JP5582468B2 - Method for hydrogenating aromatic hydrocarbons - Google Patents

Method for hydrogenating aromatic hydrocarbons Download PDF

Info

Publication number
JP5582468B2
JP5582468B2 JP2010030671A JP2010030671A JP5582468B2 JP 5582468 B2 JP5582468 B2 JP 5582468B2 JP 2010030671 A JP2010030671 A JP 2010030671A JP 2010030671 A JP2010030671 A JP 2010030671A JP 5582468 B2 JP5582468 B2 JP 5582468B2
Authority
JP
Japan
Prior art keywords
hydrogen
catalyst
hydrogenation
reaction
titania
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010030671A
Other languages
Japanese (ja)
Other versions
JP2011161426A (en
Inventor
順子 松井
弘 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Saitama University NUC
Original Assignee
JXTG Nippon Oil and Energy Corp
Saitama University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JXTG Nippon Oil and Energy Corp, Saitama University NUC filed Critical JXTG Nippon Oil and Energy Corp
Priority to JP2010030671A priority Critical patent/JP5582468B2/en
Publication of JP2011161426A publication Critical patent/JP2011161426A/en
Application granted granted Critical
Publication of JP5582468B2 publication Critical patent/JP5582468B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、芳香族炭化水素水素化方法に関し、特には、硫化水素等の被毒物質を含んだ低品位水素の利用が可能な芳香族炭化水素の水素化触媒用いた芳香族炭化水素の水素化方法に関するものである。 The present invention relates to a process for hydrogenating aromatic hydrocarbons, in particular aromatic hydrocarbons using a hydrogenation catalyst capable aromatic hydrocarbons utilizing the poisoning substance containing low-grade hydrogen such as hydrogen sulfide The present invention relates to a hydrogenation method.

近年、環境問題やエネルギー問題の観点から、新しいエネルギー源として水素が有望視されており、例えば、水素を燃料として用いる水素自動車、あるいは水素を用いる燃料電池などの開発が進められている。特に、水素を用いる燃料電池は、小型でも高い発電効率を有しており、加えて騒音や振動も発生せず、さらには廃熱を利用することができるなどの優れた利点を有している。   In recent years, hydrogen has been considered promising as a new energy source from the viewpoint of environmental problems and energy problems. For example, development of hydrogen automobiles using hydrogen as fuel or fuel cells using hydrogen has been promoted. In particular, a fuel cell using hydrogen has a high power generation efficiency even with a small size, and also has excellent advantages such as no noise and vibrations, and the ability to use waste heat. .

ここで、水素をエネルギー源として利用するためには、燃料となる水素を安全かつ安定的に供給する必要がある。そのため、水素を圧縮水素や液体水素として直接供給する方法、水素吸蔵合金やカーボンナノチューブなどの水素吸蔵材料を利用して水素を貯蔵及び供給する方法、メタノールや炭化水素を水蒸気改質して水素を供給する方法など、種々の水素供給方法が提案されている。   Here, in order to use hydrogen as an energy source, it is necessary to supply hydrogen as a fuel safely and stably. Therefore, a method of directly supplying hydrogen as compressed hydrogen or liquid hydrogen, a method of storing and supplying hydrogen using a hydrogen storage material such as a hydrogen storage alloy or carbon nanotube, and steam reforming methanol or hydrocarbons to generate hydrogen. Various hydrogen supply methods such as a supply method have been proposed.

また、近年、水素吸蔵率が高く、水素吸蔵と水素供給の繰返し(再利用)が可能な水素貯蔵媒体として有機ハイドライドが着目されており、上述した方法以外の水素供給方法として、芳香族炭化水素の水素化反応と、芳香族炭化水素の水素化物の脱水素反応とを繰り返すことにより水素を供給する、水素貯蔵・供給システムが提案されている(例えば、特許文献1参照)。この芳香族炭化水素水素化物を用いた水素供給方法では、水の電気分解装置から得られた高純度の水素ガスを用いて芳香族化合物を水素化し、脂環式化合物として水素を吸蔵した後、該脂環式化合物を脱水素反応させて水素を取り出し、燃料電池に水素を供給している。そして、この脱水素反応の際に生じた芳香族化合物に、高純度の水素ガスを用いて再び水素を添加している。しかしながら、特許文献1に記載の水素貯蔵・供給システムの水素貯蔵装置では、水素貯蔵体である芳香族化合物に水素を貯蔵するための水素化反応において高純度の水素ガスを用いる必要があり、このような高純度水素ガスは高価であるため、経済性が悪い。   In recent years, organic hydride has attracted attention as a hydrogen storage medium having a high hydrogen storage rate and capable of repeated (reuse) hydrogen storage and hydrogen supply. As a hydrogen supply method other than the method described above, aromatic hydrocarbons are used. A hydrogen storage and supply system has been proposed in which hydrogen is supplied by repeating the hydrogenation reaction of 1 and the dehydrogenation reaction of an aromatic hydrocarbon hydride (see, for example, Patent Document 1). In this hydrogen supply method using an aromatic hydrocarbon hydride, an aromatic compound is hydrogenated using high-purity hydrogen gas obtained from a water electrolyzer, and after storing the hydrogen as an alicyclic compound, The alicyclic compound is dehydrogenated to take out hydrogen, and hydrogen is supplied to the fuel cell. Then, hydrogen is added again to the aromatic compound generated during the dehydrogenation reaction using high-purity hydrogen gas. However, in the hydrogen storage device of the hydrogen storage / supply system described in Patent Document 1, it is necessary to use high-purity hydrogen gas in a hydrogenation reaction for storing hydrogen in an aromatic compound that is a hydrogen storage body. Such a high-purity hydrogen gas is expensive and thus is not economical.

一方、石油精製や石油化学プラントで燃料ガスとして用いられている低純度水素ガス、あるいは製鉄所のコークス炉ガスなど、コンビナート等で副生する安価な低品位水素ガスを芳香族炭化水素の水素化反応の原料に使用する場合には、低品位水素ガス中に含まれる硫黄分等の被毒物質により、水素化反応に使用される水素化反応触媒が比較的早期に劣化してしまうという問題があった。そして、劣化した触媒は、新しいものと交換するか、再生して使用する必要があり、頻繁な交換や再生は、経済性および装置の安定運転の観点から好ましくないため、予め低品位水素ガスから被毒物質を除去して水素化反応に用いることが提案されている。(例えば、特許文献2参照)。しかしながら、予め被毒物質を除去する場合は除去設備を設けなければならず、費用がかかってしまう。   On the other hand, low-purity hydrogen gas used as fuel gas in oil refining and petrochemical plants, or low-grade hydrogen gas produced as a by-product in industrial complexes, such as coke oven gas at steelworks, is used to hydrogenate aromatic hydrocarbon When used as a raw material for the reaction, there is a problem that the hydrogenation reaction catalyst used in the hydrogenation reaction deteriorates relatively early due to poisonous substances such as sulfur contained in the low-grade hydrogen gas. there were. The deteriorated catalyst must be replaced with a new one or regenerated and used. Frequent replacement and regeneration are not preferable from the viewpoint of economy and stable operation of the apparatus. It has been proposed to remove poisonous substances and use them in hydrogenation reactions. (For example, refer to Patent Document 2). However, when removing poisonous substances in advance, a removal facility must be provided, which is expensive.

また、別の方法として、加熱状態にある触媒の表面が芳香族化合物により湿潤と乾燥を繰り返すように液状の芳香族化合物の供給を制御して、被毒物質があっても劣化を抑えて水素化することが提案されている(特許文献3参照)。しかしながら、触媒表面上で好適に湿潤状態と乾燥状態を繰り返させるためには間欠的に芳香族化合物を供給する絶妙なタイミングを計る必要があり、実用化が難しい。このため、高純度水素による芳香族炭化水素の水素化反応において行われるように、液相あるいは気相反応で使用でき、予め被毒物質を除去せずとも水素化を行えるような耐性を持つ芳香族炭化水素の水素化触媒が求められていた。   Another method is to control the supply of the liquid aromatic compound so that the surface of the heated catalyst is repeatedly wetted and dried by the aromatic compound to suppress deterioration even if there is a poisonous substance. Has been proposed (see Patent Document 3). However, in order to suitably repeat the wet state and the dry state on the catalyst surface, it is necessary to measure an exquisite timing for intermittently supplying the aromatic compound, and it is difficult to put it to practical use. For this reason, it can be used in a liquid phase or gas phase reaction, as in a hydrogenation reaction of an aromatic hydrocarbon with high-purity hydrogen, and has a resistance that allows hydrogenation without removing poisonous substances in advance. There has been a need for hydrogenation catalysts for group hydrocarbons.

特開2001−198469号公報JP 2001-198469 A 特開昭62−215540号公報JP-A-62-215540 特開2004−067667号公報JP 2004-0667667 A

そこで、本発明の目的は、上記従来技術の問題を解決し、石油精製や石油化学プラント、あるいは、製鉄所の副生水素等の安価な低品位水素含有ガスを用いて芳香族炭化水素の水素化反応を行う際に、高転化率・高選択率が得られる耐被毒性に優れた水素化触媒用いた水素化方法を提供することにある。 Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art, and to use aromatic hydrocarbon hydrogen by using inexpensive low-grade hydrogen-containing gas such as by-product hydrogen in petroleum refining and petrochemical plants, or ironworks. reaction when performing is to provide a hydrogenation method using an excellent hydrogenation catalyst poisoning resistance to high conversion and high selectivity are obtained.

本発明者らは、上記目的を達成するために鋭意検討した結果、チタニアとアルミナの複合担体に特定の貴金属を担持した触媒が、硫化水素等の被毒物質を含んだ水素含有ガスを用いても、高い転化率及び高い選択率で芳香族炭化水素を水素化できることを見出し、本発明を完成させるに至った。   As a result of intensive studies to achieve the above object, the present inventors have found that a catalyst in which a specific noble metal is supported on a composite carrier of titania and alumina uses a hydrogen-containing gas containing a poisoning substance such as hydrogen sulfide. However, the present inventors have found that aromatic hydrocarbons can be hydrogenated with high conversion and high selectivity, and have completed the present invention.

即ち、本発明の芳香族炭化水素の水素化方法は、活性金属としてPd及びPtを含み、チタニアとアルミナの複合酸化物を担体とし、該複合酸化物中のチタニア含有率が25〜90質量%である芳香族炭化水素の水素化触媒と、0.5〜2000体積ppmの硫化水素を含む水素含有ガスとを用いることを特徴とする。 That is, in the method for hydrogenating aromatic hydrocarbons of the present invention, Pd and Pt are included as active metals, a composite oxide of titania and alumina is used as a support, and the titania content in the composite oxide is 25 to 90% by mass. An aromatic hydrocarbon hydrogenation catalyst and a hydrogen-containing gas containing 0.5 to 2000 volume ppm of hydrogen sulfide are used .

本発明の芳香族炭化水素の水素化方法に用いる水素化触媒は、比表面積が200m2/g以上、平均細孔径が40〜130Å、酸量が0.4〜0.8mmol/gの担体を用い、前記活性金属の担持量が0.001〜10質量%、PdとPtの担持比率がモル比で1/10〜10/1であることが好ましい。 The hydrogenation catalyst used in the aromatic hydrocarbon hydrogenation method of the present invention is a carrier having a specific surface area of 200 m 2 / g or more, an average pore diameter of 40 to 130 mm, and an acid amount of 0.4 to 0.8 mmol / g. It is preferable that the loading amount of the active metal is 0.001 to 10% by mass and the loading ratio of Pd and Pt is 1/10 to 10/1 in molar ratio.

本発明の水素化触媒によれば、水素源に硫化水素や一酸化炭素等の不純物を含む低品位の水素含有ガスを用いた場合でも、芳香族炭化水素の水素化反応において優れた触媒活性と選択性を安定に長時間発揮させることができる。また、本発明の水素化方法によれば、このような水素化触媒を低品位の水素含有ガスの存在下で用いても、芳香族炭化水素を優れた転化率及び選択性で水素化することができる。   According to the hydrogenation catalyst of the present invention, even when a low-grade hydrogen-containing gas containing impurities such as hydrogen sulfide and carbon monoxide is used as a hydrogen source, it has excellent catalytic activity in the hydrogenation reaction of aromatic hydrocarbons. Selectivity can be exhibited stably for a long time. Further, according to the hydrogenation method of the present invention, even when such a hydrogenation catalyst is used in the presence of a low-grade hydrogen-containing gas, aromatic hydrocarbons can be hydrogenated with excellent conversion and selectivity. Can do.

本発明において、芳香族炭化水素の水素化触媒は、活性金属としてPd及びPtが担持されている。これらの活性金属は芳香族炭化水素の水素化活性を有するが、Pdだけでは水素化活性が低く、一方、Ptだけでは硫化水素等の被毒物質に対する耐性が低い。しかしながら、PdとPtの両者が担持された本発明の水素化触媒は、PdとPtとの複合効果により、高い水素化活性と高い耐被毒性を併せ持つ。そのため、本発明の水素化触媒によれば、低品位の水素含有ガスを用いても、長期に渡って高い転化率及び高い選択率で、芳香族炭化水素をその水素化物に水素化することができる。   In the present invention, an aromatic hydrocarbon hydrogenation catalyst carries Pd and Pt as active metals. These active metals have aromatic hydrocarbon hydrogenation activity, but Pd alone has low hydrogenation activity, while Pt alone has low resistance to poisoning substances such as hydrogen sulfide. However, the hydrogenation catalyst of the present invention in which both Pd and Pt are supported has both high hydrogenation activity and high poisoning resistance due to the combined effect of Pd and Pt. Therefore, according to the hydrogenation catalyst of the present invention, even when a low-grade hydrogen-containing gas is used, an aromatic hydrocarbon can be hydrogenated to its hydride with a high conversion rate and high selectivity over a long period of time. it can.

なお、本発明の水素化触媒において、PdとPtの担持量は合計で0.001〜10質量%の範囲が好ましく、より好ましくは0.01〜5質量%である。ここで、活性金属の担持量とは、水素化触媒中の活性金属の含有率を指す。PdとPtの総担持量が0.001質量%未満では、十分な水素化活性が得られず、一方、10質量%を超えて担持しても、活性金属の増量に見合う水素化活性の向上が得られない。   In the hydrogenation catalyst of the present invention, the supported amount of Pd and Pt is preferably in the range of 0.001 to 10% by mass, more preferably 0.01 to 5% by mass. Here, the active metal loading refers to the content of the active metal in the hydrogenation catalyst. If the total supported amount of Pd and Pt is less than 0.001% by mass, sufficient hydrogenation activity cannot be obtained. On the other hand, even if it exceeds 10% by mass, the hydrogenation activity can be improved to meet the increased amount of active metal. Cannot be obtained.

また、本発明の水素化触媒において、PdとPtの担持比率はモル比で1/10〜10/1の範囲が好ましく、反応に用いる芳香族炭化水素や低品位水素の組成により適宜選択することができる。なお、水素含有ガス中の硫化水素等の被毒物質の濃度が高い場合には、Pdのモル比を高くすることが好ましい。   In the hydrogenation catalyst of the present invention, the supported ratio of Pd and Pt is preferably in the range of 1/10 to 10/1 in terms of molar ratio, and is appropriately selected depending on the composition of the aromatic hydrocarbon or low grade hydrogen used in the reaction. Can do. When the concentration of poisoning substances such as hydrogen sulfide in the hydrogen-containing gas is high, it is preferable to increase the molar ratio of Pd.

本発明の水素化触媒の担体に用いるチタニアとアルミナの複合酸化物は、複合酸化物中のチタニア含有率が25〜90質量%の範囲である。ここで、チタニアは金属と被毒物質との結合力を弱め、触媒の耐被毒性を高める作用があり、一方、アルミナは金属の分散度を高めて、水素化活性を高める作用がある。そして、チタニアとアルミナの両者を組み合わせた本発明の水素化触媒は、高い水素化活性と高い耐被毒性を併せ持つ。   In the composite oxide of titania and alumina used for the carrier of the hydrogenation catalyst of the present invention, the titania content in the composite oxide is in the range of 25 to 90% by mass. Here, titania has the effect of weakening the binding force between the metal and the poisoning substance and increasing the poisoning resistance of the catalyst, while alumina has the action of increasing the degree of metal dispersion and increasing the hydrogenation activity. And the hydrogenation catalyst of this invention combining both titania and alumina has both high hydrogenation activity and high poisoning resistance.

特に、チタニアとアルミナの複合酸化物をゾル・ゲル法により調製すると、双方の成分が良く分散したゲルを作ることができ、チタニア成分が凝集したり結晶化するのを抑えて、触媒の比表面積を高くし、高い水素化活性を発揮させることが出来て好ましい。なお、ゾル・ゲル法においては、例えば、AlアルコキシドとTiアルコキシドを含むアルコール溶液に、水を加えて加水分解し熟成の後、溶媒を除去、乾燥することで、チタニアとアルミナの複合酸化物を得ることができる。   In particular, when a composite oxide of titania and alumina is prepared by the sol-gel method, a gel in which both components are well dispersed can be made, and the specific surface area of the catalyst can be suppressed by suppressing aggregation and crystallization of the titania component. It is preferable that the hydrogenation activity can be increased and the high hydrogenation activity can be exhibited. In the sol-gel method, for example, by adding water to an alcohol solution containing Al alkoxide and Ti alkoxide, hydrolyzing and aging, removing the solvent and drying, a composite oxide of titania and alumina can be obtained. Can be obtained.

本発明の水素化触媒に用いる担体の比表面積は、200m2/g以上が好ましい。担体の比表面積が低いと、金属担持後の触媒の活性金属の表面積も低くなり、活性が大幅に低下してしまう。 The specific surface area of the support used in the hydrogenation catalyst of the present invention is preferably 200 m 2 / g or more. If the specific surface area of the support is low, the surface area of the active metal of the catalyst after the metal support is also low, and the activity is greatly reduced.

本発明の水素化触媒の担体は、チタニアとアルミナの複合酸化物であるが、アルミナにチタニアを組み合わせると、担体の酸量が増加し、反応を促進することができる。本発明の水素化触媒に用いる担体の酸量は、0.4〜0.8mmol/gの範囲が好ましい。担体の酸量が0.4mmol/gよりも少ないと、触媒の活性が低下し、一方、0.8mmol/gよりも多いと、分解反応が過剰におきて目的の水素化物の収率が低下するため好ましくない。   The carrier of the hydrogenation catalyst of the present invention is a composite oxide of titania and alumina. However, when titania is combined with alumina, the amount of acid on the carrier increases, and the reaction can be promoted. The acid amount of the carrier used for the hydrogenation catalyst of the present invention is preferably in the range of 0.4 to 0.8 mmol / g. When the amount of acid on the support is less than 0.4 mmol / g, the activity of the catalyst is reduced. On the other hand, when the amount is more than 0.8 mmol / g, the decomposition reaction is excessive and the yield of the target hydride is reduced. Therefore, it is not preferable.

調製したチタニアとアルミナの複合酸化物には、含浸法、混練法、共沈法など一般的な方法により、PdとPtを担持し、焼成、水素還元して水素化反応に用いる。ここで、水素還元の温度は、200〜550℃の範囲が好ましく、水素化反応を行う温度より高い温度で行うのが良い。   The prepared composite oxide of titania and alumina is loaded with Pd and Pt by a general method such as an impregnation method, a kneading method, or a coprecipitation method, and calcined and hydrogen-reduced for use in the hydrogenation reaction. Here, the temperature of hydrogen reduction is preferably in the range of 200 to 550 ° C., and is preferably performed at a temperature higher than the temperature at which the hydrogenation reaction is performed.

水素化に用いる芳香族炭化水素は、具体的には、トルエン等のベンゼン類、ナフタレン類が挙げられる。水素化に用いる芳香族炭化水素の種類により、水素化触媒の平均細孔径を適宜選択することがさらに好ましい。すなわち、1環のベンゼン類を用いる場合には、特に40〜80Åの平均細孔径を持つ触媒が好ましく、2環のナフタレン類を用いる場合には、特に65〜130Åの平均細孔径を持つ触媒を選択することが好ましい。平均細孔径が低すぎる触媒では、反応対象分子の拡散が困難になって、反応性が低下し、一方、平均細孔径が大きすぎる触媒では、触媒の嵩密度が低下して、触媒容量あたりの性能が低下するので好ましくない。なお、これら芳香族炭化水素の両方に適用する観点から、本発明の水素化触媒は、平均細孔径が40〜130Åであることが好ましく、触媒の担体の平均細孔径も40〜130Åであることが好ましい。また、好ましい細孔径をもつ細孔の容量は0.1cm3/g以上が好ましく、より好ましくは0.2cm3/g以上であり、全細孔容量の20%以上、より好ましくは50%以上であることが特に好ましい。反応に有効な細孔径の範囲となる細孔容量が十分な容量でないと、反応対象物が細孔径内に取り込まれる量が少なくなり反応性が低下する。また、反応に有効な細孔径をもつ細孔容量が全容量に占める割合が低すぎると、反応場を十分に得ることが出来ず、反応性を高めることが出来ない。 Specific examples of the aromatic hydrocarbon used for hydrogenation include benzenes such as toluene and naphthalenes. More preferably, the average pore diameter of the hydrogenation catalyst is appropriately selected depending on the type of aromatic hydrocarbon used for hydrogenation. That is, when using one-ring benzenes, a catalyst having an average pore diameter of 40 to 80 mm is particularly preferable. When using two-ring naphthalenes, a catalyst having an average pore diameter of 65 to 130 mm is particularly preferable. It is preferable to select. When the average pore size is too low, it becomes difficult to diffuse the molecules to be reacted and the reactivity is lowered. On the other hand, when the average pore size is too large, the bulk density of the catalyst is reduced, This is not preferable because the performance is lowered. From the viewpoint of applying to both of these aromatic hydrocarbons, the hydrogenation catalyst of the present invention preferably has an average pore diameter of 40 to 130 mm, and the catalyst support also has an average pore diameter of 40 to 130 mm. Is preferred. Further, the pore volume having a preferred pore diameter is preferably 0.1 cm 3 / g or more, more preferably 0.2 cm 3 / g or more, and 20% or more of the total pore volume, more preferably 50% or more. It is particularly preferred that If the pore volume within the pore diameter range effective for the reaction is not sufficient, the amount of the reaction object taken into the pore diameter is reduced and the reactivity is lowered. Moreover, if the ratio of the pore volume having a pore diameter effective for the reaction to the total volume is too low, the reaction field cannot be obtained sufficiently and the reactivity cannot be increased.

また、供給する水素含有ガスとしては、製油プラントの副生水素の他、製鉄所のコークスガス(COG)、石油化学プラントの副生ガス等がある。ここで、上記水素含有ガスの水素含有率は5〜99体積%、好ましくは10〜90体積%、さらに好ましくは20〜80体積%である。また、上記水素含有ガスは、水素の他に低級炭化水素(メタン、エタン、エチレン、アセチレン、プロパン、プロピレン、ブタジエン等、炭素数1〜6までの炭化水素)を1〜95体積%含んでもよい。さらに、上記水素含有ガスには、硫化水素、一酸化炭素、二酸化炭素、アンモニア、塩酸、水蒸気等の無機ガスが含まれることがある。なお、水素含有ガスに含まれる硫化水素の濃度範囲は、0.5〜2000体積ppm、好ましくは1〜200体積ppm、一酸化炭素の濃度範囲は、1〜5000体積ppm、好ましくは10〜2000体積ppmである。   Further, as the hydrogen-containing gas to be supplied, there are coke gas (COG) at a steel mill, by-product gas at a petrochemical plant, etc. in addition to by-product hydrogen at an oil refinery plant. Here, the hydrogen content of the hydrogen-containing gas is 5 to 99% by volume, preferably 10 to 90% by volume, and more preferably 20 to 80% by volume. The hydrogen-containing gas may contain 1 to 95% by volume of lower hydrocarbons (methane, ethane, ethylene, acetylene, propane, propylene, butadiene and other hydrocarbons having 1 to 6 carbon atoms) in addition to hydrogen. . Furthermore, the hydrogen-containing gas may contain inorganic gases such as hydrogen sulfide, carbon monoxide, carbon dioxide, ammonia, hydrochloric acid, and water vapor. The concentration range of hydrogen sulfide contained in the hydrogen-containing gas is 0.5 to 2000 volume ppm, preferably 1 to 200 volume ppm, and the concentration range of carbon monoxide is 1 to 5000 volume ppm, preferably 10 to 2000. Volume ppm.

本発明の触媒にはPdとPtが担持されており、水素含有ガスに含まれる不純物のうち、特に被毒性の高い物質は硫化水素と一酸化炭素である。しかしながら、本発明の触媒は、硫化水素に対する耐性が高く、触媒寿命が長い。なお、硫化水素に耐性のある触媒は一酸化炭素に対する耐性も高いことが多い。   Pd and Pt are supported on the catalyst of the present invention, and among the impurities contained in the hydrogen-containing gas, particularly highly toxic substances are hydrogen sulfide and carbon monoxide. However, the catalyst of the present invention is highly resistant to hydrogen sulfide and has a long catalyst life. A catalyst resistant to hydrogen sulfide often has high resistance to carbon monoxide.

本発明における水素化反応は、流通式、バッチ式のいずれでも実施することができる。流通式の場合、水素化反応触媒の存在下、LHSVが0.1〜5hr-1、好ましくは0.3〜3hr-1、反応温度が80〜400℃、好ましくは100℃〜350℃、反応圧力が0〜4.0MPaG、好ましくは0.05〜3.0MPaG、水素ガスと原料油の供給割合(H2/Oil)が3.0〜30mol/mol、好ましくは3.5〜15mol/molの条件下で、芳香族炭化水素と共に水素を流通しながら実施するのがよい。なお、水素化反応の反応温度、即ち、反応器内の水素化反応触媒層の平均温度は、副生水素の純度(水素含有率)や組成、芳香族炭化水素の組成等に応じて適宜選択される。 The hydrogenation reaction in the present invention can be carried out by either a flow type or a batch type. In the case of the flow type, in the presence of a hydrogenation reaction catalyst, LHSV is 0.1 to 5 hr −1 , preferably 0.3 to 3 hr −1 , reaction temperature is 80 to 400 ° C., preferably 100 ° C. to 350 ° C. The pressure is 0 to 4.0 MPaG, preferably 0.05 to 3.0 MPaG, the supply ratio of hydrogen gas and raw material oil (H 2 / Oil) is 3.0 to 30 mol / mol, preferably 3.5 to 15 mol / mol. It is preferable to carry out the process while flowing hydrogen together with the aromatic hydrocarbon under the above conditions. The reaction temperature of the hydrogenation reaction, that is, the average temperature of the hydrogenation reaction catalyst layer in the reactor is appropriately selected according to the purity (hydrogen content) and composition of by-product hydrogen, the composition of the aromatic hydrocarbon, and the like. Is done.

ここで、水素化反応器への芳香族炭化水素の供給方式としては、芳香族炭化水素を液体で供給する方式、および予熱して気体で供給する方式のいずれをとることもできるが、特には、固定床式の水素化反応器に気体で供給することが好ましい。   Here, as a method for supplying aromatic hydrocarbons to the hydrogenation reactor, either a method of supplying aromatic hydrocarbons in liquid or a method of supplying preheated in gaseous form can be used. The gas is preferably supplied to a fixed bed type hydrogenation reactor.

以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

<定義>
(1)転化率
転化率(%)=100−未反応トルエンのGC面積百分率
ここで、GC面積百分率はガスクロマトグラムにより検出された全ての有機化合物のピーク面積に対する対応する化合物のピーク面積百分率を指す。
<Definition>
(1) Conversion Conversion (%) = 100—GC area percentage of unreacted toluene Here, GC area percentage refers to the peak area percentage of the corresponding compound with respect to the peak areas of all organic compounds detected by gas chromatogram. .

(2)選択率
選択率(%)=生成したメチルシクロヘキサン(MCH)のGC面積百分率/(100−未反応トルエンのGC面積百分率)×100
(2) Selectivity Selectivity (%) = GC area percentage of produced methylcyclohexane (MCH) / (100−GC area percentage of unreacted toluene) × 100

<触媒調製>
触媒A〜Lは、以下のようにゾル・ゲル法にてチタニアとアルミナの複合酸化物を調製し、その後、共含浸法により金属を担持して調製した。
<Catalyst preparation>
Catalysts A to L were prepared by preparing a titania / alumina composite oxide by a sol-gel method as described below, and then supporting a metal by a co-impregnation method.

(触媒A)
Al[(CH3)2CHO]3 5.00gとTi[(CH3)2CHO]4 17.8gを、2−プロパノール 62.8g(金属アルコキシドに対して12当量)に溶解させた。混合溶液を攪拌しながら、イオン交換水14.12g(金属アルコキシドに対して9当量)を0.3mL/min程度で滴下し、加水分解させた。その後、懸濁液を500mLのナス型フラスコに移し、冷却管で溶媒を還流させながら、60℃で24h熟成させた。熟成後、溶媒の除去を行い、十分に減圧乾燥させた。その後マッフル炉を用いて、130℃で2h保持した後、500℃まで2hで昇温させ、500℃で6hの焼成を行って、TiO2含有率80質量%のTiO2−Al23複合担体を得た。調製した担体は100メッシュ以下に粉砕し、担体キャラクタリゼーションまたは触媒担体に用いた。
(Catalyst A)
5.00 g of Al [(CH 3 ) 2 CHO] 3 and 17.8 g of Ti [(CH 3 ) 2 CHO] 4 were dissolved in 62.8 g of 2-propanol (12 equivalents relative to the metal alkoxide). While stirring the mixed solution, 14.12 g of ion-exchanged water (9 equivalents relative to the metal alkoxide) was added dropwise at about 0.3 mL / min to cause hydrolysis. Thereafter, the suspension was transferred to a 500 mL eggplant-shaped flask and aged at 60 ° C. for 24 hours while refluxing the solvent with a cooling tube. After aging, the solvent was removed and the film was sufficiently dried under reduced pressure. Then, using a muffle furnace, it was held at 130 ° C. for 2 hours, then heated up to 500 ° C. in 2 hours, and baked at 500 ° C. for 6 hours to obtain a TiO 2 -Al 2 O 3 composite having a TiO 2 content of 80 mass% A carrier was obtained. The prepared support was pulverized to 100 mesh or less and used for support characterization or catalyst support.

なお、調製した複合担体のTiO2含有率は以下のように計算した。
TiO2含有率 [質量%] = TiO2質量 [g] / (TiO2質量 [g] + Al23質量 [g] )
ここでのTiO2質量は前駆体のTi[(CH3)2CHO]4とAl[(CH3)2CHO]3がすべて酸化物(TiO2とAl23)になったと仮定した際の計算値である。
The TiO 2 content of the prepared composite carrier was calculated as follows.
TiO 2 content [mass%] = TiO 2 mass [g] / (TiO 2 mass [g] + Al 2 O 3 mass [g])
The TiO 2 mass here is based on the assumption that the precursors Ti [(CH 3 ) 2 CHO] 4 and Al [(CH 3 ) 2 CHO] 3 are all oxides (TiO 2 and Al 2 O 3 ). Is the calculated value.

次に、共含浸法により、金属担持量が1質量%、Pd/Pt=4mol/molとなるように調製した。具体的には、0.1N塩酸溶液にPdCl2 1.00gを溶解させて、Pd前駆体溶液(濃度:5.64×10-2M)を調製した。また、イオン交換水にH2PtCl6・6H2O 1.00gを溶解させて、Pt前駆体溶液(濃度:1.93×10-2M)を調製した。次に、Pd前駆体溶液10.0ml、及びPt前駆体溶液7.31mlを先に調製したTiO2含有率80質量%のTiO2−Al23複合担体8.66gに加え1h攪拌後、減圧下で水分を除去し、130℃の乾燥機内で一晩乾燥させた。その後、500℃で3hの焼成を行った。更に、130℃の乾燥機内で一晩経過させた後、400℃で5hの水素還元を行い、触媒Aを得た。触媒Aはふるいにかけ100メッシュ以下にした。 Next, it was prepared by a co-impregnation method so that the metal loading was 1% by mass and Pd / Pt = 4 mol / mol. Specifically, 1.00 g of PdCl 2 was dissolved in a 0.1N hydrochloric acid solution to prepare a Pd precursor solution (concentration: 5.64 × 10 −2 M). Further, 1.00 g of H 2 PtCl 6 .6H 2 O was dissolved in ion-exchanged water to prepare a Pt precursor solution (concentration: 1.93 × 10 −2 M). Next, 10.0 ml of a Pd precursor solution and 7.31 ml of a Pt precursor solution were added to 8.66 g of the TiO 2 -Al 2 O 3 composite carrier having a TiO 2 content of 80% by mass previously prepared, and stirred for 1 h. Moisture was removed under reduced pressure and dried overnight in a dryer at 130 ° C. Thereafter, baking was performed at 500 ° C. for 3 hours. Further, after passing overnight in a dryer at 130 ° C., hydrogen reduction was performed at 400 ° C. for 5 hours to obtain Catalyst A. Catalyst A was sieved to 100 mesh or less.

(触媒B〜F)
Al[(CH3)2CHO]3とTi[(CH3)2CHO]4の割合以外は、触媒Aと同様にして、触媒B〜Fを調製した。担体中のTiO2含有率を表1に示す。
(Catalysts B to F)
Catalysts B to F were prepared in the same manner as Catalyst A, except for the ratio of Al [(CH 3 ) 2 CHO] 3 and Ti [(CH 3 ) 2 CHO] 4 . Table 1 shows the TiO 2 content in the carrier.

(触媒G〜L)
水素還元温度を400℃から260℃とした以外は触媒B〜Fと同様にして、触媒G〜Lを調製した。担体中のTiO2含有率を表1に示す。
(Catalyst GL)
Catalysts G to L were prepared in the same manner as Catalysts B to F except that the hydrogen reduction temperature was changed from 400 ° C to 260 ° C. Table 1 shows the TiO 2 content in the carrier.

(触媒M)
金属担持するときに用いるPd前駆体溶液(濃度:5.64×10-2M)の量を0ml、Pt前駆体溶液(濃度:1.93×10-2M)の量を23.1mlとするほかは、触媒Aと同様にして、触媒Mを調製した。
(Catalyst M)
The amount of Pd precursor solution (concentration: 5.64 × 10 −2 M) used for metal loading is 0 ml, and the amount of Pt precursor solution (concentration: 1.93 × 10 −2 M) is 23.1 ml. Except that, Catalyst M was prepared in the same manner as Catalyst A.

(触媒N)
金属担持するときに用いるPd前駆体溶液(濃度:5.64×10-2M)の量を14.5ml、Pt前駆体溶液(濃度:1.93×10-2M)の量を0mlとするほかは、触媒Aと同様にして、触媒Nを調製した。
(Catalyst N)
The amount of Pd precursor solution (concentration: 5.64 × 10 −2 M) used for metal loading is 14.5 ml, and the amount of Pt precursor solution (concentration: 1.93 × 10 −2 M) is 0 ml. A catalyst N was prepared in the same manner as in the catalyst A except that.

(触媒X)
ヘキサクロロ白金(IV)酸六水和物1.67gをイオン交換水に溶解させ、塩化パラジウム(II)2.28gを希塩酸に溶解させ、これらを混合し、Pd/Pt=4mol/molの溶液を調製した。これを、比表面積306m2/g、細孔容積0.73cm3/g、平均細孔径76Åの市販のアルミナ担体198gにスプレーし、含浸させて担持した。オーブン乾燥機中130℃で12時間乾燥した後、ロータリーキルンで空気を8L/分の流速で流しながら500℃で0.5時間焼成し触媒とした。なお、水素化反応の前に400℃で1h水素還元して用いた。
(Catalyst X)
1.67 g of hexachloroplatinic (IV) acid hexahydrate is dissolved in ion-exchanged water, 2.28 g of palladium (II) chloride is dissolved in dilute hydrochloric acid, and these are mixed to prepare a solution of Pd / Pt = 4 mol / mol. Prepared. This was sprayed onto 198 g of a commercially available alumina carrier having a specific surface area of 306 m 2 / g, a pore volume of 0.73 cm 3 / g and an average pore diameter of 76 mm, and supported by impregnation. After drying at 130 ° C. for 12 hours in an oven dryer, the catalyst was calcined at 500 ° C. for 0.5 hour while flowing air with a rotary kiln at a flow rate of 8 L / min. In addition, it used by hydrogen reduction at 400 degreeC for 1 h before hydrogenation reaction.

<触媒のキャラクタリゼーション>
上記のようにして得られた触媒に対して、以下の方法でキャラクタリゼーションを行った。結果を表1に示す。
<Catalyst characterization>
The catalyst obtained as described above was characterized by the following method. The results are shown in Table 1.

(1)比表面積、細孔容積、平均細孔径
窒素吸着法による細孔径分布測定装置(ASAP2400、マイクロメリテックス社製)を用いて、比表面積、細孔径、細孔容量、細孔分布を求めた。比表面積はBET法、細孔分布はBJH法により計測される20〜600Åの範囲の細孔容量を用いた。求めた細孔径ごとの細孔容量を積算して細孔容量の積算値が50%となる時の細孔径を平均細孔径(D50)と定義した。
(1) Specific surface area, pore volume, average pore diameter Using a nitrogen adsorption method pore diameter distribution measuring device (ASAP2400, manufactured by Micromeritex), the specific surface area, pore diameter, pore volume, and pore distribution are obtained. It was. The specific surface area was a BET method, and the pore distribution was a pore volume in the range of 20 to 600 mm measured by the BJH method. The pore volume for each pore diameter obtained was integrated and the pore diameter when the integrated value of the pore volume was 50% was defined as the average pore diameter (D50).

(2)酸量
黒川秀樹, 「表面分析のケーススタディ 36 固体表面の酸塩基特性の評価法」, 表面技術誌, 52巻4号, 344 (2001)を参考にして、アンモニア化学吸着により酸量を測定した。なお、100℃での、触媒1gあたりのアンモニア化学吸着量を酸量と定義した。
(2) Acid amount Hideki Kurokawa, “Case study of surface analysis 36 Evaluation method of acid-base properties of solid surfaces”, Surface Technology Journal, Vol. 52, No. 4, 344 (2001), acid amount by ammonia chemisorption Was measured. The amount of ammonia chemisorption per gram of catalyst at 100 ° C. was defined as the amount of acid.

(3)酸点密度
比表面積あたりのアンモニア化学吸着量を酸点密度とした。
(3) Acid point density The ammonia chemical adsorption amount per specific surface area was defined as the acid point density.

(4)CO吸着量
パルスCO化学吸着量を測定した。
(4) CO adsorption amount The pulse CO chemical adsorption amount was measured.

Figure 0005582468
Figure 0005582468

<トルエン水素化反応>
(実施例1)
触媒A 0.05gを還元管に入れ、130℃で30分の真空排気後、流量100ml/分で水素を流通させ400℃で1hの水素還元処理を行った。その後、水素流通下で室温まで冷却し、還元管に水素を流通させたまま、トルエン0.72g(7.8mmol)、ジメチルジスルフィド1.611×10-6g(1.712×10-8mol)を溶解させたn−トリデカン40mlを添加してスラリーとし、これを熱電対、圧力ゲージ、機械式攪拌器を備えた容積100mLのステンレス製オートクレーブに移送した。オートクレーブ内を純水素で3回置換後、外部温度を170℃まで昇温した。所定の温度に達してから純水素を10kgf/cm2となるまで導入し、攪拌速度1000rpmで攪拌を開始した。ジメチルジスルフィドが全量硫化水素に転化したとすると、反応開始時の硫化水素濃度は、水素に対し2.1体積ppmであった。30分後攪拌を停止し、温度を下げ、(最終圧6.8kgf/cm2)開封して生成油を採取し、ガスクロマトグラフで分析したところ、トルエン転化率は33.3%、メチルシクロヘキサン選択率は100%であった。
<Toluene hydrogenation reaction>
Example 1
0.05 g of catalyst A was put in a reduction tube, and after evacuation at 130 ° C. for 30 minutes, hydrogen was circulated at a flow rate of 100 ml / min to perform hydrogen reduction treatment at 400 ° C. for 1 h. Thereafter, the mixture was cooled to room temperature under a hydrogen flow, and 0.72 g (7.8 mmol) of toluene and 1.611 × 10 −6 g (1.712 × 10 −8 mol) of dimethyl disulfide were allowed to flow through the reduction tube. 40 ml of n-tridecane dissolved therein was added to form a slurry, which was transferred to a 100 mL stainless steel autoclave equipped with a thermocouple, pressure gauge and mechanical stirrer. After replacing the inside of the autoclave with pure hydrogen three times, the external temperature was raised to 170 ° C. After reaching a predetermined temperature, pure hydrogen was introduced until the pressure reached 10 kgf / cm 2, and stirring was started at a stirring speed of 1000 rpm. Assuming that the total amount of dimethyl disulfide was converted to hydrogen sulfide, the concentration of hydrogen sulfide at the start of the reaction was 2.1 ppm by volume with respect to hydrogen. After 30 minutes, the stirring was stopped, the temperature was lowered, (final pressure 6.8 kgf / cm 2 ) was opened and the resulting oil was collected and analyzed by gas chromatography. The toluene conversion was 33.3% and methylcyclohexane was selected. The rate was 100%.

(比較例1)
触媒Aの代わりに触媒Xを用いた他は、実施例1と同様にして反応を行った。温度を下げ、(最終圧8.3kgf/cm2)開封して生成油を採取し、ガスクロマトグラフで分析したところ、トルエン転化率は25.7%、メチルシクロヘキサン選択率は100%であった。
(Comparative Example 1)
The reaction was conducted in the same manner as in Example 1 except that the catalyst X was used instead of the catalyst A. When the temperature was lowered and the product oil was collected by opening (final pressure 8.3 kgf / cm 2 ) and analyzed by gas chromatography, the toluene conversion was 25.7% and the methylcyclohexane selectivity was 100%.

(実施例2)
オートクレーブに添加したジメチルジスルフィドの量を3.222×10-5g(3.424×10-7mol)とした他は、実施例1と同様にして反応を行った。ジメチルジスルフィドが全量硫化水素に転化したとすると、反応開始時の硫化水素濃度は、水素に対し42体積ppmであった。反応後、生成油を採取し、ガスクロマトグラフで分析したところ、トルエン転化率は13.8%、メチルシクロヘキサン選択率は100%であった。
(Example 2)
The reaction was carried out in the same manner as in Example 1 except that the amount of dimethyl disulfide added to the autoclave was changed to 3.222 × 10 −5 g (3.424 × 10 −7 mol). Assuming that the total amount of dimethyl disulfide was converted to hydrogen sulfide, the hydrogen sulfide concentration at the start of the reaction was 42 ppm by volume with respect to hydrogen. After the reaction, the product oil was collected and analyzed by gas chromatography. As a result, toluene conversion was 13.8% and methylcyclohexane selectivity was 100%.

(比較例2)
触媒Aを触媒Xに代える他は、実施例2と同様にして反応を行った。生成油のガスクロマトグラフ分析から、トルエン転化率は7.4%、メチルシクロヘキサン選択率は100%であった。
(Comparative Example 2)
The reaction was conducted in the same manner as in Example 2 except that the catalyst A was replaced with the catalyst X. From the gas chromatographic analysis of the product oil, the toluene conversion was 7.4% and the methylcyclohexane selectivity was 100%.

(実施例3)
触媒A 0.3gを還元管に入れ、130℃で30分の真空排気後、流量100ml/分で水素を流通させ400℃で1hの水素還元処理を行った。その後、水素流通下で室温まで冷却し、還元管に水素を流通させたまま、トルエン0.72g(7.8mmol)、ジメチルジスルフィド1.274×10-3g(1.354×10-5mol)を溶解させたn−トリデカン40mlを添加してスラリーとし、これを熱電対、圧力ゲージ、機械式攪拌器を備えた容積100mLのステンレス製オートクレーブに移送した。オートクレーブ内を純水素で3回置換後、外部温度を250℃まで昇温した。所定の温度に達してから純水素を20kgf/cm2となるまで導入し、攪拌速度1000rpmで攪拌を開始した。ジメチルジスルフィドが全量硫化水素に転化したとすると、反応開始時の硫化水素濃度は、水素に対し1000体積ppmであった。3時間後攪拌を停止し、温度を下げ、開封して生成油を採取し、ガスクロマトグラフで分析したところ、水素化速度は0.7mmol/g−cat.・h、トルエン転化率は7.5%、メチルシクロヘキサン選択率は94.6%であった。
(Example 3)
0.3 g of catalyst A was put in a reduction tube, evacuated at 130 ° C. for 30 minutes, and then hydrogen was circulated at a flow rate of 100 ml / min to perform hydrogen reduction treatment at 400 ° C. for 1 h. Thereafter, the mixture was cooled to room temperature under a hydrogen flow, and 0.72 g (7.8 mmol) of toluene and 1.274 × 10 −3 g (1.354 × 10 −5 mol) of dimethyl disulfide were allowed to flow through the reduction tube. 40 ml of n-tridecane dissolved therein was added to form a slurry, which was transferred to a 100 mL stainless steel autoclave equipped with a thermocouple, pressure gauge and mechanical stirrer. After replacing the inside of the autoclave with pure hydrogen three times, the external temperature was raised to 250 ° C. After reaching a predetermined temperature, pure hydrogen was introduced until the pressure reached 20 kgf / cm 2, and stirring was started at a stirring speed of 1000 rpm. Assuming that the total amount of dimethyl disulfide was converted to hydrogen sulfide, the concentration of hydrogen sulfide at the start of the reaction was 1000 ppm by volume with respect to hydrogen. After 3 hours, stirring was stopped, the temperature was lowered, the container was opened and the resulting oil was collected and analyzed by gas chromatography. The hydrogenation rate was 0.7 mmol / g-cat. H, toluene conversion was 7.5%, methylcyclohexane selectivity was 94.6%.

(比較例3)
触媒Aを触媒Xに代える他は、実施例3と同様にして反応を行った。生成油のガスクロマトグラフ分析から、水素化速度は0.3mmol/g−cat.・h、トルエン転化率は3.4%、メチルシクロヘキサン選択率は92.7%であった。
(Comparative Example 3)
The reaction was conducted in the same manner as in Example 3 except that the catalyst A was replaced with the catalyst X. From the gas chromatographic analysis of the product oil, the hydrogenation rate was 0.3 mmol / g-cat. H, Toluene conversion was 3.4% and methylcyclohexane selectivity was 92.7%.

Figure 0005582468
Figure 0005582468

表2から、チタニアとアルミナの複合酸化物を担体として用いた実施例の水素化触媒は、アルミナを担体とする触媒に比べて、水素含有ガスの硫化水素含有率が高くても、触媒活性(転化率)及びMCH選択率が高いことが分かる。   From Table 2, it can be seen that the hydrogenation catalyst of the example using the composite oxide of titania and alumina as the carrier had catalytic activity (even if the hydrogen sulfide content of the hydrogen-containing gas was higher than that of the catalyst using alumina as the carrier. It can be seen that the conversion rate and the MCH selectivity are high.

(実施例4)
ジメチルジスルフィドの量を1.512×10-3g(1.607×10-5mol)とする他は、実施例3と同様にして反応を行った。ジメチルジスルフィドが全量硫化水素に転化したとすると、反応開始時の硫化水素濃度は、水素に対し1187体積ppmであった。反応後、生成油を採取し、ガスクロマトグラフで分析したところ、トルエン転化率は5.5%、メチルシクロヘキサン選択率は74.6%であった。
Example 4
The reaction was conducted in the same manner as in Example 3 except that the amount of dimethyl disulfide was changed to 1.512 × 10 −3 g (1.607 × 10 −5 mol). Assuming that the total amount of dimethyl disulfide was converted to hydrogen sulfide, the concentration of hydrogen sulfide at the start of the reaction was 1187 ppm by volume with respect to hydrogen. After the reaction, the product oil was collected and analyzed by gas chromatography. As a result, the toluene conversion was 5.5% and the methylcyclohexane selectivity was 74.6%.

(実施例5,6、比較例4〜6)
触媒Aに代えて触媒B〜Fを用いる他は、実施例4と同様にして反応を行った。結果を表3に示す。
(Examples 5 and 6, Comparative Examples 4 to 6)
The reaction was performed in the same manner as in Example 4 except that the catalysts B to F were used in place of the catalyst A. The results are shown in Table 3.

(実施例7〜9、比較例7〜9)
触媒G〜Lを用いて実施例4〜6、比較例4〜6と同様にして反応を行った。結果を表3に示す。
(Examples 7-9, Comparative Examples 7-9)
The reaction was carried out in the same manner as in Examples 4 to 6 and Comparative Examples 4 to 6 using the catalysts G to L. The results are shown in Table 3.

Figure 0005582468
Figure 0005582468

表3から、チタニア含有率が25〜90質量%の範囲内にあるチタニアとアルミナの複合酸化物を担体として用いた実施例の水素化触媒は、チタニア含有率が25〜90質量%の範囲内にない比較例の触媒に比べて、触媒活性(転化率)及びMCH選択率が高いことが分かる。   From Table 3, as for the hydrogenation catalyst of the Example which used the composite oxide of the titania and the alumina in which the titania content rate is in the range of 25 to 90% by mass as the support, the titania content rate is in the range of 25 to 90% by mass. It can be seen that the catalyst activity (conversion rate) and the MCH selectivity are higher than those of the comparative example catalyst.

(実施例10)
固定床流通式反応装置に触媒A 2.0g(1.6cm3)を充填し、常圧で、トルエンを1.9mL/h、硫化水素70体積ppmを含むH2:He=7:3の水素含有ガスを流通し、電気炉温度200℃、液空間速度(LHSV)=1.2hr-1、水素/オイル比(H2/Oil)=7mol/molの条件下でトルエンの水素化反応を行った。トルエン供給から1.5時間後の生成油のガスクログラフ分析から、トルエン転化率は85%、メチルシクロヘキサン選択率は100%であった。トルエン供給から6.5時間後、同様に生成油を分析すると、トルエン転化率は16%、メチルシクロヘキサン選択率は100%であった。
(Example 10)
A fixed-bed flow reactor is filled with 2.0 g (1.6 cm 3 ) of catalyst A, and at normal pressure, toluene is 1.9 mL / h and hydrogen sulfide 70 volume ppm H 2 : He = 7: 3 A hydrogen-containing gas was circulated, and the hydrogenation reaction of toluene was performed under the conditions of an electric furnace temperature of 200 ° C., a liquid space velocity (LHSV) = 1.2 hr −1 , and a hydrogen / oil ratio (H 2 / Oil) = 7 mol / mol. went. From the gas chromatographic analysis of the product oil 1.5 hours after the supply of toluene, the toluene conversion was 85% and the methylcyclohexane selectivity was 100%. When the product oil was similarly analyzed 6.5 hours after the toluene supply, the toluene conversion was 16% and the methylcyclohexane selectivity was 100%.

(比較例10)
触媒Aに代えて触媒Xを用いる他は、実施例10と同様にして反応を行った。トルエン供給から1.5時間後のトルエン転化率は19%、メチルシクロヘキサン選択率は99.9%であったが、3.5時間後に転化率は1%に低下し、4.5時間後には転化率が0%となった。
(Comparative Example 10)
The reaction was conducted in the same manner as in Example 10 except that the catalyst X was used instead of the catalyst A. The toluene conversion after 1.5 hours from the supply of toluene was 19% and the methylcyclohexane selectivity was 99.9%, but the conversion decreased to 1% after 3.5 hours, and after 4.5 hours. Conversion was 0%.

Figure 0005582468
Figure 0005582468

表4から、チタニアとアルミナの複合酸化物を担体として用いた実施例の水素化触媒は、アルミナを担体とする触媒に比べて、触媒活性(転化率)が高いことに加え、触媒寿命が長く、耐被毒性に優れることが分かる。   From Table 4, the hydrogenation catalyst of the example using a composite oxide of titania and alumina as a carrier has a higher catalyst activity (conversion rate) and a longer catalyst life than a catalyst using alumina as a carrier. It is understood that it is excellent in poisoning resistance.

(比較例11−12)
触媒Aを触媒M,Nにかえるほかは、実施例3と同様に行った。結果を表5に示す。
金属をPd−Ptとすることで、それぞれ単独の場合よりも転化率、水素化速度、MCH選択率が向上した。
(Comparative Example 11-12)
The same procedure as in Example 3 was performed except that the catalyst A was changed to the catalysts M and N. The results are shown in Table 5.
By using Pd—Pt as the metal, the conversion rate, the hydrogenation rate, and the MCH selectivity were improved as compared with the case of using each metal alone.

(比較例13)
触媒A 0.05gを還元管に入れ、130℃で30分の真空排気後、流量100ml/分で水素を流通させ400℃で1hの水素還元処理を行った。その後、水素流通下で室温まで冷却し、還元管に水素を流通させたまま、トルエン0.72g(7.8mmol)、n−トリデカン40mlを添加してスラリーとし、これを熱電対、圧力ゲージ、機械式攪拌器を備えた容積100mLのステンレス製オートクレーブに移送した。オートクレーブ内を純水素で3回置換後、外部温度を130℃まで昇温した。所定の温度に達してから純水素を10kgf/cm2となるまで導入し、攪拌速度1000rpmで攪拌を開始した。30分後攪拌を停止し、温度を下げ、開封して生成油を採取し、ガスクロマトグラフで分析したところ、水素化速度は28.6mmol/g−cat.・h、トルエン転化率は9.9%、メチルシクロヘキサン選択率は98.7%であった。
(Comparative Example 13)
0.05 g of catalyst A was put in a reduction tube, and after evacuation at 130 ° C. for 30 minutes, hydrogen was circulated at a flow rate of 100 ml / min to perform hydrogen reduction treatment at 400 ° C. for 1 h. Thereafter, the mixture was cooled to room temperature under hydrogen flow, and 0.72 g (7.8 mmol) of toluene and 40 ml of n-tridecane were added to make a slurry while hydrogen was passed through the reduction tube, and this was made into a slurry. The sample was transferred to a 100 mL stainless steel autoclave equipped with a mechanical stirrer. After replacing the inside of the autoclave with pure hydrogen three times, the external temperature was raised to 130 ° C. After reaching a predetermined temperature, pure hydrogen was introduced until the pressure reached 10 kgf / cm 2, and stirring was started at a stirring speed of 1000 rpm. After 30 minutes, the stirring was stopped, the temperature was lowered, the container was opened and the resulting oil was collected and analyzed by gas chromatography. The hydrogenation rate was 28.6 mmol / g-cat. H, Toluene conversion was 9.9% and methylcyclohexane selectivity was 98.7%.

(比較例14−15)
触媒Aを触媒M,Nにかえるほかは、比較例13と同様に行った。結果を表5に示す。
比較例13−15から、純水素による水素化の場合と、硫化水素を含む水素ガスによる水素化の場合では、担持金属種による反応性の優劣が異なっており、純水素下で活性の高い触媒が、硫化水素を含む水素ガス下でも良いとは限らず、容易に推測できない。
(Comparative Example 14-15)
The same procedure as in Comparative Example 13 was performed except that the catalyst A was changed to the catalysts M and N. The results are shown in Table 5.
From Comparative Examples 13-15, in the case of hydrogenation with pure hydrogen and in the case of hydrogenation with hydrogen gas containing hydrogen sulfide, the superiority or inferiority of the reactivity due to the supported metal species is different, and the catalyst is highly active under pure hydrogen. However, it is not always possible to use hydrogen gas containing hydrogen sulfide, and cannot be easily estimated.

Figure 0005582468
Figure 0005582468

Claims (2)

活性金属としてPd及びPtを含み、チタニアとアルミナの複合酸化物を担体とし、該複合酸化物中のチタニア含有率が25〜90質量%である芳香族炭化水素の水素化触媒と、
0.5〜2000体積ppmの硫化水素を含む水素含有ガスと、
を用いることを特徴とする芳香族炭化水素の水素化方法
An aromatic hydrocarbon hydrogenation catalyst containing Pd and Pt as active metals, using a composite oxide of titania and alumina as a support, and having a titania content in the composite oxide of 25 to 90% by mass ;
A hydrogen-containing gas containing 0.5 to 2000 ppm by volume of hydrogen sulfide;
A process for hydrogenating aromatic hydrocarbons, characterized in that
前記担体は、比表面積が200m2/g以上、平均細孔径が40〜130Å、酸量が0.4〜0.8mmol/gであり、
前記水素化触媒は、前記活性金属の担持量が0.001〜10質量%、PdとPtの担持比率がモル比で1/10〜10/1であることを特徴とする請求項1に記載の芳香族炭化水素の水素化方法
The carrier has a specific surface area of 200 m 2 / g or more, an average pore diameter of 40 to 130 mm, and an acid amount of 0.4 to 0.8 mmol / g.
2. The hydrogenation catalyst according to claim 1, wherein the loading amount of the active metal is 0.001 to 10 mass%, and the loading ratio of Pd and Pt is 1/10 to 10/1 in molar ratio. Aromatic hydrocarbon hydrogenation method .
JP2010030671A 2010-02-15 2010-02-15 Method for hydrogenating aromatic hydrocarbons Expired - Fee Related JP5582468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010030671A JP5582468B2 (en) 2010-02-15 2010-02-15 Method for hydrogenating aromatic hydrocarbons

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010030671A JP5582468B2 (en) 2010-02-15 2010-02-15 Method for hydrogenating aromatic hydrocarbons

Publications (2)

Publication Number Publication Date
JP2011161426A JP2011161426A (en) 2011-08-25
JP5582468B2 true JP5582468B2 (en) 2014-09-03

Family

ID=44592748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010030671A Expired - Fee Related JP5582468B2 (en) 2010-02-15 2010-02-15 Method for hydrogenating aromatic hydrocarbons

Country Status (1)

Country Link
JP (1) JP5582468B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102921446A (en) * 2012-09-28 2013-02-13 石河子大学 Hydrogenation catalyst for Ni-MoxN/Al-MCM-41 and preparation method and use thereof
JP5979443B2 (en) * 2013-03-22 2016-08-24 コスモ石油株式会社 Method for producing hydrogen
EP3438080A4 (en) 2016-03-31 2019-11-06 Zeon Corporation Hydrogenation method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3784852B2 (en) * 1995-02-17 2006-06-14 東燃ゼネラル石油株式会社 Refractory inorganic oxide catalyst carrier and hydrotreating catalyst using the carrier
JP3537979B2 (en) * 1996-12-24 2004-06-14 財団法人石油産業活性化センター Catalyst for hydrotreating hydrocarbon oil and method for hydrotreating light oil
EP1240942A4 (en) * 1999-08-30 2003-08-06 Cosmo Oil Co Ltd Catalyst for hydrotreating of gas oil and method for hydrotreating of gas oil
JP4439069B2 (en) * 2000-03-08 2010-03-24 独立行政法人産業技術総合研究所 Aromatic hydrocarbon hydrogenation catalyst composition

Also Published As

Publication number Publication date
JP2011161426A (en) 2011-08-25

Similar Documents

Publication Publication Date Title
Alipour et al. Effect of alkaline earth promoters (MgO, CaO, and BaO) on the activity and coke formation of Ni catalysts supported on nanocrystalline Al2O3 in dry reforming of methane
Lin et al. The visible-light-assisted thermocatalytic methanation of CO2 over Ru/TiO (2-x) Nx
Yancheshmeh et al. A novel synthesis of NiAl2O4 spinel from a Ni-Al mixed-metal alkoxide as a highly efficient catalyst for hydrogen production by glycerol steam reforming
Rahemi et al. Non-thermal plasma assisted synthesis and physicochemical characterizations of Co and Cu doped Ni/Al2O3 nanocatalysts used for dry reforming of methane
Tomishige et al. Catalytic performance and carbon deposition behavior of a NiO− MgO solid solution in methane reforming with carbon dioxide under pressurized conditions
Chen et al. Characteristics and catalytic properties of Ni/CaAlOx catalyst for hydrogen-enriched syngas production from pyrolysis-steam reforming of biomass sawdust
Carrero et al. Hydrogen production through glycerol steam reforming using Co catalysts supported on SBA-15 doped with Zr, Ce and La
Janke et al. Catalytic and adsorption studies for the hydrogenation of CO2 to methane
US10179326B2 (en) Supported iron catalysts, methods of making, methods of hydrocarbon decomposition
Pechimuthu et al. Deactivation studies over Ni− K/CeO2− Al2O3 catalyst for dry reforming of methane
JP6372840B2 (en) Dehydrogenation catalyst and method for producing the same
Yang et al. Catalytic conversion of tar from hot coke oven gas using 1-methylnaphthalene as a tar model compound
Mehdad et al. Passivation agents and conditions for Mo2C and W2C: Effect on catalytic activity for toluene hydrogenation
Sun et al. A comparative study on different regeneration processes of Pt-Sn/γ-Al2O3 catalysts for propane dehydrogenation
Furusawa et al. Preparation of Ru/ZrO2 catalysts by NaBH4 reduction and their catalytic activity for NH3 decomposition to produce H2
Zhao et al. Improving catalytic activity and stability by in-situ regeneration of Ni-based catalyst for hydrogen production from ethanol steam reforming via controlling of active species dispersion
Wang et al. Hydrogen production via steam reforming of ethylene glycol over Attapulgite supported nickel catalysts
Mäki-Arvela et al. Hexadecane hydrocracking for production of jet fuels from renewable diesel over proton and metal modified H-Beta zeolites
Park et al. Promotional effect of Al addition on the Co/ZrO2 catalyst for dry reforming of CH4
Gu et al. Self-regeneration of cobalt and nickel catalysts promoted with bismuth for non-deactivating performance in carbon monoxide hydrogenation
Chiou et al. Catalytic performance of Pt-promoted cobalt-based catalysts for the steam reforming of ethanol
Wang et al. The role of SiOxCy in the catalytic performance of Co/SiC catalysts for Fischer-Tropsch synthesis
Ma et al. Promoted potassium salts based Ru/AC catalysts for water gas shift reaction
Tran et al. Improvements in hydrogen production from methane dry reforming on filament-shaped mesoporous alumina-supported cobalt nanocatalyst
JP5582468B2 (en) Method for hydrogenating aromatic hydrocarbons

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140610

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140707

R150 Certificate of patent or registration of utility model

Ref document number: 5582468

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350