JPS58153088A - Radiation heating method and radiator - Google Patents

Radiation heating method and radiator

Info

Publication number
JPS58153088A
JPS58153088A JP3573782A JP3573782A JPS58153088A JP S58153088 A JPS58153088 A JP S58153088A JP 3573782 A JP3573782 A JP 3573782A JP 3573782 A JP3573782 A JP 3573782A JP S58153088 A JPS58153088 A JP S58153088A
Authority
JP
Japan
Prior art keywords
radiator
hole
ceramic block
heat
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3573782A
Other languages
Japanese (ja)
Other versions
JPS6359073B2 (en
Inventor
信幸 城戸
紀之 織田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP3573782A priority Critical patent/JPS58153088A/en
Publication of JPS58153088A publication Critical patent/JPS58153088A/en
Publication of JPS6359073B2 publication Critical patent/JPS6359073B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は各種の加熱炉における輻射加熱効率を増進せ1
〜める方法及び該方法に使用−tろ輻射体に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention improves radiation heating efficiency in various heating furnaces.
The present invention relates to a method of irradiation and a radiator used in the method.

熱効率の向−ヒは古くより當に1叫ばれているが、最近
は全般的な省エネルギ問題が大きく取」二げられている
ことより、熱の有効利用に対する関心及び要望が強い。
Improving thermal efficiency has been a matter of great concern for a long time, but as general energy conservation issues have recently become a major focus, there has been a strong interest in and desire for effective use of heat.

/111熱炉における熱効率の向上の為に(d1炉壁、
被加熱物の出入口等よりの熱放散の低下、排ガス温度の
低下又はこれらの放散熱の回収等に意が注がえしている
。加熱炉内において被加熱物への伝熱量を増力口するこ
とは、加熱炉の主目的の遂行に面接的に寄与することに
なり1排ガスの温度も低下するので最も効果的である。
/111 To improve thermal efficiency in a thermal furnace (d1 furnace wall,
Attention is being paid to reducing heat dissipation from the entrance and exit of the heated object, reducing exhaust gas temperature, and recovering this dissipated heat. Increasing the amount of heat transferred to the object to be heated in the heating furnace is most effective because it directly contributes to achieving the main purpose of the heating furnace and also lowers the temperature of the exhaust gas.

高温ガスによる加熱炉における被加熱物への伝熱は輻射
によるものが支配的であって、対流、伝導によるものは
全体の10係以下又は無視できる場合が多い。従って加
熱炉の設計には一般に輻射伝熱効率の向上の為の諸施策
がとられている。
Heat transfer by high-temperature gas to objects to be heated in a heating furnace is mainly due to radiation, and convection and conduction are often less than a factor of 10 or can be ignored. Therefore, in the design of heating furnaces, various measures are generally taken to improve the efficiency of radiant heat transfer.

加熱炉内において被加熱物への伝熱量全増加させる方法
と1〜、加熱室出口1111の排ガス流路に輻射体金配
置し、該輻射体Vこて排ガスの保有熱を吸収j〜、吸収
熱全被加熱物に向けて輻射し、被加熱物全加熱する方法
は極めて有効な方法であり、現在よく知られていること
である。該方法の具体的な典型例は、加熱室出口側の排
ガス流路に、金網ないし耐熱性の繊維状の物質よりなる
熱回収体を設け、該熱回収困りこより排ガスの保イ1熱
を吸収して被加熱物に回けて輻射し、被加熱物を加熱す
る方法である。
A method for increasing the total amount of heat transferred to the object to be heated in a heating furnace. The method of completely heating the object by radiating heat toward the object to be heated is an extremely effective method and is currently well known. A specific typical example of this method is to install a heat recovery body made of a wire mesh or a heat-resistant fibrous material in the exhaust gas flow path on the exit side of the heating chamber, and absorb the retained heat of the exhaust gas rather than recovering the heat. This is a method of heating the object by radiating it around the object to be heated.

しかしながら、該方法において便用する熱回収体の金網
は、通気性が犬で排ガスよりの熱回収が充分に行なわれ
難く、捷た耐熱性が低いので高温での使用が困難である
。また、従来の多くが金属製であるため輻射率が低い。
However, the wire mesh used as the heat recovery body used in this method has poor breathability, making it difficult to sufficiently recover heat from exhaust gas, and has low heat resistance when shattered, making it difficult to use at high temperatures. Furthermore, since most conventional devices are made of metal, their emissivity is low.

セラミックファイバを使用する場合には耐熱性、輻射率
については改善されるが、使用温度も1400°Cが限
度であり、高価である。
When ceramic fibers are used, heat resistance and emissivity are improved, but the operating temperature is also limited to 1400°C and it is expensive.

本発明の目的は、加熱炉における高温ガスによる被加熱
物の輻射加熱効率全向上せしめる方法及び該方法に使用
1〜で好適な輻射体を提供するにある。
An object of the present invention is to provide a method for completely improving the radiation heating efficiency of a heated object using high-temperature gas in a heating furnace, and a radiator suitable for use in the method.

本発明の適用しつる加熱炉としては種々のものがあり、
例えば窯業用炉(ガラス、煉瓦、セメント等)、金属用
炉(鉄鋼、非鉄等)、生ゴミ焼却炉、発生炉等の被加熱
物に熱ff14える用途に用いる炉であり、さらに非加
熱物自体が発熱するような炉であってもよい。
There are various types of vine heating furnaces to which the present invention can be applied.
For example, it is a furnace used for applying heat to heated objects such as ceramic furnaces (glass, bricks, cement, etc.), metal furnaces (steel, non-ferrous metals, etc.), garbage incinerators, generation furnaces, etc. A furnace that itself generates heat may be used.

本発明による輻射加熱方法は、加熱室内の高温ガス流路
に、多数の平行な貫通孔を有するセラミックブロックを
、該貫通孔全ガス流路に傾けて、被加熱物に向けて配置
して行うことを特徴とする方法である。
The radiation heating method according to the present invention is carried out by arranging a ceramic block having a large number of parallel through holes in a high temperature gas flow path in a heating chamber, with all of the through holes inclined toward the gas flow path, and facing the object to be heated. This method is characterized by the following.

不発明による輻射体は、前記の輻射加熱方法に使用して
好適々輻射体であり、1個又は複数個の開[]部を有す
る耐熱性枠体の開[コ部に、多数の平行な貫通孔ヲ有す
るセラミックブロックケ、該貫通孔全枠体面に傾けて、
嵌装してなるものである。
The radiant body according to the invention is a radiant body suitable for use in the above-mentioned radiant heating method, and includes a plurality of parallel openings in the openings of a heat-resistant frame having one or more openings. A ceramic block with a through hole, the whole through hole tilted toward the body surface,
It is fitted.

本発明の輻射加熱方法及び輻射体の好ましい態様におい
ては、前記セラミックブロックの貫通孔の径が1〜20
0jπmで、該ブロックの孔の貫通方向の環式が核化の
径の2匿以上である。
In a preferred embodiment of the radiation heating method and radiator of the present invention, the diameter of the through hole of the ceramic block is 1 to 20.
0jπm, the annular shape of the hole in the block in the penetrating direction is two or more times larger than the diameter of the nucleation.

本発明の輻射加熱方法の他の好ましい態様においては、
前記セラミックブロックケ、該ブロックの貫通孔がガス
流路に5〜20度傾くように配置して行う。
In another preferred embodiment of the radiation heating method of the present invention,
The ceramic blocks are arranged so that the through holes of the blocks are inclined at an angle of 5 to 20 degrees to the gas flow path.

本発明の輻射体の他の好ましい態様においては、前記セ
ラミックブロックを、該ブロックの貫通孔が枠体面に直
角より5〜20度傾くように嵌装してなる。
In another preferred embodiment of the radiator of the present invention, the ceramic block is fitted so that the through hole of the block is inclined at 5 to 20 degrees from the right angle to the frame surface.

本発明の輻射体の更に好ましい態様1(おいては、前記
耐熱性枠体((開口部が複数個設けられ、各開口部vc
2個の前記ハニカム状セラミックブロックを、該枠体の
両側面の中間面に対称に、嵌装しである。
A more preferable embodiment 1 of the radiator of the present invention (in which a plurality of openings are provided, each opening vc
The two honeycomb-shaped ceramic blocks are fitted symmetrically to the intermediate planes of both sides of the frame.

本発明で使用されるセラミックブロックの材質としては
、コージェライト、ジルコン、ジルコニア、アルミニラ
ムチタネ−1−、ムライト。
The materials of the ceramic block used in the present invention include cordierite, zircon, zirconia, aluminum titanium-1, and mullite.

アルミナなど耐熱性のあるものが任意に選択しつる。A heat-resistant material such as alumina can be selected arbitrarily.

また、セラミックブロックの貫通孔の形状は、六角、四
角、三角2円など種々のものが可能である。
Further, the shapes of the through holes in the ceramic block can be various, such as hexagonal, square, and triangular 2 circles.

第1図に本発明の方法を実施する加熱炉の一例を模型的
に断面図で示す。1はバーナ口で、重油等の燃焼バーナ
全取付け、高温燃焼ガスが加熱室2へ送られる。バーナ
口1に和名する個所より他設備の高温排ガス等を取込み
加熱室2−\送られるようにしてあってもよい。加熱室
2内に(d被り1熱物3、例えば煉瓦等、が収容されて
いる。被加熱物3は王として高温ガスの焔輻射及び炉壁
全弁しての固体輻射により加熱され、高温ガスは熱を奪
われ矢印のように排ガス通路4人1]には、被加熱物3
に向けて輻射体5が配置′されている。輻射体5は多数
の平行な貫通孔5Aを有する例えばコージェライト質か
らなる・・ニカム状セラミックブロックよりなり、貫通
孔5Aは矢印に示すガス流路に傾けである。
FIG. 1 schematically shows, in sectional view, an example of a heating furnace for carrying out the method of the present invention. Reference numeral 1 denotes a burner port, where all combustion burners such as heavy oil are installed, and high-temperature combustion gas is sent to the heating chamber 2. The burner port 1 may be configured to take in high-temperature exhaust gas from other equipment from a location called the burner port 1 and send it to the heating chamber 2-\. A heated object 3, such as a brick, is housed in the heating chamber 2. The object 3 to be heated is heated by flame radiation of high-temperature gas and solid radiation from the entire furnace wall, and is heated to a high temperature. The gas is deprived of heat, and as shown by the arrow, the exhaust gas passage (4 people 1) is filled with objects to be heated (3).
A radiator 5 is disposed facing towards. The radiator 5 is made of a nicam-shaped ceramic block made of cordierite, for example, and has a large number of parallel through holes 5A, and the through holes 5A are inclined toward the gas flow path shown by the arrow.

貫通孔5Aの方向がガス流の方向と一致するときは、ガ
スより輻射体5への伝熱効率が低下し、また、貫通孔5
への方向が被加熱物3に向くことになるので、被加熱物
5・\の輻射効率が低下する。ガス流路に対する傾度は
炉の構造、被加熱物の状態等によるが一般に5〜20度
程度がよい。
When the direction of the through hole 5A matches the direction of the gas flow, the efficiency of heat transfer from the gas to the radiator 5 decreases, and the through hole 5
Since the direction of the radiation is directed toward the object to be heated 3, the radiation efficiency of the object to be heated 5 is reduced. The inclination with respect to the gas flow path depends on the structure of the furnace, the state of the object to be heated, etc., but is generally about 5 to 20 degrees.

貫通孔5Aの径については、径が小さく凡の数か多い方
がガスより輻射体への伝熱効率がよくなると共に、輻射
面の凹凸が多くなり輻射効率が上昇するので好ましい。
Regarding the diameter of the through-holes 5A, it is preferable that the diameter is small and the diameter is small because the efficiency of heat transfer to the radiator is better than that of the gas, and the radiation efficiency increases because the radiation surface has more irregularities.

しかしながら粉塵かつ剪り易くなる。通常のガス燃焼炉
では、1〜5 mm程度の孔径の貫通孔でよいが、重油
燃焼炉やキャリオーバがでる被加熱物の加熱炉では更に
孔径全天きくする必要がある。ガラス炉では孔径が10
0朋以上の貫通孔を有する輻射体の使用が適当であるこ
ともあり、一般には200臨で十分である。また、輻射
体の孔の貫通方向の厚きが薄いときは、被加熱物に対す
る輻射面に、裏面まで貫通する空隙が生ずることとなり
輻射率が低下するので、輻射体の孔の貫通方向の厚さは
孔の径の2倍以上が望まし7い。
However, it becomes dusty and easy to prune. In a normal gas combustion furnace, a through hole with a hole diameter of about 1 to 5 mm is sufficient, but in a heavy oil combustion furnace or a heating furnace for heating objects that cause carryover, it is necessary to make the hole diameter even larger throughout. In a glass furnace, the pore size is 10
It may be appropriate to use a radiator with a through hole of 0 or more holes, and 200 holes is generally sufficient. In addition, when the thickness of the hole in the radiator in the direction of penetration is small, a void will be created on the radiation surface facing the object to be heated, penetrating all the way to the back surface, reducing the emissivity. The diameter is preferably at least twice the diameter of the hole.

第2図に輻射体の形状及び配置の例を示す。FIG. 2 shows an example of the shape and arrangement of the radiator.

図面の右側に被加熱物があり、熱ガスは図面の右より左
に向けて概ね水モに流れるとしである。
The object to be heated is on the right side of the drawing, and the hot gas flows generally from the right to the left of the drawing.

前述のように輻射体5は、貫通孔5Aiガス流路Vこ傾
けて、被加熱物に向けて配置される。輻射効率をよくす
る為には、輻射体の輻射面を被加熱物に正対せしめるこ
とが望ましい。また、一般に被加熱物の方向と熱ガスの
流れて来る方向が一致しているので、輻射面に直角に貫
通孔を設けである輻射体を被加熱物に正対きせると、貫
通孔がガス流方向と一致するので望ましくない。このよ
うな場合は第2図(a)のように輻射体を傾けて被加熱
物に対向をせる必要がある。
As described above, the radiator 5 is arranged to face the object to be heated with the gas flow path V of the through hole 5Ai tilted. In order to improve radiation efficiency, it is desirable that the radiant surface of the radiator directly faces the object to be heated. In addition, since the direction of the object to be heated and the direction in which the hot gas flows are generally the same, if a radiator with through holes perpendicular to the radiation surface is placed directly facing the object to be heated, the through holes will cause the gas to flow. This is undesirable because it coincides with the flow direction. In such a case, it is necessary to tilt the radiator to face the object to be heated as shown in FIG. 2(a).

第2図(b)の輻射体では上述の問題を解決することが
できるが、ハニカム状などのセラミック輻射体の製造が
若干面倒になる。更に第2図((り、((1)のように
2つのハニカム状セラミックブロックを貫通孔を一致き
せて組合せて一個の輻射体とするときは、貫通孔が屈折
するので輻射体の熱吸収率及び輻射率が向上する。実際
には炉及び被加熱物が種々の形状をなし、熱ガスの流れ
方向も異なるので、その状況に応じて貫通孔をガスの流
れ方向に傾けて、出来る丈輻射率の高い状態に配置する
Although the radiator shown in FIG. 2(b) can solve the above-mentioned problems, manufacturing of the honeycomb-shaped ceramic radiator is somewhat complicated. Furthermore, when two honeycomb-shaped ceramic blocks are combined to form a single radiator with their through holes aligned as shown in Figure 2 ((1), the through holes are refracted, so the heat absorption of the radiator is reduced. In reality, furnaces and objects to be heated have various shapes, and the flow direction of hot gas also differs, so depending on the situation, the through hole can be tilted in the direction of gas flow to increase the length. Place it in a state with high emissivity.

実際の炉で加熱室の出口を塞ぐ範囲の輻射体を一個のハ
ニカム状セラミックブロックで形成することは困難であ
る。それで、P)T要の面積の耐熱性の枠体にハニカム
状セラミックブロックを嵌装して輻射体を形成−Tる。
In an actual furnace, it is difficult to form the radiator that covers the outlet of the heating chamber with a single honeycomb-shaped ceramic block. Therefore, a radiator is formed by fitting a honeycomb-shaped ceramic block into a heat-resistant frame having an area of P)T.

かかる輻射体の一例を第6図及び第4図に示す。6Aは
セラミックス、耐熱性金属等の枠体である。実施例の枠
体6Aには251固の正方形の開口部が設けられである
。各開口部には第1図の実施例で使用したと同様のコー
ジェライト質のセラミックブロック5が嵌装され、接着
剤、セラミックスボルト等にて枠体6Aに接着されて輻
射体6が形成されている、この実施例において、セラミ
ックブロックの大きさは約75x75x15(厚さ)鰭
で、貫通孔の大きさは1.8 X 1.8 mmテある
。セラミックブロック5Vcは両側面に直角に貫通する
孔が設けられている。従って輻射体6の枠体面を被加熱
物に正対せしめることが多いのでブロック5を枠体6八
面に直角より1o度傾けて取付けである。また、各開口
部には2個の同様なブロック5を、両側面の中間面に対
称に暇イマ」けである。こ八により貫通孔が屈折せ1゜
められ、輻射体6の熱吸:■率及び輻射率が向上する。
An example of such a radiator is shown in FIGS. 6 and 4. 6A is a frame made of ceramics, heat-resistant metal, or the like. The frame 6A of the embodiment is provided with a 251 square opening. A cordierite ceramic block 5 similar to that used in the embodiment shown in FIG. 1 is fitted into each opening, and is bonded to a frame 6A with adhesive, ceramic bolts, etc. to form a radiator 6. In this example, the size of the ceramic block is approximately 75 x 75 x 15 (thick) fins, and the through hole size is 1.8 x 1.8 mm. The ceramic block 5Vc has holes penetrating at right angles on both sides. Therefore, since the frame surface of the radiator 6 is often directly opposed to the object to be heated, the block 5 is mounted at an angle of 10 degrees from the right angle to the frame surface 6. In addition, two similar blocks 5 are placed in each opening symmetrically on the intermediate plane of both sides. The through hole is bent by 1°, and the heat absorption rate and emissivity of the radiator 6 are improved.

但し、この場合は、第2図(す、(d)と異なり2つの
ブロック5は隔離しているので、下流側のブロックの吸
収熱は輻射及び枠体6A(j’介しての伝導により上流
側のブロックに伝熱さル、上流側ブロックより輻射され
る。図示の輻射体は、複数個組合せて更に広い面積とす
ることができるように上下縁に嵌合の為の溝及び突起が
形成しである。
However, in this case, unlike in FIG. 2(d), the two blocks 5 are isolated, so the absorbed heat of the downstream block is transferred to the upstream block by radiation and conduction via the frame 6A (j'). The heat is transferred to the side block, and the heat is radiated from the upstream block.The illustrated radiator has grooves and protrusions for fitting on the upper and lower edges so that a larger area can be obtained by combining multiple radiators. It is.

第1図に示すような従来の加熱炉においてvl熱室より
ガス通路へ排出される排ガスの温度が900°Cであつ
f(場合に、ガス通路入[]を概ね塞ぎ、孔径10φη
IWL、開孔率40係、厚づ80i11%のセラミック
ブロック會嵌装した輻射体を配置することにより排ガス
の温度は8’70”Cに降下した。これにより12チの
燃料節減となった。
In a conventional heating furnace as shown in Fig. 1, when the temperature of the exhaust gas discharged from the vl heat chamber to the gas passage is 900°C and
By placing a radiator fitted with a ceramic block of IWL, porosity of 40, and thickness of 80I11%, the temperature of the exhaust gas was reduced to 8'70"C. This resulted in a fuel savings of 12 inches.

捷た別の例では1200°Cの排ガスの温度を輻射体の
設置により1120°Cに低下することができた。
In another example, the temperature of exhaust gas from 1200°C could be lowered to 1120°C by installing a radiator.

以上の如く、不発明の方法においては、セラミックブロ
ックの輻射体が、貫通孔がガス流路に傾くようにして、
高温ガス流路11こ置かれるので、輻射体の高温ガスよ
りの熱吸収率及び被加熱(吻−\の輻射率が犬であジ、
熱効率の向上に著しく役立つ。また、この輻射体の配置
場所は加熱室の出[]附近に限られることなく、被加熱
物に対向せしめ得る場所ならばどこでもよい。例えば、
第1図で一点鎖線で示すような位置でもよい。但し、排
ガスの温度付出来る限り降下することが熱効率の向上に
つながるので、このような場合は、加熱室附近と2個所
に設置するとよい。また、本発明の方法における輻射体
は、セラミックブロックであり、耐熱性(で優れ、量産
が可能であり、強度が犬、通気の圧損失が少ない、輻射
率が筒い等の凌れた利点を有す。
As described above, in the uninvented method, the radiator of the ceramic block is arranged so that the through hole is inclined toward the gas flow path,
Since the high temperature gas flow path 11 is placed, the heat absorption rate from the high temperature gas of the radiator and the emissivity of the heated (proboscis)
Significantly helps improve thermal efficiency. Further, the radiator is not limited to the vicinity of the exit of the heating chamber, but may be placed anywhere as long as it can face the object to be heated. for example,
The position may be as shown by the dashed line in FIG. However, since lowering the temperature of the exhaust gas as much as possible leads to an improvement in thermal efficiency, in such a case, it is better to install it in two places, one near the heating chamber. In addition, the radiator in the method of the present invention is a ceramic block, which has excellent heat resistance, can be mass-produced, has superior strength, has low pressure loss during ventilation, and has a high emissivity. has.

′また、不発明の方法に使用するに好適な輻射体は耐熱
性枠体にセラミックブロックが適切な状態で嵌装されて
形成しであるので、輻射体がセラミックグロックである
ことによる上述の利点を発揮[7ていると共Vこ大面積
の輻射体の要望に簡単に応することができる。
'Also, since the radiator suitable for use in the uninvented method is formed by fitting a ceramic block in a heat-resistant frame in an appropriate state, the above-mentioned advantages of using a ceramic Glock as the radiator can be achieved. It can easily meet the demand for large-area radiators.

【図面の簡単な説明】[Brief explanation of the drawing]

・il41図は本発明の方法全実施するカロ熱炉の一例
のil、lT曲図、第2図は本発明の方法に使用する輻
射体の実施例の断面図、第3図及び第4図は不発明の輻
射体の実施例の一部省略した平面図及び第6図における
A−A線矢視断1角1凶である。 1・・・バーナ口、2・・・加熱室、6・・・被加熱物
、4・・・排ガス通路、5・・・・・二カッ、状セラミ
ックブロック(輻射体)、5A・・・貫通孔、6・・・
輻射体、6A・・・枠体。 才/)3¥I 才2)1
・Figure il41 is an il and lT curve diagram of an example of a Calothermal furnace in which the entire method of the present invention is carried out, Figure 2 is a sectional view of an example of a radiator used in the method of the present invention, Figures 3 and 4 6 is a partly omitted plan view of an embodiment of an uninvented radiator and a cross section taken along the line A--A in FIG. DESCRIPTION OF SYMBOLS 1...Burner port, 2...Heating chamber, 6...Heated object, 4...Exhaust gas passage, 5...2-shaped ceramic block (radiator), 5A... Through hole, 6...
Radiator, 6A...frame body. age/)3¥I age2)1

Claims (1)

【特許請求の範囲】 (1,1tJo熱室内の高温ガス流路に、多数の平行な
貫通孔ヲ有するセラミックブロック金、該貫通孔をガス
流路に傾けて、被刀口熱物に向けて配置して行うことを
特徴とする輻射加熱方法。 (2)  前記セラミックブロックの貫通孔の径が1〜
200間で、該ブロックの孔の貫通方向の厚さが核化の
径の2倍以上である特許請求の範囲第1項の輻射加熱方
法。 (3)  前記セラミックブロックを、該セラミックブ
ロックの貫通孔がガス流路に対して5〜20度傾むくよ
うに配置して行う特許請求の範囲第1項又は第2項の輻
射加熱方法。 (4)1個又は榎数個の開口部を呵する耐熱性枠体の開
口部に、多数の平行な貫通孔を有するセラミックブロッ
クを、該貫通孔を枠体面に頌けて、嵌装してなる輻射体
。 (5)前記セラミックブロックの貫通孔の径が1〜20
0 mmで、該ブロックの孔の貫通方向の厚さが核化の
径の2倍以上である特r(: %74求の範囲第4川の
輻射体。 (6)  前記セラミックブロック葡、該セラミックブ
ロックの貫通孔が枠体面に直角より5〜20度傾むくよ
う(で嵌装してなる特許請求の範囲第4項又は第5項の
輻射体。 (7)  前記耐熱性枠体に開口部が複数個設けられ、
各開]]部しこ2個の前記セラミックブロック金、該枠
体両側面の中間面に対称に、嵌装しである特許請求の範
囲第6項の輻射体。
[Claims] (Ceramic block gold having a large number of parallel through-holes in the high-temperature gas flow path in the 1,1tJo thermal chamber, with the through-holes being arranged at an angle to the gas flow path and facing the hot object to be heated. A radiation heating method characterized in that the diameter of the through hole of the ceramic block is 1 to 1.
2. The radiant heating method according to claim 1, wherein the thickness of the hole in the block in the penetrating direction is at least twice the diameter of the nucleation. (3) The radiation heating method according to claim 1 or 2, wherein the ceramic block is arranged such that the through hole of the ceramic block is inclined at 5 to 20 degrees with respect to the gas flow path. (4) A ceramic block having a large number of parallel through-holes is inserted into the opening of a heat-resistant frame that has one or several openings, with the through-holes arranged on the frame surface. A radiant body. (5) The diameter of the through hole of the ceramic block is 1 to 20
0 mm, and the thickness of the hole in the block in the penetrating direction is at least twice the diameter of the nucleation. The radiator according to claim 4 or 5, wherein the through hole of the ceramic block is fitted so that the through hole is inclined 5 to 20 degrees from the right angle to the frame surface. (7) An opening is formed in the heat resistant frame. Multiple sections are provided,
7. The radiator according to claim 6, wherein the two ceramic blocks are fitted symmetrically to the intermediate plane of both sides of the frame.
JP3573782A 1982-03-09 1982-03-09 Radiation heating method and radiator Granted JPS58153088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3573782A JPS58153088A (en) 1982-03-09 1982-03-09 Radiation heating method and radiator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3573782A JPS58153088A (en) 1982-03-09 1982-03-09 Radiation heating method and radiator

Publications (2)

Publication Number Publication Date
JPS58153088A true JPS58153088A (en) 1983-09-10
JPS6359073B2 JPS6359073B2 (en) 1988-11-17

Family

ID=12450134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3573782A Granted JPS58153088A (en) 1982-03-09 1982-03-09 Radiation heating method and radiator

Country Status (1)

Country Link
JP (1) JPS58153088A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6363700U (en) * 1986-10-13 1988-04-27
JP4801789B1 (en) * 2010-10-07 2011-10-26 株式会社超高温材料研究センター Heating furnace thermal efficiency improvement method and heating furnace thermal efficiency improvement apparatus
JP2011231959A (en) * 2010-04-26 2011-11-17 Japan Ultra-High Temperature Materials Research Center Air-permeable radiant heat reflector and method for producing the same
JP2012247108A (en) * 2011-05-26 2012-12-13 Japan Ultra-High Temperature Materials Research Center Thermal efficiency improvement method of heat treatment furnace, and heat treatment furnace
JP2014126343A (en) * 2012-12-27 2014-07-07 Jfe Steel Corp Heating furnace

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4945239Y1 (en) * 1969-11-07 1974-12-11
JPS50133376U (en) * 1974-04-20 1975-11-01
JPS54123509A (en) * 1978-03-20 1979-09-25 Kawasaki Steel Co Heating furnace
JPS5525353A (en) * 1978-08-11 1980-02-23 Ricoh Co Ltd Printing means

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4945239Y1 (en) * 1969-11-07 1974-12-11
JPS50133376U (en) * 1974-04-20 1975-11-01
JPS54123509A (en) * 1978-03-20 1979-09-25 Kawasaki Steel Co Heating furnace
JPS5525353A (en) * 1978-08-11 1980-02-23 Ricoh Co Ltd Printing means

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6363700U (en) * 1986-10-13 1988-04-27
JP2011231959A (en) * 2010-04-26 2011-11-17 Japan Ultra-High Temperature Materials Research Center Air-permeable radiant heat reflector and method for producing the same
JP4801789B1 (en) * 2010-10-07 2011-10-26 株式会社超高温材料研究センター Heating furnace thermal efficiency improvement method and heating furnace thermal efficiency improvement apparatus
WO2012046515A1 (en) * 2010-10-07 2012-04-12 株式会社超高温材料研究センター Thermal efficiency improvement method for heating furnace and thermal efficiency improvement device for heating furnace
CN103201579A (en) * 2010-10-07 2013-07-10 宇部兴产株式会社 Thermal efficiency improvement method for heating furnace and thermal efficiency improvement device for heating furnace
JP2012247108A (en) * 2011-05-26 2012-12-13 Japan Ultra-High Temperature Materials Research Center Thermal efficiency improvement method of heat treatment furnace, and heat treatment furnace
JP2014126343A (en) * 2012-12-27 2014-07-07 Jfe Steel Corp Heating furnace

Also Published As

Publication number Publication date
JPS6359073B2 (en) 1988-11-17

Similar Documents

Publication Publication Date Title
US3954387A (en) Burners
US4144020A (en) Energy conserving process furnace system and components thereof
JPS58153088A (en) Radiation heating method and radiator
HU218518B (en) Heat transfer tubebundle-wall construction and fire resistant block
CN2893603Y (en) Industrial furnace body structure
JPH0222296B2 (en)
JPS6021385Y2 (en) Heating furnace with radiant tube
JPS59113117A (en) Continuous heating furnace
JPS6312236B2 (en)
JPS6135340Y2 (en)
JP2873392B2 (en) Radiant tube burner
JPS6017686A (en) Heating furnace and radiating panel
JPS6236071Y2 (en)
CN209371791U (en) Downwind type preheating furnace
SU1354016A1 (en) Metallurgical furnace lining guard with burner devices
JPS6236073Y2 (en)
JPS6336038Y2 (en)
JP3059672B2 (en) Radiant tube furnace
JPS641945Y2 (en)
JPS6312239B2 (en)
JPS5926237Y2 (en) Furnace wall structure
CN2325681Y (en) Stove for air-heating
JPS59209846A (en) Air-permeable solid
JPS58210490A (en) Heat exchanger of tube type
JPS62200134A (en) Hot water boiler