JP5563360B2 - Method for producing breathable radiant heat reflector - Google Patents

Method for producing breathable radiant heat reflector Download PDF

Info

Publication number
JP5563360B2
JP5563360B2 JP2010101187A JP2010101187A JP5563360B2 JP 5563360 B2 JP5563360 B2 JP 5563360B2 JP 2010101187 A JP2010101187 A JP 2010101187A JP 2010101187 A JP2010101187 A JP 2010101187A JP 5563360 B2 JP5563360 B2 JP 5563360B2
Authority
JP
Japan
Prior art keywords
radiant heat
breathable
heat reflector
shell structure
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010101187A
Other languages
Japanese (ja)
Other versions
JP2011231959A (en
Inventor
武民 山村
成人 中川
輝美 久行
義一 松村
喜治 堤
信夫 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Ultra High Temperature Materials Research Institute JUTEM
Original Assignee
Japan Ultra High Temperature Materials Research Institute JUTEM
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Ultra High Temperature Materials Research Institute JUTEM filed Critical Japan Ultra High Temperature Materials Research Institute JUTEM
Priority to JP2010101187A priority Critical patent/JP5563360B2/en
Publication of JP2011231959A publication Critical patent/JP2011231959A/en
Application granted granted Critical
Publication of JP5563360B2 publication Critical patent/JP5563360B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、加熱炉の排気口の入口に取付けて、炉外へ流出する熱を減少させると共に、高温になって加熱炉内に輻射熱を反射する通気性輻射熱反射体の製造方法に関する。 The present invention relates to a method of manufacturing a breathable radiant heat reflector that is attached to an inlet of an exhaust port of a heating furnace to reduce the heat flowing out of the furnace and reflects the radiant heat into the heating furnace at a high temperature.

ガス燃焼加熱炉あるいは雰囲気制御加熱炉における最も顕著な熱損失は、高温排ガスによる熱損失である。そこで、炉内壁に熱輻射効率の高い物質を貼ること(例えば、特許文献1参照)や、炭化ケイ素系の不織布マット(以下、単にマットという)を炉内天井に設けた排気口に熱フィルタとして貼り付け、更に、炉内の天井並びに側壁に熱反射体としても貼り付けて、高温排ガスの顕熱を炉内で回収する方法が提案されている(例えば、非特許文献1参照)。 The most prominent heat loss in the gas combustion heating furnace or the atmosphere control heating furnace is the heat loss due to the high temperature exhaust gas. Therefore, a material having high heat radiation efficiency is pasted on the inner wall of the furnace (see, for example, Patent Document 1), or a silicon carbide non-woven mat (hereinafter simply referred to as a mat) is used as a heat filter at the exhaust port provided on the furnace ceiling. A method has been proposed in which the sensible heat of the high-temperature exhaust gas is recovered in the furnace by attaching it to the ceiling and side walls in the furnace as a heat reflector (see Non-Patent Document 1, for example).

特開平8−210782号公報JP-A-8-210784

鈴木謙爾、外3名、「Si−C−(M)−O系繊維不織布マットによるガス燃焼加熱炉の省エネルギー化ならびに高性能化」、工業加熱、社団法人日本工業炉協会、2007年7月15日、第44巻、第4号、p.17−25Kengo Suzuki, three others, "Energy saving and high performance of gas-fired heating furnace using Si-C- (M) -O fiber nonwoven mat", Industrial Heating, Japan Industrial Furnace Association, July 2007 15th, Vol. 44, No. 4, p. 17-25

ここで、柔軟体であるマットを、炉内の天井や側壁に貼り付けるには、セラミック接着剤を用いて接着する方法が一般的となる。しかし、炉内温度が、例えば1000℃以上の高温で、高温排ガスが高速で流転する炉内で、マットをセラミック接着剤による接着だけで長期に亘って安定して炉内の天井や側壁に付着させることは困難で、マットが剥がれて落下する可能性が高い。また、柔軟体であるマットが、高温排ガスによる機械的衝撃や磨耗に長期間に亘り耐えることができるかという問題もある。更に、柔軟体であるマットは保形性(形状保持性)が極端に低いため貼り付け作業が非常に煩雑になると共に、マット同士を組合わせて互いに支えあわせて一体化するような使用ができないため、貼り付けたマットの一部に剥離が生じると、その剥離は容易にマット全体に拡がって、マットが落下するという問題がある。そして、一旦マットが落下すると、落下の影響は周囲のマットに拡がり、マットの落下が連鎖して発生するという問題も生じる。 Here, in order to attach the mat, which is a flexible body, to the ceiling or side wall in the furnace, a method of bonding using a ceramic adhesive is generally used. However, in a furnace where the temperature inside the furnace is, for example, a high temperature of 1000 ° C. or higher and the high-temperature exhaust gas is flowing at high speed, the mat is stably adhered to the ceiling and side walls of the furnace for a long time only by bonding with a ceramic adhesive. It is difficult to cause the mat to fall off. There is also a problem that the mat, which is a flexible body, can withstand mechanical shock and wear due to high-temperature exhaust gas over a long period of time. Furthermore, the mat that is a flexible body has extremely low shape retention (shape retention), so that the pasting operation becomes very complicated, and the mats cannot be used to be supported and integrated with each other. Therefore, when peeling occurs in a part of the mat that is attached, the peeling easily spreads over the entire mat and the mat falls. And once a mat falls, the influence of a fall spreads to the surrounding mats, and the problem that the fall of a mat | casing will generate | occur | produce will also arise.

本発明はかかる事情に鑑みてなされたもので、耐機械的衝撃性、耐磨耗性、及び形状保持性に優れ、しかも組合わせて使用することが可能な通気性輻射熱反射体の製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and is a method for producing a breathable radiant heat reflector that is excellent in mechanical shock resistance, wear resistance, and shape retention, and can be used in combination. The purpose is to provide.

前記目的に沿う発明に係る通気性輻射熱反射体の製造方法は、耐熱性の無機繊維で構成された通気性を有する布材から作製した帯部材を、長手方向に巻いて断面円形又は断面多角形の柱状物とし、該柱状物を構成している前記無機繊維の外側に第2の外殻構造を設けて、該柱状物を第2の内殻構造と該第2の外殻構造を持つ複合化無機繊維から形成して、前記第2の外殻構造は、Ti、Cr、Fe、Si、Co、Ni、Cu、Y、Zr、Nb、Tc、Ru、Rh、Pd、Ag、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Hf、Ta、Re、及びOsの各元素を第1群として、(1)前記第1群から選択された1の元素の酸化物、(2)前記第1群から選択された2以上の元素からなる複合酸化物、(3)前記第1群から選択された2以上の元素の固溶体酸化物、(4)前記酸化物と前記複合酸化物、(5)前記酸化物と前記固溶体酸化物、(6)前記複合酸化物と前記固溶体酸化物、及び(7)前記酸化物と前記複合酸化物と前記固溶体酸化物のいずれか1からなる材料Aで構成され、前記第2の外殻構造を形成する無機物質の熱膨張係数の値は前記第2の内殻構造を形成する無機物質の熱膨張係数の値の±10%の範囲内にあり、前記第2の外殻構造の厚さは0.2μm以上10μm以下であり、
しかも、該通気性輻射熱反射体を加熱炉の排気口の入口に取付けて、炉内に向いた面側から炉外に向いた面側への熱の移動を抑制して前記排気口から炉外に流出する排ガスの熱を減少させると共に、炉内から前記排気口内を通過して炉外に排出される排ガスにより加熱された、炉内に向いた面側から輻射熱を炉内に放射する通気性輻射熱反射体の製造方法であって、
前記布材を裁断して前記帯部材を作製する第1工程と、
前記帯部材の一部を芯管の外周面に一定の張力下で隙間無く巻き付けて第1の渦巻き物を形成し、該第1の渦巻き物から前記芯管を除去した際に形成される空間部に、前記帯部材の他の一部をその中心部から隙間なく巻いて形成した第2の渦巻き物を充填して前記柱状物を作製する第2工程と、
前記柱状物を、前記材料Aの粉末が水中、有機溶媒中、あるいは水と有機溶媒の混合溶媒中に分散した分散溶液中に浸漬し、前記柱状物を陰極側にして50〜150ボルトの直流電圧を2〜10分間印加して、電気泳動により、前記粉末を該柱状物を形成している前記帯部材を構成している前記無機繊維の外側に付着させる第3工程と、
前記柱状物を前記分散溶液中から取り出し、乾燥させて水及び/又は有機溶媒を除去する第4工程と、
乾燥した前記柱状物を、不活性ガス雰囲気中1300〜1700℃で、0.2〜2時間加熱処理して前記粉末を前記無機繊維に固着させ、該無機繊維を前記第2の内殻構造と前記第2の外殻構造を持つ前記複合化無機繊維に変える第5工程とを有する。
A method for producing a breathable radiant heat reflector according to the present invention that meets the above-described object includes a belt member made of a breathable cloth material composed of heat-resistant inorganic fibers, wound in the longitudinal direction, and having a circular cross section or multiple cross sections. A prismatic columnar body is provided, and a second outer shell structure is provided outside the inorganic fibers constituting the columnar body, and the columnar body has a second inner shell structure and a second outer shell structure. Formed from composite inorganic fibers , the second outer shell structure is Ti, Cr, Fe, Si, Co, Ni, Cu, Y, Zr, Nb, Tc, Ru, Rh, Pd, Ag, La, Each element of Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, Re, and Os is defined as a first group, and (1) the first An oxide of one element selected from one group; and (2) two or more elements selected from the first group. (3) a solid solution oxide of two or more elements selected from the first group, (4) the oxide and the composite oxide, (5) the oxide and the solid solution oxide, (6) ) Composed of the composite oxide and the solid solution oxide, and (7) the material A composed of any one of the oxide, the composite oxide and the solid solution oxide, and forms the second outer shell structure. The value of the coefficient of thermal expansion of the inorganic substance is within a range of ± 10% of the value of the coefficient of thermal expansion of the inorganic substance forming the second inner shell structure, and the thickness of the second outer shell structure is 0. 2 μm or more and 10 μm or less,
In addition, the breathable radiant heat reflector is attached to the entrance of the exhaust port of the heating furnace to suppress the movement of heat from the surface side facing the furnace to the surface side facing the outside of the furnace, and from the exhaust port to the outside of the furnace. Airflow that radiates radiant heat into the furnace from the side facing the furnace heated by the exhaust gas discharged from the furnace through the exhaust port and discharged outside the furnace . A method of manufacturing a radiant heat reflector,
A first step of cutting the cloth material to produce the band member;
A space formed when a part of the belt member is wound around the outer peripheral surface of the core tube without a gap under a constant tension to form a first spiral, and the core tube is removed from the first spiral. Filling the part with a second spiral formed by winding another part of the band member from its central part without a gap, and producing the columnar object,
The columnar material is immersed in a dispersion solution in which the powder of the material A is dispersed in water, an organic solvent, or a mixed solvent of water and an organic solvent, and the columnar material is a direct current of 50 to 150 volts with the cathode side. A third step of applying a voltage for 2 to 10 minutes and causing the powder to adhere to the outside of the inorganic fiber constituting the belt member forming the columnar object by electrophoresis;
A fourth step of removing the columnar material from the dispersion and drying to remove water and / or organic solvent;
The dried columnar material is heat-treated in an inert gas atmosphere at 1300 to 1700 ° C. for 0.2 to 2 hours to fix the powder to the inorganic fibers, and the inorganic fibers are formed into the second inner shell structure. to have a a fifth step of changing the composite inorganic fibers with the second shell structure.

発明に係る通気性輻射熱反射体の製造方法において、前記布材は、厚みが0.2〜10mm、開口率が30%以下の織物とすることができる。
また、前記布材は、厚みが1〜10mm、体積空隙率が50〜97%の不織布とすることもできる。
In the method for producing a breathable radiant heat reflector according to the present invention, the cloth material may be a woven fabric having a thickness of 0.2 to 10 mm and an aperture ratio of 30% or less.
The cloth material may be a nonwoven fabric having a thickness of 1 to 10 mm and a volume porosity of 50 to 97%.

発明に係る通気性輻射熱反射体の製造方法において、前記固溶体酸化物は、Y、Yb、Er、Ho、及びDyの各元素を第2群、Y、Yb、Er、Ho、Dy、Gd、Sm、Nd、及びLuの各元素を第3群として、前記第2群から選択された少なくとも1の元素をQE、前記第3群から選択された少なくとも1の元素をREとして、一般式QESi、QESiO、REAl12、及びREAlOのいずれか1又は2以上からなることが好ましい。 In the method for producing a breathable radiant heat reflector according to the present invention, the solid solution oxide includes Y, Yb, Er, Ho, and Dy elements in the second group, Y, Yb, Er, Ho, Dy, Gd, Each element of Sm, Nd, and Lu is a third group, at least one element selected from the second group is QE, and at least one element selected from the third group is RE, and the general formula QE 2 It is preferably composed of one or more of Si 2 O 7 , QESiO 5 , RE 3 Al 5 O 12 , and REAlO 3 .

発明に係る通気性輻射熱反射体の製造方法において、前記無機繊維は、Ti、Zr及びAlから選択される1の金属成分をM1として、Si、C、O、及びM1を含有する無機物質から構成されていることが好ましい。
また、前記無機繊維は、Si、C、及びOを含有する無機物質から構成することができる。
更に、前記無機繊維は、β−SiCの微結晶を含有する結晶質の無機物質から構成することもできる。
In the method for producing a breathable radiant heat reflector according to the present invention, the inorganic fiber is an inorganic substance containing Si, C, O, and M1, where M1 is one metal component selected from Ti, Zr, and Al. It is preferable to be configured.
Moreover, the said inorganic fiber can be comprised from the inorganic substance containing Si, C, and O. FIG.
Furthermore, the said inorganic fiber can also be comprised from the crystalline inorganic substance containing the microcrystal of (beta) -SiC.

発明に係る通気性輻射熱反射体の製造方法において、前記布材に化学繊維が含有される場合、あるいは前記布材にサイジング剤が施されている場合、前記第3工程の前に、前記柱状物を不活性ガス雰囲気中800〜1200℃で0.5〜5時間加熱処理することが好ましい。 In the method for producing a breathable radiant heat reflector according to the present invention, when the fabric material contains chemical fibers, or when the fabric material is provided with a sizing agent, the columnar shape is formed before the third step. It is preferable to heat-treat a thing at 800-1200 degreeC in an inert gas atmosphere for 0.5 to 5 hours.

発明に係る通気性輻射熱反射体の製造方法においては、通気性輻射熱反射体が、柱状物を構成している無機繊維の外側に第2の外殻構造を設けて、無機繊維を第2の内殻構造と第2の外殻構造を持つ複合化無機繊維に変えることで形成されるので、通気性輻射熱反射体の使用環境に応じて、最適な組成の第2の外殻構造を設けることができ、第2の内殻構造の劣化を防止することができる。 In the method for producing a breathable radiant heat reflector according to the present invention, the breathable radiant heat reflector is provided with a second outer shell structure outside the inorganic fibers constituting the columnar object, and the inorganic fibers are converted into the second fibers. Since it is formed by changing to a composite inorganic fiber having an inner shell structure and a second outer shell structure, a second outer shell structure having an optimum composition is provided according to the use environment of the breathable radiant heat reflector. And the deterioration of the second inner shell structure can be prevented.

発明に係る通気性輻射熱反射体の製造方法において、布材が、厚みが0.2〜10mm、開口率が30%以下の織物である場合、又は布材が、厚みが1〜10mm、体積空隙率が50〜97%の不織布である場合、布材から作製した帯部材の巻き取る回数を変えることで、種々の寸法の通気性部材を容易に形成できる。 In the method for producing a breathable radiant heat reflector according to the present invention, when the cloth material is a woven fabric having a thickness of 0.2 to 10 mm and an aperture ratio of 30% or less, or the cloth material has a thickness of 1 to 10 mm and a volume. When the non-woven fabric has a porosity of 50 to 97%, a breathable member having various dimensions can be easily formed by changing the number of windings of the band member made from the cloth material.

発明に係る通気性輻射熱反射体の製造方法において、Ti、Cr、Fe、Si、Co、Ni、Cu、Y、Zr、Nb、Tc、Ru、Rh、Pd、Ag、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Hf、Ta、Re、及びOsの各元素を第1群として、第2の外殻構造が、(1)第1群から選択された1の元素の酸化物、(2)第1群から選択された2以上の元素からなる複合酸化物、(3)第1群から選択された2以上の元素の固溶体酸化物、(4)酸化物と複合酸化物、(5)酸化物と固溶体酸化物、(6)複合酸化物と固溶体酸化物、及び(7)酸化物と複合酸化物と固溶体酸化物のいずれか1からなる材料Aで構成されるので、目的に応じて第2の外殻構造の組成を選択することで、第2の内殻構造の劣化を防止することができる。また、第2の外殻構造を形成する無機物質の熱膨張係数の値が、第2の内殻構造を形成する無機物質の熱膨張係数の値の±10%の範囲内にあり、第2の外殻構造の厚さが0.2μm以上10μm以下である場合、複合化無機繊維に温度変動が生じても、第2の外殻構造が第2の内殻構造から剥離することを防止できる。 In the method for producing breathable radiant heat reflector according to the present invention, Ti, Cr, Fe, Si , Co, Ni, Cu, Y, Zr, Nb, Tc, Ru, Rh, Pd, Ag, La, Ce, Pr Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, Re, and Os as the first group, the second outer shell structure is (1) an oxide of one element selected from the first group, (2) a composite oxide composed of two or more elements selected from the first group, (3) two or more selected from the first group Solid solution oxides of elements, (4) oxides and composite oxides, (5) oxides and solid solution oxides, (6) composite oxides and solid solution oxides, and (7) oxides, composite oxides and solid solution oxides since composed of any one made of a material a of the object, select the composition of the second shell structure in accordance with the intended It is, it is possible to prevent deterioration of the second inner shell structure. Further, the value of the thermal expansion coefficient of the inorganic substance forming the second outer shell structure is within a range of ± 10% of the value of the thermal expansion coefficient of the inorganic substance forming the second inner shell structure, and the second When the thickness of the outer shell structure is 0.2 μm or more and 10 μm or less, it is possible to prevent the second outer shell structure from peeling off from the second inner shell structure even if temperature variation occurs in the composite inorganic fiber. .

発明に係る通気性輻射熱反射体の製造方法において、固溶体酸化物が、Y、Yb、Er、Ho、及びDyの各元素を第2群、Y、Yb、Er、Ho、Dy、Gd、Sm、Nd、及びLuの各元素を第3群として、第2群から選択された少なくとも1の元素をQE、第3群から選択された少なくとも1の元素をREとして、一般式QESi、QESiO、REAl12、及びREAlOのいずれか1又は2以上からなる場合、固溶体酸化物の耐熱性及び耐食性を高めることができる。 In the method for producing a breathable radiant heat reflector according to the present invention, the solid solution oxide contains Y, Yb, Er, Ho, and Dy elements in the second group, Y, Yb, Er, Ho, Dy, Gd, Sm. , Nd, and Lu as the third group, at least one element selected from the second group as QE, and at least one element selected from the third group as RE, the general formula QE 2 Si 2 O 7, QESiO 5, RE 3 Al 5 O 12, and be comprised of any one or more of the REAlO 3, it is possible to improve the heat resistance and corrosion resistance of the solid solution oxide.

発明に係る通気性輻射熱反射体の製造方法において、無機繊維が、(1)Ti、Zr及びAlから選択される1の金属成分をM1として、Si、C、O、及びM1を含有する無機物質、(2)、Si、C、及びOを含有する無機物質、又は(3)β−SiCの微結晶を含有する結晶質の無機物質から構成されている場合、第2の内殻構造の組成は(1)〜(3)のいずれかの無機物質と同一となり、比熱が小さくなって温度変動に容易に追従できると共に、高温になった際に輻射熱の反射効率を高めることができる。 In the method for producing a breathable radiant heat reflector according to the present invention, the inorganic fiber contains (1) one metal component selected from Ti, Zr, and Al as M1, and the inorganic fiber contains Si, C, O, and M1. The second inner shell structure when it is composed of a substance, (2) an inorganic substance containing Si, C, and O, or (3) a crystalline inorganic substance containing β-SiC microcrystals The composition is the same as any one of the inorganic substances (1) to (3), the specific heat is small and the temperature fluctuation can be easily followed, and the reflection efficiency of the radiant heat can be increased when the temperature becomes high.

発明に係る通気性輻射熱反射体の製造方法において、布材に化学繊維が含有される場合、あるいは布材にサイジング剤が施されている場合、第3工程の前に、柱状物を不活性ガス雰囲気中800〜1200℃で0.5〜5時間加熱処理するので、柱状物を無機化することができ、通気性輻射熱反射体の高温下での安定性を確保することができる。 In the method for producing a breathable radiant heat reflector according to the present invention, when a chemical fiber is contained in the cloth material, or when a sizing agent is applied to the cloth material, the columnar material is inactivated before the third step. Since it heat-processes at 800-1200 degreeC for 0.5 to 5 hours in gas atmosphere, a columnar thing can be mineralized and stability under the high temperature of a breathable radiant heat reflector can be ensured.

本発明の第1の実施の形態に係る通気性輻射熱反射体の説明図である。It is explanatory drawing of the air permeable radiant heat reflector which concerns on the 1st Embodiment of this invention. 変形例に係る通気性輻射熱反射体の説明図である。It is explanatory drawing of the air permeable radiation heat reflector which concerns on a modification. 本発明の第の実施の形態に係る通気性輻射熱反射体の説明図である。It is explanatory drawing of the air permeable radiant heat reflector which concerns on the 3rd Embodiment of this invention. 実施例1に係る通気性輻射熱反射体の設置状況を示す説明図である。It is explanatory drawing which shows the installation condition of the air permeable radiant heat reflector which concerns on Example 1. FIG. 同通気性輻射熱反射体の電力削減率及び温度の時間変化を示す説明図である。It is explanatory drawing which shows the time change of the electric power reduction rate of the air-permeable radiant heat reflector, and temperature. (A)は同通気性輻射熱反射体の複合化無機繊維の表面状態を示す電子顕微鏡写真、(B)は実施例2に係る通気性輻射熱反射体の無機繊維の表面状態を示す電子顕微鏡写真である。(A) is an electron micrograph showing the surface state of the composite inorganic fiber of the breathable radiant heat reflector, and (B) is an electron micrograph showing the surface state of the inorganic fiber of the breathable radiant heat reflector according to Example 2. is there. 実施例5及び実施例6の円盤状物をそれぞれ使用した場合の、電気炉内の温度分布の説明図である。It is explanatory drawing of the temperature distribution in an electric furnace at the time of using the disk shaped material of Example 5 and Example 6, respectively. 実施例7で使用する熱放射率測定装置の説明図である。It is explanatory drawing of the thermal emissivity measuring apparatus used in Example 7. FIG. 同熱放射率測定装置で測定した熱放射率の波長依存性の説明図である。It is explanatory drawing of the wavelength dependence of the thermal emissivity measured with the same thermal emissivity measuring apparatus.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
図1に示すように、本発明の第1の実施の形態に係る通気性輻射熱反射体10は、耐熱性の複合化無機繊維で構成された通気性を有する布材から作製した帯部材11を長手方向に巻いて形成した、例えば断面円形の柱状物(巻物)である。そして、通気性輻射熱反射体10は、加熱炉の、例えば天井部12に設けられた断面円形の排気口13に内装された円筒体14の入口側に挿入され、天井部12から加熱炉内に突出する円筒体14の先側側部を貫通する複数のセラミックピン15で支持されて落下が防止されている。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
As shown in FIG. 1, a breathable radiant heat reflector 10 according to a first embodiment of the present invention includes a belt member 11 made of a breathable cloth material composed of heat-resistant composite inorganic fibers. For example, it is a columnar article (roll) having a circular cross section formed by winding in the longitudinal direction. Then, the breathable radiant heat reflector 10 is inserted into the heating furnace, for example, on the inlet side of the cylindrical body 14 provided in the exhaust port 13 having a circular cross section provided in the ceiling portion 12, and enters the heating furnace from the ceiling portion 12. Falling is prevented by being supported by a plurality of ceramic pins 15 penetrating the front side portion of the protruding cylindrical body 14.

円筒体14に挿入された通気性輻射熱反射体10は、一面(炉内に向いた面)側が炉内からの輻射熱及び炉内から排気口13内を通過して炉外に排出される高温の排ガスにより加熱される。その際に、通気性輻射熱反射体10は、一面側から他面(炉外に向いた面)側への熱の移動を抑制して排気口13から炉外に流出する排ガスの熱を減少させる、すなわち、排ガスの顕熱を濾し取って排ガスの温度を低下させる熱フィルタとして作用する。また、通気性輻射熱反射体10は、加熱されて高温になった一面側から輻射熱を炉内に放射する(炉内に向けて輻射熱を反射する)熱レフレクタとしても作用する。 The breathable radiant heat reflector 10 inserted into the cylindrical body 14 has one surface (the surface facing the inside of the furnace) on the side of the radiant heat from the inside of the furnace and the high temperature exhausted from the inside of the furnace through the exhaust port 13 to the outside of the furnace. Heated by exhaust gas. At that time, the breathable radiant heat reflector 10 suppresses the movement of heat from one surface side to the other surface (the surface facing the outside of the furnace) and reduces the heat of the exhaust gas flowing out of the furnace from the exhaust port 13. That is, it acts as a heat filter that filters the sensible heat of the exhaust gas to lower the temperature of the exhaust gas. The breathable radiant heat reflector 10 also acts as a heat reflector that radiates radiant heat into the furnace from one side heated to a high temperature (reflects radiant heat toward the furnace).

布材を構成する耐熱性の複合化無機繊維は、内殻構造と外殻構造を持つ多層構造を有している。ここで、内殻構造は、(1)Ti、Zr及びAlから選択される1の金属成分をM1として、Si、C、O、及びM1を含有する無機物質、(2)Ti、Zr及びAlから選択される1の金属成分をM1とし、Ti及びZrから選択される1の金属成分をM2とし、更にその炭化物をM2Cとして、β−SiC、M2C、β−SiCとM2Cの固溶体及び/又はM2C1−x(0<x<1)からなる粒子径が700nm以下の結晶質超微粒子と、結晶質超粒子間に存在するSi、C、O、及びM1を含有する非晶質無機物質との集合物、(3)Si、C、及びOを含有する無機物質、(4)粒子径が700nm以下であるβ−SiCの結晶質超微粒子と、結晶質超微粒子間に存在するSi、C、及びOを含有する非晶質無機物質との集合物、及び(5)β−SiCの微結晶からなる結晶質無機物質のいずれか1から構成されている。内殻構造は、炭化ケイ素系素材であるため、高温下で内殻構造は大きな熱放射率を有する。このため、内殻構造を有する複合化無機繊維で構成された帯状材11から形成された柱状物からなる通気性輻射熱反射体10は、高温下で大きな熱放射率を有することになる。 The heat-resistant composite inorganic fiber constituting the cloth material has a multilayer structure having an inner shell structure and an outer shell structure. Here, the inner shell structure is (1) an inorganic substance containing Si, C, O, and M1, where one metal component selected from Ti, Zr, and Al is M1, and (2) Ti, Zr, and Al. One metal component selected from M is M1, one metal component selected from Ti and Zr is M2, and the carbide is M2C, and a solid solution of β-SiC, M2C, β-SiC and M2C, and / or A crystalline ultrafine particle having a particle diameter of 700 nm or less composed of M2C 1-x (0 <x <1), an amorphous inorganic substance containing Si, C, O, and M1 existing between the crystalline ultraparticles; (3) inorganic substance containing Si, C, and O, (4) crystalline ultrafine particles of β-SiC having a particle diameter of 700 nm or less, and Si, C existing between the crystalline ultrafine particles And an aggregate with an amorphous inorganic material containing O, Beauty (5) and a any one of the crystalline inorganic material made of fine crystals of beta-SiC. Since the inner shell structure is a silicon carbide-based material, the inner shell structure has a large thermal emissivity at high temperatures. For this reason, the air-permeable radiant heat reflector 10 made of the columnar material formed from the strip-like material 11 made of the composite inorganic fiber having the inner shell structure has a large thermal emissivity at a high temperature.

一方、Ti、Cr、Fe、Si、Co、Ni、Cu、Y、Zr、Nb、Tc、Ru、Rh、Pd、Ag、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、
Er、Tm、Yb、Lu、Hf、Ta、Re、及びOsの各元素を第1群として、外殻構造は、(1)第1群から選択された1の元素の酸化物、(2)第1群から選択された2以上の元素からなる複合酸化物、(3)第1群から選択された2以上の元素の固溶体酸化物、(4)酸化物と複合酸化物、(5)酸化物と固溶体酸化物、(6)複合酸化物と固溶体酸化物、及び(7)酸化物と複合酸化物と固溶体酸化物のいずれか1からなる材料Aで構成されている。そして、外殻構造を形成する無機物質の熱膨張係数の値は、内殻構造を形成する無機物質の熱膨張係数の値の±10%の範囲内にあり、外殻構造の厚さは0.2μm以上10μm以下である。これによって、通気性輻射熱反射体10の温度が変動しても(通気性輻射熱反射体10を構成している複合化無機繊維の温度が変動しても)、外殻構造が内殻構造から剥離することを防止できる。その結果、通気性輻射熱反射体10を高温の酸化雰囲気中で使用しても、内殻構造が酸素と反応すること(内殻構造の酸化)を防止でき、内殻構造の材質変化に伴う特性の低下(例えば、強度低下、熱放射率の低下等)が抑制される。
On the other hand, Ti, Cr, Fe, Si, Co, Ni, Cu, Y, Zr, Nb, Tc, Ru, Rh, Pd, Ag, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho,
Each element of Er, Tm, Yb, Lu, Hf, Ta, Re, and Os is a first group, and the outer shell structure is (1) an oxide of one element selected from the first group, (2) A composite oxide comprising two or more elements selected from the first group; (3) a solid solution oxide of two or more elements selected from the first group; (4) an oxide and a composite oxide; and (5) oxidation. And a material A composed of any one of (6) complex oxide and solid solution oxide, and (7) oxide, complex oxide and solid solution oxide. The value of the thermal expansion coefficient of the inorganic substance forming the outer shell structure is within ± 10% of the value of the thermal expansion coefficient of the inorganic substance forming the inner shell structure, and the thickness of the outer shell structure is 0. .2 μm or more and 10 μm or less. As a result, even if the temperature of the breathable radiant heat reflector 10 varies (even if the temperature of the composite inorganic fiber constituting the breathable radiant heat reflector 10 varies), the outer shell structure peels from the inner shell structure. Can be prevented. As a result, even when the breathable radiant heat reflector 10 is used in a high-temperature oxidizing atmosphere, it is possible to prevent the inner shell structure from reacting with oxygen (oxidation of the inner shell structure), and the characteristics accompanying changes in the material of the inner shell structure (For example, a decrease in strength, a decrease in thermal emissivity, etc.) is suppressed.

なお、固溶体酸化物が、Y、Yb、Er、Ho、及びDyの各元素を第2群とし、Y、Yb、Er、Ho、Dy、Gd、Sm、Nd、及びLuの各元素を第3群として、第2群から選択された少なくとも1の元素をQEとし、第3群から選択された少なくとも1の元素をREとしたとき、一般式QESi、QESiO、REAl12、及び
REAlOのいずれか1又は2以上からなる場合、固溶体酸化物の耐熱性及び耐食性が高まる。その結果、外殻構造の耐熱性及び耐食性が高まることによって、酸化に伴う内殻構造の材質変化を防止でき、複合化無機繊維(通気性輻射熱反射体10)の高温酸化雰囲気中での安定性を更に高めることができる。
Note that the solid solution oxide includes elements Y, Yb, Er, Ho, and Dy as the second group, and elements Y, Yb, Er, Ho, Dy, Gd, Sm, Nd, and Lu as the third group. As a group, when at least one element selected from the second group is QE and at least one element selected from the third group is RE, the general formulas QE 2 Si 2 O 7 , QESiO 5 , RE 3 Al 5 O 12, and if made of any one or more of the REAlO 3, it enhances the heat resistance and corrosion resistance of the solid solution oxide. As a result, the heat resistance and corrosion resistance of the outer shell structure are enhanced, so that the material change of the inner shell structure accompanying oxidation can be prevented, and the stability of the composite inorganic fiber (breathable radiant heat reflector 10) in a high-temperature oxidizing atmosphere. Can be further increased.

通気性輻射熱反射体10を形成する帯部材11は、布材を裁断して作製される。そして、帯部材11の一部を芯管の外周面に一定の張力下で隙間無く巻き付けて第1の渦巻き物18を形成し、この第1の渦巻き物18から芯管を取外して形成される空間部に、帯部材11の他の一部をその中心部から隙間なく巻いて形成した第2の渦巻き物19を内装(充填)して柱状物からなる通気性輻射熱反射体10が構成される。このため、帯部材11の巻取り回数を変える(巻き取る帯部材11の長さを変える)ことで、通気性輻射熱反射体10の外径寸法を容易に調整でき、任意の大きさの通気性輻射熱反射体を作製できる。 The belt member 11 forming the breathable radiant heat reflector 10 is produced by cutting a cloth material. Then, a part of the band member 11 is wound around the outer peripheral surface of the core tube without a gap under a constant tension to form the first spiral member 18, and the core tube is removed from the first spiral member 18. A breathable radiant heat reflector 10 made of a columnar object is configured by interior (filling) a second spiral 19 formed by winding another part of the band member 11 from the center thereof without gaps in the space. . For this reason, by changing the number of windings of the belt member 11 (changing the length of the belt member 11 to be wound), the outer diameter dimension of the breathable radiant heat reflector 10 can be easily adjusted, and the breathability of any size can be obtained. A radiant heat reflector can be produced.

ここで、布材が織物である場合、織物の厚みは0.2〜10mm、開口率は30%以下である。また、布材が不織布である場合、不織布の厚みは1〜10mm、体積空隙率は50〜97%である。このため、布材から作製した帯部材11は通気性を有し、帯部材11を巻いて形成した通気性輻射熱反射体10も通気性を有する。なお、帯部材11の幅が3mm未満の場合、通気性輻射熱反射体10の厚みも3mm未満となり、排ガスの顕熱を濾し取って排ガスの温度を低下させる熱フィルタ作用が弱くなる。また、帯部材11の幅が300mmを超えると、通気性輻射熱反射体10の厚みも300mmを超えるため、通気性輻射熱反射体10の厚み方向の両側で生じる圧力損失が大きくなる。このため、帯部材11の幅を3〜300mmにした。そして、通気性輻射熱反射体10の寿命は、通気性輻射熱反射体10の厚みが厚くなると伸びるので、通気性輻射熱反射体10の厚みを3〜300mmの範囲で調整することで、通気性輻射熱反射体10を一定期間に亘って安定して使用することができる。 Here, when the cloth material is a woven fabric, the thickness of the woven fabric is 0.2 to 10 mm, and the opening ratio is 30% or less. Moreover, when the cloth material is a nonwoven fabric, the thickness of the nonwoven fabric is 1 to 10 mm, and the volume porosity is 50 to 97%. For this reason, the band member 11 produced from the cloth material has air permeability, and the air-permeable radiant heat reflector 10 formed by winding the band member 11 also has air permeability. In addition, when the width | variety of the strip | belt member 11 is less than 3 mm, the thickness of the breathable radiant heat reflector 10 will also be less than 3 mm, and the thermal filter effect | action which filters the sensible heat of waste gas and reduces the temperature of waste gas will become weak. When the width of the belt member 11 exceeds 300 mm, the thickness of the breathable radiant heat reflector 10 also exceeds 300 mm, so that the pressure loss generated on both sides in the thickness direction of the breathable radiant heat reflector 10 increases. For this reason, the width of the band member 11 is set to 3 to 300 mm. The life of the breathable radiant heat reflector 10 is increased when the thickness of the breathable radiant heat reflector 10 is increased. The body 10 can be used stably over a certain period.

円筒体14の排気口13内への取付けは、例えば、耐熱性無機接着剤が練り込まれた複合化無機繊維からなる織物16を円筒体14の外周面に巻き付け、この状態の円筒体14を排気口13に挿入して、円筒体14と排気口13との間の隙間を織物16で充填することにより行う。外側に織物16が巻き付けられた円筒体14を排気口13内に挿入すると、織物16は円筒体14と排気口13との間の隙間の形状に合わせて変形し、円筒体14の外周面と排気口13の内周面との隙間を確実に充填することができる。そして、織物16に練り込まれた耐熱性無機接着剤が硬化すると、織物16を隙間の形状に合わせた形で固定することができ、隙間を安定して塞ぐことができると共に、耐熱性無機接着剤を介して円筒体14と織物16及び織物16と排気口13の内周面との接合が行われ、円筒体14を排気口13内で強固に固定することができる。更に、円筒体14側部の軸方向中央部の周方向の複数位置には、内側から円筒体14及び円筒体14の外側の織物16をそれぞれ貫通し、その先部が排気口13の内周面に当接する複数(図1では2本)の耐熱性のセラミックボルト17が設けられている。このため、セラミックボルト17の先端部で排気口12の内周面を押圧することで、円筒体14の排気口13内への固定を更に強化できる。 The cylindrical body 14 is attached to the exhaust port 13 by, for example, winding a fabric 16 made of a composite inorganic fiber kneaded with a heat-resistant inorganic adhesive around the outer peripheral surface of the cylindrical body 14, It inserts in the exhaust port 13, and fills the clearance gap between the cylindrical body 14 and the exhaust port 13 with the textile fabric 16. When the cylindrical body 14 around which the fabric 16 is wound is inserted into the exhaust port 13, the fabric 16 is deformed in accordance with the shape of the gap between the cylindrical body 14 and the exhaust port 13, and the outer peripheral surface of the cylindrical body 14 is The gap with the inner peripheral surface of the exhaust port 13 can be reliably filled. When the heat-resistant inorganic adhesive kneaded into the woven fabric 16 is cured, the woven fabric 16 can be fixed in a shape that matches the shape of the gap, and the gap can be stably closed, and the heat-resistant inorganic adhesive can be sealed. The cylindrical body 14 and the fabric 16 and the fabric 16 and the inner peripheral surface of the exhaust port 13 are joined via the agent, so that the cylindrical body 14 can be firmly fixed in the exhaust port 13. Furthermore, the cylindrical body 14 and the fabric 16 on the outside of the cylindrical body 14 are penetrated from the inner side at a plurality of positions in the circumferential direction of the axially central part on the side of the cylindrical body 14, respectively, and the tip part thereof is the inner circumference of the exhaust port 13 A plurality of (two in FIG. 1) heat-resistant ceramic bolts 17 that contact the surface are provided. For this reason, pressing the inner peripheral surface of the exhaust port 12 with the tip of the ceramic bolt 17 can further strengthen the fixation of the cylindrical body 14 into the exhaust port 13.

セラミックピン15(セラミックボルト17も同様)は、高耐熱性酸化物(例えばアルミナ)又は高耐熱性非酸化物(例えば、炭化ケイ素、窒化ケイ素、サイアロン)のいずれか1からなる。これによって、セラミックピン15の高温下での変形や破損を防止して、長期間に亘って安定して使用することができる。ここで、加熱炉内で使用中に温度変動がある場合、セラミックピン15を、高耐熱性非酸化物で形成することで、セラミックピン15の温度変化に伴う破損を更に防止できる。なお、高耐熱性非酸化物で構成したセラミックピン15は、高温下の酸化性雰囲気中では、セラミックピン15の表面が徐々に酸化されてくるので、セラミックピン15の表面には、例えば、アルミナ、ジルコニア等の耐熱酸化物のスラリーを塗布して被覆層を形成し、セラミックピン15の表面の酸化を防止する。これによって、セラミックピン15の高温特性(例えば、強度、熱衝撃抵抗)の低下を防いで、長期間に亘って安定して使用することができる。 The ceramic pin 15 (as well as the ceramic bolt 17) is made of any one of a high heat-resistant oxide (for example, alumina) or a high heat-resistant non-oxide (for example, silicon carbide, silicon nitride, sialon). This prevents the ceramic pin 15 from being deformed or damaged at a high temperature and can be used stably over a long period of time. Here, when there is a temperature fluctuation during use in the heating furnace, the ceramic pin 15 is formed of a high heat-resistant non-oxide, so that the damage due to the temperature change of the ceramic pin 15 can be further prevented. In addition, since the surface of the ceramic pin 15 is gradually oxidized in a high temperature oxidizing atmosphere, the ceramic pin 15 made of high heat-resistant non-oxide is formed on the surface of the ceramic pin 15 with, for example, alumina. Then, a coating layer is formed by applying a slurry of a heat-resistant oxide such as zirconia to prevent oxidation of the surface of the ceramic pin 15. As a result, the high temperature characteristics (for example, strength and thermal shock resistance) of the ceramic pin 15 are prevented from being lowered and can be used stably over a long period of time.

ここで、織物16は、例えば、(1)Ti、Zr及びAlから選択される1の金属成分をM1として、Si、C、O、及びM1を含有する無機物質、(2)Si、C、及びOを含有する無機物質、(3)β−SiCの微結晶からなる結晶質の無機物質、あるいは(4)Al、Si、及びOからなる非晶質の無機物質から形成されている。なお、Si、C、O、及びM1を含有する無機物質には、Ti、Zr及びAlから選択される1の金属成分をM1とし、Ti及びZrから選択される1の金属成分をM2、その炭化物をM2Cとして、β−SiC、M2C、β−SiCとM2Cの固溶体及び/又はM2C1−x(0<x<1)からなる粒子径が700nm以下の結晶質超微粒子と、結晶質超粒子間に存在するSi、C、O、及びM1を含有する非晶質無機物質との集合物が含まれる。また、Si、C、及びOを含有する無機物質には、粒子径が700nm以下であるβ−SiCの結晶質超微粒子と、該結晶質超微粒子間に存在するSi、C、及びOを含有する非晶質無機物質との集合物が含まれる。 Here, the fabric 16 is, for example, (1) an inorganic substance containing Si, C, O, and M1, where one metal component selected from Ti, Zr, and Al is M1, and (2) Si, C, And an inorganic material containing O, (3) a crystalline inorganic material made of β-SiC microcrystals, or (4) an amorphous inorganic material made of Al, Si, and O. In addition, in the inorganic substance containing Si, C, O, and M1, one metal component selected from Ti, Zr and Al is M1, and one metal component selected from Ti and Zr is M2. Crystalline ultrafine particles having a particle diameter of 700 nm or less, comprising a carbide of M2C, a solid solution of β-SiC, M2C, β-SiC and M2C and / or M2C1 -x (0 <x <1) Aggregates with amorphous inorganic materials containing Si, C, O, and M1 existing therebetween are included. In addition, the inorganic substance containing Si, C, and O contains β-SiC crystalline ultrafine particles having a particle diameter of 700 nm or less, and Si, C, and O existing between the crystalline ultrafine particles. And aggregates with amorphous inorganic materials.

織物16を形成する無機繊維が(1)〜(3)のいずれかの無機物質で構成されている場合、通気性輻射熱反射体10を設置する加熱炉内の雰囲気が低酸化性の場合、(1)〜(3)のいずれかの無機物質で構成された無機繊維の酸化速度は小さいので、織物16を長期間に亘って使用する(円筒体14を排気口13内に長期間に亘って固定する)ことができる。一方、通気性輻射熱反射体10を設置する加熱炉内の雰囲気が酸化性の場合、使用時間の経過と共に織物16は徐々に酸化して形態が変化する。したがって、バッチ式の加熱炉等のように、頻繁に織物16の状況確認及びメンテナンスが可能な場合は、炉内雰囲気が酸化性であっても、織物16の交換を前提に通気性輻射熱反射体10を設置することができる。
また、織物16を形成する無機繊維が(4)の無機物質で構成されている場合、高温下において酸化性雰囲気、非酸化性雰囲気を問わず、非晶質の結晶化が進行して(粒成長が生じて)無機繊維が脆くなる。このため、織物16を形成している無機繊維が(4)の無機物質で構成されている場合、織物16を長期間に亘って使用することができない。
When the inorganic fiber forming the woven fabric 16 is composed of any one of the inorganic substances (1) to (3), when the atmosphere in the heating furnace in which the breathable radiant heat reflector 10 is installed is low-oxidizing ( Since the oxidation rate of the inorganic fiber composed of any one of the inorganic substances 1) to (3) is small, the fabric 16 is used for a long period of time (the cylindrical body 14 is disposed in the exhaust port 13 for a long period of time). Can be fixed). On the other hand, when the atmosphere in the heating furnace in which the breathable radiant heat reflector 10 is installed is oxidizing, the fabric 16 gradually oxidizes and changes its form with the passage of use time. Therefore, when the status of the fabric 16 can be frequently checked and maintained, such as in a batch-type heating furnace, even if the atmosphere in the furnace is oxidizing, a breathable radiant heat reflector is assumed on the assumption that the fabric 16 is replaced. 10 can be installed.
Further, when the inorganic fibers forming the fabric 16 are composed of the inorganic substance (4), amorphous crystallization proceeds (grains) regardless of whether the atmosphere is an oxidizing atmosphere or a non-oxidizing atmosphere. Growth occurs) and the inorganic fibers become brittle. For this reason, when the inorganic fiber which forms the fabric 16 is comprised with the inorganic substance of (4), the fabric 16 cannot be used over a long period of time.

また、通気性輻射熱反射体の厚みを大きくする必要がある場合、図2に示すように、幅広の帯部材20の一部を芯管の外周面に巻いて形成した環状の第1の渦巻き物21の中心部に、帯部材20の他の一部をその中心部から隙間なく巻いて作製した第2の渦巻き物22を内装(充填)して通気性輻射熱反射体23を構成し、通気性輻射熱反射体23内に、厚み方向に沿って内径が、例えば1〜50mmの複数(図2では4個)の耐熱性の中空管24を設けることで、通気性輻射熱反射体23の厚み方向の両側で生じる圧力損失を小さくすることができる。また、通気性輻射熱反射体23の断面積に対する中空管24の中空部の総断面積の割合は30%以下である。これにより、輻射熱の放射面積(反射面積)の大幅な低下を防止しながら、通気性輻射熱反射体23の厚み方向の両側で生じる圧力損失を小さくできる。なお、中空管24を設ける代わりに、通気性輻射熱反射体に排ガスの通過方向に沿って直径が1〜50mmの複数の貫通孔を形成してもよい。 When it is necessary to increase the thickness of the breathable radiant heat reflector, as shown in FIG. 2, an annular first spiral formed by winding a part of the wide band member 20 around the outer peripheral surface of the core tube. A second spiral 22 produced by winding another part of the band member 20 around the center of the belt member 20 without any gaps is filled (filled) to form a breathable radiant heat reflector 23, and the breathable By providing a plurality (four in FIG. 2) of heat-resistant hollow tubes 24 having an inner diameter of, for example, 1 to 50 mm along the thickness direction in the radiant heat reflector 23, the thickness direction of the breathable radiant heat reflector 23 The pressure loss occurring on both sides of the can be reduced. The ratio of the total cross-sectional area of the hollow portion of the hollow tube 24 to the cross-sectional area of the air-permeable radiant heat reflector 23 is 30% or less. Thereby, the pressure loss generated on both sides of the breathable radiant heat reflector 23 in the thickness direction can be reduced while preventing a significant decrease in the radiant heat radiation area (reflection area). Instead of providing the hollow tube 24, a plurality of through holes having a diameter of 1 to 50 mm may be formed in the breathable radiant heat reflector along the exhaust gas passage direction.

ここで、中空管24は、高耐熱性酸化物(例えばアルミナ)又は高耐熱性非酸化物(例えば、炭化ケイ素、窒化ケイ素、サイアロン)のいずれか1からなる。これによって、中空管24の高温下での変形や破損を防止して、長期間に亘って安定して使用することができる。ここで、加熱炉内で使用中に温度変動がある場合、中空管24を、高耐熱性非酸化物で形成することで、中空管24の温度変化に伴う破損を更に防止できる。なお、高耐熱性非酸化物で構成した中空管24は、高温下の酸化性雰囲気中では、中空管24の表面が徐々に酸化されてくるので、中空管24の表面に、例えば、アルミナ、ジルコニア等の耐熱酸化物のスラリーを塗布して被覆層を形成し、中空管24の表面の酸化を防止する。これによって、中空管24の高温特性(例えば、強度、熱衝撃抵抗)の低下を防いで、長期間に亘って安定して使用することができる。 Here, the hollow tube 24 is made of any one of a high heat-resistant oxide (for example, alumina) or a high heat-resistant non-oxide (for example, silicon carbide, silicon nitride, sialon). This prevents the hollow tube 24 from being deformed or damaged at high temperatures and can be used stably over a long period of time. Here, when there is a temperature fluctuation during use in the heating furnace, the hollow tube 24 is formed of a high heat-resistant non-oxide, so that the damage due to the temperature change of the hollow tube 24 can be further prevented. In addition, since the surface of the hollow tube 24 is gradually oxidized in the oxidizing atmosphere at a high temperature, the hollow tube 24 made of a high heat-resistant non-oxide is formed on the surface of the hollow tube 24, for example, Then, a coating layer is formed by applying a slurry of a heat-resistant oxide such as alumina or zirconia to prevent oxidation of the surface of the hollow tube 24. Thereby, the high temperature characteristics (for example, strength, thermal shock resistance) of the hollow tube 24 are prevented from being lowered and can be used stably over a long period of time.

続いて、本発明の第1の実施の形態に係る通気性輻射熱反射体10の作用について、説明する。
通気性輻射熱反射体10を構成する耐熱性の複合化無機繊維は、内殻構造と外殻構造を持つ多層構造を有しているので、高温の酸化雰囲気中でも内殻構造の変質が防止されて、無機繊維の形状を維持することができ、通気性輻射熱反射体10内に形成されている排ガスの通過経路が安定に存在できる。このため、通気性輻射熱反射体10を、円筒体14を介して加熱炉の排気口13内に設置すると、排ガスは円筒体14内に挿入されている通気性輻射熱反射体10を通過して外部に排出することができる。このとき、排ガスは通気性輻射熱反射体10を構成している複合化無機繊維と効率的に接触するため、通気性輻射熱反射体10は排ガスの顕熱を濾し取って排ガスの温度を低下させ(熱フィルタ作用を示し)、排気口13から外部に流出する熱を減少させることができる。また、通気性輻射熱反射体10は、排ガスにより加熱されて高温となる。このとき、内殻構造は酸化されず、炭化ケイ素系素材の特徴のひとつである大きな熱放射率を維持できる。これにより、高温になった通気性輻射熱反射体10は、加熱炉内からの輻射熱を反射して(熱レフレクタ作用を示し)加熱炉内に戻すことができる。その結果、通気性輻射熱反射体10を排気口13に設けることで、加熱炉内からの放熱量を減少させ、燃料使用量を減少させることができる。
Then, the effect | action of the air permeable radiant heat reflector 10 which concerns on the 1st Embodiment of this invention is demonstrated.
Since the heat-resistant composite inorganic fiber constituting the breathable radiant heat reflector 10 has a multi-layer structure having an inner shell structure and an outer shell structure, alteration of the inner shell structure is prevented even in a high-temperature oxidizing atmosphere. The shape of the inorganic fiber can be maintained, and the exhaust gas passage formed in the breathable radiant heat reflector 10 can exist stably. For this reason, when the breathable radiant heat reflector 10 is installed in the exhaust port 13 of the heating furnace via the cylindrical body 14, the exhaust gas passes through the breathable radiant heat reflector 10 inserted in the cylindrical body 14 to the outside. Can be discharged. At this time, since the exhaust gas efficiently contacts the composite inorganic fiber constituting the breathable radiant heat reflector 10, the breathable radiant heat reflector 10 filters the sensible heat of the exhaust gas to reduce the temperature of the exhaust gas ( Heat filter action), the heat flowing out from the exhaust port 13 to the outside can be reduced. The breathable radiant heat reflector 10 is heated by the exhaust gas and becomes high temperature. At this time, the inner shell structure is not oxidized, and a large thermal emissivity that is one of the characteristics of the silicon carbide-based material can be maintained. Thereby, the air-permeable radiant heat reflector 10 having a high temperature can reflect the radiant heat from the inside of the heating furnace (shows a thermal reflector action) and return it to the inside of the heating furnace. As a result, by providing the breathable radiant heat reflector 10 at the exhaust port 13, the amount of heat released from the heating furnace can be reduced and the amount of fuel used can be reduced.

本発明の第2の実施の形態に係る通気性輻射熱反射体は、第1の実施の形態に係る通気性輻射熱反射体10と比較して、内殻構造と外殻構造を持つ多層構造からなる複合化無機繊維で構成された布材の代わりに、(1)Ti、Zr及びAlから選択される1の金属成分をM1として、Si、C、O、及びM1を含有する無機物質、(2)Si、C、及びOを含有する無機物質、(3)β−SiCの微結晶からなる結晶質の無機物質、あるいは(4)Al、Si、及びOからなる非晶質の無機物質で構成された無機繊維で形成された布材を裁断して帯部材を形成することが特徴となっている。このため、第2の実施の形態に係る通気性輻射熱反射体の構成及び作用は、通気性輻射熱反射体10と同一であるので、詳細な説明は省略し、布材を形成する無機繊維について説明する。 The breathable radiant heat reflector according to the second embodiment of the present invention has a multilayer structure having an inner shell structure and an outer shell structure as compared with the breathable radiant heat reflector 10 according to the first embodiment. (1) An inorganic substance containing Si, C, O, and M1, where M1 is one metal component selected from Ti, Zr and Al, instead of a cloth material composed of composite inorganic fibers, (2 ) Inorganic substance containing Si, C, and O, (3) Crystalline inorganic substance composed of β-SiC microcrystals, or (4) Amorphous inorganic substance composed of Al, Si, and O The band member is formed by cutting the cloth material formed of the inorganic fiber formed. For this reason, since the structure and effect | action of the air permeable radiant heat reflector which concern on 2nd Embodiment are the same as the air permeable radiant heat reflector 10, detailed description is abbreviate | omitted and it demonstrates about the inorganic fiber which forms a cloth material. To do.

ここで、(1)の無機物質には、Ti、Zr及びAlから選択される1の金属成分をM1とし、Ti及びZrから選択される1の金属成分をM2、その炭化物をM2Cとして、β−SiC、M2C、β−SiCとM2Cの固溶体及び/又はM2C1−x(0<x<1)からなる粒子径が700nm以下の結晶質超微粒子と、結晶質超粒子間に存在するSi、C、O、及びM1を含有する非晶質無機物質との集合物が含まれる。また、(2)の無機物質には、粒子径が700nm以下であるβ−SiCの結晶質超微粒子と、該結晶質超微粒子間に存在するSi、C、及びOを含有する非晶質無機物質との集合物が含まれる。 Here, in the inorganic substance (1), one metal component selected from Ti, Zr and Al is M1, one metal component selected from Ti and Zr is M2, and its carbide is M2C. A crystalline ultrafine particle having a particle diameter of 700 nm or less composed of a solid solution of SiC, M2C, β-SiC and M2C and / or M2C1 -x (0 <x <1), and Si present between the crystalline ultraparticles, Aggregates with amorphous inorganic materials containing C, O, and M1 are included. The inorganic substance (2) includes β-SiC crystalline ultrafine particles having a particle diameter of 700 nm or less, and amorphous inorganic materials containing Si, C, and O present between the crystalline ultrafine particles. Includes aggregates with matter.

そして、無機繊維が(1)〜(3)のいずれかの無機物質で構成されている場合、無機繊維は、通気性輻射熱反射体10を構成している複合化無機繊維の内殻構造と同一の組成となるので、この無機繊維から構成された布材から作製した帯部材を隙間無く巻き取った柱状物から形成される通気性輻射熱反射体も、通気性輻射熱反射体10と同様の熱フィルタ作用及び熱レフレクタ作用を有する。なお、無機繊維は炭化ケイ素系素材であるため、高温の酸化雰囲気中では徐々に酸化されて材質が変化し、特性低下(例えば、強度低下、熱放射率の低下等)が生じる。このため、通気性輻射熱反射体を設置する雰囲気が低酸化性の場合は、無機繊維の酸化速度は小さいので、通気性輻射熱反射体は長期間に亘って、破損せずに高い輻射熱の反射効率を維持することができる。また、バッチ式の加熱炉等のように、頻繁に通気性輻射熱反射体の状況確認及びメンテナンスが可能な場合は、雰囲気が酸化性であっても、交換を前提に通気性輻射熱反射体を使用することができる。 And when inorganic fiber is comprised with the inorganic substance in any one of (1)-(3), inorganic fiber is the same as the inner-shell structure of the composite inorganic fiber which comprises the breathable radiant heat reflector 10. Therefore, a breathable radiant heat reflector formed from a columnar member obtained by winding a belt member made of a cloth material composed of inorganic fibers without gaps is also a thermal filter similar to the breathable radiant heat reflector 10 It has an action and a heat reflector action. In addition, since the inorganic fiber is a silicon carbide-based material, it is gradually oxidized in a high-temperature oxidizing atmosphere to change the material, resulting in characteristic deterioration (for example, strength reduction, thermal emissivity reduction, etc.). For this reason, when the atmosphere in which the breathable radiant heat reflector is installed is low oxidizing, the oxidation rate of the inorganic fiber is small, so the breathable radiant heat reflector has a high radiant heat reflection efficiency without being damaged for a long period of time. Can be maintained. Also, if the status and maintenance of the breathable radiant heat reflector can be frequently confirmed, such as in a batch-type heating furnace, even if the atmosphere is oxidizing, the breathable radiant heat reflector is used on the premise of replacement. can do.

また、無機繊維が、(4)の無機物質で構成されている場合、複合化無機繊維の内殻構造及び(1)〜(3)の無機繊維と比較して、比熱が大きく、熱放射率が小さくなる。このため、複合化無機繊維で形成した通気性輻射熱反射体10、又は(1)〜(3)の無機物質で構成された無機繊維で形成した通気性輻射熱反射体と比較して、(4)の無機物質で構成された無機繊維で形成した通気性輻射熱反射体の熱フィルタ作用及び熱レフレクタ作用は低下する。更に、(4)の無機物質で構成された無機繊維では、高温下において酸化性雰囲気、非酸化性雰囲気を問わず、非晶質の結晶化が進行するため(粒成長が生じるため)無機繊維が脆くなる。従って、通気性輻射熱反射体を形成している無機繊維が(4)の無機物質で構成されている場合、通気性輻射熱反射体を長期間に亘って使用することができない。 In addition, when the inorganic fiber is composed of the inorganic substance (4), the specific heat is large and the thermal emissivity compared to the inner shell structure of the composite inorganic fiber and the inorganic fibers (1) to (3). Becomes smaller. For this reason, compared with the breathable radiant heat reflector 10 formed with the composite inorganic fiber or the breathable radiant heat reflector formed with the inorganic fiber composed of the inorganic substances (1) to (3), (4) The heat filter action and the heat reflector action of the breathable radiant heat reflector formed of inorganic fibers composed of the above inorganic substances are reduced. Furthermore, in the inorganic fiber composed of the inorganic substance (4), since the amorphous crystallization proceeds at high temperature regardless of the oxidizing atmosphere or non-oxidizing atmosphere (because grain growth occurs), the inorganic fiber Becomes brittle. Therefore, when the inorganic fiber forming the breathable radiant heat reflector is composed of the inorganic substance (4), the breathable radiant heat reflector cannot be used for a long period of time.

図3に示すように、本発明の第3の実施の形態に係る通気性輻射熱反射体25は、耐熱性の無機繊維で構成された通気性を有する布材から作製した帯部材26の一部を長手方向に芯管の周囲に巻いて作製した環状の第1の渦巻き物27の中心部(芯管を除去した際に形成される空間部)に、帯部材26の他の一部を中心部から隙間無く巻いて作製した第2の渦巻き物28を内装(充填)して断面円形の柱状物を形成した後、柱状物を構成している無機繊維の外側に第2の外殻構造を設けて、柱状物を第2の内殻構造と第2の外殻構造を持つ複合化無機繊維から形成するようにしたことが特徴となっている。そして、通気性輻射熱反射体25は、本発明の第1の実施の形態に係る通気性輻射熱反射体10と同様に、加熱炉の、例えば天井部12に設けられた排気口13に内装された円筒体14の入口側に挿入され、天井部12から加熱炉内に突出する円筒体14の先側側部を貫通する複数のセラミックピン15で支持されて落下が防止されている。 As shown in FIG. 3, a breathable radiant heat reflector 25 according to a third embodiment of the present invention is a part of a belt member 26 made from a breathable cloth material made of heat-resistant inorganic fibers. Is centered on the other part of the band member 26 at the center (the space formed when the core tube is removed) of the annular first spiral 27 produced by winding the wire around the core tube in the longitudinal direction. After forming the columnar object having a circular cross section by filling (filling) the second spiral material 28 that is wound without gaps from the part, the second outer shell structure is formed outside the inorganic fiber constituting the columnar object. It is characterized in that it is provided and the columnar body is formed from a composite inorganic fiber having a second inner shell structure and a second outer shell structure. And the breathable radiant heat reflector 25 was built in the exhaust port 13 provided in, for example, the ceiling portion 12 of the heating furnace, like the breathable radiant heat reflector 10 according to the first embodiment of the present invention. It is inserted on the inlet side of the cylindrical body 14 and supported by a plurality of ceramic pins 15 penetrating through the front side portion of the cylindrical body 14 protruding from the ceiling portion 12 into the heating furnace, thereby preventing the fall.

円筒体14に挿入された通気性輻射熱反射体25は、一面(炉内に向いた面)側が炉内からの輻射熱及び炉内から排気口13内を通過して炉外に排出される高温の排ガスにより加熱される。その際に、通気性輻射熱反射体25は、一面側から他面(炉外に向いた面)側への熱の移動を抑制して排気口13から炉外に流出する排ガスの熱を減少させる、すなわち、排ガスの顕熱を濾し取って排ガスの温度を低下させる熱フィルタとして作用する。また、通気性輻射熱反射体25は、加熱されて高温になった一面側から輻射熱を炉内に放射する(炉内に向けて輻射熱を反射する)熱レフレクタとしても作用する。 The breathable radiant heat reflector 25 inserted into the cylindrical body 14 has a surface (surface facing the inside of the furnace) on the side of the radiant heat from the inside of the furnace and a high temperature exhausted from the inside of the furnace through the exhaust port 13 and discharged outside the furnace. Heated by exhaust gas. At that time, the air-permeable radiant heat reflector 25 suppresses the movement of heat from one surface side to the other surface (surface facing the outside of the furnace) and reduces the heat of the exhaust gas flowing out of the furnace from the exhaust port 13. That is, it acts as a heat filter that filters the sensible heat of the exhaust gas to lower the temperature of the exhaust gas. The breathable radiant heat reflector 25 also acts as a heat reflector that radiates radiant heat into the furnace from the one side heated to a high temperature (reflects radiant heat toward the furnace).

帯部材26を構成している無機繊維は、(1)Ti、Zr及びAlから選択される1の金属成分をM1として、Si、C、O、及びM1を含有する無機物質、(2)Si、C、及びOを含有する無機物質、及び(3)β−SiCの微結晶を含有する結晶質の無機物質のいずれか1で構成されている。ここで、(1)の無機物質には、Ti、Zr及びAlから選択される1の金属成分をM1とし、Ti及びZrから選択される1の金属成分をM2、その炭化物をM2Cとして、β−SiC、M2C、β−SiCとM2Cの固溶体及び/又はM2C1−x(0<x<1)からなる粒子径が700nm以下の結晶質超微粒子と、結晶質超粒子間に存在するSi、C、O、及びM1を含有する非晶質無機物質との集合物が含まれる。また、(2)の無機物質には、粒子径が700nm以下であるβ−SiCの結晶質超微粒子と、該結晶質超微粒子間に存在するSi、C、及びOを含有する非晶質無機物質との集合物が含まれる。 The inorganic fibers constituting the belt member 26 are: (1) an inorganic substance containing Si, C, O, and M1, with one metal component selected from Ti, Zr and Al as M1, and (2) Si , C, and O, and (3) a crystalline inorganic substance containing β-SiC microcrystals. Here, in the inorganic substance (1), one metal component selected from Ti, Zr and Al is M1, one metal component selected from Ti and Zr is M2, and its carbide is M2C. A crystalline ultrafine particle having a particle diameter of 700 nm or less composed of a solid solution of SiC, M2C, β-SiC and M2C and / or M2C1 -x (0 <x <1), and Si present between the crystalline ultraparticles, Aggregates with amorphous inorganic materials containing C, O, and M1 are included. The inorganic substance (2) includes β-SiC crystalline ultrafine particles having a particle diameter of 700 nm or less, and amorphous inorganic materials containing Si, C, and O present between the crystalline ultrafine particles. Includes aggregates with matter.

無機繊維が(1)〜(3)のいずれかの無機物質で構成されている場合、複合化無機繊維の第2の内殻構造は、第1の実施の形態に係る通気性輻射熱反射体10を構成している複合化無機繊維の内殻構造と同一の組成(炭化ケイ素系素材)となる。このため、第2の内殻構造を有する複合化無機繊維で構成された柱状物からなる通気性輻射熱反射体25は、高温下で大きな熱放射率を有することになる。 When the inorganic fiber is composed of any one of the inorganic substances (1) to (3), the second inner shell structure of the composite inorganic fiber is the breathable radiant heat reflector 10 according to the first embodiment. The same composition (silicon carbide-based material) as that of the inner shell structure of the composite inorganic fiber constituting the. For this reason, the air-permeable radiant heat reflector 25 made of a columnar material composed of the composite inorganic fiber having the second inner shell structure has a large thermal emissivity at a high temperature.

一方、Ti、Cr、Fe、Si、Co、Ni、Cu、Y、Zr、Nb、Tc、Ru、Rh、Pd、Ag、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、
Er、Tm、Yb、Lu、Hf、Ta、Re、及びOsの各元素を第1群として、第2の外殻構造は、(1)第1群から選択された1の元素の酸化物、(2)第1群から選択された2以上の元素からなる複合酸化物、(3)第1群から選択された2以上の元素の固溶体酸化物、(4)酸化物と複合酸化物、(5)酸化物と固溶体酸化物、(6)複合酸化物と固溶体酸化物、及び(7)酸化物と複合酸化物と固溶体酸化物のいずれか1からなる材料Aで構成されている。そして、第2の外殻構造を形成する無機物質の熱膨張係数の値は、第2の内殻構造を形成する無機物質の熱膨張係数の値の±10%の範囲内にあり、第2の外殻構造の厚さは0.2μm以上10μm以下である。これによって、通気性輻射熱反射体25の温度が変動しても(通気性輻射熱反射体25を構成している複合化無機繊維の温度が変動しても)、第2の外殻構造が第2の内殻構造から剥離することを防止できる。その結果、通気性輻射熱反射体25を高温の酸化雰囲気中で使用しても、第2の内殻構造が酸素と反応すること(第2の内殻構造の酸化)を防止でき、第2の内殻構造の材質変化に伴う特性の低下(例えば、強度低下、熱放射率の低下等)が抑制される。
On the other hand, Ti, Cr, Fe, Si, Co, Ni, Cu, Y, Zr, Nb, Tc, Ru, Rh, Pd, Ag, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho,
Each element of Er, Tm, Yb, Lu, Hf, Ta, Re, and Os is a first group, and the second outer shell structure is (1) an oxide of one element selected from the first group, (2) a composite oxide composed of two or more elements selected from the first group, (3) a solid solution oxide of two or more elements selected from the first group, (4) an oxide and a composite oxide, 5) a material A composed of any one of oxide and solid solution oxide, (6) complex oxide and solid solution oxide, and (7) oxide, complex oxide and solid solution oxide. The value of the thermal expansion coefficient of the inorganic substance forming the second outer shell structure is within a range of ± 10% of the value of the thermal expansion coefficient of the inorganic substance forming the second inner shell structure. The outer shell structure has a thickness of 0.2 μm or more and 10 μm or less. As a result, even if the temperature of the breathable radiant heat reflector 25 varies (even if the temperature of the composite inorganic fiber constituting the breathable radiant heat reflector 25 varies), the second outer shell structure becomes the second outer shell structure. It can prevent peeling from the inner shell structure. As a result, even when the breathable radiant heat reflector 25 is used in a high-temperature oxidizing atmosphere, it is possible to prevent the second inner shell structure from reacting with oxygen (oxidation of the second inner shell structure). Deterioration of characteristics (for example, strength decrease, decrease in thermal emissivity, etc.) accompanying the change in the material of the inner shell structure is suppressed.

なお、固溶体酸化物が、Y、Yb、Er、Ho、及びDyの各元素を第2群とし、Y、
Yb、Er、Ho、Dy、Gd、Sm、Nd、及びLuの各元素を第3群として、第2群から選択された少なくとも1の元素をQEとし、第3群から選択された少なくとも1の元素をREとして、一般式QESi、QESiO、REAl12、及び
REAlOのいずれか1又は2以上からなる場合、固溶体酸化物の耐熱性及び耐食性が高まる。その結果、第2の外殻構造の耐熱性及び耐食性が高まることによって、酸化に伴う第2の内殻構造の材質変化を防止でき、複合化無機繊維(通気性輻射熱反射体25)の高温酸化雰囲気中での安定性を更に高めることができる。
Note that the solid solution oxide has Y, Yb, Er, Ho, and Dy as the second group, and Y,
Each element of Yb, Er, Ho, Dy, Gd, Sm, Nd, and Lu is defined as a third group, at least one element selected from the second group is defined as QE, and at least one element selected from the third group is selected. When the element is RE and it is composed of any one or more of the general formulas QE 2 Si 2 O 7 , QESiO 5 , RE 3 Al 5 O 12 , and REAlO 3 , the heat resistance and corrosion resistance of the solid solution oxide are increased. As a result, the heat resistance and corrosion resistance of the second outer shell structure are increased, so that the material change of the second inner shell structure accompanying oxidation can be prevented, and the composite inorganic fiber (breathable radiant heat reflector 25) is oxidized at high temperature. Stability in the atmosphere can be further enhanced.

通気性輻射熱反射体25を形成する帯部材26は、無機繊維で構成された織物(厚みが0.2〜10mm、開口率が30%以下)又は不織布(厚みが1〜10mm、体積空隙率が50〜97%)からなる通気性を有する布材を、例えば3〜300mmの幅に裁断して作製される。このため、帯部材26の巻取り回数を変えることで、通気性輻射熱反射体25の外径寸法を容易に調整でき、任意の大きさの通気性輻射熱反射体を作製できる。 The belt member 26 forming the breathable radiant heat reflector 25 is a woven fabric (thickness 0.2 to 10 mm, opening ratio 30% or less) or non-woven fabric (thickness 1 to 10 mm, volume porosity) made of inorganic fibers. 50 to 97%) is produced by cutting a breathable cloth material to a width of 3 to 300 mm, for example. For this reason, by changing the number of windings of the belt member 26, the outer diameter of the breathable radiant heat reflector 25 can be easily adjusted, and a breathable radiant heat reflector of any size can be produced.

ここで、帯部材26の幅が3mm未満の場合、通気性輻射熱反射体25の厚みも3mm未満となり、排ガスの顕熱を濾し取って排ガスの温度を低下させる熱フィルタ作用が弱くなる。また、帯部材26の幅が300mmを超えると、通気性輻射熱反射体25の厚みも300mmを超えるため、通気性輻射熱反射体25の厚み方向の両側で生じる圧力損失が大きくなる。このため、帯部材26の幅を3〜300mmにした。そして、通気性輻射熱反射体25の寿命は、通気性輻射熱反射体25の厚みが厚くなると伸びるので、通気性輻射熱反射体25の厚みを3〜300mmの範囲で調整することで、通気性輻射熱反射体25を一定期間に亘って安定して使用することができる。 Here, when the width of the belt member 26 is less than 3 mm, the thickness of the air-permeable radiant heat reflector 25 is also less than 3 mm, and the thermal filter action that filters the sensible heat of the exhaust gas and lowers the temperature of the exhaust gas is weakened. Further, if the width of the belt member 26 exceeds 300 mm, the thickness of the breathable radiant heat reflector 25 also exceeds 300 mm, so that the pressure loss generated on both sides in the thickness direction of the breathable radiant heat reflector 25 increases. For this reason, the width of the band member 26 is set to 3 to 300 mm. The life of the breathable radiant heat reflector 25 is increased as the thickness of the breathable radiant heat reflector 25 is increased. The body 25 can be used stably over a certain period.

また、通気性輻射熱反射体の厚みを大きくする必要がある場合は、幅広の帯部材の一部を芯管の外周面に巻いて形成した環状の第1の渦巻き物の中心部に、帯部材の他の一部をその中心部から隙間なく巻いて作製した第2の渦巻き物を内装(充填)して通気性輻射熱反射体を構成し、通気性輻射熱反射体内に、厚み方向に沿って内径が、例えば1〜50mmの複数の耐熱性の中空管を設けることで、通気性輻射熱反射体の厚み方向の両側で生じる圧力損失を小さくすることができる。ここで、通気性輻射熱反射体の断面積に対する中空管の中空部の総断面積の割合は30%以下である。これにより、輻射熱の放射面積(反射面積)の大幅な低下を防止しながら、通気性輻射熱反射体の厚み方向の両側で生じる圧力損失を小さくできる。なお、中空管を設ける代わりに、通気性輻射熱反射体に排ガスの通過方向に沿って直径が1〜50mmの複数の貫通孔を形成してもよい。なお、中空管には、通気性輻射熱反射体10の変形例で説明した中空管24と同一のものを使用できる。 When it is necessary to increase the thickness of the breathable radiant heat reflector, the band member is formed at the center of the annular first spiral formed by winding a part of the wide band member around the outer peripheral surface of the core tube. A second vortex produced by winding another part from the central part without gaps is filled (filled) to form a breathable radiant heat reflector, and the inner diameter of the breathable radiant heat reflector is adjusted along the thickness direction. However, for example, by providing a plurality of heat-resistant hollow tubes of 1 to 50 mm, it is possible to reduce the pressure loss generated on both sides in the thickness direction of the breathable radiant heat reflector. Here, the ratio of the total cross-sectional area of the hollow portion of the hollow tube to the cross-sectional area of the breathable radiant heat reflector is 30% or less. Thereby, the pressure loss generated on both sides in the thickness direction of the breathable radiant heat reflector can be reduced while preventing a significant decrease in the radiant heat radiation area (reflection area). Instead of providing a hollow tube, a plurality of through-holes having a diameter of 1 to 50 mm may be formed in the breathable radiant heat reflector along the exhaust gas passage direction. In addition, the same thing as the hollow tube 24 demonstrated in the modification of the air permeable radiant heat reflector 10 can be used for a hollow tube.

続いて、本発明の第4の実施の形態に係る通気性輻射熱反射体25の製造方法について説明する。
通気性輻射熱反射体25の製造方法は、無機繊維で構成された布材を裁断して帯部材26を作製する第1工程と、帯部材26の一部を芯管(図示せず)の外周面に一定の張力下で隙間無く巻き付けて第1の渦巻き物27を形成し、第1の渦巻き物27から芯管を除去した際に形成される空間部に、帯部材26の他の一部をその中心部から隙間なく巻いて形成した第2の渦巻き物28を充填して柱状物を作製する第2工程とを有している。また、通気性輻射熱反射体25の製造方法は、柱状物を、材料Aの粉末が水中、有機溶媒中、あるいは水と有機溶媒の混合溶媒中に分散した分散溶液中に浸漬し、柱状物を陰極側にして50〜150ボルトの直流電圧を2〜10分間印加して電気泳動により粉末を柱状物を構成している無機繊維の外側に付着させる第3工程と、柱状物を分散溶液中から取り出し、乾燥させて水及び/又は有機溶剤を除去する第4工程と、乾燥した柱状物を、不活性ガス雰囲気中1300〜1700℃で0.2〜2時間加熱処理して粉末を無機繊維に固着させ、無機繊維を第2の内殻構造と第2の外殻構造を持つ複合化無機繊維に変える第5工程とを有している。以下、詳細に説明する。
Then, the manufacturing method of the air permeable radiant heat reflector 25 which concerns on the 4th Embodiment of this invention is demonstrated.
The manufacturing method of the breathable radiant heat reflector 25 includes a first step of cutting the cloth material made of inorganic fibers to produce the band member 26, and a part of the band member 26 as an outer periphery of a core tube (not shown). The first spiral 27 is formed by winding the surface without a gap under a constant tension, and another part of the band member 26 is formed in the space formed when the core tube is removed from the first spiral 27. And a second step of filling the second spiral material 28 formed by winding from the center of the material without gaps to produce a columnar material. In addition, the manufacturing method of the breathable radiant heat reflector 25 includes immersing the columnar material in a dispersion solution in which the powder of the material A is dispersed in water, an organic solvent, or a mixed solvent of water and an organic solvent. A third step of applying a direct current voltage of 50 to 150 volts to the cathode side for 2 to 10 minutes and attaching the powder to the outside of the inorganic fibers constituting the columnar body by electrophoresis; and the columnar body from the dispersion solution The fourth step of taking out and drying to remove water and / or organic solvent, and the dried columnar product in an inert gas atmosphere at 1300 to 1700 ° C. for 0.2 to 2 hours to heat the powder to inorganic fibers A fifth step of fixing and converting the inorganic fiber into a composite inorganic fiber having a second inner shell structure and a second outer shell structure; Details will be described below.

無機繊維で構成された布材を裁断して、帯部材26を作製する。ここで、布材が織物の場合、厚みは0.2〜10mm、開口率は30%以下であり、布材が不織布の場合、厚みは1〜10mm、体積空隙率は50〜97%である。また、布材を形成している無機繊維は、(1)Ti、Zr及びAlから選択される1の金属成分をM1として、Si、C、O、及びM1を含有する無機物質、(2)Si、C、及びOを含有する無機物質、及び(3)β−SiCの微結晶を含有する結晶質の無機物質のいずれか1で構成されている。なお、作製する帯部材26の幅は、通気性輻射熱反射体25を挿入する円筒体14の長さに応じて、3〜300mmの範囲で決定する(以上、第1工程)。 The cloth member made of inorganic fibers is cut to produce the belt member 26. Here, when the fabric material is a woven fabric, the thickness is 0.2 to 10 mm and the opening ratio is 30% or less. When the fabric material is a nonwoven fabric, the thickness is 1 to 10 mm and the volume porosity is 50 to 97%. . Further, the inorganic fibers forming the cloth material are: (1) an inorganic substance containing Si, C, O, and M1, where M1 is one metal component selected from Ti, Zr, and Al, and (2) It is composed of any one of an inorganic substance containing Si, C, and O and (3) a crystalline inorganic substance containing β-SiC microcrystals. The width of the band member 26 to be produced is determined in the range of 3 to 300 mm in accordance with the length of the cylindrical body 14 into which the breathable radiant heat reflector 25 is inserted (the first step).

作製した帯部材26の一部を、例えば、不織布用送り出し機又は巻き取り機等を用いて、芯管の外周面に一定の張力下で隙間無く巻き付けて、円筒体14に挿入可能な外径を有する第1の渦巻き物27を形成する。次いで、第1の渦巻き物27から芯管を取外し、第1の渦巻き物27の中央部に形成される空間部に、帯部材26の他の一部からなる第2の渦巻き物28を充填して、柱状物を作製する。 An outer diameter that allows a part of the produced belt member 26 to be inserted into the cylindrical body 14 by winding it around the outer peripheral surface of the core tube without a gap under a constant tension using, for example, a non-woven fabric feeder or a winder. A first spiral 27 having the following is formed. Next, the core tube is removed from the first spiral 27, and the second spiral 28 consisting of the other part of the band member 26 is filled in the space formed at the center of the first spiral 27. To produce a columnar object.

ここで、帯部材26を作製する布材に化学繊維(例えばレーヨン繊維)が含有される場合、あるいは布材にサイジング剤が施されている場合は、柱状物を、不活性ガス雰囲気(窒素ガス雰囲気、好ましくはアルゴンガス雰囲気)中で、800〜1200℃の温度で、0.5〜5時間加熱処理する。これによって、化学繊維を完全に分解して除去したり、一部を分解除去し残部を炭化させることができ、サイジング剤は完全に除去することができる。その結果、柱状物は、完全に無機物化する(以上、第2工程)。 Here, when a chemical material (for example, rayon fiber) is contained in the cloth material for producing the band member 26, or when a sizing agent is applied to the cloth material, the columnar material is treated with an inert gas atmosphere (nitrogen gas). Atmosphere, preferably argon gas atmosphere) at a temperature of 800 to 1200 ° C. for 0.5 to 5 hours. As a result, the chemical fiber can be completely decomposed and removed, or part of the chemical fiber can be decomposed and removed to carbonize the remainder, and the sizing agent can be completely removed. As a result, the columnar material is completely inorganicized (the second step).

柱状物を、材料Aの粉末が水中、有機溶媒中、あるいは水と有機溶媒の混合溶媒中に分散した分散溶液が貯留された浴槽中に浸漬する。ここで、有機溶媒は、例えば、アセトン、エタノール、ノルマルヘプタン等である。また、Ti、Cr、Fe、Si、Co、Ni、Cu、Y、Zr、Nb、Tc、Ru、Rh、Pd、Ag、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Hf、
Ta、Re、及びOsの各元素を第1群として、材料Aは、(1)第1群から選択された1の元素の酸化物、(2)第1群から選択された2以上の元素からなる複合酸化物、(3)第1群から選択された2以上の元素の固溶体酸化物、(4)酸化物と複合酸化物、(5)酸化物と固溶体酸化物、(6)複合酸化物と固溶体酸化物、及び(7)酸化物と複合酸化物と固溶体酸化物のいずれか1からなる。なお、耐熱性及び耐食性の高い固溶体酸化物とする場合、Y、Yb、Er、Ho、及びDyの各元素を第2群とし、Y、Yb、Er、Ho、
Dy、Gd、Sm、Nd、及びLuの各元素を第3群として、更に第2群から選択された少なくとも1の元素をQEとし、第3群から選択された少なくとも1の元素をREとして、固溶体酸化物の組成を、一般式QESi、QESiO、REAl12、及びREAlOのいずれか1又は2以上とする。
The columnar material is immersed in a bath in which a dispersion solution in which the powder of the material A is dispersed in water, an organic solvent, or a mixed solvent of water and an organic solvent is stored. Here, the organic solvent is, for example, acetone, ethanol, normal heptane, or the like. Also, Ti, Cr, Fe, Si, Co, Ni, Cu, Y, Zr, Nb, Tc, Ru, Rh, Pd, Ag, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf,
Each element of Ta, Re, and Os is a first group, and material A includes (1) an oxide of one element selected from the first group, and (2) two or more elements selected from the first group. (3) a solid solution oxide of two or more elements selected from the first group, (4) an oxide and a complex oxide, (5) an oxide and a solid solution oxide, and (6) a complex oxidation And (7) any one of an oxide, a complex oxide, and a solid solution oxide. In addition, when setting it as a solid solution oxide with high heat resistance and corrosion resistance, each element of Y, Yb, Er, Ho, and Dy is made into the 2nd group, Y, Yb, Er, Ho,
Each element of Dy, Gd, Sm, Nd, and Lu is a third group, and at least one element selected from the second group is QE, and at least one element selected from the third group is RE, The composition of the solid solution oxide is one or more of the general formulas QE 2 Si 2 O 7 , QESiO 5 , RE 3 Al 5 O 12 , and REAlO 3 .

次いで、柱状物を陰極側にして、直流安定化電源より50〜150ボルトの直流電圧を2〜10分間印加して電気泳動により、分散溶液中の粉末を柱状物を形成している帯部材26を構成している無機繊維の外側に付着させる(電気泳動処理)。ここで、浴槽中には、例えば、C/Cコンポジット製のカソ−ド電極が距離を有して対向配置されており、柱状物はアノ−ド電極となる2枚のステンレス製金網で抱き合わされて(挟まれて)、カソ−ド電極間に配置される(以上、第3工程)。 Next, with the columnar material on the cathode side, a belt member 26 that forms a columnar product of powder in the dispersion by electrophoresis by applying a DC voltage of 50 to 150 volts from a DC stabilized power source for 2 to 10 minutes. It is made to adhere to the outer side of the inorganic fiber which comprises (electrophoresis process). Here, in the bathtub, for example, cathode electrodes made of C / C composite are arranged facing each other with a distance, and the columnar objects are entangled by two stainless steel wire meshes serving as anode electrodes. (Between) and placed between the cathode electrodes (the third step).

電気泳動処理が完了すると、柱状物を分散溶液中から取り出し、分散溶液の液切りを行った後、1〜4時間風乾して、無機繊維の外側に付着した粉末層に含まれる水及び/又は有機溶媒の大半を飛散除去する。次いで、大気雰囲気中、40〜80℃の温度で3〜10時間熱風乾燥して、粉末層に残存する水及び/又は有機溶媒を完全に除去する(以上、第4工程)。 When the electrophoresis treatment is completed, the columnar material is taken out of the dispersion solution, drained from the dispersion solution, air-dried for 1 to 4 hours, and water and / or contained in the powder layer adhered to the outside of the inorganic fiber. Scatter and remove most of the organic solvent. Next, it is dried with hot air at a temperature of 40 to 80 ° C. for 3 to 10 hours in an air atmosphere to completely remove water and / or organic solvent remaining in the powder layer (the fourth step).

乾燥が完了した柱状物を、アルゴンガス等の不活性ガス気流下、又は0.2〜1MPaの微圧力の不活性ガス雰囲気中で、1300〜1700℃の温度で0.2〜2時間加熱処理する。これによって、無機繊維の外側に付着している粉末が焼結して無機繊維に固着し、無機繊維は第2の内殻構造と第2の外殻構造を持つ複合化無機繊維に変わり(以上、第5工程)、通気性輻射熱反射体25が形成される。そして、第2の外殻構造は、材料Aで構成され、第2の内殻構造は、無機繊維が(1)の無機物質で構成されている場合は(1)の無機物質で、無機繊維が(2)の無機物質で構成されている場合は(2)の無機物質で、無機繊維が(3)の無機物質で構成されている場合は(3)の無機物質でそれぞれ構成される。 The dried columnar material is heat-treated at a temperature of 1300 to 1700 ° C. for 0.2 to 2 hours in an inert gas stream such as argon gas or in an inert gas atmosphere at a low pressure of 0.2 to 1 MPa. To do. Thereby, the powder adhering to the outside of the inorganic fiber is sintered and fixed to the inorganic fiber, and the inorganic fiber is changed to a composite inorganic fiber having the second inner shell structure and the second outer shell structure (above). Fifth step), the breathable radiant heat reflector 25 is formed. The second outer shell structure is composed of the material A, and the second inner shell structure is composed of the inorganic substance (1) when the inorganic fiber is composed of the inorganic substance (1). Is composed of the inorganic substance of (2), and is composed of the inorganic substance of (3) when the inorganic fiber is composed of the inorganic substance of (3).

(実施例1)
先ず、Si、C、O、及びZrを含有する無機物質で形成された無機繊維で構成された不織布(繊維目付が240g/m、化学繊維の一例であるレ−ヨン繊維を20質量%含有し、幅が500mm、長さが10mのロール巻き)を裁断して、幅が20mmの帯部材を作製した(第1工程)。次いで、帯部材の一部が弛まないように一定の張力を加えながら、巻き取り機を用いて帯部材の一部を芯管の外周面に隙間無く巻き付けて、外径58mmの第1の渦巻き物を形成し、第1の渦巻き物から芯管を除去した跡に形成される空間部に帯部材の他の一部をその中心部から隙間なく巻いて作製した第2の渦巻き物を充填して、柱状物を作製した。そして、柱状物を熱処理炉内にセットし、アルゴンガス雰囲気中、800℃で1時間熱処理して、不織布に含有されているレ−ヨン繊維の一部を分解除去して残部を炭化させると共に、不織布に施されているサイジング剤(有機物)の除去を行った(第2工程)。
Example 1
First, a nonwoven fabric composed of inorganic fibers formed of an inorganic substance containing Si, C, O, and Zr (fiber basis weight is 240 g / m 2 , containing 20% by mass of rayon fiber as an example of chemical fiber) Then, a roll member having a width of 500 mm and a length of 10 m was cut to produce a belt member having a width of 20 mm (first step). Next, while applying a certain tension so that a part of the band member does not loosen, a part of the band member is wound around the outer peripheral surface of the core tube without a gap by using a winder, and a first spiral having an outer diameter of 58 mm is obtained. And a second spiral created by winding another part of the band member from the center without gaps in the space formed in the trace obtained by removing the core tube from the first spiral. A columnar product was prepared. Then, the columnar material is set in a heat treatment furnace, heat-treated at 800 ° C. for 1 hour in an argon gas atmosphere, and part of the rayon fiber contained in the nonwoven fabric is decomposed and carbonized to the remainder, The sizing agent (organic substance) applied to the nonwoven fabric was removed (second step).

続いて、熱処理された柱状物をアノ−ド電極となる2枚のステンレス製金網で抱き合わせ、第1群から選択されたSi、Zrの元素からなる固溶体酸化物であるジルコン(ZrSiO)の粉末がエタノ−ルと水の混合溶媒中に均一分散した分散溶液を貯留している浴槽中に距離を設けて対向配置したC/Cコンポジット製の2枚のカソ−ド電極の間に配置した。そして、直流安定化電源より120Vの直流電圧を5分間印加して、柱状物を形成している不織布を構成する無機繊維の外側にジルコンの粉末を電気泳動により付着させた(第3工程)。次いで、柱状物を分散溶液中から取り出し、液切り、2時間の風乾、大気雰囲気中40℃で6時間の熱風乾燥を行った(第4工程)後、アルゴンガス雰囲気中0.5MPaの微加圧下において、1500℃で0.5時間熱処理を行って、無機繊維の外側に付着させたジルコン粉末を焼結させて無機繊維に固着させることにより、無機繊維を第2の内殻構造(Si、C、O、及びZrを含有する無機物質で構成されている)と第2の外殻構造(ジルコン)を持つ複合化無機繊維に変えて(第5工程)、直径58mm、厚さ20mmの通気性輻射熱反射体(以下、円盤状物1という)を作製した。 Subsequently, the heat treated columnar material is bonded by two stainless steel wire meshes serving as anode electrodes, and a powder of zircon (ZrSiO 4 ), which is a solid solution oxide composed of Si and Zr elements selected from the first group. However, it was placed between two cathode electrodes made of C / C composite that were placed facing each other at a distance in a bath storing a dispersion solution uniformly dispersed in a mixed solvent of ethanol and water. Then, a DC voltage of 120 V was applied from a DC stabilized power source for 5 minutes, and zircon powder was adhered to the outside of the inorganic fibers constituting the non-woven fabric forming the columnar object (third step). Next, the columnar material was taken out from the dispersion solution, drained, air-dried for 2 hours, and hot-air dried at 40 ° C. for 6 hours in the air atmosphere (fourth step), and then slightly added 0.5 MPa in an argon gas atmosphere. Under pressure, a heat treatment is performed at 1500 ° C. for 0.5 hours to sinter the zircon powder adhered to the outside of the inorganic fiber and fix it to the inorganic fiber, thereby allowing the inorganic fiber to have a second inner shell structure (Si, C., O, and Zr), and a composite inorganic fiber having a second outer shell structure (zircon) (fifth step), with a diameter of 58 mm and a thickness of 20 mm. A radiant radiant heat reflector (hereinafter referred to as disk-shaped object 1) was produced.

一方、外径が68mm、内径が58mm、長さが80mmのアルミナ製の円筒体(アルミナ管)の外周面に、炭化ケイ素系の無機繊維で構成され、アルミナ質の耐熱性無機接着剤を練り込まれた平織物(厚みが0.25mm、幅が40mm)を巻き付けて、外径が70mmのシール部を形成した。そして、図4に示す電気炉の天井部の中央に形成された内径70mmの排気口の入口側(炉内側)から、外径70mmのシール部が取付けれた円筒体を基側から挿入し、円筒体の軸方向中央より基側の側部の対向する位置(周方向0度位置及び180度位置)に予め作製しておいたボルト孔に、外径7mm、長さ12mmのアルミナ製のボルトをねじ込み、円筒体の内側から円筒体及びシール部をそれぞれ貫通させて、その先部を排気口の内周面に当接させて押圧した。次いで、円盤状物1を円筒体の炉内側の開口から挿入し、円筒体の先側の側部の対向する位置(周方向0度位置及び180度位置)に予め作製しておいた孔に、円筒体の外側から外径7mm、長さ30mmのアルミナ製のピンを差込み、円筒体内に挿入された円盤状物1を支持した。以上によって、電気炉の排気口内への円盤状物1の設置(取付け)が完了する。 On the other hand, an alumina cylindrical body (alumina tube) having an outer diameter of 68 mm, an inner diameter of 58 mm, and a length of 80 mm is composed of silicon carbide-based inorganic fibers and kneaded with an alumina heat-resistant inorganic adhesive. The inserted plain woven fabric (thickness: 0.25 mm, width: 40 mm) was wound to form a seal portion having an outer diameter of 70 mm. And, from the inlet side (furnace inside) of the exhaust port having an inner diameter of 70 mm formed in the center of the ceiling portion of the electric furnace shown in FIG. 4, the cylindrical body attached with the seal portion having an outer diameter of 70 mm is inserted from the base side, A bolt made of alumina with an outer diameter of 7 mm and a length of 12 mm in a bolt hole prepared in advance at a position facing the side portion on the base side from the center in the axial direction of the cylindrical body (0 degree position and 180 degree position in the circumferential direction). The cylindrical body and the seal portion were respectively penetrated from the inside of the cylindrical body, and the tip portion thereof was pressed against the inner peripheral surface of the exhaust port. Next, the disc-like object 1 is inserted from the opening inside the furnace of the cylindrical body, and the holes are prepared in advance at opposite positions (0 degree position and 180 degree position in the circumferential direction) on the front side of the cylindrical body. Then, an alumina pin having an outer diameter of 7 mm and a length of 30 mm was inserted from the outside of the cylindrical body to support the disc-like object 1 inserted into the cylindrical body. Thus, the installation (attachment) of the disc-like object 1 in the exhaust port of the electric furnace is completed.

続いて、電気炉の排気口内に設置した円盤状物1の熱フィルタ作用及び熱レフレクタ作用を確認するため、電気炉を常時1300℃一定に保持(電気炉中央部の温度で制御)し、電気炉の炉床中央部に形成した空気送入口より0.8リットル/分の流量で空気を200時間電気炉内に流通させ、そのときの電気炉の消費電力W1の削減率を調べた。ここで、消費電力W1の削減率は、電気炉の排気口内に円盤状物1を設置しない状態で、炉床中央部の空気送入口より0.8リットル/分の流量で空気を電気炉内に流通させながら、電気炉を常時1300℃一定に保持する際に必要な消費電力量をW0とした場合、100×(W0−W1)/W0により求めた。その結果を図5に示す。なお、図5には、電気炉中央部に配置した熱電対で測定した温度(設定温度)、円盤状物1の炉内側表面に取付けた熱電対で測定した円盤状物下の温度、及び円盤状物1の炉外側表面に取付けた熱電対で測定した円盤状物上の温度も合わせて記載している。また、別の電気炉内に円盤状物1を配置し、1300℃の空気中で340時間連続加熱し、円盤状物1の高温酸化による劣化の有無を観察した。 Subsequently, in order to confirm the heat filter action and the heat reflector action of the disc-like object 1 installed in the exhaust port of the electric furnace, the electric furnace is always kept constant at 1300 ° C. (controlled by the temperature at the center of the electric furnace) From the air inlet formed in the center of the hearth of the furnace, air was circulated in the electric furnace at a flow rate of 0.8 liter / min for 200 hours, and the reduction rate of the electric power consumption W1 of the electric furnace at that time was examined. Here, the reduction rate of the power consumption W1 is as follows: air is supplied into the electric furnace at a flow rate of 0.8 liters / minute from the air inlet at the center of the hearth without the disc-like object 1 installed in the exhaust outlet of the electric furnace. Assuming that the power consumption required when the electric furnace is always kept constant at 1300 ° C. is W0, it is determined by 100 × (W0−W1) / W0. The result is shown in FIG. FIG. 5 shows a temperature (set temperature) measured with a thermocouple disposed in the center of the electric furnace, a temperature under the disk-like object measured with a thermocouple attached to the inner surface of the disk-like object 1, and a disk. The temperature on the disk-shaped object measured with a thermocouple attached to the outer surface of the furnace 1 is also shown. Moreover, the disk-shaped object 1 was arrange | positioned in another electric furnace, and it heated continuously in the air of 1300 degreeC for 340 hours, and the presence or absence of deterioration by the high temperature oxidation of the disk-shaped object 1 was observed.

図5に示すように、円盤状物1を設置する場合は、設置しない場合に比べ消費電力削減率は35%の高い値を示し、この削減率は200時間中変わることなく一定で、円盤状物1が優れた熱レフレクタ作用(輻射熱反射特性)を有することが確認でき、電気炉運転の省エネルギ−に大きく寄与すること、結果的にはCOの発生低減に大きく寄与することが示唆された。また、円盤状物下の温度(炉内側表面温度)が1250℃であるのに対して、円盤状物上の温度(炉外側表面温度)は630℃であり、円盤状物1の上下で620℃もの温度差が発生しており、この温度差は200時間に亘って常時一定であった。このことから、円盤状物1が優れた熱フィルタ作用(熱遮蔽特性)を持つことが確認できた。 As shown in FIG. 5, when the disk-shaped object 1 is installed, the power consumption reduction rate is 35% higher than when the disk-like object 1 is not installed, and this reduction rate is constant without changing during 200 hours. It can be confirmed that the object 1 has an excellent heat reflector action (radiant heat reflection characteristic), which greatly contributes to the energy saving of the electric furnace operation, and as a result, greatly contributes to the reduction of CO 2 generation. It was. The temperature under the disk (furnace inner surface temperature) is 1250 ° C., whereas the temperature on the disk (furnace outer surface temperature) is 630 ° C., and 620 above and below the disk 1. A temperature difference of as much as 0 ° C. occurred, and this temperature difference was always constant over 200 hours. From this, it was confirmed that the disc-like object 1 has an excellent heat filter action (heat shielding property).

大気中、1300℃での円盤状物1の耐久試験(高温酸化抵抗性試験)において、耐久試験開始から150時間及び340時間を経過した時点における円盤状物1を形成している複合化無機繊維を走査型電子顕微鏡で観察した。その結果を図6(A)に示す。図6(A)に示すように、高温酸化による複合化無機繊維の劣化は全く認められず、この円盤状物1が1300℃の高温でも、長期に亘って一定した性能を保持し得るものであることが確認できた。 In the atmosphere, the composite inorganic fiber forming the disc-like product 1 at the time when 150 hours and 340 hours have passed since the end of the durability test in the durability test (high-temperature oxidation resistance test) of the disc-like product 1 at 1300 ° C. Were observed with a scanning electron microscope. The result is shown in FIG. As shown in FIG. 6 (A), no deterioration of the composite inorganic fiber due to high-temperature oxidation is observed, and this disc-like product 1 can maintain a constant performance over a long period of time even at a high temperature of 1300 ° C. It was confirmed that there was.

(実施例2)
Si、C、O、及びZrを含有する無機物質で形成された無機繊維で構成された不織布(繊維目付が240g/m、レ−ヨン繊維を20質量%含有し、厚さ5mm、体積空隙率95%)を裁断して、幅が20mmの帯部材を作製した。次いで、帯部材が弛まないように一定の張力を加えながら、巻き取り機を用いて帯部材を中心部から外側まで(芯管を使用しないで)隙間無く巻き付けて、外径58mm、厚さが20mmの円盤状物2(通気性輻射熱反射体)を作製した。そして、実施例1の円盤状物1を円筒体から取外し、作製した円盤状物2を挿入して、実施例1と同様に、電気炉を常時1300℃一定に保持し、電気炉の炉床の空気送入口より0.8リットル/分の流量で空気を200時間電気炉内に流通させ、そのときの電気炉の消費電力の削減率を調べた。また、円盤状物2の上下にそれぞれ熱電対を取付け、円盤状物上下の温度を測定した。
(Example 2)
Nonwoven fabric composed of inorganic fibers formed of inorganic substances containing Si, C, O, and Zr (fiber weight is 240 g / m 2 , containing 20% by weight of rayon fiber, thickness 5 mm, volume void A strip member having a width of 20 mm was produced. Next, while applying a certain tension so as not to loosen the band member, the band member is wound from the center part to the outside (without using the core tube) with a winder without any gap, and the outer diameter is 58 mm and the thickness is A 20 mm disk-shaped object 2 (breathable radiant heat reflector) was produced. Then, the disk-like object 1 of Example 1 is removed from the cylindrical body, and the produced disk-like object 2 is inserted, and the electric furnace is always kept constant at 1300 ° C. as in Example 1, and the hearth of the electric furnace The air was circulated in the electric furnace for 200 hours at a flow rate of 0.8 liter / min from the air inlet, and the reduction rate of power consumption of the electric furnace at that time was examined. Moreover, the thermocouple was attached to the upper and lower sides of the disk-shaped object 2, respectively, and the temperature of the upper and lower sides of the disk-shaped object was measured.

その結果、円盤状物2を挿入しても、使用の初期段階(加熱を開始してから約100時間程度)では、消費電力削減率は、実施例1とほぼ同等の値を示し、円盤状物2が優れた熱レフレクタ作用(輻射熱反射特性)を有することが確認できた。また、円盤状物2の上下の温度差が示す熱遮蔽効果も実施例1とほぼ同等の結果を示した。一方、実施例1の円盤状物1と同様の方法で行った円盤状物2の大気中、1300℃での耐久試験では、図6(B)に示すように、円盤状物2を形成している不織布を構成するSi、C、O、及びZrを含有する無機物質で形成された無機繊維は、150時間を経過した時点で既に無機繊維が著しく損傷を受けて劣化していることが認められた。したがって、円盤状物2をこの温度で実用に供するためには、比較的短期間で取替えながら使用する必要がある。 As a result, even when the disc-like object 2 is inserted, the power consumption reduction rate is almost the same as that in Example 1 in the initial stage of use (about 100 hours after heating is started). It was confirmed that the object 2 has an excellent heat reflector action (radiant heat reflection characteristic). In addition, the heat shielding effect indicated by the temperature difference between the upper and lower sides of the disk-like object 2 showed almost the same result as in Example 1. On the other hand, in the durability test at 1300 ° C. in the atmosphere of the disk-shaped object 2 performed by the same method as the disk-shaped object 1 of Example 1, the disk-shaped object 2 was formed as shown in FIG. It is recognized that the inorganic fibers formed of inorganic substances containing Si, C, O, and Zr constituting the nonwoven fabric are already damaged and deteriorated after 150 hours. It was. Therefore, in order to put the disk-shaped object 2 into practical use at this temperature, it is necessary to use it while replacing it in a relatively short period of time.

(実施例3)
Si、C、及びOを含有する無機物質で形成された無機繊維で構成された平織物(繊維目付が289g/m、厚さ0.33mm)を裁断して、幅が20mmの帯部材を作製した。次いで、帯部材が弛まないように一定の張力を加えながら、巻き取り機を用いて帯部材を中心部から外側まで(芯管を使用しないで)隙間無く巻き付けて、外径58mm、厚さが20mmの円盤状物3(通気性輻射熱反射体)を作製した。そして、実施例1の円盤状物1を円筒体から取外し、作製した円盤状物3を挿入して、実施例1と同様に、電気炉を常時1300℃一定に保持し、電気炉の炉床の空気送入口より0.8リットル/分の流量で空気を200時間電気炉内に流通させ、そのときの電気炉の消費電力の削減率を調べた。また、円盤状物3の上下にそれぞれ熱電対を取付け、円盤状物上下の温度を測定した。
(Example 3)
A plain woven fabric (fiber basis weight is 289 g / m 2 , thickness 0.33 mm) made of inorganic fibers formed of an inorganic substance containing Si, C, and O is cut to form a band member having a width of 20 mm. Produced. Next, while applying a certain tension so as not to loosen the band member, the band member is wound from the center part to the outside (without using the core tube) with a winder without any gap, and the outer diameter is 58 mm and the thickness is A 20 mm disk 3 (breathable radiant heat reflector) was produced. Then, the disk-like object 1 of Example 1 is removed from the cylindrical body, and the produced disk-like object 3 is inserted, and the electric furnace is always kept constant at 1300 ° C. as in Example 1, and the hearth of the electric furnace The air was circulated in the electric furnace for 200 hours at a flow rate of 0.8 liter / min from the air inlet, and the reduction rate of power consumption of the electric furnace at that time was examined. Moreover, the thermocouple was attached to the upper and lower sides of the disk-shaped object 3, respectively, and the temperature of the disk-shaped object upper and lower sides was measured.

その結果、円盤状物3を挿入しても、使用の初期段階(加熱を開始してから約100時間程度)では、消費電力削減率は、実施例1とほぼ同等の値を示し、円盤状物3が優れた熱レフレクタ作用(輻射熱反射特性)を有することが確認できた。また、円盤状物3の上下の温度差が示す熱遮蔽効果も実施例1とほぼ同等の結果を示した。一方、実施例1の円盤状物1と同様の方法で行った円盤状物3の大気中、1300℃での耐久試験では、円盤状物2の場合と同様、円盤状物3を形成している平織物を構成するSi、C、及びOを含有する無機物質で形成された無機繊維は、150時間を経過した時点で既に無機繊維が著しく損傷を受けて劣化していることが認められた。したがって、円盤状物3をこの温度で実用に供するためには、比較的短期間で取替えながら使用する必要がある。 As a result, even when the disk-shaped object 3 is inserted, the power consumption reduction rate shows a value substantially equal to that in Example 1 in the initial stage of use (about 100 hours after the start of heating). It was confirmed that the object 3 has an excellent heat reflector action (radiant heat reflection characteristic). In addition, the heat shielding effect indicated by the temperature difference between the upper and lower sides of the disk-like object 3 showed substantially the same result as in Example 1. On the other hand, in the durability test at 1300 ° C. in the atmosphere of the disk-shaped object 3 performed in the same manner as the disk-shaped object 1 of Example 1, the disk-shaped object 3 was formed as in the case of the disk-shaped object 2. Inorganic fibers formed of inorganic substances containing Si, C, and O constituting the plain woven fabric have already been found to have deteriorated due to significant damage to the inorganic fibers after 150 hours. . Therefore, in order to put the disk-shaped object 3 into practical use at this temperature, it is necessary to use it while replacing it in a relatively short period of time.

(実施例4)
実施例1で使用した不織布を裁断して、幅が50mmの帯部材を作製し、実施例1と同様の方法で円盤状物4(通気性輻射熱反射体)を作製した。次いで、内径5mm、外径7mm、長さ50mmのアルミナ製の10本の中空管が円盤状物4の表裏面上に均等に配置されるように、中空管を円盤状物4の軸方向に貫通させた。その結果、円盤状物4の開口率は7.4%となった。そして、実施例1の円盤状物1を円筒体から取外し、作製した円盤状物4を挿入して、実施例1と同様に、電気炉を常時1300℃一定に保持し、電気炉の炉床の空気送入口より0.8リットル/分の流量で空気を200時間電気炉内に流通させ、そのときの電気炉の消費電力の削減率を求めて省エネルギ−効果を調べた。また、円盤状物4の上下にそれぞれ熱電対を取付けて円盤状物4の上下面の温度を測定し、円盤状物4の熱遮蔽効果を調べた。
(Example 4)
The non-woven fabric used in Example 1 was cut to produce a band member having a width of 50 mm, and a disk-like product 4 (breathable radiant heat reflector) was produced in the same manner as in Example 1. Next, the hollow tube is placed on the axis of the disk-shaped object 4 so that 10 hollow tubes made of alumina having an inner diameter of 5 mm, an outer diameter of 7 mm, and a length of 50 mm are evenly arranged on the front and back surfaces of the disk-shaped object 4. Penetrated in the direction. As a result, the aperture ratio of the disk-like object 4 was 7.4%. And the disk-shaped object 1 of Example 1 is removed from the cylindrical body, the produced disk-shaped object 4 is inserted, and the electric furnace is always kept constant at 1300 ° C. as in Example 1, and the hearth of the electric furnace The air was circulated in the electric furnace for 200 hours at a flow rate of 0.8 liter / min from the air inlet, and the energy saving effect was investigated by determining the reduction rate of the electric power consumption of the electric furnace at that time. Moreover, the thermocouple was attached to the upper and lower sides of the disk-shaped object 4, respectively, the temperature of the upper and lower surfaces of the disk-shaped object 4 was measured, and the heat shielding effect of the disk-shaped object 4 was investigated.

円盤状物4では、開口率が7.4%のため、加熱された空気による圧力損失が殆ど無く、高温空気が円盤状物4を素通りすると思われたが、消費電力削減率及び熱遮蔽効果は、いずれも実施例1(開口率が0%の円盤状物1)とほぼ同一の優れた結果を示した。その結果、円盤状物に複数の孔を開けて、円盤状物の厚み方向の両側での熱風による圧損を無くす工夫を施しても、性能発現、すなわち、熱レフレクタ作用(輻射熱反射特性)及び熱フィルタ作用(熱遮蔽特性)には全く影響を及ぼさないことがわかった。 In the disk-shaped object 4, since the aperture ratio was 7.4%, there was almost no pressure loss due to heated air, and high-temperature air seemed to pass through the disk-shaped object 4, but the power consumption reduction rate and the heat shielding effect Both showed excellent results almost identical to those of Example 1 (disc-like product 1 having an aperture ratio of 0%). As a result, even if a plurality of holes are made in the disk-shaped object to eliminate pressure loss due to hot air on both sides in the thickness direction of the disk-shaped object, performance development, that is, heat reflector action (radiant heat reflection characteristics) and heat It was found that the filter action (heat shielding characteristics) was not affected at all.

(実施例5)
実施例1で使用した不織布を裁断して、幅が5mmの第2の帯部材を作製し、実施例1と同様の方法で直径58mm、厚さ5mmの円盤状物5(通気性輻射熱反射体)を作製した。そして、実施例1の円盤状物1をアルミナ製の円筒体から取外し、作製した円盤状物5を挿入して、実施例1と同様に、電気炉を常時1300℃一定に保持した状態で、電気炉内の中心(温度制御点)と円盤状物5の炉内側端面の中心を結ぶ直線に沿った温度分布、円盤状物5の炉内側端面の中央部温度、及び円盤状物5の炉外側端面の中央部温度を測定すると共に、円盤状物5の炉内側端面の中央部温度と炉外側端面の中央部温度との温度差(熱遮蔽効果)を調べた。その結果を、図7に示す。
(Example 5)
The non-woven fabric used in Example 1 was cut to produce a second band member having a width of 5 mm, and a disk-shaped product 5 (breathable radiant heat reflector having a diameter of 58 mm and a thickness of 5 mm was obtained in the same manner as in Example 1. ) Was produced. And the disk-shaped object 1 of Example 1 was removed from the cylindrical body made of alumina, and the produced disk-shaped object 5 was inserted, and in the same manner as in Example 1, the electric furnace was always kept constant at 1300 ° C. Temperature distribution along a straight line connecting the center (temperature control point) of the electric furnace and the center of the inner surface of the disk-shaped object 5, the temperature at the center of the inner surface of the disk-shaped object 5, and the furnace of the disk-shaped object 5 While measuring the center part temperature of an outer side end surface, the temperature difference (thermal shielding effect) of the center part temperature of the furnace inner side end surface of the disk-shaped object 5 and the center part temperature of a furnace outer side end surface was investigated. The result is shown in FIG.

図7に示すように、円盤状物5を使用すると、電気炉内の中心を1300℃に温度制御する場合、円盤状物5の炉内側端面の中央部でも1285℃の高い温度が保たれており、円盤状物5を装着するだけで所望の温度を電気炉内に広域に亘って保持できる、すなわち炉均熱部を著しく広範に広げることができることが確認できた。また、この円盤状物5の炉外側端面の中央部温度は630℃で、円盤状物5の両側で655℃に及ぶ熱遮蔽効果が確認できた。 As shown in FIG. 7, when the disk-shaped object 5 is used, when the temperature inside the electric furnace is controlled at 1300 ° C., a high temperature of 1285 ° C. is maintained even at the center of the furnace inner end surface of the disk-shaped object 5. Thus, it was confirmed that the desired temperature can be maintained over a wide area in the electric furnace simply by mounting the disk-shaped object 5, that is, the furnace heat-equalizing section can be remarkably widened. In addition, the temperature at the center of the outer end face of the disk-shaped object 5 was 630 ° C., and a heat shielding effect of 655 ° C. was confirmed on both sides of the disk-shaped object 5.

(実施例6)
Al、Si、及びOを含有する非晶質無機物質(Alが約30%、SiOが約70%)で構成された無機繊維(Al−Si−O系無機繊維)で形成された不織布(厚さ5mm、体積空隙率80%)を裁断して、幅が5mmの帯部材を作製した。次いで、帯部材が弛まないように一定の張力を加えながら、巻き取り機を用いて帯部材を中心部から外側まで(芯管を使用しないで)隙間無く巻き付けて、外径58mm、厚さが5mmの円盤状物6(通気性輻射熱反射体)を作製した。そして、実施例1の円盤状物1を円筒体から取外し、作製した円盤状物6を挿入して、実施例1と同様に、電気炉を常時1300℃一定に保持した状態で、電気炉内の中心(温度制御点)と円盤状物6の炉内側端面の中心を結ぶ直線に沿った温度分布、円盤状物6の炉内側端面の中央部温度、及び円盤状物6の炉外側端面の中央部温度を測定すると共に、円盤状物6の炉内側端面の中央部温度と炉外側端面の中央部温度との温度差(熱遮蔽効果)を調べた。
(Example 6)
Formed with inorganic fibers (Al-Si-O based inorganic fibers) composed of amorphous inorganic materials containing Al, Si, and O (Al 2 O 3 is about 30%, SiO 2 is about 70%). A non-woven fabric (thickness 5 mm, volume porosity 80%) was cut to produce a band member having a width of 5 mm. Next, while applying a certain tension so as not to loosen the band member, the band member is wound from the center part to the outside (without using the core tube) with a winder without any gap, and the outer diameter is 58 mm and the thickness is A 5 mm disk 6 (breathable radiant heat reflector) was produced. Then, the disk-shaped object 1 of Example 1 was removed from the cylindrical body, and the produced disk-shaped object 6 was inserted, and in the same manner as in Example 1, the electric furnace was kept constant at 1300 ° C. Temperature distribution along a straight line connecting the center of the disk (temperature control point) and the center of the inner surface of the furnace of the disk-shaped object 6, the temperature of the center of the inner surface of the furnace of the disk-shaped object 6, and the outer surface of the outer surface of the disk-shaped object 6 While measuring the center temperature, the temperature difference (thermal shielding effect) between the center temperature of the inner surface of the furnace 6 and the center temperature of the outer surface of the outer surface of the disc-like object 6 was examined.

図7に示すように、円盤状物6を使用する場合、温度分布は、電気炉内の中心と円盤状物6の炉内側端面の中心を結ぶ直線に沿って、電気炉の中心部から6cm程度の部位から温度が低下し始め、電気炉の中心部から10cm程度の部位(円盤状物6の炉内側端面から炉内側に2.5cm程度入った部位)から急激に温度が低下し、円盤状物6の炉内側端面の中央部温度は1150℃まで低下した。しかしながら、この円盤状物6の炉外側端面の中央部温度は535℃であり、円盤状物6の厚み方向の両側で615℃に及ぶ熱遮蔽効果が確認できた。 As shown in FIG. 7, when using the disk-shaped object 6, the temperature distribution is 6 cm from the center of the electric furnace along a straight line connecting the center of the electric furnace and the center of the inner surface of the disk-shaped object 6. The temperature starts to decrease from the part of about 10 cm from the center of the electric furnace, and the temperature suddenly drops from the part of about 10 cm from the center of the electric furnace (part of about 2.5 cm inside the furnace from the inner end surface of the disk-shaped object 6). The temperature at the center of the inner end face of the furnace 6 of the product 6 was reduced to 1150 ° C. However, the temperature at the center of the outer end face of the disk-shaped object 6 was 535 ° C., and a heat shielding effect of 615 ° C. was confirmed on both sides of the disk-shaped object 6 in the thickness direction.

(実施例7)
実施例5の円盤状物5、実施例6の円盤状物6から、縦15mm、横15mm、厚さ5mmの平板状の試験片をそれぞれ切り出し、図8に示す測定装置を用いて各試験片の熱放射率を測定した。熱放射率の測定は、電気炉内に設けた試料ホルダーに、試験片の縦15mm、横15mmの一面が露出するようにセットし、試験片温度を800〜1000℃の範囲に加熱して、電気炉の外部に設けた光学系を用いて一定強度の光(0.7〜5μmの波長範囲の赤外線)を試験片の露出した面に照射し、試験片の露出した面で反射した反射光の強度(放射強度)を測定して求めた。その結果を図9に示す。
(Example 7)
A plate-like test piece having a length of 15 mm, a width of 15 mm, and a thickness of 5 mm was cut out from the disk-like object 5 of Example 5 and the disk-like object 6 of Example 6, and each test piece was measured using the measuring apparatus shown in FIG. The thermal emissivity of was measured. The measurement of thermal emissivity is set in a sample holder provided in the electric furnace so that one side of the test piece is 15 mm long and 15 mm wide, and the test piece temperature is heated to a range of 800 to 1000 ° C. Reflected light reflected from the exposed surface of the test piece by irradiating the exposed surface of the test piece with light of a certain intensity (infrared in the wavelength range of 0.7 to 5 μm) using an optical system provided outside the electric furnace The intensity (radiant intensity) was measured and determined. The result is shown in FIG.

ここで、試験片を構成する不織布は、体積空隙率が95%で、直径が10μmの無機繊維から形成されているため、試験片で反射された光の大部分は散逸する。このため、炭化ケイ素の試験体を用いて測定した値をバックグラウンドとした装置係数を用いて、測定された放射強度の補正を行い、波長毎の単色放射率を算出した。なお、光学系は、試験片への光照射及び試験片からの反射光強度を測定する集束レンズを備えたフーリエ変換赤外分光器(FT−IR)と、試験片への外乱光の入射及びフーリエ変換赤外分光器への外乱光の入射を防止するピンホールスリットと、照射光及び反射光の進路を変えるミラー(反射面が金蒸着膜)と、試験片への照射光及び試験片からの反射光を集光する集光レンズとを有している。 Here, since the nonwoven fabric which comprises a test piece is formed from the inorganic fiber whose volume porosity is 95% and a diameter is 10 micrometers, most light reflected by the test piece dissipates. For this reason, the measured radiation intensity was corrected using the apparatus coefficient with the value measured using the silicon carbide specimen as the background, and the monochromatic emissivity for each wavelength was calculated. The optical system includes a Fourier transform infrared spectrometer (FT-IR) having a focusing lens for measuring the light irradiation to the test piece and the intensity of the reflected light from the test piece, and the incidence of disturbance light on the test piece and From a pinhole slit that prevents the incident of ambient light to the Fourier transform infrared spectrometer, a mirror that changes the path of the irradiated light and reflected light (the reflective surface is a gold vapor deposition film), and the irradiated light and the test piece from the test piece And a condensing lens that condenses the reflected light.

図9に示すように、800〜1000℃の温度範囲では、円盤状物5から作製した試験片(Si、C、O、及びZrを含有する無機物質で構成された第2の内殻構造と、ジルコンから構成された第2の外殻構造を持つ複合化無機繊維で形成されている)の熱放射率は約90%であり、円盤状物6から作製した試験片(Al−Si−O系無機繊維で形成されている)の熱放射率(15〜40%)に比べ、著しく高い熱放射率を示すことが分かった。このことは、実施例1、4、5に示した複合化無機繊維で形成された円盤状物1、4、5の高い消費電力削減率や優れた熱遮蔽効果は、円盤状物1、4、5が持つ高い熱放射率、言い換えると高輻射熱反射特性によるものであることを明示している。一方、Al−Si−O系無機繊維で形成された円盤状物6は、図9に示すように、複合化無機繊維で形成された円盤状物5に比べると性能は劣るものの、800〜1000℃の範囲で0.15〜0.4の熱放射率を示し、これにより、円盤状物6がそれなりの熱遮蔽効果を持つことが裏付けられた。 As shown in FIG. 9, in a temperature range of 800 to 1000 ° C., a test piece prepared from the disc-like material 5 (second inner shell structure composed of an inorganic substance containing Si, C, O, and Zr and The thermal emissivity of the composite inorganic fiber having the second outer shell structure made of zircon is about 90%, and a test piece (Al—Si—O) made from the disc-like material 6 is used. It was found that the thermal emissivity is remarkably higher than the thermal emissivity (15 to 40%) of the inorganic fiber. This is because the high power consumption reduction rate and the excellent heat shielding effect of the disk-shaped objects 1, 4, 5 formed of the composite inorganic fibers shown in Examples 1, 4, 5 are the disk-shaped objects 1, 4 and 5 5 clearly indicates that it is due to the high thermal emissivity of 5, in other words, high radiant heat reflection characteristics. On the other hand, as shown in FIG. 9, the disc-like product 6 formed of Al-Si-O-based inorganic fibers is inferior in performance to the disc-like product 5 formed of composite inorganic fibers, but 800 to 1000 A thermal emissivity of 0.15 to 0.4 was exhibited in the range of 0 ° C., and this proved that the disc-like object 6 had an appropriate heat shielding effect.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載した構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。
例えば、加熱炉の排気口の断面形状が四角形の場合、排気口に角筒を挿入し、通気性輻射熱反射体を角筒に挿入可能な断面四角形の柱状物(全ての角部が外側に突出した多角形の柱状物の一例)とする。
また、通気性輻射熱反射体を、断面三角形、断面正方形、断面長方形、断面正六角形の柱状物とすることができる。これにより、通気性輻射熱反射体を加熱炉の内壁や天井に沿って並べて配置することが可能となり、例えば、セラミック接着剤を使用して互いに接着することで、剥落や落下を抑制して長期間に亘り安定して存在させることが可能になり、高温排ガスの顕熱を加熱炉内で効率的に回収することができる。
As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above-described embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included.
For example, when the cross-sectional shape of the exhaust port of the heating furnace is a quadrangle, a square tube is inserted into the exhaust port, and a columnar object with a square cross-section that allows a breathable radiant heat reflector to be inserted into the square tube (all corners protrude outward) An example of a polygonal columnar material).
Further, the breathable radiant heat reflector can be a columnar object having a triangular cross section, a square cross section, a rectangular cross section, and a regular hexagonal cross section. This makes it possible to arrange the breathable radiant heat reflectors side by side along the inner wall and ceiling of the heating furnace. For example, by adhering to each other using a ceramic adhesive, peeling and dropping can be suppressed for a long time. Therefore, the sensible heat of the high temperature exhaust gas can be efficiently recovered in the heating furnace.

10:通気性輻射熱反射体、11:帯部材、12:天井部、13:排気口、14:円筒体、15:セラミックピン、16:織物、17:セラミックボルト、18:第1の渦巻き物、19:第2の渦巻き物、20:帯部材、21:第1の渦巻き物、22:第2の渦巻き物、23:通気性輻射熱反射体、24:中空管、25:通気性輻射熱反射体、26:帯部材、27:第1の渦巻き物、28:第2の渦巻き物 10: Breathable radiant heat reflector, 11: Belt member, 12: Ceiling, 13: Exhaust port, 14: Cylindrical body, 15: Ceramic pin, 16: Woven fabric, 17: Ceramic bolt, 18: First spiral 19: second spiral, 20: belt member, 21: first spiral, 22: second spiral, 23: breathable radiant heat reflector, 24: hollow tube, 25: breathable radiant heat reflector , 26: belt member, 27: first spiral, 28: second spiral

Claims (8)

耐熱性の無機繊維で構成された通気性を有する布材から作製した帯部材を、長手方向に巻いて断面円形又は断面多角形の柱状物とし、該柱状物を構成している前記無機繊維の外側に第2の外殻構造を設けて、該柱状物を第2の内殻構造と該第2の外殻構造を持つ複合化無機繊維から形成して、
前記第2の外殻構造は、Ti、Cr、Fe、Si、Co、Ni、Cu、Y、Zr、Nb、Tc、Ru、Rh、Pd、Ag、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Hf、Ta、Re、及びOsの各元素を第1群として、(1)前記第1群から選択された1の元素の酸化物、(2)前記第1群から選択された2以上の元素からなる複合酸化物、(3)前記第1群から選択された2以上の元素の固溶体酸化物、(4)前記酸化物と前記複合酸化物、(5)前記酸化物と前記固溶体酸化物、(6)前記複合酸化物と前記固溶体酸化物、及び(7)前記酸化物と前記複合酸化物と前記固溶体酸化物のいずれか1からなる材料Aで構成され、前記第2の外殻構造を形成する無機物質の熱膨張係数の値は前記第2の内殻構造を形成する無機物質の熱膨張係数の値の±10%の範囲内にあり、前記第2の外殻構造の厚さは0.2μm以上10μm以下であり、
しかも、該通気性輻射熱反射体を加熱炉の排気口の入口に取付けて、炉内に向いた面側から炉外に向いた面側への熱の移動を抑制して前記排気口から炉外に流出する排ガスの熱を減少させると共に、炉内から前記排気口内を通過して炉外に排出される排ガスにより加熱された、炉内に向いた面側から輻射熱を炉内に放射する通気性輻射熱反射体の製造方法であって、
前記布材を裁断して前記帯部材を作製する第1工程と、
前記帯部材の一部を芯管の外周面に一定の張力下で隙間無く巻き付けて第1の渦巻き物を形成し、該第1の渦巻き物から前記芯管を除去した際に形成される空間部に、前記帯部材の他の一部をその中心部から隙間なく巻いて形成した第2の渦巻き物を充填して前記柱状物を作製する第2工程と、
前記柱状物を、前記材料Aの粉末が水中、有機溶媒中、あるいは水と有機溶媒の混合溶媒中に分散した分散溶液中に浸漬し、前記状物を陰極側にして50〜150ボルトの直流電圧を2〜10分間印加して、電気泳動により、前記粉末を該柱状物を形成している前記帯部材を構成している前記無機繊維の外側に付着させる第3工程と、
前記柱状物を前記分散溶液中から取り出し、乾燥させて水及び/又は有機溶媒を除去する第4工程と、
乾燥した前記柱状物を、不活性ガス雰囲気中1300〜1700℃で、0.2〜2時間加熱処理して前記粉末を前記無機繊維に固着させ、該無機繊維を前記第2の内殻構造と前記第2の外殻構造を持つ前記複合化無機繊維に変える第5工程とを有することを特徴とする通気性輻射熱反射体の製造方法。
A band member made of a breathable cloth material composed of heat-resistant inorganic fibers is wound in the longitudinal direction to form a columnar article with a circular cross section or a polygonal cross section, and the inorganic fibers constituting the columnar article A second outer shell structure is provided on the outside, and the columnar material is formed from a composite inorganic fiber having the second inner shell structure and the second outer shell structure,
The second outer shell structure includes Ti, Cr, Fe, Si, Co, Ni, Cu, Y, Zr, Nb, Tc, Ru, Rh, Pd, Ag, La, Ce, Pr, Nd, Pm, and Sm. , Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, Re, and Os as the first group, (1) one element selected from the first group (2) a composite oxide composed of two or more elements selected from the first group, (3) a solid solution oxide of two or more elements selected from the first group, (4) the oxidation And the composite oxide, (5) the oxide and the solid solution oxide, (6) the composite oxide and the solid solution oxide, and (7) the oxide, the composite oxide, and the solid solution oxide. Thermal expansion coefficient of an inorganic substance that is made of any one material A and forms the second outer shell structure Is within a range of ± 10% of the value of the thermal expansion coefficient of the inorganic substance forming the second inner shell structure, and the thickness of the second outer shell structure is 0.2 μm or more and 10 μm or less. ,
In addition, the breathable radiant heat reflector is attached to the entrance of the exhaust port of the heating furnace to suppress the movement of heat from the surface side facing the furnace to the surface side facing the outside of the furnace, and from the exhaust port to the outside of the furnace. Airflow that radiates radiant heat into the furnace from the side facing the furnace heated by the exhaust gas discharged from the furnace through the exhaust port and discharged outside the furnace . A method of manufacturing a radiant heat reflector,
A first step of cutting the cloth material to produce the band member;
A space formed when a part of the belt member is wound around the outer peripheral surface of the core tube without a gap under a constant tension to form a first spiral, and the core tube is removed from the first spiral. Filling the part with a second spiral formed by winding another part of the band member from its central part without a gap, and producing the columnar object,
The pillars, powder of the material A water organic solvent, or immersed in the dispersion solution was dispersed in a mixed solvent of water and an organic solvent, 50 to 150 volts of the pillar-like material in the cathode side A third step of applying a DC voltage for 2 to 10 minutes and attaching the powder to the outside of the inorganic fiber constituting the band member forming the columnar body by electrophoresis;
A fourth step of removing the columnar material from the dispersion and drying to remove water and / or organic solvent;
The dried columnar material is heat-treated in an inert gas atmosphere at 1300 to 1700 ° C. for 0.2 to 2 hours to fix the powder to the inorganic fibers, and the inorganic fibers are formed into the second inner shell structure. And a fifth step of changing to the composite inorganic fiber having the second outer shell structure.
請求項1記載の通気性輻射熱反射体の製造方法において、前記布材は、厚みが0.2〜10mm、開口率が30%以下の織物であることを特徴とする通気性輻射熱反射体の製造方法。2. The method for producing a breathable radiant heat reflector according to claim 1, wherein the cloth material is a woven fabric having a thickness of 0.2 to 10 mm and an aperture ratio of 30% or less. Method. 請求項1記載の通気性輻射熱反射体の製造方法において、前記布材は、厚みが1〜10mm、体積空隙率が50〜97%の不織布であることを特徴とする通気性輻射熱反射体の製造方法の製造方法。The method for producing a breathable radiant heat reflector according to claim 1, wherein the cloth material is a nonwoven fabric having a thickness of 1 to 10 mm and a volume porosity of 50 to 97%. Manufacturing method of the method. 請求項1〜3のいずれか1項に記載の通気性輻射熱反射体の製造方法において、前記固溶体酸化物は、Y、Yb、Er、Ho、及びDyの各元素を第2群とし、Y、Yb、Er、Ho、Dy、Gd、Sm、Nd、及びLuの各元素を第3群として、前記第2群から選択された少なくとも1の元素をQEとし、前記第3群から選択された少なくとも1の元素をREとして、一般式QEThe method for producing a breathable radiant heat reflector according to any one of claims 1 to 3, wherein the solid solution oxide includes Y, Yb, Er, Ho, and Dy elements as a second group, Each element of Yb, Er, Ho, Dy, Gd, Sm, Nd, and Lu is defined as the third group, at least one element selected from the second group is defined as QE, and at least selected from the third group. 1 element is RE, and the general formula QE 2 SiSi 2 O 7 、QESiO, QESiO 5 、RE, RE 3 AlAl 5 O 1212 、及びREAlO, And REAlO 3 のいずれか1又は2以上からなることを特徴とする通気性輻射熱反射体の製造方法。Any one or 2 or more of these, The manufacturing method of the air permeable radiation heat reflector characterized by the above-mentioned. 請求項1〜4のいずれか1項に記載の通気性輻射熱反射体の製造方法において、前記無機繊維は、Ti、Zr及びAlから選択される1の金属成分をM1として、Si、C、O、及びM1を含有する無機物質から構成されていることを特徴とする通気性輻射熱反射体の製造方法。5. The method for producing a breathable radiant heat reflector according to claim 1, wherein the inorganic fiber is composed of one metal component selected from Ti, Zr and Al as M <b> 1, Si, C, O And a method for producing a breathable radiant heat reflector, characterized by comprising an inorganic substance containing M1. 請求項1〜4のいずれか1項に記載の通気性輻射熱反射体の製造方法において、前記無機繊維は、Si、C、及びOを含有する無機物質から構成されていることを特徴とする通気性輻射熱反射体の製造方法。The method for producing a breathable radiant heat reflector according to any one of claims 1 to 4, wherein the inorganic fiber is composed of an inorganic substance containing Si, C, and O. Of manufacturing a radiant heat reflector. 請求項1〜4のいずれか1項に記載の通気性輻射熱反射体の製造方法において、前記無機繊維は、β−SiCの微結晶を含有する結晶質の無機物質から構成されていることを特徴とする通気性輻射熱反射体の製造方法。5. The method for producing a breathable radiant heat reflector according to claim 1, wherein the inorganic fiber is composed of a crystalline inorganic substance containing β-SiC microcrystals. A method for producing a breathable radiant heat reflector. 請求項1〜7のいずれか1項に記載の通気性輻射熱反射体の製造方法において、前記布材に化学繊維が含有される場合、あるいは前記布材にサイジング剤が施されている場合、前記第3工程の前に、前記柱状物を不活性ガス雰囲気中800〜1200℃で、0.5〜5時間加熱処理することを特徴とする通気性輻射熱反射体の製造方法。 In the manufacturing method of the breathable radiant heat reflector according to any one of claims 1 to 7, when a chemical fiber is contained in the cloth material, or when a sizing agent is applied to the cloth material, Before the third step, the columnar material is heat-treated at 800 to 1200 ° C. in an inert gas atmosphere for 0.5 to 5 hours.
JP2010101187A 2010-04-26 2010-04-26 Method for producing breathable radiant heat reflector Expired - Fee Related JP5563360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010101187A JP5563360B2 (en) 2010-04-26 2010-04-26 Method for producing breathable radiant heat reflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010101187A JP5563360B2 (en) 2010-04-26 2010-04-26 Method for producing breathable radiant heat reflector

Publications (2)

Publication Number Publication Date
JP2011231959A JP2011231959A (en) 2011-11-17
JP5563360B2 true JP5563360B2 (en) 2014-07-30

Family

ID=45321458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010101187A Expired - Fee Related JP5563360B2 (en) 2010-04-26 2010-04-26 Method for producing breathable radiant heat reflector

Country Status (1)

Country Link
JP (1) JP5563360B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102943321B (en) * 2012-10-24 2014-07-09 长春理工大学 Europium doped yttrium trifluoride upconversion luminescence hollow nanometer fiber preparation method
JP5640123B1 (en) 2013-08-09 2014-12-10 株式会社超高温材料研究センター Heat efficiency improvement method for heating equipment and heat efficiency improvement device for heating equipment
CN111455483A (en) * 2020-04-05 2020-07-28 华中科技大学 Radiation refrigeration fiber and preparation method of fabric thereof
AT18094U1 (en) * 2023-03-21 2024-01-15 Plansee Se GAS PERFUME MODULE FOR A HIGH TEMPERATURE OVEN

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5650394Y2 (en) * 1976-04-08 1981-11-25
JPS58153088A (en) * 1982-03-09 1983-09-10 旭硝子株式会社 Radiation heating method and radiator
JPS642160Y2 (en) * 1985-06-17 1989-01-18
JP4325758B2 (en) * 2006-08-10 2009-09-02 財団法人特殊無機材料研究所 Energy-saving heating method and heating furnace for articles
JP3136873U (en) * 2007-08-14 2007-11-08 株式会社サン・フロンティア・テクノロジー Hot gas sensible heat recovery mat
JP4801789B1 (en) * 2010-10-07 2011-10-26 株式会社超高温材料研究センター Heating furnace thermal efficiency improvement method and heating furnace thermal efficiency improvement apparatus

Also Published As

Publication number Publication date
JP2011231959A (en) 2011-11-17

Similar Documents

Publication Publication Date Title
JP5563360B2 (en) Method for producing breathable radiant heat reflector
JP4801789B1 (en) Heating furnace thermal efficiency improvement method and heating furnace thermal efficiency improvement apparatus
US7048894B2 (en) Ceramic filter and catalyst-loaded ceramic filter
US7534482B2 (en) Honeycomb structural body
CN103889929B (en) The manufacture method of ceramic honeycomb structural body and ceramic honeycomb structural body
KR100865058B1 (en) Honeycomb structure
CN102781555B (en) Honeycomb structure
CN104661752A (en) Composite material, electrode film and process for producing same, electrode terminal and process for producing same, base and process for producing same, and bonding material and process for producing base by bonding components with bonding material
JPWO2005026074A1 (en) Ceramic sintered body and ceramic filter
EP3015667B1 (en) Electrically heated catalytic converter
JP6445838B2 (en) Electric heating type catalytic converter
JP2007253144A (en) Honeycomb structured body and exhaust gas purifying device
US6811868B2 (en) Ceramic body and ceramic catalyst body
JP2010269268A (en) Honeycomb structure type filter
US20220412243A1 (en) Electrically heating converter and production method for electrically heating converter
JP5523904B2 (en) Heat shielding / heat radiation reflector for heating furnace and method for manufacturing the same
KR101305451B1 (en) Method of fabrication of porous supported materials on metal structure and catalysts modules prepared by the same
JP2017131851A (en) Catalyst material for microwave heating, catalyzer for microwave heating, and production method
JP5640123B1 (en) Heat efficiency improvement method for heating equipment and heat efficiency improvement device for heating equipment
JP5060968B2 (en) Method for manufacturing catalyst-supporting honeycomb
JPWO2010143608A1 (en) COMPOSITE INORGANIC FIBER AND METHOD FOR PRODUCING SAME, AND COMPOSITE INORGANIC FIBER PRODUCT AND METHOD FOR PRODUCING SAME
JP2007283250A (en) Oil mist filter
WO2014208355A1 (en) Heat-absorbing body, concentrated-heat receiver, and solar thermal power generator
JP2002173376A (en) Oxide-based ceramic fiber/oxide-based ceramic composite material and method of producing the same
US20220389852A1 (en) Electrically heating converter and production method for electrically heating converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140612

R150 Certificate of patent or registration of utility model

Ref document number: 5563360

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees