JP5569862B2 - Xenon lamp lighting device - Google Patents

Xenon lamp lighting device Download PDF

Info

Publication number
JP5569862B2
JP5569862B2 JP2010114032A JP2010114032A JP5569862B2 JP 5569862 B2 JP5569862 B2 JP 5569862B2 JP 2010114032 A JP2010114032 A JP 2010114032A JP 2010114032 A JP2010114032 A JP 2010114032A JP 5569862 B2 JP5569862 B2 JP 5569862B2
Authority
JP
Japan
Prior art keywords
voltage
circuit
charging
xenon lamp
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010114032A
Other languages
Japanese (ja)
Other versions
JP2011243390A (en
Inventor
義男 西沢
徹 永瀬
勝明 大久保
信一 鈴木
祐哉 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwasaki Denki KK
Original Assignee
Iwasaki Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwasaki Denki KK filed Critical Iwasaki Denki KK
Priority to JP2010114032A priority Critical patent/JP5569862B2/en
Publication of JP2011243390A publication Critical patent/JP2011243390A/en
Application granted granted Critical
Publication of JP5569862B2 publication Critical patent/JP5569862B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)

Description

本発明は概略としてキセノンランプ点灯装置に関し、より具体的には、擬似太陽光を照射する擬似太陽光照射装置に用いられるキセノンランプ点灯装置に関する。   The present invention generally relates to a xenon lamp lighting device, and more specifically, to a xenon lamp lighting device used in a pseudo-sunlight irradiation device that emits simulated sunlight.

太陽電池の光電変換特性などの各種太陽エネルギー利用機器の性能測定のために、自然太陽光のスペクトル分布を再現する擬似太陽光を被照射体に照射する擬似太陽光照射装置が知られている。この種の擬似太陽光照射装置においては、キセノンランプからなる光源が箱体内に設置され、光源からの光が光学フィルタを介して照射されることで放射面から擬似太陽光が放射される。   In order to measure the performance of various solar energy utilizing devices such as the photoelectric conversion characteristics of solar cells, a pseudo solar irradiation device that irradiates an object to be irradiated with pseudo sunlight that reproduces the spectral distribution of natural sunlight is known. In this type of simulated sunlight irradiating device, a light source composed of a xenon lamp is installed in a box, and simulated sunlight is emitted from the radiation surface by irradiating light from the light source through an optical filter.

本装置では、例えば、発光長が1000mm以上のキセノンランプ(以下、「ランプ」という)が用いられ、直流のランプ電流が通電され、そのランプ電流値を点灯装置によって調整することにより照射面の照度が制御される。一般的には、点灯時のランプ電流は数十アンペア(例えば70A)、ランプ電圧は数百ボルト(例えば500V)程度であり、このランプ電流/電圧が、1回の点灯あたり数十mSecから数百mSecにわたって通電/印加される。この出力状態が定電流又は定電力で制御され、点灯期間中に被照射体の性能が測定される。   In this apparatus, for example, a xenon lamp having a light emission length of 1000 mm or more (hereinafter referred to as “lamp”) is used, a direct-current lamp current is applied, and the lamp current value is adjusted by the lighting device, whereby the illuminance on the irradiated surface Is controlled. Generally, the lamp current at the time of lighting is several tens of amperes (for example, 70 A), the lamp voltage is about several hundred volts (for example, 500 V), and this lamp current / voltage is several tens of mSec per lighting. Energized / applied over 100 mSec. This output state is controlled by constant current or constant power, and the performance of the irradiated object is measured during the lighting period.

上記の場合、ランプ電力が35kWとなり、瞬時(例えば100mSec)とはいえ、この電力を商用電源から直接供給すると、同じ商用電源の系統の周辺機器に障害を及ぼすことや、商用電源と照射装置の間に容量の大きい接点及び配線が必要となることが問題なる。そこで一般には、照射装置内に点灯装置を設け、点灯装置において電力を蓄積し、点灯指令に応じてその蓄積された電力をランプに供給する構成が採用される。   In the above case, the lamp power is 35 kW, and even if it is instantaneous (for example, 100 mSec), if this power is supplied directly from the commercial power supply, it will cause a failure in peripheral devices of the same commercial power system, A problem arises in that a large-capacity contact and wiring are required between them. Therefore, generally, a configuration is adopted in which a lighting device is provided in the irradiation device, electric power is accumulated in the lighting device, and the accumulated power is supplied to the lamp in response to a lighting command.

図4に従来の点灯装置を示す。整流器2及び平滑コンデンサ3で構成される直流電源回路100で交流電源1が直流電圧に変換され、その直流電圧が充電回路200に供給される。充電回路200はトランジスタ4、5、6及び7からなるインバータを含む。制御部40からの充電指令に応じて、PWM制御回路8によってトランジスタ4、7及びトランジスタ5、6の導通時間が制御され、高周波で交互に導通される。これによりトランス9の1次巻線に交流電圧が発生するとともに、トランス9の2次巻線に昇圧比に応じた電圧が発生する。トランス9の2次巻線に発生した電圧は整流器10で整流され、コイル11で平滑されて大容量の電解コンデンサ(充電コンデンサ)13に充電される。ここで、電流検出抵抗12で検出される充電電流に比例した電圧(即ち、B−G間の電圧)と基準電圧15とが誤差増幅器14に入力され、両者が等しくなるようにPWM制御回路8によってトランジスタ4〜7の導通時間がPWM制御される。これにより、大容量の充電コンデンサ13は設定された電流値で定電流充電されていく。充電コンデンサ13がランプ電圧よりも充分に高い電圧(例えば、1000V)に充電されると、PWM制御回路8はインバータの動作を一旦停止(又は充電電圧を保持)し、スタンバイ状態となる。   FIG. 4 shows a conventional lighting device. The AC power supply 1 is converted into a DC voltage by the DC power supply circuit 100 including the rectifier 2 and the smoothing capacitor 3, and the DC voltage is supplied to the charging circuit 200. Charging circuit 200 includes an inverter composed of transistors 4, 5, 6 and 7. In accordance with the charging command from the control unit 40, the conduction time of the transistors 4, 7 and the transistors 5, 6 is controlled by the PWM control circuit 8 and is alternately conducted at a high frequency. As a result, an AC voltage is generated in the primary winding of the transformer 9 and a voltage corresponding to the boost ratio is generated in the secondary winding of the transformer 9. The voltage generated in the secondary winding of the transformer 9 is rectified by the rectifier 10, smoothed by the coil 11, and charged to a large capacity electrolytic capacitor (charging capacitor) 13. Here, the voltage proportional to the charging current detected by the current detection resistor 12 (that is, the voltage between B and G) and the reference voltage 15 are input to the error amplifier 14, and the PWM control circuit 8 so that they are equal. As a result, the conduction time of the transistors 4 to 7 is PWM-controlled. As a result, the large-capacity charging capacitor 13 is charged with a constant current at the set current value. When the charging capacitor 13 is charged to a voltage sufficiently higher than the lamp voltage (for example, 1000 V), the PWM control circuit 8 temporarily stops the operation of the inverter (or holds the charging voltage) and enters a standby state.

次に、制御部40からランプ点灯指令が発せられると、電流制御回路300が動作を開始する。電流制御回路300は降圧チョッパ回路からなり、降圧チョッパ回路は、IGBT等の半導体スイッチ16、ダイオード17、コイル18、コンデンサ19、電流検出抵抗20、半導体スイッチ16の導通時間を制御するPWM制御回路21、誤差増幅器22、基準電圧23及び帰還素子27で構成される。この時点で、ランプ25の両端に充電コンデンサ13の電圧とほぼ等しい直流電圧(1000V)が直ちに印加される。その後、イグナイタ(不図示)のパルストランス24によってパルス電圧が上記直流電圧に重畳され、ランプ25の絶縁破壊が起こる。   Next, when a lamp lighting command is issued from the control unit 40, the current control circuit 300 starts operation. The current control circuit 300 includes a step-down chopper circuit, and the step-down chopper circuit is a PWM control circuit 21 that controls the conduction time of the semiconductor switch 16 such as an IGBT, the diode 17, the coil 18, the capacitor 19, the current detection resistor 20, and the semiconductor switch 16. , An error amplifier 22, a reference voltage 23, and a feedback element 27. At this time, a DC voltage (1000 V) almost equal to the voltage of the charging capacitor 13 is immediately applied across the lamp 25. Thereafter, a pulse voltage is superimposed on the DC voltage by a pulse transformer 24 of an igniter (not shown), and dielectric breakdown of the lamp 25 occurs.

ランプ25が絶縁破壊を起こすと、コンデンサ13の充電電圧を電源として電流制御回路300からの制限された電流がランプ25に投入される。電流制御回路300において、電流検知抵抗20に流れる電流に比例する電圧信号(検出電圧)と基準電圧23からの電圧信号(基準電圧)が誤差増幅器22に入力され、両者が等しくなるように、PWM制御回路21によって半導体スイッチ16の導通時間がPWM制御される。これにより、コンデンサ13を電源とするランプ25の直流点灯が設定電流値で定電流制御される。類似の構成が特許文献1に開示されている。   When the lamp 25 undergoes dielectric breakdown, a limited current from the current control circuit 300 is input to the lamp 25 using the charging voltage of the capacitor 13 as a power source. In the current control circuit 300, a voltage signal (detection voltage) proportional to the current flowing through the current detection resistor 20 and a voltage signal (reference voltage) from the reference voltage 23 are input to the error amplifier 22 so that both are equal. The conduction time of the semiconductor switch 16 is PWM controlled by the control circuit 21. As a result, the DC lighting of the lamp 25 using the capacitor 13 as a power source is controlled at a constant current with the set current value. A similar configuration is disclosed in Patent Document 1.

図2(A)及び(B)に、点灯指令が発せられてからの充電コンデンサ13の充電電圧とランプ電流のタイムチャートを示す。図示するように、t0でランプ25が放電を開始すると充電コンデンサ13の充電電圧はV0から急激に低下し、ランプの定電流点灯に必要な電圧V1を下回るとランプ電流は低下し始める(t1)。なお、電圧V1=(ランプ電圧+トランス24の2次巻線端電圧)/PWM回路21の最大デューティ、である。そして、充電電圧がランプ放電に必要な電圧Vminを下回るとランプ25は消灯する(t2)。なお、電圧Vmin=ランプ電圧+トランス24の2次巻線端電圧、である。   2A and 2B show time charts of the charging voltage and the lamp current of the charging capacitor 13 after the lighting command is issued. As shown in the figure, when the lamp 25 starts discharging at t0, the charging voltage of the charging capacitor 13 rapidly decreases from V0, and when the voltage falls below the voltage V1 necessary for constant current lighting of the lamp, the lamp current starts to decrease (t1). . The voltage V1 = (lamp voltage + secondary winding end voltage of the transformer 24) / maximum duty of the PWM circuit 21. When the charging voltage falls below the voltage Vmin required for lamp discharge, the lamp 25 is turned off (t2). Note that the voltage Vmin = the lamp voltage + the secondary winding end voltage of the transformer 24.

特開平7−299030号公報JP-A-7-299030

しかし、従来の構成では、ランプ25の点灯時間(特に定電流制御できる期間)を長くするためには充電コンデンサ13の容量を大きくするしかなかった。これにより装置の大型化やコストアップが問題となっていた。特に、充電コンデンサ13は装置全体に対するスペース及びコストの割合が大きく、充電コンデンサの小型化・低コスト化はキセノンランプ点灯装置において重要な課題である。   However, in the conventional configuration, in order to lengthen the lighting time of the lamp 25 (particularly the period during which constant current control is possible), the capacity of the charging capacitor 13 must be increased. As a result, the increase in size and cost of the apparatus has been a problem. In particular, the charging capacitor 13 has a large space and cost ratio with respect to the entire device, and downsizing and cost reduction of the charging capacitor are important issues in the xenon lamp lighting device.

具体的には、例えば、充電コンデンサ13の充電電圧が1000V、設定ランプ電流が70A、ランプ電圧が500V、このときのトランス24の2次巻線の電圧降下が20V、降圧チョッパ回路300のPWM制御回路21の最大デューティ比が90%の場合、上記の定電流点灯可能な電圧V1について、V1=(500V+20V)/0.9=578V、となる。上述のように、充電電圧がV1(578V)まで低下するとランプ電流が減少し始める。ここで、充電コンデンサ13の充電電圧は初期の充電電圧に対し、57.8%の電圧が残っているのに、被照射体へ照射される擬似太陽光出力が低下し始めるため、被照射体の性能測定は時間t1で終了することになってしまう。   Specifically, for example, the charging voltage of the charging capacitor 13 is 1000 V, the set lamp current is 70 A, the lamp voltage is 500 V, the voltage drop of the secondary winding of the transformer 24 at this time is 20 V, and the PWM control of the step-down chopper circuit 300 is performed. When the maximum duty ratio of the circuit 21 is 90%, V1 = (500V + 20V) /0.9=578V for the voltage V1 at which the constant current lighting is possible. As described above, when the charging voltage is reduced to V1 (578V), the lamp current starts to decrease. Here, although the charging voltage of the charging capacitor 13 remains at 57.8% of the initial charging voltage, the simulated solar light output to the irradiated object starts to decrease, and thus the irradiated object This performance measurement ends at time t1.

そこで、本発明は充電コンデンサの容量を大きくすることなく、ランプの定電流点灯期間を長くできる構成を提供することを目的とする。   Therefore, an object of the present invention is to provide a configuration that can extend the constant current lighting period of a lamp without increasing the capacity of a charging capacitor.

本発明の第1の側面は、キセノンランプ点灯装置であって、充電コンデンサ(13)を有する充電回路(200)、充電コンデンサの充電電圧を昇圧して平滑する昇圧回路(250)、及び昇圧回路の出力を受けて定電流制御されたランプ電流をキセノンランプに投入する電流制御回路(300)を備え、電流制御回路の入力電圧について、定電流制御に必要な入力電圧が所定値V1である場合に、昇圧回路が昇圧出力を所定値V1以上に昇圧するように構成されたキセノンランプ点灯装置。   A first aspect of the present invention is a xenon lamp lighting device, a charging circuit (200) having a charging capacitor (13), a boosting circuit (250) for boosting and smoothing a charging voltage of the charging capacitor, and a boosting circuit. A current control circuit (300) that receives the output of the current and inputs a constant current controlled lamp current to the xenon lamp, and the input voltage required for constant current control is a predetermined value V1 for the input voltage of the current control circuit And a xenon lamp lighting device configured such that the booster circuit boosts the boosted output to a predetermined value V1 or more.

また、昇圧回路(250)が充電電圧を検出する検出回路(35)を備え、充電電圧が所定値V2(V1≦V2)以下となった場合に、昇圧回路が昇圧出力電圧を所定値V2以上に昇圧するように構成した。
さらに、所定値V2について、V2=V1としてもよい。
Further, the booster circuit (250) includes a detection circuit (35) for detecting the charging voltage, and when the charging voltage becomes equal to or lower than a predetermined value V2 (V1 ≦ V2), the booster circuit increases the boosted output voltage to a predetermined value V2 or higher. It was configured to boost the pressure.
Further, V2 = V1 may be set for the predetermined value V2.

本発明による第1の実施例のキセノンランプ点灯装置を示す図である。It is a figure which shows the xenon lamp lighting device of 1st Example by this invention. 従来例及び実施例のキセノンランプ点灯装置の動作を説明する図である。It is a figure explaining operation | movement of the xenon lamp lighting device of a prior art example and an Example. 本発明による第2の実施例のキセノンランプ点灯装置の昇圧回路を示す図である。It is a figure which shows the booster circuit of the xenon lamp lighting device of 2nd Example by this invention. 従来のキセノンランプ点灯装置を示す図である。It is a figure which shows the conventional xenon lamp lighting device.

実施例1.
図1に本発明の第1の実施例によるキセノンランプ点灯装置の回路構成を示す。図において、直流電源回路100、充電回路200、電流制御回路300及び不図示のイグナイタ回路は、図4に示す従来例と同様であるので説明を省略する。本発明は充電回路200と電流制御回路300の間に昇圧回路250を備えた点が従来例と異なる。
Example 1.
FIG. 1 shows a circuit configuration of a xenon lamp lighting device according to a first embodiment of the present invention. In the figure, the DC power supply circuit 100, the charging circuit 200, the current control circuit 300, and the igniter circuit (not shown) are the same as those in the conventional example shown in FIG. The present invention is different from the conventional example in that a booster circuit 250 is provided between the charging circuit 200 and the current control circuit 300.

昇圧回路250は、コイル26、IGBT等の半導体スイッチ27、ダイオード28、抵抗29、30、出力平滑用の電解コンデンサ(平滑コンデンサ)31、半導体スイッチ27の導通時間を制御するPWM制御回路32、誤差増幅器33、基準電圧34で構成される昇圧チョッパ回路である。   The booster circuit 250 includes a coil 26, a semiconductor switch 27 such as an IGBT, a diode 28, resistors 29 and 30, an output smoothing electrolytic capacitor (smoothing capacitor) 31, a PWM control circuit 32 that controls the conduction time of the semiconductor switch 27, and an error. This is a step-up chopper circuit composed of an amplifier 33 and a reference voltage 34.

昇圧回路250の制御において、例えば、平滑コンデンサ31の電圧に比例した電圧となる抵抗29、抵抗30間の電圧信号と基準電圧34が誤差増幅器33に入力され、平滑コンデンサ31の電圧が所定値に維持される。この昇圧回路250が動作していないときは充電コンデンサ13の電圧がそのまま平滑コンデンサ31に充電される(即ち、充電コンデンサ13の電圧がそのまま電流制御回路300の入力となる)。一方、昇圧回路250が動作しているときは充電コンデンサ13の電圧が昇圧されて平滑コンデンサ31に充電される(即ち、充電コンデンサ13の電圧より高い平滑コンデンサ31の電圧が電流制御回路300の入力となる)。なお、平滑コンデンサ31の容量は充電コンデンサ13の容量よりも充分に小さい。   In the control of the booster circuit 250, for example, the voltage signal between the resistor 29 and the resistor 30 and the reference voltage 34, which are voltages proportional to the voltage of the smoothing capacitor 31, are input to the error amplifier 33, and the voltage of the smoothing capacitor 31 is set to a predetermined value. Maintained. When the booster circuit 250 is not operating, the voltage of the charging capacitor 13 is charged as it is into the smoothing capacitor 31 (that is, the voltage of the charging capacitor 13 is directly input to the current control circuit 300). On the other hand, when the booster circuit 250 is operating, the voltage of the charging capacitor 13 is boosted and charged to the smoothing capacitor 31 (that is, the voltage of the smoothing capacitor 31 higher than the voltage of the charging capacitor 13 is input to the current control circuit 300. Becomes). Note that the capacity of the smoothing capacitor 31 is sufficiently smaller than the capacity of the charging capacitor 13.

ランプ25が絶縁破壊を起こすと、電流制御回路300は充電コンデンサ13又は平滑コンデンサ31の充電エネルギーを電源として、図4で説明したものと同様の定ランプ電流制御が行なわれる。   When the lamp 25 undergoes dielectric breakdown, the current control circuit 300 performs constant lamp current control similar to that described with reference to FIG. 4 using the charging energy of the charging capacitor 13 or the smoothing capacitor 31 as a power source.

図2(C)及び(D)に第1の実施例における充電コンデンサ13の充電電圧とランプ電流のタイムチャートを示す。
本実施例では制御部40からランプ点灯指令が発せられるのと同時に昇圧回路250も動作を開始する。図2(C)に示すように、ランプ25がt0で放電を開始すると充電コンデンサ13の電位はV0から急激に低下していく。これと並行して昇圧回路250は平滑コンデンサ31の電圧がV1以上の設定値(例えば、V0)を維持するよう動作する。従って、充電コンデンサ13の電圧が定電流点灯可能な電圧V1を下回っても、平滑コンデンサ31には上記設定値が充電されて電流制御回路300に投入される。
2C and 2D show time charts of the charging voltage and the lamp current of the charging capacitor 13 in the first embodiment.
In this embodiment, the booster circuit 250 also starts to operate simultaneously with the lamp lighting command issued from the control unit 40. As shown in FIG. 2 (C), when the lamp 25 starts discharging at t0, the potential of the charging capacitor 13 rapidly decreases from V0. In parallel with this, the booster circuit 250 operates so that the voltage of the smoothing capacitor 31 maintains a set value (for example, V0) equal to or higher than V1. Therefore, even if the voltage of the charging capacitor 13 is lower than the voltage V1 at which the constant current can be lit, the smoothing capacitor 31 is charged with the set value and is input to the current control circuit 300.

これにより、図2(D)に示すように、定電流制御維持時間(t0〜t1′)を従来の図2(B)における時間(t0〜t1)よりも延ばすことが可能となり、擬似太陽光照射装置の性能を向上することができる。   As a result, as shown in FIG. 2D, the constant current control maintaining time (t0 to t1 ′) can be extended from the conventional time (t0 to t1) in FIG. The performance of the irradiation apparatus can be improved.

実施例2.
図3に第2の実施例の回路構成を示す。本実施例では、昇圧回路250が充電コンデンサ13の充電電圧を検出する検出回路35を備えた点で第1の実施例と異なる。検出回路35は分圧抵抗36、37、基準電圧38、及びコンパレータ39からなり、分圧回路で検出される充電電圧が基準電圧38(後述する電圧V2に対応)を下回るとコンパレータ出力がローとなり、これを受けてPWM制御回路32が動作を開始する。なお、コンパレータのロジックは逆であってもよく、具体的な回路構成は当業者によって適宜設計される。なお、本実施例では、昇圧回路250は制御部40からの点灯指令ではなく、検出回路35の出力信号によって動作が開始される。
Example 2
FIG. 3 shows a circuit configuration of the second embodiment. This embodiment differs from the first embodiment in that the booster circuit 250 includes a detection circuit 35 that detects the charging voltage of the charging capacitor 13. The detection circuit 35 includes voltage dividing resistors 36 and 37, a reference voltage 38, and a comparator 39. When the charging voltage detected by the voltage dividing circuit falls below the reference voltage 38 (corresponding to a voltage V2 described later), the comparator output becomes low. In response, the PWM control circuit 32 starts operation. The logic of the comparator may be reversed, and the specific circuit configuration is appropriately designed by those skilled in the art. In the present embodiment, the booster circuit 250 is started by the output signal of the detection circuit 35 instead of the lighting command from the control unit 40.

図2(E)及び(F)に本実施例における充電コンデンサ13の充電電圧とランプ電流のタイムチャートを示す。
第1の実施例と異なる点は、昇圧回路250の動作開始タイミングである。具体的には、充電電圧が所定値V2(V1≦V2<V0)以下になった場合に、昇圧回路250は昇圧出力電圧を所定値V2(又はV2以上)に維持する。好ましくは、所定値V2は、定電流制御可能な電圧V1(例えば、ランプ電圧500V+トランス24の2次巻線端電圧20V)/PWM制御回路21の最大デューティ0.9=578V)に等しいかそれよりも若干高い電圧(例えば、600V程度)に設定される。
2E and 2F show time charts of the charging voltage and the lamp current of the charging capacitor 13 in this embodiment.
The difference from the first embodiment is the operation start timing of the booster circuit 250. Specifically, when the charging voltage becomes equal to or lower than a predetermined value V2 (V1 ≦ V2 <V0), the booster circuit 250 maintains the boosted output voltage at the predetermined value V2 (or V2 or higher). Preferably, the predetermined value V2 is equal to or equal to the voltage V1 (for example, the lamp voltage 500V + the secondary winding end voltage 20V of the transformer 24) / the maximum duty 0.9 of the PWM control circuit 21 = 578V) capable of constant current control. Is set to a slightly higher voltage (for example, about 600 V).

これにより、図2(C)の場合と比較して昇圧回路250が動作する時間が短くなり、かつ昇圧電圧も低く設定できるため、昇圧回路250での消費電力(損失)が少なくなる。また、充電電圧がV0〜V2の間の充電コンデンサ13の電圧低下速度が遅くなり、図2(F)に示すように、定電流制御持続時間(t0〜t1″)は図2(D)の場合と比べて長くなる。従って、擬似太陽光照射装置の性能を更に向上することができる。   As a result, the time during which the booster circuit 250 operates is shortened compared to the case of FIG. 2C, and the boosted voltage can be set low, so that power consumption (loss) in the booster circuit 250 is reduced. In addition, the voltage drop rate of the charging capacitor 13 between the charging voltage V0 and V2 is slowed down, and the constant current control duration (t0 to t1 ″) is as shown in FIG. 2D as shown in FIG. Therefore, the performance of the simulated solar light irradiation device can be further improved.

なお、理想的な回路からなる点灯装置であれば、V2=V1の場合が最も定電流制御持続時間が長くなるが、各素子のインピーダンス又はランプの特性のばらつき等を考慮して、前述したように、V2はV1よりも若干高くしておくことが望ましい。   In the case of a lighting device composed of an ideal circuit, the constant current control duration is the longest when V2 = V1, but as described above in consideration of variations in the impedance of each element or lamp characteristics. In addition, it is desirable that V2 be slightly higher than V1.

本実施例では検出回路35を用いて昇圧回路250の動作期間を決定したが、検出回路35の替わりに、点灯指令が出てから動作するタイマを制御部40の外部又は内部に設け、タイマの設定値を図2(A)のt1より短くしておき、充電電圧がV1以下となる前に昇圧回路250が動作するようにしてもよい。   In this embodiment, the operation period of the booster circuit 250 is determined using the detection circuit 35. Instead of the detection circuit 35, a timer that operates after a lighting command is issued is provided outside or inside the control unit 40, and the timer The set value may be shorter than t1 in FIG. 2A, and the booster circuit 250 may operate before the charging voltage becomes V1 or less.

以上より、本発明の点灯装置によると、従来例と比較してランプ電流の定電流制御維持時間を延ばすことが可能となり、擬似太陽光照射装置の性能を向上することができる。   As described above, according to the lighting device of the present invention, it is possible to extend the constant current control maintenance time of the lamp current as compared with the conventional example, and it is possible to improve the performance of the simulated sunlight irradiation device.

以上に本発明の好適な実施例を説明した。各実施例に共通する利点として、最大定電流制御維持時間を従来例と同じ時間とした場合、装置の主要な部分を占める充電コンデンサ13の容量を低減でき、点灯装置の小型化、コストダウンが可能となる。またさらに、従来回路(図4)に比べて充電回路200の充電電圧を低くすることができ、充電コンデンサ13や整流器10を低耐圧(即ち、小型、低コスト)の部品で構成できる。但し、この場合には、充電コンデンサ13の容量を更に大きくすることが望ましい。いずれにしても、本発明によると、充電回路200の設計自由度が大きくなるので好適である。   The preferred embodiments of the present invention have been described above. As an advantage common to each embodiment, when the maximum constant current control maintaining time is the same as that of the conventional example, the capacity of the charging capacitor 13 occupying the main part of the device can be reduced, and the lighting device can be reduced in size and cost. It becomes possible. Furthermore, the charging voltage of the charging circuit 200 can be lowered as compared with the conventional circuit (FIG. 4), and the charging capacitor 13 and the rectifier 10 can be configured with parts having a low withstand voltage (ie, small size and low cost). However, in this case, it is desirable to further increase the capacity of the charging capacitor 13. In any case, according to the present invention, the design freedom of the charging circuit 200 is increased, which is preferable.

26.コイル
27.半導体スイッチ
28.ダイオード
29、30、36、37.抵抗
31.電解コンデンサ
32.PWM制御回路
33.誤差増幅器
34、38.基準電圧
35.検出回路
39.コンパレータ
40.制御部
100.直流電源回路
200.充電回路
250.昇圧回路
300.電流制御回路
26. Coil 27. Semiconductor switch 28. Diodes 29, 30, 36, 37. Resistance 31. Electrolytic capacitor 32. PWM control circuit 33. Error amplifiers 34, 38. Reference voltage 35. Detection circuit 39. Comparator 40. Control unit 100. DC power supply circuit 200. Charging circuit 250. Booster circuit 300. Current control circuit

Claims (3)

キセノンランプ点灯装置であって、
交流電源を直流電圧に変換する直流電源回路(100)、
充電コンデンサ(13)を有し、前記直流電圧を昇圧して前記充電コンデンサに充電し、昇圧動作を停止して前記充電コンデンサの充電電圧を保持するように構成された充電回路(200)、
前記昇圧動作を停止している充電回路の前記充電コンデンサの充電電圧を昇圧するとともに前記充電コンデンサよりも容量が小さい平滑コンデンサ(31)によって平滑する昇圧回路(250)、及び
前記昇圧回路の出力を受けて、定電流制御されたランプ電流を前記キセノンランプに投入する電流制御回路(300)
を備え、
前記電流制御回路の入力電圧について、前記定電流制御に必要な入力電圧が所定値V1である場合に、前記昇圧回路が昇圧出力を該所定値V1以上に昇圧するように構成されたキセノンランプ点灯装置。
A xenon lamp lighting device,
A DC power supply circuit (100) for converting an AC power supply into a DC voltage;
A charging circuit (200) having a charging capacitor (13) , configured to boost the DC voltage to charge the charging capacitor, and stop the boosting operation to hold the charging voltage of the charging capacitor ;
A boosting circuit (250) that boosts the charging voltage of the charging capacitor of the charging circuit that has stopped the boosting operation and smoothes it by a smoothing capacitor (31) having a smaller capacity than the charging capacitor, and an output of the boosting circuit In response, a current control circuit (300) for supplying a constant current controlled lamp current to the xenon lamp
With
Regarding the input voltage of the current control circuit, when the input voltage required for the constant current control is a predetermined value V1, the xenon lamp is configured so that the booster circuit boosts the boost output to the predetermined value V1 or more. apparatus.
請求項1のキセノンランプ点灯装置において、前記昇圧回路(250)が前記充電電圧を検出する検出回路(35)を備え、
前記充電電圧が所定値V2(V1≦V2)以下となった場合に、該昇圧回路が昇圧出力電圧を該所定値V2以上に昇圧するように構成されたキセノンランプ点灯装置。
The xenon lamp lighting device according to claim 1, wherein the booster circuit (250) includes a detection circuit (35) for detecting the charging voltage.
A xenon lamp lighting device configured such that, when the charging voltage becomes equal to or lower than a predetermined value V2 (V1 ≦ V2), the booster circuit boosts the boosted output voltage to the predetermined value V2 or higher.
請求項2のキセノンランプ点灯装置において、前記所定値V2について、V2=V1であることを特徴とするキセノンランプ点灯装置。


3. The xenon lamp lighting device according to claim 2, wherein the predetermined value V2 is V2 = V1.


JP2010114032A 2010-05-18 2010-05-18 Xenon lamp lighting device Expired - Fee Related JP5569862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010114032A JP5569862B2 (en) 2010-05-18 2010-05-18 Xenon lamp lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010114032A JP5569862B2 (en) 2010-05-18 2010-05-18 Xenon lamp lighting device

Publications (2)

Publication Number Publication Date
JP2011243390A JP2011243390A (en) 2011-12-01
JP5569862B2 true JP5569862B2 (en) 2014-08-13

Family

ID=45409872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010114032A Expired - Fee Related JP5569862B2 (en) 2010-05-18 2010-05-18 Xenon lamp lighting device

Country Status (1)

Country Link
JP (1) JP5569862B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002124393A (en) * 2000-10-13 2002-04-26 Ushio Inc Direct current discharge lamp lighting device
JP2004192902A (en) * 2002-12-10 2004-07-08 Ushio Inc Lamp lighting device

Also Published As

Publication number Publication date
JP2011243390A (en) 2011-12-01

Similar Documents

Publication Publication Date Title
JP2015019461A (en) Discharge circuit for discharging residual voltage of storage element and flash discharge lamp lighting device
WO2001067828A1 (en) Lamp device and device for driving discharge lamp
JP6323149B2 (en) Power supply device for lighting with power failure compensation function and lighting device
JP2020036419A (en) Emergency lighting fixture
JP5586096B2 (en) Power converter
JP5569862B2 (en) Xenon lamp lighting device
JP6260225B2 (en) Lighting device and lighting apparatus
JP4393881B2 (en) Power supply method and power supply device
JP6146663B2 (en) Charging circuit and flash discharge lamp lighting device
JP5569729B2 (en) Xenon lamp lighting device and xenon lamp lighting method
JP2011234432A (en) Boost charging circuit and xenon lamp lighting device using the same
JP5610140B2 (en) Xenon lamp lighting device and xenon lamp lighting method
JP5079043B2 (en) Power supply device, discharge lamp lighting device including the power supply device, and lighting fixture including the discharge lamp lighting device
JP5743201B2 (en) Xenon lamp lighting device, xenon lamp lighting method, and simulated sunlight irradiation device
US20150305129A1 (en) Discharge lamp lighting device and headlight using same
JP2014082156A (en) Lighting device
JP4984062B2 (en) Discharge lamp lighting device
JP5915946B2 (en) Discharge lamp lighting device
JP2014032754A (en) Flash discharge lamp lighting device and light source unit for solar simulator
JP4211022B2 (en) Discharge lamp lighting device
JP2008108645A (en) Discharge lamp lighting device
JP2008136257A (en) Power conversion device
JP6417844B2 (en) Discharge lamp lighting device
JP2018181728A (en) Lighting device and lighting fixture
JP2008167509A (en) Power supply device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120710

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130314

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131218

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140602

R150 Certificate of patent or registration of utility model

Ref document number: 5569862

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140615

LAPS Cancellation because of no payment of annual fees