en) Stainless steel flux-cored wire for self-shielded arc-welding
JP6837420B2 (en) Flux for submerged arc welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140722

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140801

R150 Certificate of patent or registration of utility model

Ref document number: 5592810

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees