JP2010190150A - Egr device - Google Patents

Egr device Download PDF

Info

Publication number
JP2010190150A
JP2010190150A JP2009036809A JP2009036809A JP2010190150A JP 2010190150 A JP2010190150 A JP 2010190150A JP 2009036809 A JP2009036809 A JP 2009036809A JP 2009036809 A JP2009036809 A JP 2009036809A JP 2010190150 A JP2010190150 A JP 2010190150A
Authority
JP
Japan
Prior art keywords
pressure egr
passage
high pressure
engine
egr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009036809A
Other languages
Japanese (ja)
Inventor
Akira Iijima
章 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2009036809A priority Critical patent/JP2010190150A/en
Publication of JP2010190150A publication Critical patent/JP2010190150A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an EGR device reducing NO<SB>X</SB>and improving fuel economy of an engine. <P>SOLUTION: In the EGR device 1, a compressor 31 of a turbocharger 3 is disposed to an intake passage 21 of the engine 2, a turbine 32 is disposed to an exhaust passage 22 of the engine 2, and a high-pressure EGR means 4 for performing high-pressure EGR and a low-pressure EGR means 5 performing low-pressure EGR are provided. The EGR device 1 includes: an engine speed detection means 61 detecting engine speed of the engine 2; a load calculation means 6 acquiring a load of the engine 2; and a control means 6 performing both of the low-pressure EGR by the low-pressure EGR means 5 and the high-pressure EGR by the high-pressure EGR means 4, when the speed detected by the speed detection means 61 is a predetermined speed and the load acquired by the load calculation means 6 is a predetermined load. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、内燃機関の排気系から排気を取り出して吸気系に還流するEGR装置に関するものである。   The present invention relates to an EGR device that extracts exhaust gas from an exhaust system of an internal combustion engine and returns it to an intake system.

排気ガスの一部を吸気系に戻すことにより、吸気内の酸素分量を減らし燃焼中の温度を下げてNOxの排出量を減らすようにした所謂EGR(排気還流、排気再循環)が知られている。   So-called EGR (exhaust gas recirculation, exhaust gas recirculation) is known in which a part of the exhaust gas is returned to the intake system to reduce the amount of oxygen in the intake air and lower the temperature during combustion to reduce the amount of NOx emissions. Yes.

従来の内燃機関のEGR装置としては、排気マニフォルドから排気ガスの一部を取り出して吸気マニフォルドに戻す所謂高圧EGR装置が用いられている。この高圧EGR装置では、排気マニフォルドを吸気マニフォルドにEGR配管で接続し、そのEGR配管を通して、高圧の排気マニフォルドから低圧の吸気マニフォルドに自動的に排気ガスを還流させている。高圧EGR装置は、EGR配管が短いため比較的低コストで成立していた。   As a conventional internal combustion engine EGR device, a so-called high-pressure EGR device that takes out a part of exhaust gas from an exhaust manifold and returns it to the intake manifold is used. In this high pressure EGR device, an exhaust manifold is connected to an intake manifold by EGR piping, and exhaust gas is automatically recirculated from the high pressure exhaust manifold to the low pressure intake manifold through the EGR piping. The high-pressure EGR device has been established at a relatively low cost because the EGR pipe is short.

その他の方式のEGR装置として、ターボチャージャのタービンよりも下流の排気通路から排気ガスの一部を取り出してコンプレッサよりも上流の吸気通路に戻す所謂低圧EGR装置も考えられている。   As another type of EGR device, a so-called low-pressure EGR device that takes out a part of the exhaust gas from the exhaust passage downstream of the turbine of the turbocharger and returns it to the intake passage upstream of the compressor is also considered.

また、特許文献1には、高圧EGRと低圧EGRとを内燃機関の負荷状態に基づいて切り替えるEGR装置が提案されている。   Patent Document 1 proposes an EGR device that switches between high pressure EGR and low pressure EGR based on the load state of the internal combustion engine.

特開2002−21625号公報JP 2002-21625 A

しかしながら、上述したEGR装置には以下のような問題があった。   However, the above-described EGR apparatus has the following problems.

すなわち、高圧EGR装置では、厳しくなる排気ガス規制に対応するために、より多量のEGRガスを流そうとしたときに、ターボチャージャのタービンに流入する排気ガスが減ってしまい、タービンでのエネルギ回収量が減少してしまう。そのため、コンプレッサでの圧縮が減り、過給圧が上がらずに必要な空気量を内燃機関内に供給することができず、出力低下・燃費悪化・パティキュレート増加を招いてしまう。この現象は、空気量が少ない低速・低負荷領域で顕著に起きる。   That is, in the high pressure EGR device, in order to cope with stricter exhaust gas regulations, when a larger amount of EGR gas is tried to flow, the exhaust gas flowing into the turbine of the turbocharger is reduced, and energy recovery in the turbine is performed. The amount will decrease. For this reason, the compression in the compressor is reduced, and the required amount of air cannot be supplied into the internal combustion engine without increasing the supercharging pressure, leading to a decrease in output, deterioration in fuel consumption, and increase in particulates. This phenomenon occurs remarkably in a low speed / low load region where the amount of air is small.

低圧EGR装置では、吸気通路に戻されたEGRガスも新気と同時にコンプレッサで加圧しなくてはならないため、より多量のEGRガスが流せる反面、燃費率が増加(燃費悪化)が考えられる。この現象は、空気量が多い高速・高負荷領域で顕著に起きる。   In the low-pressure EGR device, the EGR gas returned to the intake passage must be pressurized by the compressor at the same time as fresh air, so that a larger amount of EGR gas can be flowed, but the fuel consumption rate is increased (fuel consumption deterioration). This phenomenon occurs remarkably in a high speed / high load region with a large amount of air.

また、所望の新気量を確保しつつEGRガスを増量させるためには、コンプレッサの仕事量を増やす必要がある。そのために、例えば、可変容量ターボチャージャを用いてタービンの入口を絞ることでコンプレッサの仕事量を増やすことが考えられるが、その場合、ポンピングロスが増加し燃費が悪化してしまう。   Further, in order to increase the amount of EGR gas while ensuring a desired amount of fresh air, it is necessary to increase the amount of work of the compressor. For this purpose, for example, it is conceivable to increase the amount of work of the compressor by narrowing the inlet of the turbine using a variable capacity turbocharger. In this case, however, the pumping loss increases and the fuel consumption deteriorates.

このように、高圧EGR、または低圧EGRのいずれか一方のみでは、高圧EGR装置の不得手な領域(上記の低速・低負荷領域)と低圧EGR装置の不得手な領域(上記の高速・高負荷領域)の境界において、通常のターボチャージャを用いる場合には高いEGR率(つまり低NOx化)を実現できず、可変容量ターボチャージャを用いる場合は燃費が悪化してしまうという問題があった。   As described above, in either one of the high pressure EGR and the low pressure EGR, the poor area of the high pressure EGR device (the above-mentioned low speed / low load area) and the poor area of the low pressure EGR device (the above high speed / high load). At the boundary of the (region), there is a problem that when a normal turbocharger is used, a high EGR rate (that is, NOx reduction) cannot be realized, and when a variable capacity turbocharger is used, fuel consumption deteriorates.

また、特許文献1記載のEGR装置のように負荷状態に基づいた単純な切換では、より多量のEGRガスを還流させ、よりNOxを下げようとした場合に、相変わらず出力低下・燃費悪化・パティキュレート増加を招いてしまう。   Further, in the simple switching based on the load state as in the EGR device described in Patent Document 1, when a larger amount of EGR gas is recirculated and NOx is further lowered, the output decreases, the fuel consumption deteriorates, and the particulates as usual. It will increase.

そこで、本発明の目的は、上記課題を解決し、エンジンの低NOx化、低燃費化を図ることができるEGR装置を提供することにある。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an EGR device that can solve the above-described problems and can reduce engine NOx and fuel consumption.

上記目的を達成するために本発明は、エンジンの吸気通路にターボチャージャのコンプレッサが設けられると共に排気通路にタービンが設けられ、そのタービンよりも上流の排気通路から排気の一部を取り出して上記コンプレッサよりも下流の吸気通路に戻す高圧EGRを行うための高圧EGR手段と、上記タービンよりも下流の排気通路から排気の一部を取り出して上記コンプレッサよりも上流の吸気通路に戻す低圧EGRを行うための低圧EGR手段とを備えたEGR装置において、上記エンジンの回転数を検出するための回転数検出手段と、上記エンジンの負荷を求めるための負荷算出手段と、上記回転数検出手段により検出された回転数が所定回転数かつ上記負荷算出手段により求められた負荷が所定負荷のときに、上記低圧EGR手段による上記低圧EGRと上記高圧EGR手段による上記高圧EGRとの両方を行う制御手段とを備えたものである。   To achieve the above object, according to the present invention, a compressor of a turbocharger is provided in an intake passage of an engine and a turbine is provided in an exhaust passage, and a part of exhaust gas is taken out from an exhaust passage upstream of the turbine. High-pressure EGR means for performing high-pressure EGR to return to the intake passage downstream, and Low-pressure EGR for extracting a part of the exhaust from the exhaust passage downstream of the turbine and returning it to the intake passage upstream of the compressor In the EGR device having the low pressure EGR means, the engine speed detecting means for detecting the engine speed, the load calculating means for obtaining the engine load, and the engine speed detecting means are detected. When the rotational speed is a predetermined rotational speed and the load obtained by the load calculating means is a predetermined load, the low pressure EGR By the low-pressure EGR and the high-pressure EGR unit according stage is obtained and a control means for both the high-pressure EGR.

好ましくは、上記制御手段は、上記エンジンの回転数と負荷とにより定められる上記エンジンの運転状態の領域を、予め、低速・低負荷領域と中速・中負荷領域と高速・高負荷領域とに区分し、上記エンジンが運転される際に、上記回転数検出手段の回転数と上記負荷算出手段の負荷とにより定まる運転状態が、上記低速・低負荷領域にあるときに上記低圧EGRのみ行い、上記高速・高負荷領域にあるときに上記高圧EGRのみ行い、上記中速・中負荷領域にあるときに上記低圧EGRと上記高圧EGRとの両方を行うものである。   Preferably, the control means sets the engine operating state regions determined by the engine speed and load to a low speed / low load region, a medium speed / medium load region, and a high speed / high load region in advance. When the engine is operated, only the low pressure EGR is performed when the operation state determined by the rotation speed of the rotation speed detection means and the load of the load calculation means is in the low speed / low load region, Only the high pressure EGR is performed when in the high speed / high load region, and both the low pressure EGR and the high pressure EGR are performed when in the medium speed / medium load region.

上記高圧EGR手段は、上記タービンよりも上流の排気通路と上記コンプレッサよりも下流の吸気通路とを接続する高圧EGR通路と、その高圧EGR通路に設けられた高圧EGRバルブと、上記高圧EGR通路よりも上流の吸気通路に設けられた吸気スロットルバルブとを有し、上記低圧EGR手段は、上記タービンよりも下流の排気通路と上記コンプレッサよりも上流の吸気通路とを接続する低圧EGR通路と、その低圧EGR通路に設けられた低圧EGRバルブと、上記低圧EGR通路よりも下流の排気通路に設けられた排気シャッタとを有し、上記制御手段は、上記エンジンの運転状態が上記中速・中負荷領域にあるときに、上記吸気スロットルバルブを全開で固定し、上記排気シャッタを全開よりも閉側の所定開度で固定し、上記高圧EGRバルブと上記低圧EGRバルブとを目標EGR率に基づき開度制御するものでもよい。   The high pressure EGR means includes a high pressure EGR passage connecting an exhaust passage upstream of the turbine and an intake passage downstream of the compressor, a high pressure EGR valve provided in the high pressure EGR passage, and the high pressure EGR passage. An intake throttle valve provided in an upstream intake passage, and the low pressure EGR means includes a low pressure EGR passage connecting an exhaust passage downstream of the turbine and an intake passage upstream of the compressor; A low-pressure EGR valve provided in the low-pressure EGR passage; and an exhaust shutter provided in an exhaust passage downstream of the low-pressure EGR passage, wherein the control means is configured to operate the engine at the medium speed / medium load. When in the region, the intake throttle valve is fixed at a fully open position, the exhaust shutter is fixed at a predetermined opening on the closing side of the fully open position, A pressure EGR valve and the low-pressure EGR valve may be one that opening control based on the target EGR rate.

上記高圧EGR手段は、上記タービンよりも上流の排気通路と上記コンプレッサよりも下流の吸気通路とを接続する高圧EGR通路と、その高圧EGR通路に設けられた高圧EGRバルブと、上記高圧EGR通路よりも上流の吸気通路に設けられた吸気スロットルバルブとを有し、上記低圧EGR手段は、上記タービンよりも下流の排気通路と上記コンプレッサよりも上流の吸気通路とを接続する低圧EGR通路と、その低圧EGR通路に設けられた低圧EGRバルブと、上記低圧EGR通路よりも下流の排気通路に設けられた排気シャッタとを有し、上記制御手段は、上記エンジンの運転状態が上記中速・中負荷領域にあるときに、上記排気シャッタを全開で固定し、上記吸気スロットルバルブを全開よりも閉側の所定開度で固定し、上記高圧EGRバルブと上記低圧EGRバルブとを目標EGR率に基づき開度制御するものでもよい。   The high pressure EGR means includes a high pressure EGR passage connecting an exhaust passage upstream of the turbine and an intake passage downstream of the compressor, a high pressure EGR valve provided in the high pressure EGR passage, and the high pressure EGR passage. An intake throttle valve provided in an upstream intake passage, and the low pressure EGR means includes a low pressure EGR passage connecting an exhaust passage downstream of the turbine and an intake passage upstream of the compressor; A low-pressure EGR valve provided in the low-pressure EGR passage; and an exhaust shutter provided in an exhaust passage downstream of the low-pressure EGR passage, wherein the control means is configured to operate the engine at the medium speed / medium load. When in the region, the exhaust shutter is fixed at a fully open position, the intake throttle valve is fixed at a predetermined opening on the closing side of the fully open position, A pressure EGR valve and the low-pressure EGR valve may be one that opening control based on the target EGR rate.

本発明によれば、エンジンの低NOx化、低燃費化を図ることができるという優れた効果を発揮するものである。   According to the present invention, an excellent effect that the engine can be reduced in NOx and fuel consumption can be achieved.

図1は、本発明に係る一実施形態によるEGR装置の概略構造図である。FIG. 1 is a schematic structural diagram of an EGR apparatus according to an embodiment of the present invention. 図2は、高圧EGR手段と低圧EGR手段の作動領域を説明するための図である。FIG. 2 is a view for explaining the operation region of the high pressure EGR means and the low pressure EGR means. 図3は、EGR率と燃費率との関係を説明するための図である。FIG. 3 is a diagram for explaining the relationship between the EGR rate and the fuel consumption rate. 図4は、EGR率とNOxの排出量との関係を説明するための図である。FIG. 4 is a diagram for explaining the relationship between the EGR rate and the NOx emission amount.

以下、本発明の好適な一実施形態を添付図面に基づいて詳述する。   Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.

本実施形態のEGR装置は、例えば、車両に搭載されたディーゼルエンジンなどの内燃機関(以下、エンジンという)に適用される。   The EGR device of the present embodiment is applied to, for example, an internal combustion engine (hereinafter referred to as an engine) such as a diesel engine mounted on a vehicle.

図1に基づき本実施形態のエンジンおよびEGR装置の概略構造を説明する。   A schematic structure of the engine and the EGR device of the present embodiment will be described based on FIG.

図1に示すように、エンジン2は、複数(図例では4つ)の気筒231を有するエンジン本体23と、そのエンジン本体23に吸気を供給する吸気通路21と、エンジン本体23からの排気を排出する排気通路22と、吸気を圧縮・加圧するためのターボチャージャ3と、排気通路22から排気の一部を取り出して吸気通路21に戻すためのEGR装置1と、エンジン2を制御する電子コントロールユニット(以下、ECUという)6とを備える。   As shown in FIG. 1, the engine 2 includes an engine body 23 having a plurality of (four in the illustrated example) cylinders 231, an intake passage 21 for supplying intake air to the engine body 23, and exhaust from the engine body 23. An exhaust passage 22 for discharging, a turbocharger 3 for compressing and pressurizing intake air, an EGR device 1 for taking a part of the exhaust from the exhaust passage 22 and returning it to the intake passage 21, and an electronic control for controlling the engine 2 And a unit (hereinafter referred to as ECU) 6.

本実施形態のEGR装置1は、ターボチャージャ3のタービン32よりも上流の排気通路22から排気の一部を取り出してコンプレッサ31よりも下流の吸気通路21に戻す高圧EGRを行うための高圧EGR手段4と、タービン32よりも下流の排気通路22から排気の一部を取り出してコンプレッサ31よりも上流の吸気通路21に戻す低圧EGRを行うための低圧EGR手段5と、エンジン2の回転数(エンジン回転数)を検出するための回転数検出手段をなすエンジン回転数センサ61と、エンジン2の負荷(エンジン負荷)を求めるための負荷算出手段と、上記エンジン回転数センサ61により検出されたエンジン回転数が所定回転数かつ負荷算出手段により求められたエンジン負荷が所定負荷のときに、低圧EGR手段5による低圧EGRと高圧EGR手段4による高圧EGRとの両方を行う制御手段とを備え、上記ECU6が、負荷算出手段と制御手段とをなす。   The EGR apparatus 1 of the present embodiment is a high pressure EGR means for performing high pressure EGR that extracts a part of exhaust gas from an exhaust passage 22 upstream of the turbine 32 of the turbocharger 3 and returns it to the intake passage 21 downstream of the compressor 31. 4, low pressure EGR means 5 for performing low pressure EGR for extracting a part of exhaust gas from the exhaust passage 22 downstream of the turbine 32 and returning it to the intake passage 21 upstream of the compressor 31, and the rotational speed of the engine 2 (engine An engine speed sensor 61 serving as a rotational speed detecting means for detecting the rotational speed), a load calculating means for determining a load (engine load) of the engine 2, and an engine speed detected by the engine speed sensor 61. By the low pressure EGR means 5 when the number is the predetermined number of revolutions and the engine load obtained by the load calculating means is a predetermined load. And control means for performing both the high-pressure EGR by pressure EGR and the high-pressure EGR unit 4, the ECU6 is, forms a control means and the load calculating means.

吸気通路21は、エンジン本体23の各気筒231の吸気ポートに各々接続された吸気マニフォルド211と、その吸気マニフォルド211に接続された吸気管212とを有する。吸気管212には、上流側から順に、ターボチャージャ3のコンプレッサ31と、そのコンプレッサ31で加圧された吸気を冷却するためのインタークーラ213と、吸気を絞って吸気管213(および後述する高圧EGR管41)の流量を調整するための吸気スロットルバルブ43とが設けられる。   The intake passage 21 includes an intake manifold 211 connected to each intake port of each cylinder 231 of the engine body 23 and an intake pipe 212 connected to the intake manifold 211. The intake pipe 212 includes, in order from the upstream side, the compressor 31 of the turbocharger 3, an intercooler 213 for cooling the intake air pressurized by the compressor 31, and the intake pipe 213 (and a high pressure described later) An intake throttle valve 43 for adjusting the flow rate of the EGR pipe 41) is provided.

排気通路22は、エンジン本体23の各気筒231の排気ポートに各々接続された排気マニフォルド221と、その排気マニフォルド221に接続された排気管222とを有する。排気管222には、上流側から順に、ターボチャージャ3のタービン32と、触媒装置(例えば酸化触媒)223と、排気中のPM(ディーゼルパティキュレート)を捕集するための排気浄化フィルタ装置224と、排気を絞って排気管222(および後述する低圧EGR管51)の流量を調整するためのための排気シャッタ53とが設けられる。また、排気管222には、排気浄化フィルタ装置224をバイパスするバイパス管225が設けられ、そのバイパス管225にバイパスバルブ226が設けられる。   The exhaust passage 22 has an exhaust manifold 221 connected to the exhaust port of each cylinder 231 of the engine body 23 and an exhaust pipe 222 connected to the exhaust manifold 221. In the exhaust pipe 222, in order from the upstream side, the turbine 32 of the turbocharger 3, a catalyst device (for example, an oxidation catalyst) 223, an exhaust purification filter device 224 for collecting PM (diesel particulates) in the exhaust, and An exhaust shutter 53 is provided for restricting the exhaust and adjusting the flow rate of the exhaust pipe 222 (and a low-pressure EGR pipe 51 described later). Further, the exhaust pipe 222 is provided with a bypass pipe 225 that bypasses the exhaust purification filter device 224, and the bypass pipe 225 is provided with a bypass valve 226.

ターボチャージャ3は、エンジン2からの排気(排気エネルギ)により回転するタービン32と、そのタービン32により回転駆動されるコンプレッサ31とを有する。   The turbocharger 3 includes a turbine 32 that is rotated by exhaust (exhaust energy) from the engine 2 and a compressor 31 that is rotationally driven by the turbine 32.

高圧EGR手段4は、排気マニフォルド221(タービン32よりも上流の排気通路)と吸気マニフォルド211(コンプレッサ31よりも下流の吸気通路)とを接続する高圧EGR管41(高圧EGR通路)と、その高圧EGR管41に設けられ高圧EGR管41を流れる排気の流量を調整するための高圧EGRバルブ42と、上記吸気スロットルバルブ43とを有する。   The high pressure EGR means 4 includes a high pressure EGR pipe 41 (high pressure EGR passage) that connects an exhaust manifold 221 (exhaust passage upstream of the turbine 32) and an intake manifold 211 (intake passage downstream of the compressor 31), and a high pressure thereof. The EGR pipe 41 includes a high pressure EGR valve 42 for adjusting the flow rate of exhaust gas flowing through the high pressure EGR pipe 41 and the intake throttle valve 43.

高圧EGR管41には、高圧EGR管41を流れる排気を冷却するための高圧EGRクーラ411が設けられる。その高圧EGRクーラ411は、高圧EGRバルブ42の上流(排気マニフォルド221側)に配置される。   The high pressure EGR pipe 41 is provided with a high pressure EGR cooler 411 for cooling the exhaust gas flowing through the high pressure EGR pipe 41. The high pressure EGR cooler 411 is arranged upstream of the high pressure EGR valve 42 (exhaust manifold 221 side).

吸気スロットルバルブ43は、高圧EGR管41よりも上流の吸気管212に配置される。吸気スロットルバルブ43は、バルブ開度が連続的に調整可能なように構成され、例えばバタフライバルブからなる。同様に、高圧EGRバルブ42も、バルブ開度が連続的に調整可能なように構成される。   The intake throttle valve 43 is disposed in the intake pipe 212 upstream of the high pressure EGR pipe 41. The intake throttle valve 43 is configured such that the valve opening degree can be continuously adjusted, and is formed of, for example, a butterfly valve. Similarly, the high pressure EGR valve 42 is also configured such that the valve opening can be continuously adjusted.

それら吸気スロットルバルブ43と高圧EGRバルブ42とは、ECU6に接続され、そのECU6によりバルブ開度が各々制御される。   The intake throttle valve 43 and the high pressure EGR valve 42 are connected to the ECU 6, and the valve opening degree is controlled by the ECU 6.

低圧EGR手段5は、タービン32よりも下流の排気管222とコンプレッサ31よりも上流の吸気管212とを接続する低圧EGR管51(低圧EGR通路)と、その低圧EGR管51に設けられ低圧EGR管51を流れる排気の流量を調整するための低圧EGRバルブ52と、上記排気シャッタ53とを有する。   The low pressure EGR means 5 is provided in the low pressure EGR pipe 51 (low pressure EGR passage) connecting the exhaust pipe 222 downstream of the turbine 32 and the intake pipe 212 upstream of the compressor 31, and the low pressure EGR pipe 51. A low pressure EGR valve 52 for adjusting the flow rate of the exhaust gas flowing through the pipe 51 and the exhaust shutter 53 are provided.

低圧EGR管51は、上流端が排気浄化フィルタ装置224と排気シャッタ53との間の排気管222に接続される。低圧EGR管51には、低圧EGR管51を流れる排気を冷却するための低圧EGRクーラ511が設けられる。低圧EGRクーラ511は、低圧EGRバルブ52の上流(排気管222側)に配置される。   The upstream end of the low pressure EGR pipe 51 is connected to the exhaust pipe 222 between the exhaust purification filter device 224 and the exhaust shutter 53. The low pressure EGR pipe 51 is provided with a low pressure EGR cooler 511 for cooling the exhaust gas flowing through the low pressure EGR pipe 51. The low pressure EGR cooler 511 is arranged upstream of the low pressure EGR valve 52 (exhaust pipe 222 side).

排気シャッタ53は、低圧EGR管51よりも下流の排気管222に配置される。排気シャッタ53は、バルブ開度が全開と、全開よりも閉側の所定開度とで調整可能なように構成される。その排気シャッタ53の所定開度は、例えば、10%以上40%未満、好ましくは約25%に設定される。   The exhaust shutter 53 is disposed in the exhaust pipe 222 downstream of the low pressure EGR pipe 51. The exhaust shutter 53 is configured such that the valve opening degree can be adjusted by fully opening and a predetermined opening degree closer to the closing side than the full opening. The predetermined opening degree of the exhaust shutter 53 is set to, for example, 10% or more and less than 40%, preferably about 25%.

他方、低圧EGRバルブ52は、高圧EGRバルブ42と同様に、バルブ開度が連続的に調整可能なように構成される。   On the other hand, the low-pressure EGR valve 52 is configured such that the valve opening degree can be continuously adjusted, like the high-pressure EGR valve 42.

それら低圧EGRバルブ52と排気シャッタ53とはECU6に接続され、そのECU6により排気シャッタ53は全開と所定開度とのいずれかで開閉制御され、低圧EGRバルブ52はバルブ開度が制御される。   The low pressure EGR valve 52 and the exhaust shutter 53 are connected to the ECU 6, and the exhaust shutter 53 is controlled to open or close by either full opening or a predetermined opening by the ECU 6, and the valve opening of the low pressure EGR valve 52 is controlled.

ECU6は、エンジン本体23の図示しないクランクシャフトまたはカムシャフトに取り付けられたエンジン回転数センサ61と、アクセルペダルの踏み込み量を検出するためのアクセル開度センサ62とに接続され、それらセンサ61、62からの検出値(エンジン回転数、アクセル開度)が入力される。   The ECU 6 is connected to an engine speed sensor 61 attached to a crankshaft or camshaft (not shown) of the engine body 23 and an accelerator opening sensor 62 for detecting the amount of depression of the accelerator pedal. Detection values (engine speed, accelerator opening) are input.

ECU6は、エンジン本体23の各気筒231に設けられた図示しないインジェクタに通信可能に接続され、そのインジェクタの燃料噴射量をアクセル開度センサ62の検出値から算出して求める。   The ECU 6 is communicably connected to an injector (not shown) provided in each cylinder 231 of the engine body 23, and calculates the fuel injection amount of the injector from the detection value of the accelerator opening sensor 62.

また、ECU6は、その算出した燃料噴射量とエンジン回転数センサ61の検出値とから、目標EGR率を求める。例えば、ECU6内にエンジン回転数と燃料噴射量とをパラメータとした目標EGR率のマップが予め記憶され、エンジン2の運転時に、ECU6は、エンジン回転数センサ61の検出値と算出した燃料噴射量とに対応する目標EGR率をマップから読み取る。目標EGR率は、燃料噴射量が多いほど低く、エンジン回転数が高いほど低く設定される。   Further, the ECU 6 obtains a target EGR rate from the calculated fuel injection amount and the detected value of the engine speed sensor 61. For example, a map of the target EGR rate using the engine speed and the fuel injection amount as parameters is stored in advance in the ECU 6, and when the engine 2 is operated, the ECU 6 detects the detected value of the engine speed sensor 61 and the calculated fuel injection amount. The target EGR rate corresponding to is read from the map. The target EGR rate is set lower as the fuel injection amount is larger, and lower as the engine speed is higher.

また、本実施形態の目標EGR率は、低NOx化を図るために、通常よりも高く設定されている。例えば、目標EGR率は、後述する低速・低負荷領域Lで40%以上70%未満、中速・中負荷領域Mで30%以上50%未満、高速・高負荷領域Hで10%以上35%未満に各々設定される。   Further, the target EGR rate of the present embodiment is set higher than usual in order to reduce NOx. For example, the target EGR rate is 40% or more and less than 70% in the low speed / low load region L described later, 30% or more and less than 50% in the medium speed / medium load region M, and 10% or more and 35% in the high speed / high load region H. Set to less than each.

本実施形態のECU6は、アクセル開度を基に算出した燃料噴射量からエンジン負荷を求め、さらにエンジン回転数センサ61によりエンジン回転数を求め、それらエンジン負荷とエンジン回転数とに応じて、高圧EGR手段4と低圧EGR手段5とのいずれか一方、或いは高圧EGR手段4と低圧EGR手段5との両方を同時に作動させる。   The ECU 6 of the present embodiment obtains the engine load from the fuel injection amount calculated based on the accelerator opening, further obtains the engine speed by the engine speed sensor 61, and determines the high pressure according to the engine load and the engine speed. Either one of the EGR means 4 and the low pressure EGR means 5 or both the high pressure EGR means 4 and the low pressure EGR means 5 are operated simultaneously.

具体的には、まず、ECU6は、図2に示すように、エンジン回転数とエンジン負荷とにより定められるエンジン2の運転状態の領域(つまり、横軸をエンジン回転数、縦軸をエンジン負荷にとった平面)を、予め、低速(低回転数)・低負荷領域Lと、中速(中回転数)・中負荷領域Mと、高速(高回転数)・高負荷領域Hとの3つに区分する。   Specifically, first, as shown in FIG. 2, the ECU 6 sets the operating state region of the engine 2 determined by the engine speed and the engine load (that is, the horizontal axis indicates the engine speed and the vertical axis indicates the engine load). The three planes are a low speed (low rotation speed) / low load area L, a medium speed (medium rotation speed) / medium load area M, and a high speed (high rotation speed) / high load area H. Divide into

次に、ECU6は、エンジン2を運転する際に、エンジン回転数センサ61により検出されたエンジン回転数とアクセル開度センサ62の検出値から求めたエンジン負荷とを基に現在のエンジン運転状態を求め、その求めたエンジン運転状態が上記3つの領域L、M、Hのうちのどの領域に入っているかを判断する。   Next, when operating the engine 2, the ECU 6 determines the current engine operating state based on the engine speed detected by the engine speed sensor 61 and the engine load obtained from the detected value of the accelerator opening sensor 62. It is determined, and it is determined which of the three regions L, M, and H is within the determined engine operating state.

ECU6は、エンジン運転状態が、低速・低負荷領域Lにあると判断したときに低圧EGRのみを行い、高速・高負荷領域Hにあると判断したときに高圧EGRのみを行い、中速・中負荷領域Mにあると判断したときに、低圧EGRと高圧EGRとの両方を行う。   The ECU 6 performs only the low pressure EGR when it is determined that the engine operating state is in the low speed / low load region L, and performs only the high pressure EGR when it is determined that the engine operating state is in the high speed / high load region H. When it is determined that the load is in the load region M, both low pressure EGR and high pressure EGR are performed.

詳しくは後述するが、ECU6は、エンジン運転状態が中速・中負荷領域にあると判断したときに、吸気スロットルバルブ43を全開で固定し、排気シャッタ53を上記所定開度で固定し、高圧EGRバルブ42と低圧EGRバルブ52とを目標EGR率に基づき開度制御する。   As will be described in detail later, when the ECU 6 determines that the engine operating state is in the medium speed / medium load region, the ECU 6 fixes the intake throttle valve 43 at the fully open position, fixes the exhaust shutter 53 at the predetermined opening, and sets the high pressure. The opening degree of the EGR valve 42 and the low pressure EGR valve 52 is controlled based on the target EGR rate.

ECU6には、各領域L、M、Hにおける目標EGR率と、各バルブ42、43、52、53の開度(目標開度)との関係が示されたマップが予め格納される。ECU6は、自身で決定した目標EGR率を基に、マップから各バルブ42、43、52、53の開度を読み取る。   The ECU 6 stores in advance a map showing the relationship between the target EGR rate in each of the regions L, M, and H and the opening (target opening) of each of the valves 42, 43, 52, and 53. The ECU 6 reads the opening degree of each valve 42, 43, 52, 53 from the map based on the target EGR rate determined by itself.

次に、図1に基づき本実施形態のEGR装置の作用を説明する。   Next, the operation of the EGR device of this embodiment will be described based on FIG.

本実施形態では、低速・低負荷時に低圧EGR手段5のみが作動され、中速・中負荷時に低圧EGR手段5と高圧EGR手段4との両方が作動され、高速・高負荷時に高圧EGR手段4のみが作動される。このように負荷に応じて高圧EGR手段4および低圧EGR手段5の作動を切り換えることで、より低NOx・低燃費とすることができる。   In this embodiment, only the low pressure EGR means 5 is operated at low speed and low load, both the low pressure EGR means 5 and the high pressure EGR means 4 are operated at medium speed and medium load, and the high pressure EGR means 4 is operated at high speed and high load. Only is activated. Thus, by switching the operation of the high pressure EGR means 4 and the low pressure EGR means 5 in accordance with the load, it is possible to achieve lower NOx and lower fuel consumption.

まず、エンジン運転状態が低速・低負荷領域Lにある場合について説明する。   First, the case where the engine operating state is in the low speed / low load region L will be described.

本願発明者は、本実施形態のエンジン2およびEGR装置1(図1参照)を模擬したモデルを用いて数値シミュレーションを行ったところ、その計算結果から以下のことを見出した。   When this inventor performed numerical simulation using the model which simulated the engine 2 and EGR apparatus 1 (refer FIG. 1) of this embodiment, it discovered the following from the calculation result.

低速・低負荷領域Lでは、エンジン2からの排気エネルギが小さいためタービン32およびコンプレッサ31の回転数が低くなる。その際、高圧EGRのみでEGR率を上げると、タービン32へ流入する排気エネルギが増々小さくなり、コンプレッサ31の回転が増々下がる。そのため、新気(空気)の量が減り、燃焼が悪化する。その結果、出力低下・燃費悪化・パティキュレート増加を招いてしまう。   In the low speed / low load region L, since the exhaust energy from the engine 2 is small, the rotational speeds of the turbine 32 and the compressor 31 are low. At this time, if the EGR rate is increased only by the high-pressure EGR, the exhaust energy flowing into the turbine 32 is further decreased, and the rotation of the compressor 31 is further decreased. As a result, the amount of fresh air (air) decreases and combustion worsens. As a result, the output decreases, the fuel consumption deteriorates, and the particulates increase.

他方、低圧EGRでは、EGR率を増しても、タービン32へ流入する排気エネルギが減らないため、コンプレッサ31の回転が低下してしまうことがなく、新気の量も減らない。そのため、高圧EGRのように燃焼が悪化し出力低下・燃費悪化・パティキュレート増加を招く虞がない。   On the other hand, in the low pressure EGR, even if the EGR rate is increased, the exhaust energy flowing into the turbine 32 does not decrease, so the rotation of the compressor 31 does not decrease and the amount of fresh air does not decrease. Therefore, unlike the high pressure EGR, there is no possibility that the combustion deteriorates and the output decreases, the fuel consumption deteriorates, and the particulates increase.

そこで、本実施形態では、エンジン運転状態が低速・低負荷領域Lにある場合、低圧EGR手段5による低圧EGRのみを行い、高圧EGR手段4による高圧EGRは行わないようにした。   Therefore, in this embodiment, when the engine operating state is in the low speed / low load region L, only the low pressure EGR by the low pressure EGR means 5 is performed, and the high pressure EGR by the high pressure EGR means 4 is not performed.

具体的には、ECU6は、低圧EGRを有効にするために、低圧EGRバルブ52を開側に作動させると共に、排気シャッタ53を所定開度に固定し、かつ、低圧EGRバルブ52の開度を目標EGR率に基づいて制御する。また、ECU6は、高圧EGRを無効にするために、高圧EGRバルブ42を全閉にする。なお、吸気スロットルバルブ43は基本的には全開で固定される。   Specifically, the ECU 6 activates the low-pressure EGR valve 52 to open the low-pressure EGR, fixes the exhaust shutter 53 at a predetermined opening, and increases the opening of the low-pressure EGR valve 52. Control based on the target EGR rate. Further, the ECU 6 fully closes the high pressure EGR valve 42 in order to invalidate the high pressure EGR. The intake throttle valve 43 is basically fixed fully open.

これにより、タービン32を通過した排気の一部が、低圧EGR管51を通り吸気管212に戻される。その戻された排気は、吸気管212からの新気(空気)に混合されて目標EGR率のガスとなり、そのガスがコンプレッサ31により加圧された後、エンジン本体23の各気筒231に各々供給される。   As a result, part of the exhaust gas that has passed through the turbine 32 passes through the low-pressure EGR pipe 51 and is returned to the intake pipe 212. The returned exhaust gas is mixed with fresh air (air) from the intake pipe 212 to become a gas having a target EGR rate. The gas is pressurized by the compressor 31 and then supplied to each cylinder 231 of the engine body 23. Is done.

次に、エンジン運転状態が高速・高負荷領域Hにある場合について説明する。   Next, the case where the engine operating state is in the high speed / high load region H will be described.

高速・高負荷領域Hについても、本願発明者は、上述の数値シミュレーションを行い、その計算結果から以下のことを見出した。   The inventor of the present application also performed the above-described numerical simulation for the high speed / high load region H, and found the following from the calculation result.

高速・高負荷領域Hでは、エンジン2からの排気エネルギが低速・低負荷領域Lに比べて大きくなりタービン32およびコンプレッサ31の回転数が高くなる。そのため、排気マニフォルド221の内圧が高くなり、低速・低負荷領域Lに比べるとポンプ損失が増える。その結果、燃費の悪化を招く。   In the high speed / high load region H, the exhaust energy from the engine 2 is larger than that in the low speed / low load region L, and the rotational speeds of the turbine 32 and the compressor 31 are high. Therefore, the internal pressure of the exhaust manifold 221 increases, and the pump loss increases compared to the low speed / low load region L. As a result, fuel consumption is deteriorated.

このとき高圧EGRを行えば、排気マニフォルド221の内圧を吸気マニフォルド211に逃がすことになり、排気マニフォルド221の内圧が下がる。そのためポンプ損失が減り、そのポンプ損失の減少分は燃費が良くなる。他方、低圧EGRでは、このポンプ損失低減の効果が得られない。   If the high pressure EGR is performed at this time, the internal pressure of the exhaust manifold 221 is released to the intake manifold 211, and the internal pressure of the exhaust manifold 221 decreases. Therefore, the pump loss is reduced, and the fuel consumption is improved by the reduced amount of the pump loss. On the other hand, with the low pressure EGR, the effect of reducing the pump loss cannot be obtained.

そこで、本実施形態では、エンジン運転状態が高速・高負荷領域Hにある場合、高圧EGR手段4による高圧EGRのみを行い、低圧EGR手段5による低圧EGRを行わないようにした。   Therefore, in this embodiment, when the engine operating state is in the high speed / high load region H, only the high pressure EGR by the high pressure EGR means 4 is performed, and the low pressure EGR by the low pressure EGR means 5 is not performed.

具体的には、ECU6は、高圧EGRを有効にするために、高圧EGRバルブ42を開側に作動させると共に、吸気スロットルバルブ43を閉側に作動させ、かつ、それらバルブ42、43の各開度を目標EGR率に基づいて各々制御する。また、ECU6は、低圧EGRを無効にするために、低圧EGRバルブ52を全閉にする。なお、排気シャッタ53は基本的には全開で固定される。   Specifically, the ECU 6 operates the high-pressure EGR valve 42 to the open side, operates the intake throttle valve 43 to the close side, and opens each of the valves 42 and 43 in order to make the high-pressure EGR effective. Each degree is controlled based on the target EGR rate. Further, the ECU 6 fully closes the low pressure EGR valve 52 in order to invalidate the low pressure EGR. The exhaust shutter 53 is basically fixed fully open.

これにより、エンジン本体23から排出された排気の一部が、排気マニフォルド221から高圧EGR管41を通り吸気マニフォルド211に戻される。その戻された排気と、コンプレッサ31により加圧された吸気管212からの新気(空気)とが混合されて目標EGR率のガスとなりエンジン本体23の各気筒231に各々供給される。   Thereby, a part of the exhaust discharged from the engine body 23 is returned from the exhaust manifold 221 to the intake manifold 211 through the high-pressure EGR pipe 41. The returned exhaust gas and fresh air (air) from the intake pipe 212 pressurized by the compressor 31 are mixed to become a gas having a target EGR rate and supplied to each cylinder 231 of the engine body 23.

次に、エンジン運転状態が中速・中負荷領域Mにある場合について説明する。   Next, the case where the engine operating state is in the medium speed / medium load region M will be described.

中速・中負荷領域Mについても、本願発明者は、上述の数値シミュレーションを行い、その計算結果から以下のことを見出した。   For the medium speed / medium load region M, the inventor of the present application has performed the above numerical simulation and found the following from the calculation result.

中速・中負荷領域Mでは、低速・低負荷領域Lに比べて排気エネルギが大きいので高圧EGRのみでEGR率を上げても新気の量は減り難いが、高速・高負荷領域Hに比べると依然、新気の量が足らず、燃費が悪化する。   In the medium speed / medium load region M, since the exhaust energy is larger than that in the low speed / low load region L, it is difficult to reduce the amount of fresh air even if the EGR rate is increased only by the high pressure EGR, but compared to the high speed / high load region H. Still, the amount of fresh air is not enough, and fuel consumption deteriorates.

他方、低圧EGRのみでEGR率を上げようとすると、コンプレッサ31の吸い込みが十分に強くなっていないので、排気シャッタ53をさらに閉じる(絞る)必要があり、そのためポンプ損失が増加して燃費が悪化する。   On the other hand, if the EGR rate is increased only by the low pressure EGR, since the suction of the compressor 31 is not sufficiently strong, it is necessary to close (squeeze) the exhaust shutter 53 further, so that the pump loss increases and the fuel consumption deteriorates. To do.

このように中速・中負荷領域Mでは、高圧EGRと低圧EGRとのいずれか一方のみで目標EGR率を実現しようとすると、燃費の悪化を招いてしまう。   As described above, in the medium speed / medium load region M, if the target EGR rate is to be realized by only one of the high pressure EGR and the low pressure EGR, the fuel efficiency is deteriorated.

そこで、本実施形態では、エンジン運転状態が中速・中負荷領域Mにある場合、低圧EGR手段5による低圧EGRと高圧EGR手段4による高圧EGRとの両方を同時に行うようにした。   Therefore, in this embodiment, when the engine operating state is in the medium speed / medium load region M, both the low pressure EGR by the low pressure EGR means 5 and the high pressure EGR by the high pressure EGR means 4 are performed simultaneously.

具体的には、ECU6は、低圧EGRを有効にするために低圧EGRバルブ52を開側に作動させると共に、高圧EGRを有効にするために高圧EGRバルブ42を開側にさせる。ECU6は、それら高圧EGRバルブ42と低圧EGRバルブ52との開度を目標EGR率に基づいて制御する。なお、排気シャッタ53は所定開度に固定され、吸気スロットルバルブ43は全開に固定される。   Specifically, the ECU 6 activates the low-pressure EGR valve 52 to open the low-pressure EGR, and opens the high-pressure EGR valve 42 to activate the high-pressure EGR. The ECU 6 controls the opening degrees of the high pressure EGR valve 42 and the low pressure EGR valve 52 based on the target EGR rate. The exhaust shutter 53 is fixed at a predetermined opening, and the intake throttle valve 43 is fixed fully open.

これにより、エンジン2からの排気が、高圧EGR管41と低圧EGR管51とを各々通り吸気マニフォルド211と吸気管212とに戻されて新気と各々混合される。   As a result, the exhaust from the engine 2 passes through the high pressure EGR pipe 41 and the low pressure EGR pipe 51, and is returned to the intake manifold 211 and the intake pipe 212 to be mixed with fresh air.

このように、本実施形態では、中速・中負荷領域において、高圧EGRと低圧EGRとを同時に行うことで燃費の悪化させることなく、高いEGR率を達成することができる。   As described above, in the present embodiment, a high EGR rate can be achieved without deteriorating fuel consumption by simultaneously performing the high pressure EGR and the low pressure EGR in the medium speed / medium load region.

次に、図2に基づき低速・低負荷領域L、中速・中負荷領域M、高速・高負荷領域Hについて説明する。   Next, the low speed / low load region L, the medium speed / medium load region M, and the high speed / high load region H will be described with reference to FIG.

図2において、縦軸はエンジン負荷、横軸はエンジン回転数、ラインFはエンジン2の全負荷時出力曲線である。また、横軸上のNOはエンジン2の定格回転数である。エンジン運転状態は、図2の縦軸と横軸とラインFと定格回転数NOのラインとで囲まれた領域内の点として表される。このエンジン運転状態の領域が、ラインD1とラインD2とにより、低速・低負荷領域Lと中速・中負荷領域Mと高速・高負荷領域Hとに区画される。 In FIG. 2, the vertical axis represents the engine load, the horizontal axis represents the engine speed, and the line F represents the output curve at full load of the engine 2. Further, N O on the horizontal axis is the rated rotational speed of the engine 2. Engine operating condition is represented as a point in the area surrounded by the vertical and horizontal axes and the line F and the rated speed N O lines of FIG. The engine operating state region is divided into a low speed / low load region L, a medium speed / medium load region M, and a high speed / high load region H by the line D1 and the line D2.

ラインD1が、低速・低負荷領域Lと中速・中負荷領域Mとの境界であり、図例のラインD1は、ラインF上の点P1(ラインFとの交点)から横軸上の点P2(横軸との交点)まで延びる右下がりの直線である。点P1は、そのエンジン回転数が定格回転数NOの20%以上40%未満、好ましくは定格回転数NOの約30%に設定される。点P2は、そのエンジン回転数が定格回転数NOの80%以上100%未満、好ましくは定格回転数NOの約90%に設定される。 The line D1 is a boundary between the low speed / low load region L and the medium speed / medium load region M, and the line D1 in the figure is a point on the horizontal axis from the point P1 on the line F (intersection with the line F). It is a straight line extending downward to P2 (intersection with the horizontal axis). Point P1, the engine speed is less than 20% to 40% of the rated speed N O, it is preferably set to approximately 30% of the rated speed N O. Point P2, the engine speed is 80% or more but less than 100% of the rated speed N O, is preferably set to about 90% of the rated speed N O.

ラインD2が、中速・中負荷領域Mと高速・高負荷領域Hとの境界であり、図例のラインD2は、ラインF上の点P3(ラインFとの交点)からラインD1と同じ傾きで延びる右下がりの直線である。点P3は、そのエンジン回転数が定格回転数NOの40%以上60%未満、好ましくは約50%に設定される。 The line D2 is the boundary between the medium speed / medium load region M and the high speed / high load region H, and the line D2 in the figure has the same inclination as the line D1 from the point P3 on the line F (intersection with the line F). It is a straight line extending downward at right. Point P3, the engine speed is less than 40% to 60% of the rated speed N O, it is preferably set to about 50%.

これらラインD1、D2は以下のように求められる。   These lines D1 and D2 are obtained as follows.

まず、上述のように本実施形態では、排気マニフォルド221内の圧力P(図1参照)が高いときに高圧EGR手段4を作動させて圧力Pを下げて燃費を良くする。   First, as described above, in the present embodiment, when the pressure P (see FIG. 1) in the exhaust manifold 221 is high, the high pressure EGR means 4 is operated to reduce the pressure P to improve fuel efficiency.

他方、圧力Pが低いときに高圧EGR手段4を作動させると圧力Pが下がりすぎて、タービン32が仕事をしなくなりコンプレッサ31の過給が不足してエンジンの正常な運転に必要な空気量を確保できなくなる。そこで、圧力Pが低いときには低圧EGR手段5を作動させる。   On the other hand, if the high pressure EGR means 4 is operated when the pressure P is low, the pressure P will drop too much, the turbine 32 will not work, the compressor 31 will not be supercharged, and the amount of air necessary for normal operation of the engine will be reduced. It cannot be secured. Therefore, when the pressure P is low, the low pressure EGR means 5 is operated.

つまり、その圧力Pによって、高圧EGR手段4と低圧EGR手段5との作動領域を区切ることができる。   That is, the operating region of the high pressure EGR means 4 and the low pressure EGR means 5 can be divided by the pressure P.

ここで、圧力Pは、排気ガス流量の2乗に比例し、その排気ガス流量はエンジン回転数と排気ガス温度の積に比例し、その排気ガス温度は燃料流量(エンジン負荷)に比例する。   Here, the pressure P is proportional to the square of the exhaust gas flow rate, the exhaust gas flow rate is proportional to the product of the engine speed and the exhaust gas temperature, and the exhaust gas temperature is proportional to the fuel flow rate (engine load).

よって、圧力Pは、エンジン回転数と燃料流量との積の2乗に比例する。   Therefore, the pressure P is proportional to the square of the product of the engine speed and the fuel flow rate.

図2のラインD1、D2は、このエンジン回転数と燃料流量との積の2乗を平行な直線で近似することで、傾きが得られたものである。なお、ラインD1、D2の切片(横軸との交点)は、上述したシミュレーションなどにより求められる。   The lines D1 and D2 in FIG. 2 are obtained by approximating the square of the product of the engine speed and the fuel flow rate with parallel straight lines. Note that the intercepts (intersections with the horizontal axis) of the lines D1 and D2 are obtained by the above-described simulation or the like.

次に、図3および図4に基づき、本実施形態のEGR装置1によるNOxおよび燃費の改善結果を説明する。   Next, based on FIG. 3 and FIG. 4, the improvement result of NOx and fuel consumption by the EGR apparatus 1 of this embodiment is demonstrated.

図3は、EGR率を変化させたときの燃費率を示したものであり、図4は、EGR率を変化させたときのNOxの排出量を示したものである。これら図3および図4では、高圧EGRのみ行った場合を白抜きの菱形で、低圧EGRのみ行った場合を黒塗りの三角で、高圧および低圧EGRの両方を行った場合を、×印で示した。なお、エンジン2の負荷を定格負荷の50%、回転数を定格回転数の50%とした。   FIG. 3 shows the fuel consumption rate when the EGR rate is changed, and FIG. 4 shows the NOx emission amount when the EGR rate is changed. In FIGS. 3 and 4, the case where only high pressure EGR is performed is indicated by a white diamond, the case where only low pressure EGR is performed is indicated by a black triangle, and the case where both high pressure and low pressure EGR are performed is indicated by a cross. It was. The load of the engine 2 was 50% of the rated load, and the rotation speed was 50% of the rated rotation speed.

図3に示すように、高圧EGRのみを行う場合、EGR率を30%までしか上げることができない。また、低圧EGRのみを行う場合、EGR率40%までEGRをかけることができるが、燃費率(g/kW・h)が大きくなってしまう。すなわち燃費が悪いことがわかる。   As shown in FIG. 3, when only high pressure EGR is performed, the EGR rate can only be increased to 30%. In addition, when only low pressure EGR is performed, EGR can be applied up to an EGR rate of 40%, but the fuel consumption rate (g / kW · h) increases. That is, it is understood that the fuel consumption is bad.

これに対して、低圧EGRと高圧EGRとを同時に行う場合、広いEGR率の範囲が得られる。特に、高圧EGRのみを行う場合に比べて、EGR率をより高く約37%まで設定することができる。他方、低圧EGRのみを行う場合に比べて燃費率が全体的に小さくなる。すなわち、低圧EGRのみに比べて燃費が良い。   On the other hand, when the low pressure EGR and the high pressure EGR are performed simultaneously, a wide range of EGR rates can be obtained. In particular, the EGR rate can be set to about 37% higher than when only high pressure EGR is performed. On the other hand, the fuel consumption rate is reduced as a whole as compared with the case where only low pressure EGR is performed. That is, the fuel consumption is better than that of only the low pressure EGR.

また、図4からは、低圧EGRと高圧EGRとの同時作動で、より少ないNOxの排出となることがわかる。   Further, from FIG. 4, it can be seen that less NOx is discharged by simultaneous operation of the low pressure EGR and the high pressure EGR.

このように、本実施形態のEGR装置1によれば、エンジン2が中速・中負荷のときに低圧EGRと高圧EGRとの両方を同時に行うことで、エンジン2の低NOx化、低燃費化を図ることができる。   As described above, according to the EGR device 1 of the present embodiment, when the engine 2 is at medium speed / medium load, both the low pressure EGR and the high pressure EGR are performed simultaneously, thereby reducing the NOx and fuel consumption of the engine 2. Can be achieved.

その他にも、可変容量ターボチャージャ(VGSターボチャージャ)を使用することなく高いEGR率を実現でき、その結果、エンジンの製品コストを低減することができる。   In addition, a high EGR rate can be realized without using a variable capacity turbocharger (VGS turbocharger), and as a result, the product cost of the engine can be reduced.

なお、本発明は上述の実施形態に限定されず、様々な変形例や応用例が考えられる。   In addition, this invention is not limited to the above-mentioned embodiment, Various modifications and application examples can be considered.

例えば、上記の切換モードは、あくまでも一例であり、本発明はこれに限定されない。例えば、エンジン2の全運転領域(L+M+H)に亘り、低圧EGRと高圧EGRとの両方を行うことも考えられる。   For example, the above switching mode is merely an example, and the present invention is not limited to this. For example, it is conceivable to perform both the low pressure EGR and the high pressure EGR over the entire operation region (L + M + H) of the engine 2.

また、上述の実施形態ではEGR率を基に各バルブ42、43、52、53を制御したが、これに限定されず、EGR量や酸素量を基にバルブ42、43、52、53を制御することも考えられる。   In the above-described embodiment, the valves 42, 43, 52, and 53 are controlled based on the EGR rate. However, the present invention is not limited to this, and the valves 42, 43, 52, and 53 are controlled based on the EGR amount and the oxygen amount. It is also possible to do.

また、上述の実施形態では、中速・中負荷領域Mのときに、吸気スロットルバルブ43を全開で固定し、排気シャッタ53を全開よりも閉側の所定開度で固定したが、これに限定されない。例えば、排気シャッタ53を全開で固定し、吸気スロットルバルブ43を全開よりも閉側の所定開度で固定するようにしてもよい。この場合、吸気スロットルバルブ43を、全開と所定開度とのいずれかで開閉制御するようにしてもよく、その吸気スロットルバルブ43の所定開度は、例えば、10%以上40%未満、好ましくは約25%に設定される。また、排気シャッタ53は不要となる。   Further, in the above-described embodiment, in the middle speed / medium load region M, the intake throttle valve 43 is fixed at a fully open position and the exhaust shutter 53 is fixed at a predetermined opening on the closing side of the fully open position. Not. For example, the exhaust shutter 53 may be fixed at a fully open position, and the intake throttle valve 43 may be fixed at a predetermined opening that is closer to the close side than the fully open position. In this case, the intake throttle valve 43 may be controlled to be opened or closed by either full opening or a predetermined opening, and the predetermined opening of the intake throttle valve 43 is, for example, 10% or more and less than 40%, preferably Set to about 25%. Further, the exhaust shutter 53 is not necessary.

また、低圧EGR手段5の排気シャッタ53と高圧EGR手段4の吸気スロットルバルブ43とのいずれか一方または両方を省略することも考えられる。   It is also conceivable to omit one or both of the exhaust shutter 53 of the low pressure EGR means 5 and the intake throttle valve 43 of the high pressure EGR means 4.

1 EGR装置
2 エンジン
3 ターボチャージャ
4 高圧EGR手段
5 低圧EGR手段
6 ECU(負荷算出手段、制御手段)
21 吸気通路
22 排気通路
31 コンプレッサ
32 タービン
61 エンジン回転数センサ(回転数検出手段)
DESCRIPTION OF SYMBOLS 1 EGR apparatus 2 Engine 3 Turbocharger 4 High pressure EGR means 5 Low pressure EGR means 6 ECU (load calculation means, control means)
21 Intake passage 22 Exhaust passage 31 Compressor 32 Turbine 61 Engine speed sensor (rotation speed detection means)

Claims (4)

エンジンの吸気通路にターボチャージャのコンプレッサが設けられると共に排気通路にタービンが設けられ、そのタービンよりも上流の排気通路から排気の一部を取り出して上記コンプレッサよりも下流の吸気通路に戻す高圧EGRを行うための高圧EGR手段と、上記タービンよりも下流の排気通路から排気の一部を取り出して上記コンプレッサよりも上流の吸気通路に戻す低圧EGRを行うための低圧EGR手段とを備えたEGR装置において、
上記エンジンの回転数を検出するための回転数検出手段と、
上記エンジンの負荷を求めるための負荷算出手段と、
上記回転数検出手段により検出された回転数が所定回転数かつ上記負荷算出手段により求められた負荷が所定負荷のときに、上記低圧EGR手段による上記低圧EGRと上記高圧EGR手段による上記高圧EGRとの両方を行う制御手段とを備えたことを特徴とするEGR装置。
A turbocharger compressor is provided in the intake passage of the engine and a turbine is provided in the exhaust passage, and a high pressure EGR that takes a part of the exhaust from the exhaust passage upstream of the turbine and returns it to the intake passage downstream of the compressor. In an EGR apparatus comprising: a high pressure EGR means for performing; and a low pressure EGR means for performing a low pressure EGR for extracting a part of exhaust from an exhaust passage downstream of the turbine and returning it to an intake passage upstream of the compressor ,
A rotational speed detection means for detecting the rotational speed of the engine;
Load calculating means for determining the engine load;
When the rotational speed detected by the rotational speed detecting means is a predetermined rotational speed and the load obtained by the load calculating means is a predetermined load, the low pressure EGR by the low pressure EGR means and the high pressure EGR by the high pressure EGR means And a control means for performing both of the above.
上記制御手段は、上記エンジンの回転数と負荷とにより定められる上記エンジンの運転状態の領域を、予め、低速・低負荷領域と中速・中負荷領域と高速・高負荷領域とに区分し、
上記エンジンが運転される際に、上記回転数検出手段の回転数と上記負荷算出手段の負荷とにより定まる運転状態が、上記低速・低負荷領域にあるときに上記低圧EGRのみ行い、上記高速・高負荷領域にあるときに上記高圧EGRのみ行い、上記中速・中負荷領域にあるときに上記低圧EGRと上記高圧EGRとの両方を行う請求項1記載のEGR装置。
The control means divides the engine operating state region determined by the engine speed and the load into a low speed / low load region, a medium speed / medium load region, and a high speed / high load region in advance.
When the engine is operated, only the low pressure EGR is performed when the operation state determined by the rotation speed of the rotation speed detection means and the load of the load calculation means is in the low speed / low load region. The EGR device according to claim 1, wherein only the high pressure EGR is performed when in the high load region, and both the low pressure EGR and the high pressure EGR are performed when in the medium speed / medium load region.
上記高圧EGR手段は、上記タービンよりも上流の排気通路と上記コンプレッサよりも下流の吸気通路とを接続する高圧EGR通路と、その高圧EGR通路に設けられた高圧EGRバルブと、上記高圧EGR通路よりも上流の吸気通路に設けられた吸気スロットルバルブとを有し、
上記低圧EGR手段は、上記タービンよりも下流の排気通路と上記コンプレッサよりも上流の吸気通路とを接続する低圧EGR通路と、その低圧EGR通路に設けられた低圧EGRバルブと、上記低圧EGR通路よりも下流の排気通路に設けられた排気シャッタとを有し、
上記制御手段は、上記エンジンの運転状態が上記中速・中負荷領域にあるときに、上記吸気スロットルバルブを全開で固定し、上記排気シャッタを全開よりも閉側の所定開度で固定し、上記高圧EGRバルブと上記低圧EGRバルブとを目標EGR率に基づき開度制御する請求項2記載のEGR装置。
The high pressure EGR means includes a high pressure EGR passage connecting an exhaust passage upstream of the turbine and an intake passage downstream of the compressor, a high pressure EGR valve provided in the high pressure EGR passage, and the high pressure EGR passage. Also has an intake throttle valve provided in the upstream intake passage,
The low pressure EGR means includes a low pressure EGR passage connecting an exhaust passage downstream of the turbine and an intake passage upstream of the compressor, a low pressure EGR valve provided in the low pressure EGR passage, and the low pressure EGR passage. And an exhaust shutter provided in the downstream exhaust passage,
The control means, when the operating state of the engine is in the medium speed / medium load region, the intake throttle valve is fixed at a fully open position, the exhaust shutter is fixed at a predetermined opening on the closing side of the fully open position, The EGR device according to claim 2, wherein the opening degree of the high pressure EGR valve and the low pressure EGR valve is controlled based on a target EGR rate.
上記高圧EGR手段は、上記タービンよりも上流の排気通路と上記コンプレッサよりも下流の吸気通路とを接続する高圧EGR通路と、その高圧EGR通路に設けられた高圧EGRバルブと、上記高圧EGR通路よりも上流の吸気通路に設けられた吸気スロットルバルブとを有し、
上記低圧EGR手段は、上記タービンよりも下流の排気通路と上記コンプレッサよりも上流の吸気通路とを接続する低圧EGR通路と、その低圧EGR通路に設けられた低圧EGRバルブと、上記低圧EGR通路よりも下流の排気通路に設けられた排気シャッタとを有し、
上記制御手段は、上記エンジンの運転状態が上記中速・中負荷領域にあるときに、上記排気シャッタを全開で固定し、上記吸気スロットルバルブを全開よりも閉側の所定開度で固定し、上記高圧EGRバルブと上記低圧EGRバルブとを目標EGR率に基づき開度制御する請求項2記載のEGR装置。
The high pressure EGR means includes a high pressure EGR passage connecting an exhaust passage upstream of the turbine and an intake passage downstream of the compressor, a high pressure EGR valve provided in the high pressure EGR passage, and the high pressure EGR passage. Also has an intake throttle valve provided in the upstream intake passage,
The low pressure EGR means includes a low pressure EGR passage connecting an exhaust passage downstream of the turbine and an intake passage upstream of the compressor, a low pressure EGR valve provided in the low pressure EGR passage, and the low pressure EGR passage. And an exhaust shutter provided in the downstream exhaust passage,
The control means, when the operating state of the engine is in the medium speed / medium load region, the exhaust shutter is fixed at a fully open position, the intake throttle valve is fixed at a predetermined opening on the side closer to the full opening, The EGR device according to claim 2, wherein the opening degree of the high pressure EGR valve and the low pressure EGR valve is controlled based on a target EGR rate.
JP2009036809A 2009-02-19 2009-02-19 Egr device Pending JP2010190150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009036809A JP2010190150A (en) 2009-02-19 2009-02-19 Egr device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009036809A JP2010190150A (en) 2009-02-19 2009-02-19 Egr device

Publications (1)

Publication Number Publication Date
JP2010190150A true JP2010190150A (en) 2010-09-02

Family

ID=42816440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009036809A Pending JP2010190150A (en) 2009-02-19 2009-02-19 Egr device

Country Status (1)

Country Link
JP (1) JP2010190150A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012092703A (en) * 2010-10-26 2012-05-17 Isuzu Motors Ltd Engine supercharger
WO2013111273A1 (en) * 2012-01-24 2013-08-01 トヨタ自動車株式会社 Exhaust circulation apparatus for internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012092703A (en) * 2010-10-26 2012-05-17 Isuzu Motors Ltd Engine supercharger
WO2013111273A1 (en) * 2012-01-24 2013-08-01 トヨタ自動車株式会社 Exhaust circulation apparatus for internal combustion engine
US9567945B2 (en) 2012-01-24 2017-02-14 Toyota Jidosha Kabushiki Kaisha Exhaust circulation apparatus for internal combustion engine

Similar Documents

Publication Publication Date Title
JP5444996B2 (en) Internal combustion engine and control method thereof
JP2008274833A (en) Supercharging device for engine
JP2010096049A (en) Control device of internal combustion engine
WO2007066833A1 (en) Exhaust gas purification system for internal combustion engine
JP2010190052A (en) Supercharging system for internal combustion engine
JP5679185B2 (en) Control device for internal combustion engine
JP2008175114A (en) Supercharger control device of internal combustion engine
JP2007303380A (en) Exhaust gas control device for internal combustion engine
JP2010190150A (en) Egr device
JP5688959B2 (en) Control device for internal combustion engine
JP2010223077A (en) Internal combustion engine
JP2010168954A (en) Control device for internal combustion engine
JP2006249949A (en) Exhaust gas recirculation device for internal combustion engine
JP2012167638A (en) Exhaust gas recirculation control method for internal combustion engine
JP2012107594A (en) Exhaust gas recirculation control method of internal combustion engine
JP2010116894A (en) Control device of internal combustion engine
JP5420945B2 (en) Exhaust gas recirculation method and apparatus for turbocharged engine
JP6537271B2 (en) Internal combustion engine
JP7070368B2 (en) Supercharging system
JP5570317B2 (en) Control method for internal combustion engine
JP5791960B2 (en) Internal combustion engine with a supercharger
JP5760382B2 (en) Engine supercharger
JP5730056B2 (en) Exhaust gas recirculation system for internal combustion engines
JP7056596B2 (en) Supercharging system
JP7059949B2 (en) Supercharging system