JP5570317B2 - Control method for internal combustion engine - Google Patents

Control method for internal combustion engine Download PDF

Info

Publication number
JP5570317B2
JP5570317B2 JP2010142230A JP2010142230A JP5570317B2 JP 5570317 B2 JP5570317 B2 JP 5570317B2 JP 2010142230 A JP2010142230 A JP 2010142230A JP 2010142230 A JP2010142230 A JP 2010142230A JP 5570317 B2 JP5570317 B2 JP 5570317B2
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
egr
intake
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010142230A
Other languages
Japanese (ja)
Other versions
JP2012007505A (en
Inventor
秀樹 ▲高▼瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2010142230A priority Critical patent/JP5570317B2/en
Publication of JP2012007505A publication Critical patent/JP2012007505A/en
Application granted granted Critical
Publication of JP5570317B2 publication Critical patent/JP5570317B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

本発明は、低圧ループEGR装置が付帯した内燃機関の制御方法に関する。   The present invention relates to a method for controlling an internal combustion engine accompanied by a low-pressure loop EGR device.

気筒内の燃焼温度を低下させ、有害物質であるNOxの排出量の削減を図るEGR(排気ガス再循環)装置が知られている。EGR装置は、燃焼により発生した排気ガスの一部を吸気に混入するものである。 Lowering the combustion temperature in the cylinders, NO x EGR to reduce the emission of exhaust gas recirculation () apparatus is known which is a harmful substance. The EGR device mixes a part of exhaust gas generated by combustion into intake air.

気筒から排出された直後の排気ガスをサージタンクに還流する高圧ループEGRに対して、排気ターボ過給機のタービン及び排気ガス浄化用の触媒を通過した比較的低温低圧の排気ガスを吸気系におけるコンプレッサの上流箇所に還流する低圧ループEGR(例えば、下記特許文献1を参照)は、大量のEGRを実現できる点で有利である。   For the high-pressure loop EGR that recirculates the exhaust gas immediately after being discharged from the cylinder to the surge tank, the relatively low-temperature and low-pressure exhaust gas that has passed through the turbine of the exhaust turbocharger and the exhaust gas purification catalyst is supplied to the intake system. A low-pressure loop EGR that returns to the upstream portion of the compressor (see, for example, Patent Document 1 below) is advantageous in that a large amount of EGR can be realized.

低圧ループEGRを実施する内燃機関では、減速時に失火を引き起こしてエミッションや燃費を悪化させることがあった。その原因を究明するべく、本願発明者が研究を進めた結果、以下の事実が判明した。   In an internal combustion engine that implements the low-pressure loop EGR, misfire may be caused at the time of deceleration to deteriorate emissions and fuel consumption. As a result of the inventor's research to find out the cause, the following facts have been found.

低圧ループEGRでは、大気圧に近い低圧のEGRガスを吸気系に向けて流通させる必要がある。そのため、吸気系における低圧ループEGR通路の出口の上流に吸気絞り弁を設け、この吸気絞り弁を絞ることで、低圧ループEGR通路の出口の周囲を負圧化している。内燃機関の減速時に吸気絞り弁が絞られていると、吸気絞り弁が抵抗となり、低圧ループEGR通路の出口の周囲の圧力に乱れが発生する。この圧力の乱れは数百Pa程度の微少なものであるが、一方で低圧ループEGR通路の圧力損失もまた数百Pa程度と非常に小さい。それ故に、低圧ループEGR通路の出口の周囲の圧力が乱れると、吸気系に還流するEGRガス量が大きく振動してしまう。結果として、各気筒に充填される吸気の外部EGR率が吸気行程の機会毎にばらつき、何れかの気筒で失火を起こすこととなっていた。   In the low-pressure loop EGR, it is necessary to circulate low-pressure EGR gas close to atmospheric pressure toward the intake system. Therefore, an intake throttle valve is provided upstream of the outlet of the low-pressure loop EGR passage in the intake system, and the pressure around the outlet of the low-pressure loop EGR passage is made negative by restricting the intake throttle valve. If the intake throttle valve is throttled during the deceleration of the internal combustion engine, the intake throttle valve becomes a resistance, and the pressure around the outlet of the low pressure loop EGR passage is disturbed. This pressure disturbance is as small as several hundred Pa, while the pressure loss in the low-pressure loop EGR passage is also very small as several hundred Pa. Therefore, when the pressure around the outlet of the low pressure loop EGR passage is disturbed, the amount of EGR gas recirculated to the intake system vibrates greatly. As a result, the external EGR rate of the intake air charged in each cylinder varies for each opportunity of the intake stroke, causing a misfire in any cylinder.

さらに、低圧ループEGR通路の圧力損失が非常に小さいことから、過渡期にEGR弁が開け放たれたままであると、想定以上の量のEGRガスが低圧ループEGR通路を経由して吸気系に還流し、外部EGR率がEGR耐力以上に高まる。さすれば、気筒内での燃焼が緩慢となり、排気ターボ過給機のタービンに流入する排気ガスの温度が上昇し、これが背圧上昇を招いて、排気行程によっても気筒内に残留する燃焼ガスの量が増加してしまう。即ち、内部EGR率が予想外に高くなるために、失火を引き起こしていた。しかも、可変バルブタイミング機構によるバルブオーバーラップ量によっては、燃焼ガスが吸気マニホルドに吹き戻ることさえあり得た。   Furthermore, since the pressure loss in the low pressure loop EGR passage is very small, if the EGR valve is left open during the transition period, an amount of EGR gas more than expected will return to the intake system via the low pressure loop EGR passage. The external EGR rate increases beyond the EGR yield strength. Then, the combustion in the cylinder becomes slow, the temperature of the exhaust gas flowing into the turbine of the exhaust turbocharger rises, and this causes an increase in the back pressure, and the combustion gas remaining in the cylinder even by the exhaust stroke The amount of will increase. That is, the internal EGR rate was unexpectedly high, causing a misfire. Moreover, depending on the valve overlap amount by the variable valve timing mechanism, the combustion gas could even be blown back to the intake manifold.

特開2007−211767号公報JP 2007-2111767 A

本発明は、低圧ループEGRを実施する内燃機関において、減速時の失火を防止することを所期の目的としている。   An object of the present invention is to prevent misfire during deceleration in an internal combustion engine that implements a low-pressure loop EGR.

本発明では、排気系における排気ターボ過給機のタービンの下流と、吸気系における前記排気ターボ過給機のコンプレッサの上流とを連通する低圧ループEGR通路を形成するとともに、前記低圧ループEGR通路上に外部EGR弁を設けている内燃機関を制御するものにおいて、減速判定時に前記外部EGR弁を一旦所定開度まで強制的に絞るとともに、内燃機関が軽負荷状態に遷移したか否かの判定を行い、内燃機関が軽負荷状態に遷移したと判定されるまでその絞った状態を維持することとした。 In the present invention, a low-pressure loop EGR passage that communicates the downstream of the turbine of the exhaust turbocharger in the exhaust system and the upstream of the compressor of the exhaust turbocharger in the intake system is formed, and on the low-pressure loop EGR passage determined in controls the internal combustion engine is provided with the external EGR valve, the external EGR valve once down forcibly to a predetermined opening degree Rutotomoni during deceleration determination, the internal combustion engine of whether a transition in the light load state And the throttled state was maintained until it was determined that the internal combustion engine transitioned to a light load state .

即ち、上述の判明事実に鑑み、内燃機関の減速に際して外部EGR弁を閉じ操作することにより、低圧ループEGR通路の圧力損失を一時増大させるようにしたのである。これにより、低圧ループEGR通路の出口の周囲の圧力が乱れたとしても、その乱れが外部EGR率に与える影響を小さくできる。また、過渡期に想定以上の量のEGRガスが低圧ループEGR通路を経由して吸気系に還流することもなくなる。   That is, in view of the above-described facts, the pressure loss in the low-pressure loop EGR passage is temporarily increased by closing the external EGR valve during deceleration of the internal combustion engine. Thereby, even if the pressure around the outlet of the low pressure loop EGR passage is disturbed, the influence of the disturbance on the external EGR rate can be reduced. Further, an amount of EGR gas larger than expected during the transition period does not return to the intake system via the low-pressure loop EGR passage.

本発明によれば、低圧ループEGRを実施する内燃機関において、減速時の失火を防止することができる。   ADVANTAGE OF THE INVENTION According to this invention, the misfire at the time of deceleration can be prevented in the internal combustion engine which implements low pressure loop EGR.

本発明の一実施形態における内燃機関及び低圧ループEGR装置の構造を示す図。The figure which shows the structure of the internal combustion engine and low pressure loop EGR apparatus in one Embodiment of this invention. 本実施形態における減速過渡時の処理の手順を示すフローチャート。The flowchart which shows the procedure of the process at the time of the deceleration transition in this embodiment. 本実施形態の制御方法の内容を示すタイミングチャート。The timing chart which shows the content of the control method of this embodiment.

本発明の一実施形態を、図面を参照して説明する。図1に、本実施形態の制御方法の適用対象となる車両用内燃機関0の概要を示す。内燃機関0は、例えば筒内噴射方式のガソリンエンジンであり、複数の気筒1と、各気筒1内に燃料を噴射する燃料噴射弁2と、各気筒1に吸気を供給するための吸気系3と、各気筒1から排気を排出するための排気系4と、吸気系3を流通する吸気を過給する排気ターボ過給機5と、排気系4を流通する排気の一部を吸気系3に還流する外部EGR通路6とを有している。   An embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows an outline of a vehicle internal combustion engine 0 to which the control method of the present embodiment is applied. The internal combustion engine 0 is, for example, an in-cylinder injection type gasoline engine, a plurality of cylinders 1, a fuel injection valve 2 that injects fuel into each cylinder 1, and an intake system 3 that supplies intake air to each cylinder 1. An exhaust system 4 for exhausting the exhaust from each cylinder 1, an exhaust turbocharger 5 for supercharging the intake air flowing through the intake system 3, and a portion of the exhaust gas flowing through the exhaust system 4 for the intake system 3 And an external EGR passage 6 that recirculates to the bottom.

吸気系3は、外部から空気を取り入れて気筒1の吸気ポートへと導く。吸気系3には、エアクリーナ31、吸気絞り弁34、過給機5のコンプレッサ51、インタクーラ32、スロットル弁33を、上流からこの順序に配置している。   The intake system 3 takes in air from the outside and guides it to the intake port of the cylinder 1. In the intake system 3, an air cleaner 31, an intake throttle valve 34, a compressor 51 of the supercharger 5, an intercooler 32, and a throttle valve 33 are arranged in this order from the upstream side.

排気系4は、気筒1内で燃料を燃焼させた結果発生した排気を気筒1の排気ポートから外部へと導く。排気系4には、過給機5の駆動タービン52及び三元触媒41を配置している。   The exhaust system 4 guides exhaust generated as a result of combustion of fuel in the cylinder 1 from the exhaust port of the cylinder 1 to the outside. A drive turbine 52 and a three-way catalyst 41 of the supercharger 5 are arranged in the exhaust system 4.

過給機5は、駆動タービン52とコンプレッサ51とを同軸で連結し連動するように構成してなる。そして、駆動タービン52を排気のエネルギを利用して回転駆動し、その回転力をもってコンプレッサ51にポンプ作用を営ませることにより、吸入空気を加圧圧縮(過給)して気筒1に送り込む。   The supercharger 5 is configured such that the drive turbine 52 and the compressor 51 are connected and interlocked with each other on the same axis. Then, the drive turbine 52 is rotationally driven using the energy of the exhaust gas, and the compressor 51 is pumped with the rotational force, whereby the intake air is pressurized and compressed (supercharged) and sent to the cylinder 1.

EGR通路6は、いわゆる低圧ループEGRを実現するものである。EGR通路6の入口は、排気系4におけるタービン52の下流(さらには、三元触媒41の下流)の所定箇所に連接しており、EGR通路6の出口は、吸気系3における吸気絞り弁34の下流かつコンプレッサ51の上流の所定箇所に連接している。このEGR通路6上には、外部EGR弁61を設けている。   The EGR passage 6 realizes a so-called low pressure loop EGR. The inlet of the EGR passage 6 is connected to a predetermined location downstream of the turbine 52 in the exhaust system 4 (and further downstream of the three-way catalyst 41), and the outlet of the EGR passage 6 is an intake throttle valve 34 in the intake system 3. Is connected to a predetermined location downstream of the compressor 51 and upstream of the compressor 51. An external EGR valve 61 is provided on the EGR passage 6.

内燃機関0の運転制御を司るECU(電子制御装置)9は、プロセッサ91、メモリ92、入力インタフェース93、出力インタフェース94等を有したマイクロコンピュータシステムである。入力インタフェース93には、車速を検出する車速センサから出力される車速信号a、エンジン回転数を検出する回転数センサから出力される回転数信号b、スロットル弁33の開度を検出するスロットルポジションセンサから出力されるスロットル信号c、吸気系3のサージタンク内の圧力を検出する圧力センサから出力される吸気管内圧力信号d等が入力される。出力インタフェース94からは、燃料噴射弁2に対して燃料噴射信号e、吸気絞り弁34に対して絞り弁操作信号f、外部EGR弁61に対してEGR弁操作信号g等を出力する。   An ECU (electronic control unit) 9 that controls operation of the internal combustion engine 0 is a microcomputer system having a processor 91, a memory 92, an input interface 93, an output interface 94, and the like. The input interface 93 includes a vehicle speed signal a output from the vehicle speed sensor that detects the vehicle speed, a rotation speed signal b output from the rotation speed sensor that detects the engine rotation speed, and a throttle position sensor that detects the opening of the throttle valve 33. The throttle signal c outputted from the intake pipe, the pressure signal d inside the intake pipe outputted from the pressure sensor for detecting the pressure in the surge tank of the intake system 3, etc. are inputted. The output interface 94 outputs a fuel injection signal e to the fuel injection valve 2, a throttle valve operation signal f to the intake throttle valve 34, an EGR valve operation signal g to the external EGR valve 61, and the like.

プロセッサ91は、予めメモリ92に格納されているプログラムを解釈、実行して、内燃機関0の運転を制御する。プロセッサ91は、内燃機関0の運転制御に必要な各種情報a、b、c、d等を入力インタフェース93を介して取得し、それらに基づいて要求される燃料噴射量や目標EGR率を演算する。そして、演算結果に対応した各種制御信号e、f、g等を出力インタフェース94を介して印加し、燃料噴射弁2の開弁時間や吸気絞り弁34の開度、EGR弁61の開度を操作する。これにより、要求燃料噴射量及び目標EGR率を達成する。   The processor 91 interprets and executes a program stored in advance in the memory 92 to control the operation of the internal combustion engine 0. The processor 91 acquires various information a, b, c, d, etc. necessary for operation control of the internal combustion engine 0 via the input interface 93, and calculates a required fuel injection amount and a target EGR rate based on the information. . Then, various control signals e, f, g and the like corresponding to the calculation result are applied via the output interface 94, and the opening time of the fuel injection valve 2, the opening degree of the intake throttle valve 34, and the opening degree of the EGR valve 61 are set. Manipulate. Thereby, the required fuel injection amount and the target EGR rate are achieved.

その上で、本実施形態では、内燃機関0が減速する過渡期において、外部EGR弁61を一旦強制的に所定開度まで閉じ操作し、内燃機関0が出力するエンジントルクが低下するまで外部EGR弁61をその開度のまま維持する制御を実施することとしている。   In addition, in the present embodiment, in the transition period in which the internal combustion engine 0 decelerates, the external EGR valve 61 is forcibly closed once to a predetermined opening, and the external EGR is output until the engine torque output from the internal combustion engine 0 decreases. Control is performed to maintain the valve 61 at its opening.

図2に、このときのECU9がプログラムに従い実行する処理の手順例を示す。ECU9は、内燃機関0が減速を開始するか否かを判定する(ステップS1)。ステップS1の減速判定では、例えば、スロットル弁34の開度またはアクセルペダルの踏込量が所定量以上減少した(若しくは、所定閾値以下に減少した)ことを条件として、内燃機関0が減速を開始するものと判定する。   FIG. 2 shows a procedure example of processing executed by the ECU 9 according to the program at this time. The ECU 9 determines whether or not the internal combustion engine 0 starts decelerating (step S1). In the deceleration determination in step S1, for example, the internal combustion engine 0 starts to decelerate on the condition that the opening of the throttle valve 34 or the accelerator pedal depression amount has decreased by a predetermined amount or more (or has decreased to a predetermined threshold value or less). Judge that it is.

内燃機関0が減速を開始すると判定した暁には、外部EGR弁61を所定開度に絞る(ステップS2)。この外部EGR弁61の閉弁は、内燃機関0が高負荷状態から軽負荷状態に遷移するまで継続する(ステップS3)。ステップS3では、気筒1に充填される吸気量(エンジン回転数及び吸気管内圧力を基に演算することができる)若しくはスロットル弁33の開度から推定されるエンジントルクが所定閾値以下に減少した、またはステップS2による吸気絞り弁34の強制開弁から所定時間が経過したことを条件として、内燃機関0が軽負荷状態に遷移したと判定する。ここに言う所定時間は、排気ガス温度に応じて、またはエンジン差圧(=排気圧−吸気圧)に応じて変動させるようにしてもよい。   When it is determined that the internal combustion engine 0 starts to decelerate, the external EGR valve 61 is throttled to a predetermined opening (step S2). The closing of the external EGR valve 61 continues until the internal combustion engine 0 changes from the high load state to the light load state (step S3). In step S3, the engine torque estimated from the amount of intake air charged into the cylinder 1 (which can be calculated based on the engine speed and the intake pipe pressure) or the opening of the throttle valve 33 has decreased below a predetermined threshold value. Alternatively, it is determined that the internal combustion engine 0 has transitioned to the light load condition on the condition that a predetermined time has elapsed since the intake throttle valve 34 was forcibly opened in step S2. The predetermined time mentioned here may be varied according to the exhaust gas temperature or according to the engine differential pressure (= exhaust pressure-intake pressure).

内燃機関0が軽負荷状態に移行した、換言すれば減速の過渡期が終了した後は、燃費が最良となるように適合された目標EGR率を達成するべく、当該目標EGR率に対応した開度に外部EGR弁61を操作する通常の制御に移行する(ステップS4)。   After the internal combustion engine 0 shifts to a light load state, that is, after the transitional period of deceleration ends, in order to achieve a target EGR rate that is adapted to achieve the best fuel efficiency, an opening corresponding to the target EGR rate is achieved. Each time, the control shifts to normal control for operating the external EGR valve 61 (step S4).

図3に、本実施形態の制御方法を適用した結果例を示す。従来の制御方法では、図3中破線にて示しているように、減速判定時に外部EGR弁61を一旦強制的に絞ることなしに、その開度を適合値へと操作する。この場合、外部EGR率が大きく振動して、各気筒1に充填される吸気の外部EGR率が吸気行程の機会毎にばらつき、何れかの気筒1で失火を起こすおそれがある。さらには、想定以上の量のEGRガスが低圧ループEGR通路5を経由して吸気系3に還流し、気筒1内での燃焼が緩慢となり、タービン52に流入する排気ガスの温度が上昇して背圧上昇を招き、内部EGR率が予想外に高くなることもあり得る。この内部EGRの増大は、無論失火の原因となり、また、可変バルブタイミング機構によるバルブオーバーラップ量によっては、燃焼ガスを吸気マニホルドに吹き戻すことにさえなりかねない。   FIG. 3 shows an example of the result of applying the control method of this embodiment. In the conventional control method, as shown by a broken line in FIG. 3, the opening degree is operated to an appropriate value without forcibly reducing the external EGR valve 61 once at the time of deceleration determination. In this case, the external EGR rate greatly oscillates, and the external EGR rate of the intake air filled in each cylinder 1 varies for each opportunity of the intake stroke, which may cause misfire in any one of the cylinders 1. Further, an amount of EGR gas more than expected is recirculated to the intake system 3 via the low-pressure loop EGR passage 5, combustion in the cylinder 1 becomes slow, and the temperature of the exhaust gas flowing into the turbine 52 rises. An increase in back pressure may be caused, and the internal EGR rate may be unexpectedly high. This increase in internal EGR naturally causes misfire, and depending on the amount of valve overlap by the variable valve timing mechanism, combustion gas may be blown back to the intake manifold.

翻って、本実施形態の制御方法によれば、図3中実線にて示しているように、減速判定時に外部EGR弁61を一旦強制的に閉じ操作し、エンジントルク0が軽負荷状態に遷移した後に改めてその開度を適合値へと操作する。これにより、外部EGR率が大きく振動せず、各気筒1に充填される吸気の外部EGR率が吸気行程の機会毎にばらつくことが抑制される。加えて、想定以上の量の外部EGRガスが低圧ループEGR通路5を経由して吸気系3に還流することも予防される。結果、減速過渡期において失火するおそれが低減する。   In contrast, according to the control method of the present embodiment, as shown by the solid line in FIG. 3, the external EGR valve 61 is forcibly closed once at the time of deceleration determination, and the engine torque 0 shifts to a light load state. After that, the opening degree is adjusted again to the appropriate value. As a result, the external EGR rate does not vibrate greatly, and the external EGR rate of the intake air filled in each cylinder 1 is suppressed from varying at every opportunity of the intake stroke. In addition, the amount of external EGR gas larger than expected can be prevented from returning to the intake system 3 via the low-pressure loop EGR passage 5. As a result, the risk of misfire during the deceleration transition period is reduced.

本実施形態によれば、排気系4における排気ターボ過給機5のタービン52の下流と、吸気系3における前記排気ターボ過給機5のコンプレッサ51の上流とを連通する低圧ループEGR通路6を形成するとともに、前記低圧ループEGR通路6上に外部EGR弁61を設けている内燃機関0を制御するものにおいて、減速判定時に前記外部EGR弁61を一旦所定開度まで強制的に絞り、エンジントルクが低下するまで外部EGR弁61を絞った状態に維持することとしたため、内燃機関0の減速に際して、低圧ループEGR通路6の出口の周囲の圧力の乱れが外部EGR率に及ぼす影響を抑制することができる。加えて、想定以上の外部EGRガスがEGR通路6を還流することも予防される。従って、減速過渡時においても適正な燃焼が可能となり、エミッション及び燃費の悪化を防止できる。   According to this embodiment, the low-pressure loop EGR passage 6 that communicates the downstream of the turbine 52 of the exhaust turbocharger 5 in the exhaust system 4 and the upstream of the compressor 51 of the exhaust turbocharger 5 in the intake system 3 is provided. And controlling the internal combustion engine 0 provided with the external EGR valve 61 on the low-pressure loop EGR passage 6, the external EGR valve 61 is forcibly throttled to a predetermined opening degree at the time of deceleration judgment, and the engine torque Since the external EGR valve 61 is maintained in the throttled state until the pressure decreases, the influence of the turbulence of the pressure around the outlet of the low pressure loop EGR passage 6 on the external EGR rate is suppressed when the internal combustion engine 0 is decelerated. Can do. In addition, it is possible to prevent external EGR gas exceeding the expected value from flowing back through the EGR passage 6. Accordingly, proper combustion is possible even during deceleration transition, and emission and fuel consumption can be prevented from deteriorating.

なお、本発明は以上に詳述した実施形態に限られるものではない。各部の具体的構成や処理の手順等は、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   The present invention is not limited to the embodiment described in detail above. Various modifications can be made to the specific configuration of each part, processing procedure, and the like without departing from the spirit of the present invention.

本発明は、車両等に搭載される内燃機関に適用することができる。   The present invention can be applied to an internal combustion engine mounted on a vehicle or the like.

0…内燃機関
3…吸気系
4…排気系
5…排気ターボ過給機
51…コンプレッサ
52…タービン
6…低圧ループEGR通路
61…外部EGR弁
DESCRIPTION OF SYMBOLS 0 ... Internal combustion engine 3 ... Intake system 4 ... Exhaust system 5 ... Exhaust turbocharger 51 ... Compressor 52 ... Turbine 6 ... Low pressure loop EGR passage 61 ... External EGR valve

Claims (1)

排気系における排気ターボ過給機のタービンの下流と、吸気系における前記排気ターボ過給機のコンプレッサの上流とを連通する低圧ループEGR通路を形成するとともに、前記低圧ループEGR通路上に外部EGR弁を設けている内燃機関を制御するものであって、
減速判定時に前記外部EGR弁を一旦所定開度まで強制的に絞るとともに、内燃機関が軽負荷状態に遷移したか否かの判定を行い、内燃機関が軽負荷状態に遷移したと判定されるまで外部EGR弁を所定開度に絞った状態を継続することを特徴とする内燃機関の制御方法。
A low pressure loop EGR passage that communicates the downstream of the turbine of the exhaust turbocharger in the exhaust system and the upstream of the compressor of the exhaust turbocharger in the intake system is formed, and an external EGR valve is provided on the low pressure loop EGR passage. An internal combustion engine provided with
When the deceleration determination is made, the external EGR valve is forcibly throttled to a predetermined opening degree, and it is determined whether or not the internal combustion engine has transitioned to a light load state, until it is determined that the internal combustion engine has transitioned to a light load state. A control method for an internal combustion engine, characterized in that a state in which an external EGR valve is throttled to a predetermined opening is continued .
JP2010142230A 2010-06-23 2010-06-23 Control method for internal combustion engine Expired - Fee Related JP5570317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010142230A JP5570317B2 (en) 2010-06-23 2010-06-23 Control method for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010142230A JP5570317B2 (en) 2010-06-23 2010-06-23 Control method for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2012007505A JP2012007505A (en) 2012-01-12
JP5570317B2 true JP5570317B2 (en) 2014-08-13

Family

ID=45538330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010142230A Expired - Fee Related JP5570317B2 (en) 2010-06-23 2010-06-23 Control method for internal combustion engine

Country Status (1)

Country Link
JP (1) JP5570317B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5996476B2 (en) 2013-04-02 2016-09-21 愛三工業株式会社 Engine exhaust gas recirculation system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3409715B2 (en) * 1998-10-30 2003-05-26 トヨタ自動車株式会社 Internal combustion engine
JP2007211767A (en) * 2006-01-11 2007-08-23 Toyota Motor Corp Exhaust gas recirculation apparatus for internal combustion engine
JP2008008181A (en) * 2006-06-28 2008-01-17 Mazda Motor Corp Diesel engine
JP4924229B2 (en) * 2007-06-20 2012-04-25 トヨタ自動車株式会社 EGR system for internal combustion engine
JP2009024501A (en) * 2007-07-17 2009-02-05 Toyota Motor Corp Intake device of internal combustion engine

Also Published As

Publication number Publication date
JP2012007505A (en) 2012-01-12

Similar Documents

Publication Publication Date Title
JP5506567B2 (en) Internal combustion engine
EP2963263B1 (en) Control device for internal combustion engine
EP2397673A1 (en) Internal combustion engine control device
EP2372131B1 (en) Control device for internal combustion engine
JP5579023B2 (en) Internal combustion engine
JP5649343B2 (en) Intake throttle control method for internal combustion engine
JP2010024974A (en) Control device of internal combustion engine with supercharger
JP2009019611A (en) Control device of internal combustion engine with supercharger
JP2012097639A (en) Control device for internal combustion engine
JP5679185B2 (en) Control device for internal combustion engine
JP6127906B2 (en) Control device for internal combustion engine
JP2006299892A (en) Internal combustion engine with supercharger
JP5570317B2 (en) Control method for internal combustion engine
JP2009299623A (en) Control device for internal combustion engine
JP5610871B2 (en) Control method for internal combustion engine
JP5808152B2 (en) Control device for internal combustion engine
JP2013002371A (en) Internal combustion engine
JP2014231821A (en) Controller for internal combustion engine equipped with supercharger
JP2012163009A (en) Control device for internal combustion engine
JP2012082737A (en) Internal combustion engine
JP5843543B2 (en) Control device for internal combustion engine
JP2010190150A (en) Egr device
JP4946782B2 (en) Control device for internal combustion engine
JP5574922B2 (en) Internal combustion engine
JP2012225232A (en) Control device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140624

R150 Certificate of patent or registration of utility model

Ref document number: 5570317

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees