JP5584986B2 - Interposer - Google Patents

Interposer Download PDF

Info

Publication number
JP5584986B2
JP5584986B2 JP2009073126A JP2009073126A JP5584986B2 JP 5584986 B2 JP5584986 B2 JP 5584986B2 JP 2009073126 A JP2009073126 A JP 2009073126A JP 2009073126 A JP2009073126 A JP 2009073126A JP 5584986 B2 JP5584986 B2 JP 5584986B2
Authority
JP
Japan
Prior art keywords
surface side
thermal expansion
interposer
insulating layer
expansion coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009073126A
Other languages
Japanese (ja)
Other versions
JP2010225955A (en
Inventor
知行 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2009073126A priority Critical patent/JP5584986B2/en
Publication of JP2010225955A publication Critical patent/JP2010225955A/en
Application granted granted Critical
Publication of JP5584986B2 publication Critical patent/JP5584986B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

本発明は、二つの電子部材間に介在して両者を機械的、電気的に接続するインターポーザに関する。   The present invention relates to an interposer that is interposed between two electronic members and mechanically and electrically connects them.

近年、電子機器の高性能化、小型化が急速に進展している。これに伴い、電子機器を構成する半導体素子及びこれを実装するための配線基板には、小型薄型であること、高い機能を有すること、また高い信頼性を有することなどが要求されている。   In recent years, high performance and miniaturization of electronic devices are rapidly progressing. Along with this, a semiconductor element constituting an electronic device and a wiring board for mounting the semiconductor element are required to be small and thin, to have high functions, and to have high reliability.

このような要求に応えるべく、半導体素子の実装方法として、プリント基板上に半導体素子を直接実装するベアチップ実装技術が用いられるようになった。他方半導体素子の多ピン化に伴い、半導体素子を実装するための配線基板として、配線層を多層化した、樹脂材料、あるいはセラミックス材料の多層配線基板の重要性が高まっている。例えば、半導体素子をテストするためのテスター用ボード(プローブカード)においては、テストピンの多数化、高密度化などにより配線層の更なる多層化が必要不可欠の状況となっていて、多層配線基板としては、絶縁層と導体層とが交互に積層された微細配線がコア基材の片面または両面に形成されたビルトアップ方式のものや、低熱膨張係数のセラミックスを絶縁材料に用いたものなどが開発されてきた。   In order to meet such demands, a bare chip mounting technique in which a semiconductor element is directly mounted on a printed board has been used as a method for mounting a semiconductor element. On the other hand, as the number of pins of a semiconductor element increases, the importance of a multilayer wiring board made of a resin material or a ceramic material in which a wiring layer is multilayered is increasing as a wiring board for mounting a semiconductor element. For example, in a tester board (probe card) for testing a semiconductor element, it is indispensable to further increase the number of wiring layers by increasing the number of test pins and increasing the density. For example, there are built-up types in which fine wiring with alternating layers of insulating layers and conductor layers formed on one or both sides of the core substrate, and those using ceramics with a low thermal expansion coefficient as the insulating material. Has been developed.

樹脂膜と金属膜を積層して作製するビルドアップ方式などの多層配線基板においては、基板自体の軽量化や熱膨張係数の低減化を目的に、そのコア基材として、炭素系繊維(織布)をバインダ用有機高分子樹脂で固化した導電性基材、あるいはその積層体、また繊維強化金属、軽量かつ化学的に安定した金属板などを用いる提案もなされている。   In multilayer wiring boards such as build-up systems that are manufactured by laminating resin films and metal films, carbon-based fibers (woven fabrics) are used as the core substrate for the purpose of reducing the weight of the board itself and reducing the thermal expansion coefficient. ) Is solidified with an organic polymer resin for a binder, or a laminate thereof, a fiber reinforced metal, a lightweight and chemically stable metal plate, and the like have also been proposed.

特開2005−123546号公報JP 2005-123546 A 特表2008−541056号公報Special table 2008-541056 gazette 特開2001−332828号公報JP 2001-332828 A 特開2004−119691号公報Japanese Patent Application Laid-Open No. 2004-119691 特開2003−218287号公報JP 2003-218287 A

ところで、ベアチップ実装においては、シリコンチップが、多用されるプリント基板の一つであるガラスエポキシ樹脂ベースの基板上またはセラミック基板などに直接実装される場合、シリコンチップの熱膨張係数は約3.5ppm/℃であるのに対し、ガラスエポキシ樹脂ベースの基板のそれは約12〜20ppm/℃、典型的には17ppm/℃前後、セラミック基板のそれは5〜12ppm/℃となっている。   By the way, in bare chip mounting, when a silicon chip is directly mounted on a glass epoxy resin-based substrate, which is one of the frequently used printed boards, or a ceramic substrate, the thermal expansion coefficient of the silicon chip is about 3.5 ppm. Whereas glass / epoxy resin based substrates are about 12-20 ppm / ° C., typically around 17 ppm / ° C., and ceramic substrates are 5-12 ppm / ° C.

シリコンチップをガラスエポキシ樹脂基板に搭載するとき、上記のような熱膨張係数の大きな違いから、これに起因する両者間の応力歪で、疲労破壊、断線などが発生しやすく、これを防止するために、実装される基板の熱膨張係数を低減すし、シリコンのそれに近づける必要がある。   When mounting a silicon chip on a glass epoxy resin substrate, due to the large difference in coefficient of thermal expansion as described above, the stress strain between them tends to cause fatigue failure, disconnection, etc. In addition, it is necessary to reduce the thermal expansion coefficient of the substrate to be mounted and to approximate it to that of silicon.

一方シリコンチップをセラミック基板上に実装する場合、この例としてセラミックパッケージに半導体チップを搭載して、パッケージ化された半導体モジュールを形成することに相当するが、装置化実装のためにはこの半導体モジュールを、さらに装置用のマザーボードに搭載する工程が必然的に生じる。マザーボードは通常ガラスエポキシ樹脂基板よりなるプリント基板を用いるため、上記の熱膨張係数の差、つまり、セラミック基板の5〜12ppm/℃とガラスエポキシ樹脂基板の17ppm/℃前後といった熱膨張係数差が生じ、このために実装後のインターコネクションに応力が集中してしまい、断線に至るケースがある。   On the other hand, when a silicon chip is mounted on a ceramic substrate, this corresponds to forming a packaged semiconductor module by mounting a semiconductor chip on a ceramic package as an example. Is further inevitably generated on the motherboard for the device. Since the motherboard usually uses a printed circuit board made of a glass epoxy resin substrate, the difference in thermal expansion coefficient described above, that is, a thermal expansion coefficient difference of 5-12 ppm / ° C. of the ceramic substrate and about 17 ppm / ° C. of the glass epoxy resin substrate occurs. For this reason, there is a case where stress is concentrated on the interconnection after mounting, resulting in disconnection.

前述のプローブカードに関し、図9に模式的な構成を示す。図にあるように、プローブカード101は、プリント基板であるメイン基板102上に、セラミック基板であるスペーストランスフォーマ(ST)103が搭載され、このスペーストランスフォーマ(ST)103は多層配線セラミック基板とそれに取り付けられた多数のピン(プローブ針)104からなっている。この構成においても、やはりメイン基板102であるプリント基板上へのスペーストランスフォーマ(ST)103であるセラミック基板の搭載によって生じる熱膨張係数の差による接合境界面の応力集中が大きな問題となる。   A schematic configuration of the probe card is shown in FIG. As shown in the figure, a probe card 101 has a space transformer (ST) 103, which is a ceramic substrate, mounted on a main substrate 102, which is a printed circuit board. The space transformer (ST) 103 is attached to a multilayer wiring ceramic substrate. It consists of a large number of pins (probe needles) 104 formed. Even in this configuration, the stress concentration at the joint interface due to the difference in thermal expansion coefficient caused by mounting the ceramic substrate, which is the space transformer (ST) 103, on the printed circuit board, which is the main substrate 102, becomes a big problem.

この接合に、例えば樹脂を用いて接着する方法がある。しかし加熱処理を伴い、張り合わせ後に、熱膨張係数の差でメイン基板に反りが発生する。また例えば、セラミック基板をプリント基板にBGA(Ball Grid Allay;ボールグリッドアレイ)実装する方法がある。しかしこの場合も熱膨張係数の差から、はんだボール接続部に応力が集中し断線につながる。   For this bonding, for example, there is a method of bonding using a resin. However, with the heat treatment, after bonding, the main substrate is warped due to the difference in thermal expansion coefficient. For example, there is a method of mounting a ceramic substrate on a printed circuit board by BGA (Ball Grid Array). However, in this case as well, due to the difference in thermal expansion coefficient, stress concentrates on the solder ball connection portion, leading to disconnection.

こういった背景から、両基板のインターコネクションをポゴピンなどを用いて行うことが考えられ、これならば接点境界での応力集中は避けられる。しかし、これは点ないし面接触による電気的接合であり不安定であるという問題を有する。確実な金属同士の結合を伴う接続方法が基本的に望ましく、多くはこの境界面をはんだ接合などによる結合方法が実施されている。こういった、はんだ接合などの接続方式での信頼性向上が必要不可欠となっている。   From such a background, it is conceivable to perform interconnection between both substrates using pogo pins or the like, and in this case, stress concentration at the contact boundary can be avoided. However, this is an electrical connection by point or surface contact and has the problem of being unstable. Basically, a connection method involving reliable metal-to-metal bonding is desirable, and in many cases, a bonding method using solder bonding or the like is performed on this boundary surface. It is essential to improve the reliability of such connection methods such as soldering.

そこで、本発明の課題は、熱膨張係数の異なる基板などの電子部材間に介在し、実質的にその熱膨張係数の差を埋めるように働いて、両部材と基板との接続個所においても応力発生が抑制されるような接続が実現できるインターポーザを提供することにある。   Therefore, an object of the present invention is to intervene between electronic members such as substrates having different thermal expansion coefficients and work to substantially fill the difference in the thermal expansion coefficients, so that stress is also applied at the connection point between both members and the substrate. An object of the present invention is to provide an interposer that can realize a connection in which generation is suppressed.

本発明のインターポーザは、
互いに異なる熱膨張率を有する二つの部材間に介在して接続するインターポーザであって、前記インターポーザは、
導電性基材と、
前記導電性基材上の第1面側絶縁層及び第2面側絶縁層と、
前記両絶縁層上に形成された第1面側導体層及び第2面側導体層と、
前記両絶縁層を含んで前記導電性基材を貫通する複数の貫通孔と、
前記貫通孔中を、前記導電性基材に絶縁して、前記第1面側導体層と前記第2面側導体層とを電気的に接続する導電ビアとを有し、
第1面側開口径は第2面側開口径より小さく、
前記第1面側導体層に接続する前記部材の熱膨張係数は、前記第2面側導体層に接続する前記部材の熱膨張係数より小さく、かつ前記導電性基材の熱膨張係数よりも大きいことを特徴とするインターポーザ
ことを特徴とする。
The interposer of the present invention
A interposer for connecting interposed between the two parts materials having different thermal expansion coefficients from one another, the interposer,
A conductive substrate;
A first surface side insulating layer and a second surface side insulating layer on the conductive substrate;
A first surface side conductor layer and a second surface side conductor layer formed on the both insulating layers;
A plurality of through holes including both the insulating layers and penetrating through the conductive substrate;
Insulating the inside of the through hole with the conductive base material, and having a conductive via that electrically connects the first surface side conductor layer and the second surface side conductor layer,
The first surface side opening diameter is smaller than the second surface side opening diameter,
The thermal expansion coefficient of the member connected to the first surface side conductor layer is smaller than the thermal expansion coefficient of the member connected to the second surface side conductor layer and larger than the thermal expansion coefficient of the conductive base material. Interposer characterized by that .
It is characterized by that.

本発明のインターポーザは、第1面と第2面側の開口径を適宜変えることで、各面側での実効的な熱膨張係数を各面に接続する材料の熱膨張係数に適合するように設計可能でもあり、比較的簡単な方法で作製可能といった特徴を持つ。 The interposer of the present invention, by changing the opening diameter of the first surface side and the second surface side as appropriate, adapted to the thermal expansion coefficient of the effective to connect the thermal expansion coefficient of each surface wood charge on each surface side It can be designed as such, and can be manufactured by a relatively simple method.

図1は本発明のインターポーザの開口径と熱膨張係数の関係を示す図FIG. 1 is a diagram showing the relationship between the opening diameter of the interposer of the present invention and the thermal expansion coefficient. 図2は本発明のインターポーザの基本構成を説明する図FIG. 2 is a diagram for explaining the basic configuration of the interposer of the present invention. 図3は本発明のインターポーザの実施例の作製工程を説明する図(その1))FIG. 3 is a diagram for explaining a production process of an embodiment of the interposer of the present invention (part 1)) 図4は本発明のインターポーザの実施例の作製工程を説明する図(その2))FIG. 4 is a diagram for explaining a manufacturing process of an embodiment of the interposer of the present invention (part 2)) 図5は本発明のインターポーザの実施例の作製工程を説明する図(その3))FIG. 5 is a diagram for explaining a manufacturing process of an embodiment of the interposer of the present invention (part 3)) 図6は本発明のインターポーザの実施例の作製工程を説明する図(その4))FIG. 6 is a diagram for explaining a manufacturing process of an embodiment of the interposer according to the present invention (part 4). 図7は本発明のインターポーザの使用構成例を説明する図(その1)FIG. 7 is a diagram for explaining a configuration example of use of the interposer according to the present invention (part 1). 図8は本発明のインターポーザの使用構成例を説明する図(その2)FIG. 8 is a diagram for explaining a configuration example of use of the interposer according to the present invention (part 2). 図9は従来のプローブカード構成を説明する図FIG. 9 is a diagram for explaining a conventional probe card configuration.

以下に、本発明の実施の形態を、添付図を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

(本発明のインターポーザの基本的な構成)
先ず、本発明のインターポーザの基本的な構成について説明する。
(Basic configuration of the interposer of the present invention)
First, the basic configuration of the interposer of the present invention will be described.

前述のように、特に、互いに大きく熱膨張係数の異なる、電子部材同士、例えば、半導体チップやセラミック基板とプリント基板とを直接接合することや、はんだ(ボール)などを介して金属接合すると大きな応力がその接合界面に発生し、断線などの大きな障害が発生することを述べた。   As described above, particularly when electronic members having large thermal expansion coefficients differ from each other, for example, directly joining a semiconductor chip or a ceramic substrate and a printed board, or metal joining via solder (ball) or the like, a large stress is caused. He said that it occurs at the joint interface and causes a major failure such as disconnection.

その応力の発生を抑制する理想的な解決策の一つとして、例えば、熱膨張係数が異なるA、B二つの電子部材の間に、両電子部材が接する中間的な緩衝基材を設け、この緩衝基材における一方の面(例えば、表面)側の熱膨張係数を電子部材Aの熱膨張係数と同等とし、同じ緩衝基材における他方の面(例えば、裏面)側の熱膨張係数を電子部材Bの熱膨張係数と同等とし、電子部材Aをこの緩衝基材の表面側に、電子部材Bをこの緩衝基材の裏面側に機械的に接着させる方法が考えられる。こうすることで、A、B二つの電子部材はその緩衝基材との接合面で応力の発生は抑制できる。   As one of the ideal solutions to suppress the generation of the stress, for example, an intermediate buffer base material in which both electronic members are in contact is provided between two electronic members A and B having different thermal expansion coefficients. The thermal expansion coefficient on one side (for example, the front surface) side of the buffer base material is made equal to the thermal expansion coefficient of the electronic member A, and the thermal expansion coefficient on the other side (for example, the back surface) side of the same buffer base material is set to the electronic member. A method is conceivable in which the electronic member A is mechanically bonded to the front surface side of the buffer base material and the electronic member B is mechanically bonded to the back surface side of the buffer base material with the same thermal expansion coefficient as B. By carrying out like this, generation | occurrence | production of stress can be suppressed by the joint surface with the buffer base material of the two electronic members of A and B.

このような特徴を有する中間的な緩衝基材、すなわちインターポーザとして、例えば熱膨張係数の異なる材料を大きいものから小さいものへと順に多層に積層し、インターポーザ内部で、実効的に徐々に、一方の電子部材の熱膨張係数に同等のものから他方のそれになるようにする方法が想定される。しかし、実際には、各段階で要求される熱膨張係数に適した積層材料を準備し、それらを順に積み上げるということは、自ずから限界があって、技術的に非常に困難である。   As an intermediate buffer base material having such characteristics, that is, an interposer, for example, materials having different thermal expansion coefficients are laminated in multiple layers in order from large to small, and one of the layers is effectively gradually and gradually inside the interposer. A method is envisaged in which the thermal expansion coefficient of the electronic member is equal to that of the other one. However, in practice, it is technically very difficult to prepare laminated materials suitable for the thermal expansion coefficient required in each stage and to stack them in order because of their limitations.

われわれは、種々検討の結果、こういった特性を実効的に実現する、以下のような本発明に係るインターポーザを考え出すに至った。   As a result of various studies, we have come up with the following interposer according to the present invention that effectively realizes these characteristics.

例えば、小さな熱膨張係数を有する平板状基材に、適切なピッチで適切な開口径を持つ開口部を複数形成し、さらに、それと異なる開口径を有する開口平板状基材を複数作成し、それぞれの実効的な熱膨張係数を測定すると、大きい開口径を有する平板状基材ほど熱膨張係数が大きくなる。   For example, a plurality of openings having an appropriate opening diameter at an appropriate pitch are formed on a flat substrate having a small thermal expansion coefficient, and a plurality of opening flat substrates having an opening diameter different from that are formed. When the effective thermal expansion coefficient is measured, the thermal expansion coefficient of the flat substrate having a larger opening diameter increases.

以下にその実験結果を示す。先ず、平板状基材として用いたのは、非常に軽量かつ低熱膨張係数を有した、通常、ビルドアップ型の多層配線基板の導電性コア基材として用いられる、カーボンファイバ織布とエポキシ樹脂からなる材料を用いた基材である。   The experimental results are shown below. First, the flat base material used was a carbon fiber woven fabric and an epoxy resin, which are very lightweight and have a low thermal expansion coefficient, and are usually used as a conductive core base material for build-up type multilayer wiring boards. It is the base material using the material which becomes.

その基材は、その先ず、0.2mm厚の、カーボンファイバ織布シートとエポキシ系樹脂組成物とを複合化して作製したプリプレグを5枚と、0.1mm厚のガラス/エポキシプリプレグをその外側に1枚づつ積層し、さらに圧着して厚さ約1.2mmの平板状基材とした。カーボンファイバ織布シートを包容するエポキシ系樹脂組成物には、組成物全体の10wt%のシリカフィラーを混合した。このような材料により構成された基材は、温度範囲25〜200℃において、面方向の平均熱膨張係数が、2ppm/℃であった。   The base material is composed of five prepregs prepared by combining a carbon fiber woven sheet and an epoxy resin composition having a thickness of 0.2 mm, and a glass / epoxy prepreg having a thickness of 0.1 mm on the outside. One by one was laminated and further pressed to form a flat substrate having a thickness of about 1.2 mm. The epoxy resin composition enclosing the carbon fiber woven fabric sheet was mixed with 10 wt% silica filler of the entire composition. The base material made of such a material had an average coefficient of thermal expansion in the plane direction of 2 ppm / ° C. in the temperature range of 25 to 200 ° C.

この平板基材を用い、1.0mmピッチ、開口径0.2、0.4、0.6、0.8mmで複数開口された基材をそれぞれ作製し、各々の実効的な熱膨張係数(CTE;Coefficient of Thermal Expansion)を測定した結果を、図1に示す。ここで横軸は測定基板の開口径(Hole Diameter)(mm)、縦軸はCTE(ppm/K)である。いずれも各開口のピッチは1.0mmである。この結果から解るように、0.2mm開口径では、熱膨張係数は、約2ppm/Kで、この値は開口部が形成されて無い平板基材の熱膨張係数とほぼ同じである。他方開口径が大きくなると、この場合、ほぼ直線的に熱膨張係数が増加し、0.4mm開口径で熱膨張係数は約4ppm/K、0.8mm開口径で熱膨張係数は約16ppm/Kとなった。   Using this flat plate base material, each base material having a plurality of openings with a pitch of 1.0 mm, an opening diameter of 0.2, 0.4, 0.6, and 0.8 mm was prepared, and each effective thermal expansion coefficient ( The result of measuring CTE (Coefficient of Thermal Expansion) is shown in FIG. Here, the horizontal axis represents the opening diameter (Hole Diameter) (mm) of the measurement substrate, and the vertical axis represents CTE (ppm / K). In any case, the pitch of each opening is 1.0 mm. As can be seen from this result, when the opening diameter is 0.2 mm, the thermal expansion coefficient is about 2 ppm / K, which is almost the same as the thermal expansion coefficient of the flat plate base material having no opening. On the other hand, as the opening diameter increases, the thermal expansion coefficient increases almost linearly in this case, with a 0.4 mm opening diameter, the thermal expansion coefficient is about 4 ppm / K, and with a 0.8 mm opening diameter, the thermal expansion coefficient is about 16 ppm / K. It became.

この結果から、図2に示すような、断面形状を有するインターポーザを用いることで、表裏各面側の熱膨張係数がそれぞれ異なる、あるいは図1で示されるよう熱膨張係数の変化の範囲で、表裏各面側の熱膨張係数を設計可能とするインターポーザを作製できると想定される。   From this result, by using an interposer having a cross-sectional shape as shown in FIG. 2, the thermal expansion coefficient on each side of the front and back surfaces is different, or within the range of change in the thermal expansion coefficient as shown in FIG. It is assumed that an interposer capable of designing the thermal expansion coefficient on each side can be produced.

図2は、本発明のインターポーザの例の断面模式図を示す。ここにおいて、それぞれ、(1)テーパー形状の開口部断面をもつ基材(テーパー形状開口部基材)を用いた例と、(2)階段状の開口部断面をもつ基材(階段形状開口部基材)を用いた例を示し、いずれも、インターポーザ1は、基材2の表面側(図中の上側)、裏面側(同下側)に、絶縁層3が形成されている。この絶縁層3を含む基材2を表裏貫通する開口部4が、同一ピッチで形成されている。また両者とも、表面側(上側)の開口径が裏面側(下側)の開口径よりも小さい径としている。図示されている様に、(1)テーパー形状開口部基材では、開口部4の断面において、開口径変化がテーパー状に下に向かって大に変わる台形(立体形状では下に大の円錐柱)ある。他方(2)階段形状開口部基材では、開口部4の断面において、開口径変化が下に大の階段状(立体形状では下に大の階段状円柱)となっている。そしていずれも、開口部4の中を基材2に接触しないでビア5が上下に絶縁層3上の電極6に接続形成され、開口部4中のクリアランス部分は、絶縁樹脂7が充填される。   FIG. 2 shows a schematic cross-sectional view of an example of the interposer of the present invention. Here, (1) an example using a base material having a taper-shaped opening section (taper-shaped opening base material), and (2) a base material having a step-shaped opening section (stair-shaped opening section), respectively. In each case, the interposer 1 has an insulating layer 3 formed on the front surface side (upper side in the drawing) and the rear surface side (lower side) of the base material 2. Openings 4 penetrating the base material 2 including the insulating layer 3 are formed at the same pitch. In both cases, the opening diameter on the front surface side (upper side) is smaller than the opening diameter on the back surface side (lower side). As shown in the figure, (1) in the tapered opening base material, in the cross section of the opening 4, the trapezoidal shape in which the change in the opening diameter greatly changes downward in a tapered shape (in the three-dimensional shape, a large conical column on the bottom) )is there. On the other hand, in the (2) staircase-shaped opening base material, in the cross section of the opening 4, the change in the opening diameter is a large staircase downward (in the three-dimensional shape, a large staircase-shaped cylinder is downward). In either case, the via 5 is connected to the electrode 6 on the insulating layer 3 vertically without contacting the substrate 2 in the opening 4, and the clearance portion in the opening 4 is filled with the insulating resin 7. .

このようなインターポーザの構成により、図1の結果から、表面側(上側)における実効的な熱膨張係数は、基材2の熱膨張係数と同じないしはそれ以上の値を持ち、裏面側(下側)における実効的な熱膨張係数は、より開口径が大きいことから、表面側の熱膨張係数より大きい値の熱膨張係数を有するインターポーザを形成することが可能となる。   With the configuration of such an interposer, the effective thermal expansion coefficient on the front surface side (upper side) has the same or higher value as the thermal expansion coefficient of the base material 2 from the result of FIG. Since the effective thermal expansion coefficient in (2) has a larger opening diameter, it is possible to form an interposer having a thermal expansion coefficient larger than the thermal expansion coefficient on the surface side.

(実施例の形成工程)
本発明のインターポーザの作製工程を図3〜5の断面模式図によって説明する。
(Formation process of Example)
The manufacturing process of the interposer of this invention is demonstrated with the cross-sectional schematic diagram of FIGS.

図3(1)に示す様に、0.2mm厚のカーボンファイバ織布シートとエポキシ系樹脂組成物とを複合化した(CFRP;Carbon Fiber Reinforced Plastics、炭素繊維強化プラスティック)ものである、導電性を有するカーボン/エポキシプリプレグ8を5枚と、その外側に絶縁性である、0.1mm厚のガラス/エポキシプリプレグ9を1枚ずつ、計2枚をレイアップする。カーボンファイバ織布シートを包含するエポキシ系樹脂組成物には、組成物全体の10wt%のシリカフェラーを混合した。   As shown in FIG. 3 (1), a 0.2 mm thick carbon fiber woven fabric sheet and an epoxy resin composition are combined (CFRP; Carbon Fiber Reinforced Plastics, carbon fiber reinforced plastic). A total of two carbon / epoxy prepregs 8 each having a thickness of 1 and a glass / epoxy prepreg 9 having a thickness of 0.1 mm, which is insulative, are laid up. The epoxy resin composition including the carbon fiber woven fabric sheet was mixed with 10 wt% silica feller of the entire composition.

図3(2)に示す様に、レイアップしたプリプレグを真空プレス装置を用いて圧着し、厚さ約1.2mmの、外側が絶縁性、内部が導電性を有する平板状の基材10を形成する。作製した基材10は、温度範囲25〜200℃の範囲で、面方向の平均熱膨張係数が、2ppm/℃であった。なお、さきに図1で示した結果を得るのに用いた基材も、これと同様に作製された基材である。   As shown in FIG. 3 (2), the laid-up prepreg is pressure-bonded by using a vacuum press apparatus, and a flat substrate 10 having a thickness of about 1.2 mm and having an outer insulating property and an inner conductive property is obtained. Form. The produced base material 10 had a temperature range of 25 to 200 ° C. and an average coefficient of thermal expansion in the plane direction of 2 ppm / ° C. The base material used to obtain the result shown in FIG. 1 is also a base material manufactured in the same manner.

次に、図3(3)に示す様に、基材10の表面側(図の上側)より、それぞれ、1.00mmピッチの位置に0.4mm径のドリルを用いて貫通孔加工を行い、細径貫通孔11を形成する。   Next, as shown in FIG. 3 (3), from the surface side of the base material 10 (upper side in the drawing), through holes are drilled at a position of 1.00 mm pitch using a 0.4 mm diameter drill, A small-diameter through hole 11 is formed.

そして、図3(4)に示す様に、再度、表面側より、基材10面上に同じピッチ位置に0.6mm径のドリルを用いて、表面より0.8mmの深さまで加工し、中間径加工孔12を形成する。   Then, as shown in FIG. 3 (4), from the surface side again, using a 0.6 mm diameter drill at the same pitch position on the surface of the base material 10, it is processed to a depth of 0.8 mm from the surface. A diameter machining hole 12 is formed.

そして、図3(5)に示す様に、更に、表面側より、基材10面上に同じピッチ位置に0.8mm径のドリルを用いて、表面より、0.4mmの深さまで加工し、大径加工孔13を形成する。こうして、表面側から裏面側に向かって、ステップ状に開口径が小さくなっている、三段階開口部14を形成する。   Then, as shown in FIG. 3 (5), from the surface side, using a 0.8mm diameter drill at the same pitch position on the surface of the base material 10, it is processed to a depth of 0.4mm from the surface, A large-diameter hole 13 is formed. In this way, the three-stage opening 14 having an opening diameter that decreases in a stepped manner from the front surface side to the back surface side is formed.

次に、図4(6)に示す様に、それぞれの三段階開口部14内に絶縁樹脂15を充填する。絶縁樹脂はエポキシ樹脂を用い、これにシリカフィラーを40wt%添加した。これを真空印刷機によってスクリーン印刷をして三段階開口部14内に充填し、高温槽内180℃で硬化させる。その後、開口部から基材10の上下に突出している絶縁樹脂部分をバフ研磨機によって研磨し、樹脂充填面を表面および裏面とフラットになるようにする。   Next, as shown in FIG. 4 (6), the insulating resin 15 is filled in each of the three-stage openings 14. As the insulating resin, an epoxy resin was used, and 40 wt% of silica filler was added thereto. This is screen-printed by a vacuum printer, filled into the three-stage opening 14 and cured at 180 ° C. in a high-temperature tank. Thereafter, the insulating resin portions projecting up and down of the base material 10 from the opening are polished by a buffing machine so that the resin-filled surface becomes flat with the front surface and the back surface.

そして、図4(7)に示すように、絶縁樹脂15が充填された三段階開口部14の中心位置にスルーホール16を形成する。このスルーホール加工は、0.2mm径のドリルを用いて貫通孔を開口をした。   Then, as shown in FIG. 4 (7), a through hole 16 is formed at the center position of the three-stage opening 14 filled with the insulating resin 15. In this through hole processing, a through hole was opened using a drill having a diameter of 0.2 mm.

次いで、図4(8)に示す様に、基材10の表面・裏面及びスルーホール16内に、0.5μm厚の無電界銅めっき膜17を形成し、これをシード層として、図4(9)に示す様に、スルーホール16内で20μm厚になるように、電解銅めっき膜18を成膜する。こうして、三段階開口部14内において、導電性の基材10を貫通し、かつ、絶縁樹脂15によるクレアランスを有して基材10と絶縁されている円筒状の導電性のビア19が形成される。この場合、ビア19内に電解銅めっき膜18で満たされないビア空洞部20が残っていることになる。   Next, as shown in FIG. 4 (8), an electroless copper plating film 17 having a thickness of 0.5 μm is formed in the front and back surfaces of the substrate 10 and in the through holes 16, and this is used as a seed layer. As shown in 9), an electrolytic copper plating film 18 is formed so as to have a thickness of 20 μm in the through hole 16. Thus, a cylindrical conductive via 19 is formed in the three-stage opening 14 that penetrates the conductive base material 10 and has a clearance by the insulating resin 15 and is insulated from the base material 10. Is done. In this case, the via cavity 20 that is not filled with the electrolytic copper plating film 18 remains in the via 19.

そのために、先に三段階開口部14中に絶縁樹脂15を充填した工程と同様に、同じ樹脂と形成法を用いて、図5(10)に示す様にビア空洞部20中に、スクリーン印刷で絶縁樹脂21を充填し、そして加熱して硬化し、図5(11)に示す様に、研磨によって突出樹脂分を除去することで、ビア空洞部20中の絶縁樹脂21が表裏面とフラットになるように充填される。   Therefore, in the same manner as in the process of filling the insulating resin 15 in the three-stage opening 14, the screen printing is performed in the via cavity 20 as shown in FIG. The insulating resin 21 is filled with, and heated and cured, and as shown in FIG. 5 (11), the protruding resin is removed by polishing so that the insulating resin 21 in the via cavity 20 is flat with the front and back surfaces. It is filled to become.

以降、基材の表面側および裏面側に露出する各ビア19に電極パッドを形成する工程を実施する。図5(12)に示す様に、基材10の表・裏面に0.5μm厚の無電界銅めっき膜22を成膜後、図5(13)に示す様に、基材10の表・裏面に20μm厚の電界銅めっき膜23を成膜する。   Thereafter, a process of forming an electrode pad in each via 19 exposed on the front surface side and the back surface side of the base material is performed. As shown in FIG. 5 (12), after forming an electroless copper plating film 22 having a thickness of 0.5 μm on the front and back surfaces of the base material 10, as shown in FIG. An electrolytic copper plating film 23 having a thickness of 20 μm is formed on the back surface.

図6(14)に示す様に、表面・裏面にドライフィルムレジスト(DFR)24をラミネートし、次いで図6(15)に示す様に、露光・現像とフォトリソグラフィプロセスによって、DFRをパターニングして、ビアの上下面をカバーする所定の形状のレジストパターン25を得る。   As shown in FIG. 6 (14), a dry film resist (DFR) 24 is laminated on the front and back surfaces, and then the DFR is patterned by exposure / development and photolithography processes as shown in FIG. 6 (15). Then, a resist pattern 25 having a predetermined shape covering the upper and lower surfaces of the via is obtained.

そして図6(16)に示す様に、レジストパターン25をマスクとして、サブトラクティブ法により、塩化銅系エッチング液を用いて、マスクされない銅エッチング部26をエッチングする。そして図6(17)に示す様に、剥離液によってレジストパターン25を除去することにより、ビア19に接続した電極パッド27(配線パターンのランド)が形成される。こうして、表裏面の各電極パッド27に、それぞれ熱膨張係数が異なる電子部材の電極を接続するなどして、両電子部材間に介在し安定的な接続を実現する、本発明のインターポーザが完成する。   Then, as shown in FIG. 6 (16), the copper etching portion 26 that is not masked is etched by a subtractive method using the resist pattern 25 as a mask, using a copper chloride etching solution. Then, as shown in FIG. 6 (17), by removing the resist pattern 25 with a stripping solution, an electrode pad 27 (land of a wiring pattern) connected to the via 19 is formed. In this way, the interposer of the present invention is realized, which intervenes between both electronic members and realizes stable connection by connecting electrodes of electronic members having different thermal expansion coefficients to the respective electrode pads 27 on the front and back surfaces. .

本実施例のインターポーザは、上記のように表面側の開口径を0.8mm、裏面側の開口径を0.4mmで形成した。このとき、表面側の熱膨張係数は、16ppm/℃、裏面側のそれは、5ppm/℃であった。これは、図1に示した、開口径と熱膨張係数の結果にほとんど相当している。   The interposer of this example was formed with the opening diameter on the front surface side being 0.8 mm and the opening diameter on the back surface side being 0.4 mm as described above. At this time, the thermal expansion coefficient on the front surface side was 16 ppm / ° C., and that on the back surface side was 5 ppm / ° C. This almost corresponds to the results of the opening diameter and the coefficient of thermal expansion shown in FIG.

このインターポーザの表面側に、熱膨張係数17ppm/℃のガラスエポキシ樹脂のプリント基板を、裏面側に熱膨張係数5.5ppm/℃のガラスセラミック基板をはんだ接合により張り合わせた。この結果、反り量が、ガラスセラミック基板側の直径100mm範囲で0.05mm、またこのガラスセラミック基板上にチップを搭載したときのチップサイズ領域相当である20×20mm範囲野場合は0.01mmと非常に小さな反りが実現できた。   A glass epoxy resin printed board having a thermal expansion coefficient of 17 ppm / ° C. was bonded to the front side of the interposer, and a glass ceramic board having a thermal expansion coefficient of 5.5 ppm / ° C. was bonded to the back side by solder bonding. As a result, the warp amount is 0.05 mm in the range of 100 mm in diameter on the glass ceramic substrate side, and 0.01 mm in the case of a 20 × 20 mm range corresponding to the chip size region when the chip is mounted on this glass ceramic substrate A very small warp could be realized.

比較のために、インターポーザとして、従来と同様に、接合する両基板の中間程度の熱膨張係数(11〜12ppm/℃)をもつ基板(例えば、ビルアップ基板など)を用いて同様な接合を行ったとき、反り量が、ガラスセラミック基板側の直径100mm範囲で0.2mm、またチップサイズ領域相当である20×20mm範囲の場合は0.06mmとなっており、本発明のインターポーザで得られる特性の優位性が顕著であることが解る。   For comparison, similar bonding is performed using a substrate (for example, a building-up substrate) having a thermal expansion coefficient (11 to 12 ppm / ° C.) intermediate between both substrates to be bonded as an interposer, as in the past. The warping amount is 0.2 mm in the range of 100 mm in diameter on the glass ceramic substrate side, and 0.06 mm in the case of a 20 × 20 mm range corresponding to the chip size region, and the characteristics obtained with the interposer of the present invention It can be seen that the superiority of is remarkable.

上記の実施例は本発明の一形態と、その作製工程を述べたものであって、これに限らない。実施例では、基材の表面と裏面の異なる開口径間を繋ぐ貫通孔の断面を、三段階のステップ状変化状態(立体空間的には三段の円柱状)としているが、更に多段で構わないし、ステップ状ではなく、リニア状変化状態(立体空間的には先端部が切断された円錐柱状)あるいは一次曲線状としても良い。つまり両開口間の基材内での変化は直線状、(一次)曲線状あるいは階段状でも良い。   The above embodiment describes one embodiment of the present invention and a manufacturing process thereof, but is not limited thereto. In the embodiment, the cross-section of the through hole that connects between the different opening diameters of the front surface and the back surface of the base material has a three-step step change state (three-stage cylindrical shape in three-dimensional space), but it may be further multi-stage. Or it is good also as a linear change state (conical column shape where the front-end | tip part was cut | disconnected in three-dimensional space) or a linear curve shape instead of step shape. That is, the change in the base material between the openings may be linear, (primary) curved or stepped.

使用する基材材料については、開口部のない状態のその基材の熱膨張係数が、インターポーザに接続される電子部材のうち小さいほうの電子部材の熱膨張係数と同等ないしそれ以下のものであれば良い。つまり、一方の面に開口部を設けなければ、同じ熱膨張係数の電子部材のものを接合し、他方の面に開口部を設けて熱膨張係数の大きいほうの電子部材を接続すればよい。   Regarding the base material to be used, the thermal expansion coefficient of the base material without an opening is equal to or less than the thermal expansion coefficient of the smaller electronic member among the electronic members connected to the interposer. It ’s fine. That is, if an opening is not provided on one surface, an electronic member having the same thermal expansion coefficient may be joined, and an opening having an opening on the other surface may be connected to the electronic member having the larger thermal expansion coefficient.

実施例で用いたのと同じ基材CFRP(Carbon Fiber Reinforced Plastics、炭素繊維強化プラスティック)の、プリプレグを積層した基板を基材として用いれば、少なくとも図1で示した実験結果を用いて、熱膨張係数が2〜16ppm/℃の範囲にある2つの電子部材を組み合わせて、ストレスが少ない状態でそれぞれ接続できる表裏2面での開口径を設計することが可能である。さらに適用可能な基材の材料としては、上記のような炭素繊維を含んだ他の構成の材料以外に、同様にビルドアップ基板形成に適用されるコア用の材料、例えば、インバー、コバール、42アロイ、タングステン、モリブデンなどを少なくとも一つを含む材料が適している。   If a substrate on which a prepreg of the same base material CFRP (Carbon Fiber Reinforced Plastics) used in the example is laminated is used as a base material, thermal expansion is performed using at least the experimental results shown in FIG. By combining two electronic members having a coefficient in the range of 2 to 16 ppm / ° C., it is possible to design the opening diameters on the front and back surfaces that can be connected in a state where there is little stress. Further, as applicable base material materials, in addition to the above-described materials including carbon fibers, core materials similarly applied to build-up substrate formation, for example, Invar, Kovar, 42 A material containing at least one of alloy, tungsten, molybdenum and the like is suitable.

本発明のインターポーザを用いることで、先に図9で説明したようなプローブカード101の課題を、例えば図7で示すような構成で、接合個所の応力を大きく抑制できる。即ち、図7(1)の模式的な斜視図にあるように、プローブカード101のメイン基板102とピン(プローブ針)104をもつスペーストランスフォーマ(ST)103との間に、両者の熱膨張係数に、開口径を変えることでフィットさせたインターポーザ1を挿入し、図7(2)の断面模式図に示す様に、インターポーザ1を挟んで配置し、図7(3)に示す様に、加熱して両者をはんだ接合する。熱膨張係数17ppm/℃のガラスエポキシ樹脂のプリント基板からなるメイン基板102と、熱膨張係数5.5ppm/℃のガラスセラミック基板からなるスペーストランスフォーマ(ST)103とストレス無く接合するには、例えば、実施例で述べたインターポーザ1、つまり積層CFRPプリプレグ基板を基材とし、一方の側の開口径を0.4mm、他方の側の開口径を0.8mmとして1mmピッチ開口加工して形成したインターポーザを用いればよい。   By using the interposer of the present invention, the problem of the probe card 101 as previously described with reference to FIG. 9 can be largely suppressed with the configuration as shown in FIG. 7, for example. That is, as shown in the schematic perspective view of FIG. 7 (1), between the main board 102 of the probe card 101 and the space transformer (ST) 103 having the pins (probe needles) 104, the thermal expansion coefficients of the two are both. Then, the interposer 1 fitted by changing the opening diameter is inserted, and the interposer 1 is arranged with the interposer 1 interposed therebetween as shown in the schematic cross-sectional view of FIG. 7 (2), and the heating is performed as shown in FIG. 7 (3). Then, they are soldered together. In order to join the main substrate 102 made of a glass epoxy resin printed board having a thermal expansion coefficient of 17 ppm / ° C. and the space transformer (ST) 103 made of a glass ceramic substrate having a thermal expansion coefficient of 5.5 ppm / ° C. without stress, for example, The interposer 1 described in the embodiment, that is, an interposer formed by processing a 1 mm pitch opening with a laminated CFRP prepreg substrate as a base and an opening diameter on one side of 0.4 mm and an opening diameter on the other side of 0.8 mm. Use it.

また、例えばプリント基板からなるマザーボード上に、半導体チップがパッケージされたセラミックパッケージをBGA実装したときの接合個所での大きなストレスを解消するためには、同様に本発明のインターポーザを両者の間に挿入すればよい。   For example, in order to relieve a large stress at a joint portion when a ceramic package in which a semiconductor chip is packaged is mounted on a motherboard made of a printed circuit board by BGA, the interposer of the present invention is similarly inserted between the two. do it.

図8はその様子を示す模式的な断面図である。図8(1)において、メイン基板102に、この場合は下部電極にはんだボール28が搭載された本発明のインターポーザ1を用意し、その上に搭載するセラミックパッケージ29も下部電極にはんだボール28が搭載されていて、BGA実装可能とする。この場合、2回のリフロー工程を行うことから、前者はんだボールの融点は後者のはんだボールのそれより高いものとする。図8(2)に示す様に、リフロー工程により、メイン基板102上にインターポーザ1をBGA実装法で搭載し、次いで同様にインターポーザ1上にセラミックパッケージ28をBGA実装法で搭載する。このような構成によって、インターポーザ1の上側・下側の各熱膨張係数の値をセラミック基板およびプリント基板の各熱膨張係数の値に合わせてように開口径などを調整し、各BGA実装接合点での応力を緩和することができる。   FIG. 8 is a schematic sectional view showing the state. In FIG. 8 (1), the interposer 1 of the present invention in which the solder ball 28 is mounted on the lower electrode in this case is prepared on the main substrate 102, and the ceramic package 29 mounted thereon also has the solder ball 28 mounted on the lower electrode. It is installed and BGA mounting is possible. In this case, since the reflow process is performed twice, the melting point of the former solder ball is higher than that of the latter solder ball. As shown in FIG. 8B, by the reflow process, the interposer 1 is mounted on the main substrate 102 by the BGA mounting method, and then the ceramic package 28 is similarly mounted on the interposer 1 by the BGA mounting method. With such a configuration, the aperture diameter and the like are adjusted so that the thermal expansion coefficient values of the upper and lower sides of the interposer 1 match the thermal expansion coefficient values of the ceramic substrate and the printed circuit board. The stress at can be relaxed.

1 インターポーザ
2、10 基材
3 絶縁層
4 開口部
5、19 ビア
6 電極
7、15、21 絶縁樹脂
8 カーボン/エポキシプリプレグ
9 ガラス/エポキシプリプレグ
11 細径貫通孔
12 中間径加工孔
13 大径加工孔
14 三段階開口径
16 スルーホール
17、22 無電解めっき膜
18、23 電解めっき膜
20 ビア空洞部
24 ドライフィルムレジスト
25 レジストパターン
26 銅エッチング部
27 電極パッド
28 はんだボール
29 セラミックパッケージ
DESCRIPTION OF SYMBOLS 1 Interposer 2, 10 Base material 3 Insulating layer 4 Opening part 5, 19 Via 6 Electrode 7, 15, 21 Insulating resin 8 Carbon / epoxy prepreg 9 Glass / epoxy prepreg 11 Small diameter through-hole 12 Medium diameter processing hole 13 Large diameter processing Hole 14 Three-stage opening diameter 16 Through hole 17, 22 Electroless plating film 18, 23 Electrolytic plating film 20 Via cavity 24 Dry film resist 25 Resist pattern 26 Copper etching part 27 Electrode pad 28 Solder ball 29 Ceramic package

Claims (5)

互いに異なる熱膨張率を有する二つの電子部材間に介在して夫々の前記電子部材を接続するインターポーザであって、前記インターポーザは、
導電性基材と、
前記導電性基材上の第1面側絶縁層及び第2面側絶縁層と、
前記第1面側絶縁層及び前記第2面側絶縁層上に形成された、第1面側導体層及び第2面側導体層と、
前記第1面側絶縁層、前記第2面側絶縁層及び前記導電性基材を貫通する複数の貫通孔と、
前記貫通孔中に形成された絶縁層と、
前記貫通孔中の前記絶縁層上に形成され、前記第1面側導体層と前記第2面側導体層とを電気的に接続する導電ビアとを有し、
前記貫通孔の前記導電性基材における第1面側開口径は第2面側開口径より小さく、
前記第1面側導体層に接続する前記電子部材の熱膨張係数は、前記第2面側導体層に接続する前記電子部材の熱膨張係数より小さく、かつ前記導電性基材の熱膨張係数よりも大きいことを特徴とするインターポーザ。
An interposer that connects each electronic member interposed between two electronic members having different thermal expansion coefficients, the interposer,
A conductive substrate;
A first surface side insulating layer and a second surface side insulating layer on the conductive substrate;
A first surface side conductor layer and a second surface side conductor layer formed on the first surface side insulating layer and the second surface side insulating layer;
A plurality of through holes penetrating the first surface side insulating layer, the second surface side insulating layer, and the conductive substrate;
An insulating layer formed in the through hole;
A conductive via formed on the insulating layer in the through hole and electrically connecting the first surface side conductor layer and the second surface side conductor layer;
The first surface side opening diameter of the through hole in the conductive substrate is smaller than the second surface side opening diameter,
The thermal expansion coefficient of the electronic member connected to the first surface side conductor layer is smaller than the thermal expansion coefficient of the electronic member connected to the second surface side conductor layer, and more than the thermal expansion coefficient of the conductive base material. An interposer characterized by its large size.
前記貫通孔の、前記第1面側開口径と前記第2面側開口径間での前記導電性基材中における径の変化は、直線状、曲線状または階段状であることを特徴とする請求項1に記載のインターポーザ。   A change in the diameter of the through hole in the conductive base material between the first surface side opening diameter and the second surface side opening diameter is linear, curved, or stepped. The interposer according to claim 1. 前記導電性基材の構成材料は、炭素繊維、インバー、コバール、42アロイ、タングステン、モリブデンのうちの少なくとも一つを含むことを特徴とする請求項1ないし2のいずれかに記載のインターポーザ。   The interposer according to any one of claims 1 to 2, wherein the constituent material of the conductive base material includes at least one of carbon fiber, invar, kovar, 42 alloy, tungsten, and molybdenum. 前記導電性基材は積層CFRPプリプレグ基板、前記第1面側電子部材はガラスセラミック基板、そして前記第2面側電子部材はプリント基板であることを特徴とする請求項1ないし3のいずれかに記載のインターポーザ。 The conductive substrate is a laminated CFRP prepreg substrate, the first surface-side electronic member is a glass ceramic substrate, and the second surface-side electronic member is a printed circuit board. The listed interposer. 前記第1面側絶縁層は表面側絶縁層、前記第2面側絶縁層は裏面側絶縁層、
前記第1面側開口径は表面側開口径、前記第2面側開口径は裏面側開口径であることを特徴とする請求項1に記載のインターポーザ。
The first surface side insulating layer is a front surface side insulating layer, the second surface side insulating layer is a back surface side insulating layer,
The interposer according to claim 1, wherein the first surface side opening diameter is a front surface side opening diameter, and the second surface side opening diameter is a back surface side opening diameter.
JP2009073126A 2009-03-25 2009-03-25 Interposer Expired - Fee Related JP5584986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009073126A JP5584986B2 (en) 2009-03-25 2009-03-25 Interposer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009073126A JP5584986B2 (en) 2009-03-25 2009-03-25 Interposer

Publications (2)

Publication Number Publication Date
JP2010225955A JP2010225955A (en) 2010-10-07
JP5584986B2 true JP5584986B2 (en) 2014-09-10

Family

ID=43042807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009073126A Expired - Fee Related JP5584986B2 (en) 2009-03-25 2009-03-25 Interposer

Country Status (1)

Country Link
JP (1) JP5584986B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8546951B2 (en) * 2011-06-09 2013-10-01 Optiz, Inc. 3D integration microelectronic assembly for integrated circuit devices
SE537874C2 (en) 2012-04-13 2015-11-03 Silex Microsystems Ab CTE-adapted interposer and method of manufacturing one
JP6690142B2 (en) * 2015-07-09 2020-04-28 大日本印刷株式会社 Through electrode substrate, method of manufacturing through electrode substrate, and interposer using through electrode substrate
JP7221601B2 (en) * 2018-06-11 2023-02-14 新光電気工業株式会社 Wiring board, method for manufacturing wiring board

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000068648A (en) * 1998-08-19 2000-03-03 Hitachi Aic Inc Manufacture of multi-layered printed substrate
JP4012375B2 (en) * 2001-05-31 2007-11-21 株式会社ルネサステクノロジ Wiring board and manufacturing method thereof
JP4323303B2 (en) * 2003-12-17 2009-09-02 株式会社フジクラ Substrate manufacturing method
JP2005340678A (en) * 2004-05-31 2005-12-08 Matsushita Electric Ind Co Ltd Semiconductor device
JP2009054824A (en) * 2007-08-28 2009-03-12 Panasonic Electric Works Co Ltd Method of manufacturing substrate with penetrating wiring

Also Published As

Publication number Publication date
JP2010225955A (en) 2010-10-07

Similar Documents

Publication Publication Date Title
US7038142B2 (en) Circuit board and method for fabricating the same, and electronic device
US6869665B2 (en) Wiring board with core layer containing inorganic filler
US7002080B2 (en) Multilayer wiring board
JP6539992B2 (en) Printed circuit board, semiconductor device, method of manufacturing wired circuit board, method of manufacturing semiconductor device
US8119925B2 (en) Core substrate and printed wiring board
KR100996914B1 (en) Chip embedded printed circuit board and manufacturing method thereof
WO2015151512A1 (en) Interposer, semiconductor device, interposer manufacturing method, and semiconductor device manufacturing method
US8945329B2 (en) Printed wiring board and method for manufacturing printed wiring board
US9386700B2 (en) Method of manufacturing circuit board, method of manufacturing electronic device, and electronic device
US20130048355A1 (en) Printed wiring board
JP5584986B2 (en) Interposer
JP2005150730A (en) High-wireability microvia substrate
JP2006114621A (en) Wiring plate with built-in component and manufacturing method thereof
JP2004134679A (en) Core substrate, manufacturing method thereof, and multilayer wiring board
JP2003273482A (en) Circuit board and manufacturing method thereof, and electronic equipment
JP5512558B2 (en) Manufacturing method of wiring board with built-in components
JP2015198093A (en) Interposer, semiconductor device, method of manufacturing interposer, and method of manufacturing semiconductor device
JP2009088173A (en) Wiring board
JP2007115809A (en) Wiring board
JP2009302459A (en) Wiring board, and manufacturing method thereof
JP2005039241A (en) Intermediate substrate with semiconductor element, substrate with intermediate substrate, and structure composed of semiconductor element, intermediate substrate, and substrate
JP5445007B2 (en) Circuit board and manufacturing method thereof
JP2008098202A (en) Multilayer wiring circuit board, multilayer wiring circuit board structure
JP4841234B2 (en) Manufacturing method of wiring substrate with built-in via array capacitor
JP6236841B2 (en) Multilayer wiring board and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140707

R150 Certificate of patent or registration of utility model

Ref document number: 5584986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees