JP5560715B2 - Selective reduction of nitro group by metal catalyst supported carbon - Google Patents

Selective reduction of nitro group by metal catalyst supported carbon Download PDF

Info

Publication number
JP5560715B2
JP5560715B2 JP2009540074A JP2009540074A JP5560715B2 JP 5560715 B2 JP5560715 B2 JP 5560715B2 JP 2009540074 A JP2009540074 A JP 2009540074A JP 2009540074 A JP2009540074 A JP 2009540074A JP 5560715 B2 JP5560715 B2 JP 5560715B2
Authority
JP
Japan
Prior art keywords
group
carbon
supported carbon
osmium
manufactured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009540074A
Other languages
Japanese (ja)
Other versions
JPWO2009060886A1 (en
Inventor
睦 佐藤
桂二 大野
弘尚 佐治木
智弘 前川
泰也 門口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Wako Pure Chemical Corp
Original Assignee
Wako Pure Chemical Industries Ltd
Fujifilm Wako Pure Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wako Pure Chemical Industries Ltd, Fujifilm Wako Pure Chemical Corp filed Critical Wako Pure Chemical Industries Ltd
Priority to JP2009540074A priority Critical patent/JP5560715B2/en
Publication of JPWO2009060886A1 publication Critical patent/JPWO2009060886A1/en
Application granted granted Critical
Publication of JP5560715B2 publication Critical patent/JP5560715B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/30Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds
    • C07C209/32Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups
    • C07C209/36Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups by reduction of nitro groups bound to carbon atoms of six-membered aromatic rings in presence of hydrogen-containing gases and a catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/464Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/466Osmium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C227/00Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C227/04Formation of amino groups in compounds containing carboxyl groups

Description

本発明は、各種金属担持炭素を用いた新規な選択的還元方法に関する。   The present invention relates to a novel selective reduction method using various metal-supported carbons.

アミノスチレン誘導体は、高分子材料(液晶用偏光板用ポリマー)の有用な素材(モノマー)の一つとして注目を集めている。その製造法としては、古典的な化学量論量の鉄粉を用いるニトロスチレン誘導体の還元方法が一般的である。しかしながら、該方法に於いては、その鉄を除去するために煩雑な作業が必要とされるという問題点を有していた。そのため、還元触媒を容易に除去することができる、ニトロスチレン誘導体からアミノスチレン誘導体への還元方法が望まれていた。   Aminostyrene derivatives are attracting attention as one of useful materials (monomers) of polymer materials (polymers for liquid crystal polarizing plates). As a production method thereof, a reduction method of a nitrostyrene derivative using a classic stoichiometric amount of iron powder is common. However, this method has a problem that complicated work is required to remove the iron. Therefore, a reduction method from a nitrostyrene derivative to an aminostyrene derivative that can easily remove the reduction catalyst has been desired.

一方、担体に担持させた還元触媒を用いた還元方法が種々試みられている。例えばWO2004/072019には、イオン交換樹脂固定化白金触媒を用いたヒドロキシルアミン化合物の製造方法が記載されている。しかし、このような触媒を担体に担持させたものを用いて選択的な還元反応を行う場合であっても、白金のような強い触媒を用いる場合、その触媒能を抑えるためにジメチルスルホキシド等の被毒化剤を用いるのが好ましいとされている。そのため、反応終了後該被毒化剤を取り除く必要があり、反応後の操作が煩雑となる問題点を有していた。そこで、このような被毒化剤を用いることなく容易に選択的還元反応を可能とする方法が望まれていた。   On the other hand, various reduction methods using a reduction catalyst supported on a carrier have been attempted. For example, WO2004 / 072019 describes a method for producing a hydroxylamine compound using an ion exchange resin-immobilized platinum catalyst. However, even when a selective reduction reaction is performed using such a catalyst supported on a carrier, when a strong catalyst such as platinum is used, dimethyl sulfoxide or the like is used to suppress the catalytic ability. It is preferred to use a poisoning agent. Therefore, it is necessary to remove the poisoning agent after completion of the reaction, and there is a problem that the operation after the reaction becomes complicated. Therefore, a method that enables a selective reduction reaction easily without using such a poisoning agent has been desired.

本発明は、上記状況に鑑み、ニトロスチレン誘導体等の還元されやすい基(ニトロスチレン誘導体の場合は不飽和炭化水素基)を有するニトロ化合物を、アミノスチレン誘導体等の還元されやすい基を有するアミノ化合物へ選択的に還元することを可能とする、新規な選択的還元方法の提供を課題とする。   In view of the above situation, the present invention relates to a nitro compound having an easily reduced group such as a nitrostyrene derivative (unsaturated hydrocarbon group in the case of a nitrostyrene derivative), an amino compound having an easily reduced group such as an aminostyrene derivative. It is an object of the present invention to provide a novel selective reduction method that enables selective reduction.

本発明は、「白金担持炭素、オスミウム担持炭素、ルテニウム担持炭素、パラジウム担持炭素及びロジウム担持炭素から選ばれる金属触媒担持炭素1種の存在下、還元性基を有するニトロ芳香族化合物と、ヒドラジン又は水素から選ばれる還元剤とを反応させることを特徴とする、還元性基を有するニトロ芳香族化合物中のニトロ基の選択的還元方法(但し、還元剤が水素の場合、金属触媒担持炭素はオスミウム担持炭素、ルテニウム担持炭素或いは白金担持炭素である)」並びに「白金担持炭素、オスミウム担持炭素、ルテニウム担持炭素、パラジウム担持炭素及びロジウム担持炭素から選ばれる金属触媒担持炭素1種の存在下、還元性基を有するニトロ芳香族化合物と、ヒドラジン又は水素とを反応させることを特徴とする、還元性基を有するアミノ芳香族化合物の製造方法(但し、還元剤が水素の場合、金属触媒担持炭素はオスミウム担持炭素、ルテニウム担持炭素或いは白金担持炭素である)」に関する。
The present invention relates to “a nitroaromatic compound having a reducing group in the presence of one metal catalyst-supported carbon selected from platinum-supported carbon, osmium-supported carbon, ruthenium-supported carbon, palladium-supported carbon, and rhodium-supported carbon, hydrazine or A selective reduction method of a nitro group in a nitroaromatic compound having a reducing group, characterized by reacting with a reducing agent selected from hydrogen (however, when the reducing agent is hydrogen, the metal catalyst-supported carbon is osmium) In the presence of one metal catalyst-supported carbon selected from platinum-supported carbon, osmium-supported carbon, ruthenium-supported carbon, palladium-supported carbon, and rhodium-supported carbon. A reducing group characterized by reacting a nitroaromatic compound having a group with hydrazine or hydrogen Method for producing an amino aromatic compound (however, if the reducing agent is hydrogen, a metal catalyst on carbon is osmium on carbon, ruthenium on carbon or platinum on carbon) "for.

本発明の方法によれば、被毒化剤を用いることなく、高い選択性で不飽和炭化水素基、ベンジルオキシ基、ベンジルオキシカルバモイル基、アルキルカルボニル基、ハロゲノ基、アルコキシル基等の還元されやすい基(還元性基)を有するニトロ芳香族化合物中のニトロ基のみを選択的に還元し得る。被毒化剤を使用しないため、被毒化剤を取り除く煩雑な操作を省くことができ、簡便な還元方法を可能とする。また、この方法は、工業的なスケールでの利用も可能であり、簡便且つ大量に、目的物である還元性基を有するアミノ芳香族化合物を得ることができる。また、ここで用いられる金属触媒は炭素に担持されており、反応溶液中に金属溶媒が溶出する可能性が低いため、反応後、その金属触媒担持炭素を取り除くことにより容易に金属触媒を除去できるという効果も奏する。   According to the method of the present invention, an easily reduced group such as an unsaturated hydrocarbon group, a benzyloxy group, a benzyloxycarbamoyl group, an alkylcarbonyl group, a halogeno group, and an alkoxyl group can be selected with high selectivity without using a poisoning agent. Only the nitro group in the nitroaromatic compound having (reducing group) can be selectively reduced. Since no poisoning agent is used, a complicated operation of removing the poisoning agent can be omitted, and a simple reduction method is possible. Further, this method can be used on an industrial scale, and an amino aromatic compound having a reducing group, which is a target product, can be obtained simply and in large quantities. Further, since the metal catalyst used here is supported on carbon and the possibility that the metal solvent elutes in the reaction solution is low, the metal catalyst can be easily removed by removing the carbon supported on the metal catalyst after the reaction. There is also an effect.

本発明に係る白金担持炭素は、炭素に白金が担持されているものであれば特に限定されず、その担持方法は物理的な結合によるものであっても化学的な結合によるものであってもよいが、物理的な結合による方法が好ましく、中でも吸着による物理的な結合による方法が特に好ましい。該白金担持炭素は、市販のものを使用しても、自体公知の方法、例えば、金属触媒を溶解させる溶液中で撹拌しながら反応させる等の方法により得られるものを使用してもよい。尚、ここでいう炭素は、通常この分野で用いられるものであれば何れでもよいが、活性炭が好ましく、中でも1〜1000Åの微細孔を有する活性炭が好ましい。また、白金は通常この分野で用いられているものであれば特に限定はされないが、通常0〜6価であり、中でも0価、2価、4価のものが好ましく、0価のものが特に好ましい。具体的には、酸化白金、塩化白金、臭化白金、ヨウ化白金、ヘキサクロロ白金酸アンモニウム、テトラクロロ白金酸アンモニウム、ヘキサクロロ白金酸カリウム、テトラクロロ白金酸カリウム、テトラブロモ白金酸カリウム、ヘキサクロロ白金酸ナトリウム、テトラクロロ白金酸ナトリウム、硝酸白金、硫酸白金、酢酸白金由来のものが挙げられるが、酸化白金、塩化白金、ヘキサクロロ白金酸カリウム由来のものが好ましく、中でも塩化白金由来ものが特に好ましい。また、本発明に係る白金担持炭素中の白金の量は、通常1〜100重量%、好ましくは3〜50重量%、より好ましくは5〜30重量%である。上記金属触媒を溶解させる溶液としては、用いられる白金又は白金が由来するものにより異なるが、例えば酸化白金、塩化白金、ヘキサクロロ白金酸カリウム由来の白金を用いる場合には、塩酸、硫酸、硝酸過塩素酸、酢酸等の酸性溶液が挙げられ、中でも塩酸が好ましい。   The platinum-supporting carbon according to the present invention is not particularly limited as long as platinum is supported on carbon, and the supporting method may be based on physical bonding or chemical bonding. Although a method using physical bonding is preferable, a method using physical bonding by adsorption is particularly preferable. The platinum-supported carbon may be a commercially available one, or may be obtained by a method known per se, for example, a method of reacting with stirring in a solution in which a metal catalyst is dissolved. The carbon used herein may be any carbon as long as it is usually used in this field, but activated carbon is preferable, and activated carbon having a fine pore of 1 to 1000 mm is particularly preferable. Further, platinum is not particularly limited as long as it is usually used in this field, but is usually 0 to 6 valent, and among them, 0 valent, 2 valent, and 4 valent are preferable, and 0 valent is particularly preferable. preferable. Specifically, platinum oxide, platinum chloride, platinum bromide, platinum iodide, ammonium hexachloroplatinate, ammonium tetrachloroplatinate, potassium hexachloroplatinate, potassium tetrachloroplatinate, potassium tetrabromoplatinate, sodium hexachloroplatinate And those derived from sodium tetrachloroplatinate, platinum nitrate, platinum sulfate, and platinum acetate, but those derived from platinum oxide, platinum chloride, and potassium hexachloroplatinate are preferred, and those derived from platinum chloride are particularly preferred. Further, the amount of platinum in the platinum-supported carbon according to the present invention is usually 1 to 100% by weight, preferably 3 to 50% by weight, and more preferably 5 to 30% by weight. The solution for dissolving the metal catalyst varies depending on the platinum used or the one from which platinum is derived. For example, when using platinum oxide, platinum chloride, or platinum derived from potassium hexachloroplatinate, hydrochloric acid, sulfuric acid, perchloric acid nitrate. Examples include acidic solutions such as acid and acetic acid, and hydrochloric acid is preferred.

本発明に係るオスミウム担持炭素は、炭素にオスミウムが担持されているものであれば特に限定されず、その担持方法は物理的な結合によるものであっても化学的な結合によるものであってもよいが、物理的な結合による方法が好ましく、中でも吸着による物理的な結合による方法が特に好ましい。該オスミウム担持炭素は、市販のものを使用しても、自体公知の方法、例えば、オスミウム化合物を溶解させる溶液中で撹拌しながら反応させる等の方法により得られるものを使用してもよい。尚、ここでいう炭素は、上記白金担持炭素の炭素と同じものを用いることが出来、好ましいものも同じである。また、オスミウムとしては、0価、1価、2価、4価、6価のオスミウムが挙げられるが、0価、1価、2価のオスミウムが好ましく、中でも0価のオスミウムがより好ましい。オスミウム化合物としては、例えば塩化オスミウム等のハロゲン化オスミウム、二酸化オスミウム、四酸化オスミウム、オスミウム酸(VI)カリウム、ヘキサクロロオスミウム酸カリウム由来のものが挙げられ、中でも、四酸化オスミウム由来のものが好ましい。また、本発明に係るオスミウム担持炭素中のオスミウムの量は、通常1〜100重量%、好ましくは1〜50重量%、より好ましくは1〜30重量%である。上記オスミウム化合物を溶解させる溶液としては、用いられるオスミウム又はオスミウム化合物により異なるが、例えば四酸化オスミウムを用いる場合には、塩酸、硫酸、硝酸過塩素酸、酢酸等の酸性溶液や、アセトン、メタノール、エタノール、イソプロピルアルコール、テトラヒドロフラン、クロロホルム、酢酸エチル等の有機溶媒が挙げられる。   The osmium-supporting carbon according to the present invention is not particularly limited as long as osmium is supported on the carbon, and the supporting method may be based on physical bonding or chemical bonding. Although a method using physical bonding is preferable, a method using physical bonding by adsorption is particularly preferable. The osmium-supporting carbon may be a commercially available carbon or a carbon obtained by a method known per se, for example, a reaction with stirring in a solution in which an osmium compound is dissolved. In addition, the carbon here can use the same thing as carbon of the said platinum carrying | support carbon, A preferable thing is also the same. Examples of osmium include zero-valent, monovalent, divalent, tetravalent, and hexavalent osmium, and zero-valent, monovalent, and divalent osmium are preferable, and among them, zero-valent osmium is more preferable. Examples of the osmium compound include osmium halides such as osmium chloride, osmium dioxide, osmium tetroxide, potassium osmate (VI), and potassium hexachloroosmate, among which osmium tetroxide is preferable. The amount of osmium in the osmium-supporting carbon according to the present invention is usually 1 to 100% by weight, preferably 1 to 50% by weight, more preferably 1 to 30% by weight. The solution for dissolving the osmium compound varies depending on the osmium or osmium compound used. For example, when osmium tetroxide is used, an acidic solution such as hydrochloric acid, sulfuric acid, nitric acid perchloric acid, acetic acid, acetone, methanol, Organic solvents such as ethanol, isopropyl alcohol, tetrahydrofuran, chloroform, ethyl acetate and the like can be mentioned.

本発明に係るルテニウム担持炭素は、炭素にルテニウムが担持されているものであれば特に限定されず、その担持方法は物理的な結合によるものであっても化学的な結合によるものであってもよいが、物理的な結合による方法が好ましく、中でも吸着による物理的な結合による方法が特に好ましい。該ルテニウム担持炭素は、市販のものを使用しても、自体公知の方法、例えば、ルテニウム化合物を溶解させる溶液中で撹拌しながら反応させる等の方法により得られるものを使用してもよい。尚、ここでいう炭素は、上記白金担持炭素の炭素と同じものを用いることが出来、好ましいものも同じである。また、ルテニウムとしては、この分野で用いられているものであれば全て含まれ、例えば3価、4価、8価のルテニウムが挙げられるが、中でも3価のルテニウムが好ましい。ルテニウム化合物としては、例えば、塩化ルテニウム、硝酸ルテニウム、酸化ルテニウム、テトラオキソルテニウム酸塩等が挙げられるが、塩化ルテニウム由来のものが好ましい。また、本発明に係るルテニウム担持炭素中のルテニウムの量は、通常1〜100重量%、好ましくは1〜50重量%、より好ましくは1〜30重量%である。上記ルテニウム化合物を溶解させる溶液は、用いられるルテニウム化合物により異なるが、例えば酸化ルテニウムを用いる場合には塩酸、硫酸、硝酸過塩素酸、酢酸等の酸性溶液や、アセトン、メタノール、エタノール、イソプロピルアルコール、テトラヒドロフラン(THF)、クロロホルム、酢酸エチル等の有機溶媒が挙げられる。   The ruthenium-supporting carbon according to the present invention is not particularly limited as long as ruthenium is supported on the carbon, and the supporting method may be based on physical bonding or chemical bonding. Although a method using physical bonding is preferable, a method using physical bonding by adsorption is particularly preferable. The ruthenium-supporting carbon may be a commercially available carbon or a carbon obtained by a method known per se, for example, a reaction with stirring in a solution in which a ruthenium compound is dissolved. In addition, the carbon here can use the same thing as carbon of the said platinum carrying | support carbon, A preferable thing is also the same. Further, as ruthenium, all those used in this field are included, and examples thereof include trivalent, tetravalent, and octavalent ruthenium, among which trivalent ruthenium is preferable. Examples of the ruthenium compound include ruthenium chloride, ruthenium nitrate, ruthenium oxide, tetraoxoruthenate, and the like, but those derived from ruthenium chloride are preferable. The amount of ruthenium in the ruthenium-supporting carbon according to the present invention is usually 1 to 100% by weight, preferably 1 to 50% by weight, more preferably 1 to 30% by weight. The solution for dissolving the ruthenium compound varies depending on the ruthenium compound used. For example, when ruthenium oxide is used, an acidic solution such as hydrochloric acid, sulfuric acid, nitric acid perchloric acid, acetic acid, acetone, methanol, ethanol, isopropyl alcohol, Organic solvents such as tetrahydrofuran (THF), chloroform, ethyl acetate and the like can be mentioned.

本発明に係るパラジウム担持炭素は、炭素にパラジウムが担持されているものであれば特に限定されず、その担持方法は物理的な結合によるものであっても化学的な結合によるものであってもよいが、物理的な結合による方法が好ましく、中でも吸着による物理的な結合による方法が特に好ましい。該パラジウム担持炭素は、市販のものを使用しても、自体公知の方法、例えば、パラジウム化合物を溶解させる溶液中で撹拌しながら反応させる等の方法により得られるものを使用してもよい。尚、ここでいう炭素は、上記白金担持炭素の炭素と同じものを用いることが出来、好ましいものも同じである。また、パラジウムとしては、0価、1価、2価のパラジウムが挙げられるが、0価及び2価のものが好ましく、0価のものが特に好ましい。具体的には例えばPd(0)そのもの(配位子等を有さないもの)及び配位子が配位したPd(0)錯体、例えばジクロロ−μ−ビス[ビス(ジメチルホスフィノ)メタン]二パラジウム(Pd2Cl2[(CH3)2PCH2P(CH3)2]2)、ジクロロ−μ−ビス[ビス(ジフェニルホスフィノ)メタン]二パラジウム(Pd2Cl2[Ph2PCH2PPh2]2)等のPd(I)由来のものが挙げられ、例えばPd(II)ハロゲン化物(塩化物、臭化物、ヨウ化物等)、Pd(II)カルボン酸塩(例えば酢酸塩およびプロピオン酸塩)等のPd(II)由来のものが挙げられる。中でもPd(0)及びPd(II)塩が好ましく、Pd(0)がより好ましい。本発明に係るパラジウム担持炭素中のパラジウムの量は、通常1〜100重量%、好ましくは1〜50重量%、より好ましくは1〜30重量%である。上記パラジウム化合物を溶解させる溶液は、用いられるパラジウム又はパラジウム化合物により異なるが、例えば塩化パラジウムを用いる場合には、塩酸、硫酸、硝酸過塩素酸、酢酸等の酸性溶液が挙げられる。The palladium-supported carbon according to the present invention is not particularly limited as long as palladium is supported on the carbon, and the support method may be based on physical bonds or chemical bonds. Although a method using physical bonding is preferable, a method using physical bonding by adsorption is particularly preferable. The palladium-supported carbon may be a commercially available one, or may be obtained by a method known per se, for example, a method of reacting with stirring in a solution in which a palladium compound is dissolved. In addition, the carbon here can use the same thing as carbon of the said platinum carrying | support carbon, A preferable thing is also the same. Further, examples of palladium include zero-valent, monovalent and divalent palladium. Zero-valent and divalent palladium are preferable, and zero-valent palladium is particularly preferable. Specifically, for example, Pd (0) itself (without a ligand or the like) and a Pd (0) complex coordinated with a ligand, such as dichloro-μ-bis [bis (dimethylphosphino) methane] Dipalladium (Pd 2 Cl 2 [(CH 3 ) 2 PCH 2 P (CH 3 ) 2 ] 2 ), dichloro-μ-bis [bis (diphenylphosphino) methane] dipalladium (Pd 2 Cl 2 [Ph 2 PCH 2 PPh 2 ] 2 ) and the like derived from Pd (I), such as Pd (II) halides (chloride, bromide, iodide, etc.), Pd (II) carboxylates (eg acetate and propion) And the like derived from Pd (II) such as acid salts). Of these, Pd (0) and Pd (II) salts are preferable, and Pd (0) is more preferable. The amount of palladium in the palladium-supported carbon according to the present invention is usually 1 to 100% by weight, preferably 1 to 50% by weight, more preferably 1 to 30% by weight. The solution in which the palladium compound is dissolved varies depending on the palladium or palladium compound to be used. For example, when palladium chloride is used, an acidic solution such as hydrochloric acid, sulfuric acid, nitric acid perchloric acid, and acetic acid can be used.

Pd(0)錯体の配位子としては、例えば1,5-シクロオクタジエン(COD)、ジベンジリデンアセトン(DBA)、ビピリジン(BPY)、フェナントロリン(PHE)、ベンゾニトリル(PhNC)、イソシアニド(RNC)、トリエチルアルシン(As(Et)3)、例えばジメチルフェニルホスフィン(P(CH3)2Ph),ジフェニルホスフィノフェロセン(dPPf),トリメチルホスフィン(P(CH3)3),トリエチルホスフィン(P(Et)3),トリtert-ブチルホスフィン(P(tBu)3),トリシクロヘキシルホスフィン(PCy3),トリメトキシホスフィン(P(OCH3)3),トリエトキシホスフィン(P(OEt)3),トリtert-ブトキシホスフィン(P(OtBu)3),トリフェニルホスフィン(PPh3),1,2-ビス(ジフェニルホスフィノ)エタン(DPPE),トリフェノキシホスフィン(P(OPh)3)等の有機ホスフィン配位子等が挙げられ、中でも有機ホスフィン配位子が好ましく、特にトリフェニルホスフィン、トリt-ブチルホスフィン、トリエチルホスフィン、トリメチルホスフィン等が好ましい。中でも更にトリフェニルホスフィンが好ましい。なお、パラジウムが配位子を有するPd(0)である場合、その配位子の数は、通常1〜4個である。Examples of ligands for Pd (0) complexes include 1,5-cyclooctadiene (COD), dibenzylideneacetone (DBA), bipyridine (BPY), phenanthroline (PHE), benzonitrile (PhNC), and isocyanide (RNC). ), Triethylarsine (As (Et) 3 ) such as dimethylphenylphosphine (P (CH 3 ) 2 Ph), diphenylphosphinoferrocene (dPPf), trimethylphosphine (P (CH 3 ) 3 ), triethylphosphine (P ( Et) 3 ), tri-tert-butylphosphine (P (tBu) 3 ), tricyclohexylphosphine (PCy 3 ), trimethoxyphosphine (P (OCH 3 ) 3 ), triethoxyphosphine (P (OEt) 3 ), tri Organic phosphine compounds such as tert-butoxyphosphine (P (OtBu) 3 ), triphenylphosphine (PPh 3 ), 1,2-bis (diphenylphosphino) ethane (DPPE), triphenoxyphosphine (P (OPh) 3 ) Examples include ligands, among them organic phosphine coordination Are preferred, and triphenylphosphine, tri-t-butylphosphine, triethylphosphine, trimethylphosphine and the like are particularly preferred. Of these, triphenylphosphine is more preferable. In addition, when palladium is Pd (0) having a ligand, the number of the ligand is usually 1 to 4.

本発明に係るロジウム担持炭素は、炭素にロジウムが担持されているものであれば特に限定されず、その担持方法は物理的な結合によるものであっても化学的な結合によるものであってもよいが、物理的な結合による方法が好ましく、中でも吸着による物理的な結合による方法が特に好ましい。該ロジウム担持炭素は、市販のものを使用しても、自体公知の方法、例えば、パラジウム化合物を溶解させる溶液中で撹拌しながら反応させる等の方法により得られるものを使用してもよい。尚、ここでいう炭素は、上記白金担持炭素の炭素と同じものを用いることが出来、好ましいものも同じである。また、ロジウムとしては、0価又は1価のロジウムが挙げられるが、好ましくは0価のものが挙げられる。パラジウム化合物としては、例えばロジウム担持炭素中のロジウムは、具体的には、酸化ロジウム、塩化ロジウム、臭化ロジウム、ヨウ化ロジウム、ヘキサクロロロジウム酸アンモニウム、テトラクロロロジウム酸アンモニウム、ヘキサクロロロジウム酸カリウム、テトラクロロロジウム酸カリウム、テトラブロモロジウム酸カリウム、ヘキサクロロロジウム酸ナトリウム、テトラクロロロジウム酸ナトリウム、硝酸ロジウム、硫酸ロジウム、酢酸ロジウム由来のものが挙げられるが、酸化ロジウム、塩化ロジウム、ヘキサクロロロジウム酸カリウム由来のものが好ましく、中でも塩化ロジウム由来ものが特に好ましい。本発明に係るロジウム担持炭素中のロジウムの量は、通常1〜100重量%、好ましくは1〜50重量%、より好ましくは1〜30重量%。上記ロジウム化合物を溶解させる溶液は、用いられるロジウム又はロジウム化合物により異なるが、例えば塩化ロジウムを用いる場合には、塩酸、硫酸、硝酸過塩素酸、酢酸等の酸性溶液が挙げられる。   The rhodium-carrying carbon according to the present invention is not particularly limited as long as rhodium is supported on the carbon, and the loading method may be based on physical bonding or chemical bonding. Although a method using physical bonding is preferable, a method using physical bonding by adsorption is particularly preferable. The rhodium-supported carbon may be a commercially available carbon or a carbon obtained by a method known per se, for example, a reaction with stirring in a solution in which a palladium compound is dissolved. In addition, the carbon here can use the same thing as carbon of the said platinum carrying | support carbon, A preferable thing is also the same. Further, examples of rhodium include zero-valent and monovalent rhodium, preferably zero-valent. Specific examples of the palladium compound include rhodium in rhodium-supporting carbon, specifically, rhodium oxide, rhodium chloride, rhodium bromide, rhodium iodide, ammonium hexachlororhodate, ammonium tetrachlororhodate, potassium hexachlororhodate, tetra Examples include those derived from potassium chlororhodate, potassium tetrabromorhodate, sodium hexachlororhodate, sodium tetrachlororhodate, rhodium nitrate, rhodium sulfate, rhodium acetate, but derived from rhodium oxide, rhodium chloride, potassium hexachlororhodate. Of these, those derived from rhodium chloride are particularly preferred. The amount of rhodium in the rhodium-supported carbon according to the present invention is usually 1 to 100% by weight, preferably 1 to 50% by weight, more preferably 1 to 30% by weight. The solution for dissolving the rhodium compound varies depending on the rhodium or rhodium compound to be used. For example, when rhodium chloride is used, an acidic solution such as hydrochloric acid, sulfuric acid, nitric acid perchloric acid, and acetic acid can be used.

上記金属担持炭素中の金属の価数を低価数又は0価にするためには、高い価数のものを炭素に担持させた後、この分野で通常用いられる適当な方法(例えばIn Organic Syntheses, Collected Vol.3, P.685. Wiley, New York, 1955.に記載の方法)でこれを適宜処理してもよい。   In order to reduce the valence of the metal in the metal-supported carbon to a low valence or zero valence, an appropriate method usually used in this field (for example, In Organic Syntheses) , Collected Vol. 3, P.685. The method described in Wiley, New York, 1955.).

還元剤としてヒドラジンを用いる場合、上記の、白金担持炭素、オスミウム担持炭素、ルテニウム担持炭素、パラジウム担持炭素及びロジウム担持炭素何れも選択的還元反応に用いることができるが、白金担持炭素、オスミウム担持炭素、ルテニウム担持炭素及びパラジウム担持炭素が好ましく、オスミウム担持炭素は特に効率よく選択的還元反応を可能とするのでより好ましい。還元剤として水素を用いる場合、上記金属担持炭素のうち、白金担持炭素、オスミウム担持炭素及びルテニウム担持炭素を選択的還元反応に用いることができるが、選択的還元の効率の良さから、オスミウム担持炭素及びルテニウム担持炭素が好ましい。還元剤は、用いられる金属担持炭素の種類に応じて、又はその反応条件に応じて選択されればよいが、選択還元の効率の良さから、ヒドラジンを用いるのが好ましい。   When hydrazine is used as the reducing agent, any of the above platinum-supported carbon, osmium-supported carbon, ruthenium-supported carbon, palladium-supported carbon and rhodium-supported carbon can be used for the selective reduction reaction, but platinum-supported carbon and osmium-supported carbon. Ruthenium-supported carbon and palladium-supported carbon are preferable, and osmium-supported carbon is more preferable because it enables a selective reduction reaction particularly efficiently. When hydrogen is used as the reducing agent, among the above metal-supported carbons, platinum-supported carbon, osmium-supported carbon, and ruthenium-supported carbon can be used for the selective reduction reaction, but because of the efficiency of selective reduction, osmium-supported carbon And ruthenium-supported carbon is preferred. The reducing agent may be selected according to the type of metal-supported carbon to be used or according to the reaction conditions, but hydrazine is preferably used from the viewpoint of the efficiency of selective reduction.

本発明に係る還元性基を有するニトロ芳香族化合物におけるニトロ芳香族化合物としては、還元性基を有する、ニトロベンゼン誘導体、ニトロナフタレン誘導体、ニトロアントラセン誘導体、ニトロアズレン誘導体又はニトロフェナントロリン誘導体、及びこれらの誘導体等が挙げられ、中でも、還元性基を有するニトロベンゼン誘導体及びその誘導体が好ましい。   The nitroaromatic compound in the nitroaromatic compound having a reducing group according to the present invention includes a nitrobenzene derivative, nitronaphthalene derivative, nitroanthracene derivative, nitroazulene derivative or nitrophenanthroline derivative having a reducing group, and derivatives thereof Among them, nitrobenzene derivatives having a reducing group and derivatives thereof are preferable.

本発明に係る還元性基としては、公知の還元方法により還元される基を表し、例えば触媒としてパラジウムを用い還元剤として水素を用いた還元反応に付すことにより還元される基を表す。具体的には、不飽和炭化水素基、ベンジルオキシ基、ベンジルオキシカルバモイル基、アルキルカルボニル基、ハロゲノ基又はアルコキシル基等である。   The reducing group according to the present invention represents a group that can be reduced by a known reduction method, for example, a group that is reduced by subjecting it to a reduction reaction using palladium as a catalyst and hydrogen as a reducing agent. Specific examples include an unsaturated hydrocarbon group, a benzyloxy group, a benzyloxycarbamoyl group, an alkylcarbonyl group, a halogeno group, or an alkoxyl group.

還元性基としての不飽和炭化水素基は、炭素数1〜3の、二重結合又は三重結合の炭素炭素結合基であり、具体的には例えばエテニル基、プロペニル基等のアルケニル基、エテニレン、プロペニレン等の二価のアルケニレン基、エチニル基、プロパ-2-イン-1-イル基等のアルキニル基、エチニレン基、プロピニレン基等のアルキニレン基等が挙げられる。
また、還元性基としてのアルキルカルボニル基におけるアルキル基としては、通常炭素数1〜6、好ましくは1〜3のアルキル基であり、直鎖状、分枝状又は環状の何れでも良く、具体的には、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、シクロプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、シクロブチル基、n−ペンチル基、イソペンチル基、sec−ペンチル基、tert−ペンチル基、ネオペンチル基、2−メチルブチル基、1−エチルプロピル基、シクロペンチル基、n−ヘキシル基、イソヘキシル基、sec−ヘキシル基、tert−ヘキシル基、ネオヘキシル基、2−メチルペンチル基、1,2−ジメチルブチル基、1−エチルブチル基、シクロヘキシル基等が挙げられ、中でもメチル基、エチル基、イソプロピル基等が好ましい。
還元性基としてのハロゲノ基としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
還元性基としてのアルコキシル基としては、通常炭素数1〜6、好ましくは炭素数1〜3、より好ましくは炭素数1〜2の直鎖状若しくは分枝状アルコキシ基が挙げられ、具体的には、例えばメトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、イソブトキシ基、tert-ブトキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基等が挙げられ、中でも、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基等が好ましく、メトキシ基が特に好ましい。
The unsaturated hydrocarbon group as the reducing group is a carbon-carbon bond group having 1 to 3 carbon atoms, such as a double bond or a triple bond. Specifically, for example, an alkenyl group such as an ethenyl group or a propenyl group, ethenylene, Examples thereof include divalent alkenylene groups such as propenylene, alkynyl groups such as ethynyl group and prop-2-yn-1-yl group, and alkynylene groups such as ethynylene group and propynylene group.
The alkyl group in the alkylcarbonyl group as the reducing group is usually an alkyl group having 1 to 6 carbon atoms, preferably 1 to 3 carbon atoms, which may be linear, branched or cyclic. For example, methyl group, ethyl group, n-propyl group, isopropyl group, cyclopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, cyclobutyl group, n-pentyl group, isopentyl group , Sec-pentyl group, tert-pentyl group, neopentyl group, 2-methylbutyl group, 1-ethylpropyl group, cyclopentyl group, n-hexyl group, isohexyl group, sec-hexyl group, tert-hexyl group, neohexyl group, 2 -Methylpentyl group, 1,2-dimethylbutyl group, 1-ethylbutyl group, cyclohexyl group, etc. , Among them methyl group, an ethyl group, an isopropyl group are preferable.
Examples of the halogeno group as the reducing group include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
Examples of the alkoxyl group as the reducing group include linear or branched alkoxy groups usually having 1 to 6 carbon atoms, preferably 1 to 3 carbon atoms, and more preferably 1 to 2 carbon atoms. Is, for example, methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, sec-butoxy group, isobutoxy group, tert-butoxy group, n-pentyloxy group, n-hexyloxy group, etc. Among them, a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, and the like are preferable, and a methoxy group is particularly preferable.

本発明に係る不飽和炭化水素基を有するニトロ芳香族化合物は、直鎖又は分枝鎖中に上記不飽和炭化水素基を通常1〜5個、好ましくは1〜3個、より好ましくは1〜2個有するものである。具体的には例えば、下記一般式[1]又は[1']で示される化合物

Figure 0005560715
In the nitroaromatic compound having an unsaturated hydrocarbon group according to the present invention, the above unsaturated hydrocarbon group is usually 1 to 5, preferably 1 to 3, more preferably 1 to 1 in a straight chain or branched chain. It has two. Specifically, for example, a compound represented by the following general formula [1] or [1 ′]
Figure 0005560715

(式中、Rは、結合手、置換基を有していてもよく且つ鎖中に酸素原子を有していてもよいアルキレン基を表し、複数個のRは、それぞれ独立して水素原子又は炭素数1〜6のアルキル基又はヒドロキシアルキル基を、Arは置換基を有していてもよいアリール基を表し、nは1〜5の整数を表す)

Figure 0005560715
(式中、R、R、Ar及びnは上記と同じ)、下記一般式[2]又は[2']で示される化合物
Figure 0005560715
(式中、R、R、Ar及びnは上記と同じ。Rは、鎖中に酸素原子を有していてもよく且つ置換基を有していてもよいアルキル基又はアルコキシ基を表し、mは0〜5の整数を表す)(Wherein R represents a bond, an alkylene group which may have a substituent and may have an oxygen atom in the chain, and a plurality of R 1 s each independently represents a hydrogen atom. Or an alkyl group having 1 to 6 carbon atoms or a hydroxyalkyl group, Ar represents an aryl group which may have a substituent, and n represents an integer of 1 to 5)
Figure 0005560715
(Wherein R, R 1 , Ar and n are the same as above), a compound represented by the following general formula [2] or [2 ′]
Figure 0005560715
(In the formula, R, R 1 , Ar and n are the same as described above. R 2 represents an alkyl group or an alkoxy group which may have an oxygen atom in the chain and may have a substituent. M represents an integer of 0 to 5)

Figure 0005560715
(式中、R、R、Ar、m及びnは上記と同じ)、下記一般式[3]又は[3']で示される化合物
Figure 0005560715
(式中、R、R、Ar及びnは上記と同じ)
Figure 0005560715
(Wherein R, R 2 , Ar, m and n are the same as above), a compound represented by the following general formula [3] or [3 ′]
Figure 0005560715
(Wherein R, R 1 , Ar and n are the same as above)

Figure 0005560715
(式中、R、R、Ar及びnは上記と同じ)、下記一般式[4]又は[4']で示される化合物
Figure 0005560715
(Wherein R, R 1 , Ar and n are the same as above), a compound represented by the following general formula [4] or [4 ′]

Figure 0005560715
(式中、R、R、Ar及びnは上記と同じ。Rは、水素又は置換基を有していてもよいアルキル基を表す)
Figure 0005560715
(式中、R、R、Ar及びnは上記と同じ。)等が挙げられる。
Figure 0005560715
(In the formula, R, R 1 , Ar and n are the same as described above. R 3 represents hydrogen or an alkyl group which may have a substituent.)
Figure 0005560715
(Wherein, R, R 3 , Ar and n are the same as above).

一般式[1]〜[4]及び[1']〜[4']においてRで示される「置換基を有していてもよく且つ鎖中に酸素原子を有していてもよいアルキレン基」において、酸素を有さない場合のアルキレン基としては、例えば炭素数1〜10、好ましくは1〜6、より好ましくは2〜6のものが挙げられ、これらは直鎖状、分枝状、環状の何れでもよい。具体的には、例えばメチレン基、エチレン基、プロピレン基、トリメチレン基、ブチレン基、1−エチルエチレン基、2−メチルトリメチレン基、2−エチルトリメチレン基、へキシレン基、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロへキシレン基等が挙げられる。また、その置換基としては、例えば炭素数1〜6、好ましくは1〜3のアルコキシル基〔直鎖状、分枝状、環状の何れにてもよい。〕、より具体的には例えばメトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、n-ペンチルオキシ基、イソペンチルオキシ基、sec-ペンチルオキシ基、tert-ペンチルオキシ基、n-ヘキシルオキシ基、イソヘキシルオキシ基、sec-ヘキシルオキシ基、tert-ヘキシルオキシ基、シクロプロポキシ基、シクロヘキシルオキシ基、シクロペンチルオキシ基等、例えばハロゲン原子、より具体的にはフッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、好ましくはエチレン基、プロピレン基、トリメチレン基、ブチレン基等である。また、鎖中に酸素原子を有する場合、酸素原子としては1〜5個、好ましくは1〜3個であり、より具体的には−(C24O)n−C24−(式中、nは1〜5の整数を表す。)等が挙げられる。上記したRで表される、置換基を有していてもよく且つ鎖中に酸素原子を有していてもよいアルキレン基の中でも、エチレン基、プロピレン基が好ましく、エチレン基がより好ましい。尚、上記Rの特に好ましいものは、結合手である。In the general formulas [1] to [4] and [1 ′] to [4 ′], “an alkylene group which may have a substituent and may have an oxygen atom in the chain” represented by R ” In the case of having no oxygen, the alkylene group includes, for example, those having 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms, more preferably 2 to 6 carbon atoms, which are linear, branched or cyclic. Any of these may be used. Specifically, for example, methylene group, ethylene group, propylene group, trimethylene group, butylene group, 1-ethylethylene group, 2-methyltrimethylene group, 2-ethyltrimethylene group, hexylene group, cyclopropylene group, cyclohexane Examples include butylene, cyclopentylene, cyclohexylene and the like. The substituent may be, for example, an alkoxyl group having 1 to 6 carbon atoms, preferably 1 to 3 carbon atoms [straight, branched, or cyclic. More specifically, for example, methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, n-pentyloxy group, isopentyloxy Group, sec-pentyloxy group, tert-pentyloxy group, n-hexyloxy group, isohexyloxy group, sec-hexyloxy group, tert-hexyloxy group, cyclopropoxy group, cyclohexyloxy group, cyclopentyloxy group, etc. For example, a halogen atom, more specifically a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like can be mentioned, and an ethylene group, a propylene group, a trimethylene group, a butylene group and the like are preferable. Also, if having an oxygen atom in the chain, 1-5 as an oxygen atom, preferably one to three, more specifically - (C 2 H 4 O) n -C 2 H 4 - ( In formula, n represents the integer of 1-5.) Etc. are mentioned. Of the alkylene groups which may have a substituent and may have an oxygen atom in the chain, represented by R, an ethylene group and a propylene group are preferable, and an ethylene group is more preferable. Particularly preferable R is a bond.

一般式[1]〜[4]、[1']及び[3']においてRで示される、炭素数1〜6のアルキル基又は炭素数1〜6のヒドロキシアルキル基としては、直鎖状、分枝状又は環状の何れでも良いが、炭素数1〜3のものが好ましい。該炭素数1〜6のアルキル基としては、具体的には、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、シクロプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、シクロブチル基、n−ペンチル基、イソペンチル基、sec−ペンチル基、tert−ペンチル基、ネオペンチル基、2−メチルブチル基、1−エチルプロピル基、シクロペンチル基、n−ヘキシル基、イソヘキシル基、sec−ヘキシル基、tert−ヘキシル基、ネオヘキシル基、2−メチルペンチル基、1,2−ジメチルブチル基、1−エチルブチル基、シクロヘキシル基等が挙げられ、中でもメチル基、エチル基、イソプロピル基等が好ましい。一般式[1]〜[4]、[1']及び[3']においてRで示される炭素数1〜6のヒドロキシアルキル基中のアルキル基としては、上記アルキル基の具体例と同じものが挙げられ、ヒドロキシアルキル基の好ましい具体例としては、ヒドロキシメチル基、ヒドロキシエチル基、ヒドロキシイソプロピル基、ヒドロキシn−プロピル基であり、中でもヒドロキシメチル基が特に好ましい。In the general formulas [1] to [4], [1 ′] and [3 ′], the alkyl group having 1 to 6 carbon atoms or the hydroxyalkyl group having 1 to 6 carbon atoms represented by R 1 is linear. These may be branched or cyclic, but those having 1 to 3 carbon atoms are preferred. Specific examples of the alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a cyclopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a tert group. -Butyl group, cyclobutyl group, n-pentyl group, isopentyl group, sec-pentyl group, tert-pentyl group, neopentyl group, 2-methylbutyl group, 1-ethylpropyl group, cyclopentyl group, n-hexyl group, isohexyl group, Examples include sec-hexyl group, tert-hexyl group, neohexyl group, 2-methylpentyl group, 1,2-dimethylbutyl group, 1-ethylbutyl group, cyclohexyl group and the like. Among them, methyl group, ethyl group, isopropyl group and the like are mentioned. preferable. In the general formulas [1] to [4], [1 ′] and [3 ′], the alkyl group in the hydroxyalkyl group having 1 to 6 carbon atoms represented by R 1 is the same as the specific examples of the alkyl group. Specific examples of preferred hydroxyalkyl groups include hydroxymethyl, hydroxyethyl, hydroxyisopropyl, and hydroxy n-propyl, with hydroxymethyl being particularly preferred.

一般式[1]〜[4]及び[1']〜[4']においてArで示される、置換基を有していてもよいアリール基中のアリール基としては、通常炭素数6〜14、好ましくは炭素数10〜14のアリール基が挙げられ、具体的には、例えばフェニル基、1-ナフチル基、2-ナフチル基、1-アズレニル基、2-アズレニル基、4-アズレニル基、5-アズレニル基、6-アズレニル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基等が挙げられ、中でも1-ナフチル基、2-ナフチル基、1-アズレニル基、2-アズレニル基、4-アズレニル基、5-アズレニル基、6-アズレニル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基が好ましい。置換基を有していてもよいアリール基の置換基としては、例えばハロゲン原子、ヒドロキシル基、アルキル基、アルコキシル基等が挙げられる。ここでいう置換基としてのハロゲン原子としては、具体的にはフッ素原子、塩素原子、臭素原子、ヨウ素原子等等が挙げられ、置換基としてのアルキル基としては、直鎖状、分枝状の何れでもよく、通常炭素数1〜6、好ましくは1〜3、より好ましくは炭素数1〜2のものが挙げられ、具体的には、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、sec-ペンチル基、tert-ペンチル基、n-ヘキシル基、イソヘキシル基、sec-ヘキシル基、tert-ヘキシル基等が挙げられる。置換基としてのアルコキシル基としては、通常炭素数1〜6、好ましくは炭素数1〜3、より好ましくは炭素数1〜2の直鎖状若しくは分枝状アルコキシ基が挙げられ、具体的には、例えばメトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、イソブトキシ基、tert-ブトキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基等が挙げられる。一般式[1]〜[4]及び[1']〜[4']においてArで示される、置換基を有していてもよいアリール基としては、置換基を有さないアリール基が好ましく、中でもフェニル基、ナフチル基、1-アントリル基等が好ましく、フェニル基が特に好ましい。   In the general formulas [1] to [4] and [1 ′] to [4 ′], the aryl group in the aryl group which may have a substituent represented by Ar is usually 6 to 14 carbon atoms, Preferably, an aryl group having 10 to 14 carbon atoms can be mentioned. Specifically, for example, a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-azurenyl group, a 2-azurenyl group, a 4-azurenyl group, a 5- Azulenyl group, 6-azurenyl group, 1-anthryl group, 2-anthryl group, 9-anthryl group, 1-phenanthryl group, 2-phenanthryl group, 3-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group, etc. Among them, 1-naphthyl group, 2-naphthyl group, 1-azurenyl group, 2-azurenyl group, 4-azurenyl group, 5-azurenyl group, 6-azurenyl group, 1-anthryl group, 2-anthryl group, 9- Anthryl group 1-phenanthryl group, 2-phenanthryl group, 3-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group are preferable. Examples of the substituent of the aryl group that may have a substituent include a halogen atom, a hydroxyl group, an alkyl group, and an alkoxyl group. Specific examples of the halogen atom as a substituent here include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, and the like. Examples of the alkyl group as a substituent include a straight chain and a branched chain. Any of them may be used, and usually one having 1 to 6 carbon atoms, preferably 1 to 3 carbon atoms, more preferably 1 to 2 carbon atoms, specifically, for example, methyl group, ethyl group, n-propyl group, isopropyl group N-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, sec-pentyl group, tert-pentyl group, n-hexyl group, isohexyl group, sec-hexyl group, Examples thereof include a tert-hexyl group. Examples of the alkoxyl group as a substituent include a linear or branched alkoxy group usually having 1 to 6 carbon atoms, preferably 1 to 3 carbon atoms, and more preferably 1 to 2 carbon atoms. Examples include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, a sec-butoxy group, an isobutoxy group, a tert-butoxy group, an n-pentyloxy group, and an n-hexyloxy group. . In the general formulas [1] to [4] and [1 ′] to [4 ′], the aryl group which may have a substituent represented by Ar is preferably an aryl group having no substituent. Of these, a phenyl group, a naphthyl group, a 1-anthryl group and the like are preferable, and a phenyl group is particularly preferable.

一般式[1]〜[4]及び[1']〜[4']におけるnは、NO2の個数を表すものであるが、その数はArで表されるアリール基の炭素数及び構造により異なるが、通常1〜5、好ましくは1〜3である。In the general formulas [1] to [4] and [1 ′] to [4 ′], n represents the number of NO 2 , and the number depends on the number of carbons and the structure of the aryl group represented by Ar. Although it is different, it is usually 1 to 5, preferably 1 to 3.

一般式[2]及び[2']におけるmは、NO2の個数を表すものであるが、その数はArで表されるアリール基の炭素数及び構造により異なるが、通常0〜4、好ましくは0〜3である。M in the general formulas [2] and [2 ′] represents the number of NO 2 , and the number varies depending on the carbon number and structure of the aryl group represented by Ar, but is usually 0 to 4, preferably Is 0-3.

一般式[2]及び[2']におけるRは、鎖中に酸素原子を有していてもよく且つ置換基を有していてもよいアルキル基を表し、アルキル基のアルキル基としては、直鎖状、分枝状、環状の何れでもよく、通常炭素数1〜30、好ましくは1〜25のものが挙げられ、具体的には、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、sec-ペンチル基、tert-ペンチル基、n-ヘキシル基、イソヘキシル基、sec-ヘキシル基、tert-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ドデシル基、n-ペンタデシル基、n-イコシル基、n-ペンタコシル基、シクロプロピル基、シクロヘキシル基、シクロペンチル基等が挙げられる。また、その置換基としては、例えば炭素数1〜6、好ましくは1〜3のアルコキシル基〔直鎖状、分枝状、環状の何れにてもよい。〕、より具体的には例えばメトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、n-ペンチルオキシ基、イソペンチルオキシ基、sec-ペンチルオキシ基、tert-ペンチルオキシ基、n-ヘキシルオキシ基、イソヘキシルオキシ基、sec-ヘキシルオキシ基、tert-ヘキシルオキシ基、シクロプロポキシ基、シクロヘキシルオキシ基、シクロペンチルオキシ基等、例えばハロゲン原子、より具体的にはフッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、好ましくはエチレン基、プロピレン基、トリメチレン基、ブチレン基等である。また、鎖中に酸素原子を有する場合、酸素原子としては1〜5個、好ましくは1〜3個であり、より具体的には−(C24O)n−C24−(式中、nは1〜5の整数を表す。)等が挙げられる。また、一般式[2]においてRで示されるアルコキシ基は、上記のアルキル基が酸素原子に結合した基が好ましい。即ち、−O−R(Rはアルキル基)の形を取るものが好ましい。この場合の好ましい態様等も上記アルキル基の場合に準じる。R 2 in the general formulas [2] and [2 ′] represents an alkyl group which may have an oxygen atom in the chain and may have a substituent. Any of linear, branched, and cyclic may be used, and those having 1 to 30 carbon atoms, preferably 1 to 25 carbon atoms, may be mentioned. Specifically, for example, methyl group, ethyl group, n-propyl group, isopropyl Group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, sec-pentyl group, tert-pentyl group, n-hexyl group, isohexyl group, sec-hexyl group Tert-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-dodecyl group, n-pentadecyl group, n-icosyl group, n-pentacosyl group, cyclopropyl group, Examples include a cyclohexyl group and a cyclopentyl group. The substituent may be, for example, an alkoxyl group having 1 to 6 carbon atoms, preferably 1 to 3 carbon atoms [straight, branched, or cyclic. More specifically, for example, methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, n-pentyloxy group, isopentyloxy Group, sec-pentyloxy group, tert-pentyloxy group, n-hexyloxy group, isohexyloxy group, sec-hexyloxy group, tert-hexyloxy group, cyclopropoxy group, cyclohexyloxy group, cyclopentyloxy group, etc. For example, a halogen atom, more specifically a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like can be mentioned, and an ethylene group, a propylene group, a trimethylene group, a butylene group and the like are preferable. Also, if having an oxygen atom in the chain, 1-5 as an oxygen atom, preferably one to three, more specifically - (C 2 H 4 O) n -C 2 H 4 - ( In formula, n represents the integer of 1-5.) Etc. are mentioned. In addition, the alkoxy group represented by R 2 in the general formula [2] is preferably a group in which the above alkyl group is bonded to an oxygen atom. That, -O-R 2 (R 2 is an alkyl group) preferably has the form of. The preferred embodiment in this case also conforms to the case of the alkyl group.

一般式[4]及び[4']におけるRで示される「置換基を有していてもよいアルキル基」中のアルキル基としては、直鎖状、分枝状、環状の何れでもよく、通常炭素数1〜10、好ましくは1〜6のものが挙げられ、具体的には、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、sec-ペンチル基、tert-ペンチル基、n-ヘキシル基、イソヘキシル基、sec-ヘキシル基、tert-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、シクロプロピル基、シクロヘキシル基、シクロペンチル基等が挙げられるが、中でもメチル基、エチル基等が好ましく、エチル基がより好ましい。また、その置換基としては、上記Rの説明における、鎖中に酸素原子を有していてもよく且つ置換基を有していてもよいアルキル基の置換基と同じものが挙げられる。The alkyl group in the “optionally substituted alkyl group” represented by R 3 in the general formulas [4] and [4 ′] may be linear, branched or cyclic, Examples thereof usually include those having 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms. Specifically, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group Tert-butyl group, n-pentyl group, isopentyl group, sec-pentyl group, tert-pentyl group, n-hexyl group, isohexyl group, sec-hexyl group, tert-hexyl group, n-heptyl group, n-octyl group Group, n-nonyl group, n-decyl group, cyclopropyl group, cyclohexyl group, cyclopentyl group and the like, among which a methyl group, an ethyl group and the like are preferable, and an ethyl group is more preferable. Further, examples of the substituent, in the description of the R 2, the same as those of a substituent in the alkyl group which may have a better and substituents have an oxygen atom in the chain.

本発明に係るベンジルオキシ基を有するニトロ芳香族化合物は、ベンジルオキシ基を通常1〜3個、好ましくは1個有するものである。具体的には例えば下記一般式[5]で示される化合物

Figure 0005560715
(式中、Ar、R及びnは上記と同じ。)等が挙げられる。上記一般式[5]におけるAr及びnの具体例及び好ましいものは、上記一般式[1]〜[4]及び[1']〜[4']におけるArと同じものが挙げられる。上記一般式[5]におけるRの具体例は、上記一般式[1]〜[4]及び[1']〜[4']におけるRと同じものが挙げられるが、その中でも、エチレン基、プロピレン基、結合手が好ましく、エチレン基が特に好ましい。
本発明に係るベンジルオキシカルバモイル基を有するニトロ芳香族化合物は、ベンジルオキシカルバモイル基を通常1〜3個、好ましくは1個有するものである。具体的には例えば下記一般式[6]で示される化合物
Figure 0005560715
(式中、Ar、R、及びnは上記と同じ。Rはアルキル基、アルケニル基を表す)等が挙げられる。上記一般式[6]におけるAr及びnの具体例及び好ましいものは、上記一般式[1]〜[4]及び[1']〜[4']におけるArと同じものが挙げられる。上記一般式[6]におけるRの具体例は、上記一般式[1]〜[4]及び[1']〜[4']におけるRと同じものが挙げられるが、その中でも、エチレン基、プロピレン基、結合手が好ましく、エチレン基が特に好ましい。
上記一般式[6]におけるRで示されるアルキル基は、直鎖状、分枝鎖状、環状の何れでもよく、通常炭素数1〜10、好ましくは1〜6のものが挙げられ、具体的には、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、sec-ペンチル基、tert-ペンチル基、n-ヘキシル基、イソヘキシル基、sec-ヘキシル基、tert-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、シクロプロピル基、シクロヘキシル基、シクロペンチル基等が挙げられる。上記一般式[6]におけるRで示されるアルケニル基としては、直鎖状又は分枝鎖状のいずれであってもよく、1以上の任意の個数の二重結合を含むものであればよく、通常炭素数2〜6、好ましくは2〜3のものが挙げられ、例えば、ビニル基、プロパ−1−エン−1−イル基、アリル基、イソプロペニル基、ブタ−1−エン−1−イル基、ブタ−2−エン−1−イル基、ブタ−3−エン−1−イル基、2−メチルプロパ−2−エン−1−イル基、1−メチルプロパ−2−エン−1−イル基、ペンタ−1−エン−1−イル基、ペンタ−2−エン−1−イル基、ペンタ−3−エン−1−イル基、ペンタ−4−エン−1−イル基、3−メチルブタ−2−エン−1−イル基、3−メチルブタ−3−エン−1−イル基、ヘキサ−1−エン−1−イル基、ヘキサ−2−エン−1−イル基、ヘキサ−3−エン−1−イル基、ヘキサ−4−エン−1−イル基、ヘキサ−5−エン−1−イル基、4−メチルペンタ−3−エン−1−イル基等が挙げられる。上記具体例の中でも、アリル基が好ましい。
本発明に係るアルキルカルボニル基を有するニトロ芳香族化合物は、上記アルキルカルボニル基を通常1〜3個、好ましくは1個有するものである。具体的には例えば下記一般式[7]で示される化合物
Figure 0005560715
(式中、Ar、R、R及びnは上記と同じ。)等が挙げられる。上記一般式[7]におけるAr、R及びnの具体例及び好ましいものは、上記一般式[1]〜[4]及び[1']〜[4']におけるAr、R及びnと同じものが挙げられる。上記一般式[7]におけるRの具体例は、上記一般式[4] 及び[4']におけるRと同じものが挙げられるが、中でも、置換基を有さないアルキル基が好ましく、メチル基、エチル基、プロピル基が好ましく、中でもメチル基が特に好ましい。
本発明に係るハロゲノ基を有するニトロ芳香族化合物は、芳香族化合物中の水素原子が上記ハロゲノ基に通常1〜3個、好ましくは1個置換されたものである。具体的には例えば下記一般式[8]で示される化合物
Figure 0005560715
(式中、Ar及びnは上記と同じ。Xはハロゲノ基を表し、pは1〜5を表す。)等が挙げられる。上記一般式[8]におけるAr、nの具体例及び好ましいものは、上記一般式[1]〜[4]及び[1']〜[4']におけるAr及びnと同じものが挙げられる。
一般式[8]における、pは、アリール基中の水素がXで示されるハロゲノ基に置換されている個数を表し、その数はArで表されるアリール基の炭素数及び構造により、また、そこに置換されているニトロ基の個数によって異なるが、通常1〜5、好ましくは1〜2、より好ましくは1である。The nitroaromatic compound having a benzyloxy group according to the present invention usually has 1 to 3, preferably 1, benzyloxy groups. Specifically, for example, a compound represented by the following general formula [5]
Figure 0005560715
(Wherein, Ar, R and n are the same as above). Specific examples and preferred examples of Ar and n in the general formula [5] include the same as those in the general formulas [1] to [4] and [1 ′] to [4 ′]. Specific examples of R in the general formula [5] include the same as those in R in the general formulas [1] to [4] and [1 ′] to [4 ′]. Among them, ethylene group, propylene Group and bond are preferable, and ethylene group is particularly preferable.
The nitroaromatic compound having a benzyloxycarbamoyl group according to the present invention usually has 1 to 3, preferably 1, benzyloxycarbamoyl group. Specifically, for example, a compound represented by the following general formula [6]
Figure 0005560715
(In the formula, Ar, R, and n are the same as above. R 4 represents an alkyl group or an alkenyl group). Specific examples and preferred examples of Ar and n in the general formula [6] include the same as those in the general formulas [1] to [4] and [1 ′] to [4 ′]. Specific examples of R in the general formula [6] include the same as R in the general formulas [1] to [4] and [1 ′] to [4 ′]. Among them, ethylene group, propylene Group and bond are preferable, and ethylene group is particularly preferable.
The alkyl group represented by R 4 in the general formula [6] may be linear, branched or cyclic, and usually includes those having 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms. Specifically, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, sec-pentyl group, tert-pentyl group, n-hexyl group, isohexyl group, sec-hexyl group, tert-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, cyclopropyl group, cyclohexyl group, A cyclopentyl group etc. are mentioned. The alkenyl group represented by R 4 in the general formula [6] may be linear or branched, and may be any one as long as it contains one or more arbitrary numbers of double bonds. Usually having 2 to 6 carbon atoms, preferably 2 to 3 carbon atoms, such as vinyl group, prop-1-en-1-yl group, allyl group, isopropenyl group, but-1-ene-1- Yl group, but-2-en-1-yl group, but-3-en-1-yl group, 2-methylprop-2-en-1-yl group, 1-methylprop-2-en-1-yl group , Penta-1-en-1-yl group, penta-2-en-1-yl group, penta-3-en-1-yl group, penta-4-en-1-yl group, 3-methylbuta-2 -En-1-yl group, 3-methylbut-3-en-1-yl group, hexa-1-en-1-y Group, hexa-2-en-1-yl group, hexa-3-en-1-yl group, hexa-4-en-1-yl group, hexa-5-en-1-yl group, 4-methylpenta And a -3-en-1-yl group. Among the above specific examples, an allyl group is preferable.
The nitroaromatic compound having an alkylcarbonyl group according to the present invention usually has 1 to 3, and preferably 1 alkylcarbonyl group. Specifically, for example, a compound represented by the following general formula [7]
Figure 0005560715
(Wherein, Ar, R, R 3 and n are the same as above). Specific examples and preferred examples of Ar, R and n in the general formula [7] are the same as Ar, R and n in the general formulas [1] to [4] and [1 ′] to [4 ′]. Can be mentioned. Specific examples of R 3 in the general formula [7] include the same as R 3 in the general formulas [4] and [4 ′]. Among them, an alkyl group having no substituent is preferable, and methyl Group, ethyl group and propyl group are preferred, and methyl group is particularly preferred.
In the nitroaromatic compound having a halogeno group according to the present invention, the hydrogen atom in the aromatic compound is usually substituted with 1 to 3, preferably 1, with the halogeno group. Specifically, for example, a compound represented by the following general formula [8]
Figure 0005560715
(In the formula, Ar and n are the same as above. X represents a halogeno group, and p represents 1 to 5). Specific examples and preferable examples of Ar and n in the general formula [8] include the same as those of Ar and n in the general formulas [1] to [4] and [1 ′] to [4 ′].
In the general formula [8], p represents the number of hydrogen atoms in the aryl group substituted by the halogeno group represented by X, and the number depends on the number and structure of the aryl group represented by Ar. Although it varies depending on the number of nitro groups substituted therein, it is usually 1 to 5, preferably 1 to 2, more preferably 1.

本発明に係るアルコキシル基を有するニトロ芳香族化合物は、芳香族化合物中の水素原子が上記アルコキシル基に通常1〜5個、好ましくは1個置換されたものである。具体的には例えば下記一般式[9]で示される化合物

Figure 0005560715
(式中、Ar及びnは上記と同じ。Rは炭素数1〜6のアルコキシル基を、qは1〜5を表す。)等が挙げられる。上記一般式[8]におけるAr、nの具体例及び好ましいものは、上記一般式[1]〜[4]及び[1'] 〜[4']におけるAr及びnと同じものが挙げられる。一般式[8]における、Rで示されるアルコキシル基としては、通常炭素数1〜6、好ましくは炭素数1〜3、より好ましくは炭素数1〜2の直鎖状若しくは分枝状アルコキシ基が挙げられ、具体的には、例えばメトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、イソブトキシ基、tert-ブトキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基等が挙げられ、中でも、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基等が好ましく、メトキシ基が特に好ましい。一般式[8]における、qは、アリール基中の水素がRで示されるアルコキシル基に置換されている個数を表し、その数はArで表されるアリール基の炭素数及び構造により、また、そこに置換されているニトロ基の個数によって異なるが、通常1〜5、好ましくは1〜2、より好ましくは1である。In the nitroaromatic compound having an alkoxyl group according to the present invention, the hydrogen atom in the aromatic compound is usually substituted with 1 to 5, preferably 1, with the alkoxyl group. Specifically, for example, a compound represented by the following general formula [9]
Figure 0005560715
(Wherein, Ar and n are the same as described above, R 5 represents an alkoxyl group having 1 to 6 carbon atoms, and q represents 1 to 5). Specific examples and preferred examples of Ar and n in the general formula [8] include the same as those of Ar and n in the general formulas [1] to [4] and [1 ′] to [4 ′]. In the general formula [8], the alkoxyl group represented by R 5 is usually a linear or branched alkoxy group having 1 to 6 carbon atoms, preferably 1 to 3 carbon atoms, more preferably 1 to 2 carbon atoms. Specifically, for example, methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, sec-butoxy group, isobutoxy group, tert-butoxy group, n-pentyloxy group, n -Hexyloxy group and the like can be mentioned, among which methoxy group, ethoxy group, n-propoxy group, isopropoxy group and the like are preferable, and methoxy group is particularly preferable. In general formula [8], q represents the number of hydrogen atoms in the aryl group substituted by the alkoxyl group represented by R 5 , and the number depends on the number and structure of the aryl group represented by Ar, and Depending on the number of nitro groups substituted there, it is usually 1 to 5, preferably 1 to 2, more preferably 1.

本発明の不飽和炭化水素を有するニトロ芳香族化合物中のニトロ基の選択的還元方法(以下、本発明の還元方法と略記する場合がある)は、白金担持炭素、オスミウム担持炭素、ルテニウム担持炭素、パラジウム担持炭素及びロジウム担持炭素から選ばれる金属触媒担持炭素(以下、本発明に係る金属触媒担持炭素と略記する場合がある)1種の存在下、還元性基を有するニトロ芳香族化合物と還元剤としてのヒドラジン又は水素と反応させることによりなされるものである。但し、還元剤が水素の場合、金属触媒担持炭素はオスミウム担持炭素、ルテニウム担持炭素或いは白金担持炭素が用いられるが、選択的還元の効率の点においては、オスミウム担持炭素又はルテニウム担持炭素を用いるのが好ましい。また、還元剤としてヒドラジンを用いる場合、白金担持炭素、オスミウム担持炭素、ルテニウム担持炭素、パラジウム担持炭素及びロジウム担持炭素何れも選択的還元反応に用いることができるが、白金担持炭素、オスミウム担持炭素、ルテニウム担持炭素及びパラジウム担持炭素が好ましく、オスミウム担持炭素が特に好ましい。   The selective reduction method of a nitro group in a nitroaromatic compound having an unsaturated hydrocarbon of the present invention (hereinafter sometimes abbreviated as the reduction method of the present invention) includes platinum-supported carbon, osmium-supported carbon, and ruthenium-supported carbon. A nitroaromatic compound having a reducing group and a reduction in the presence of one metal catalyst-supported carbon selected from palladium-supported carbon and rhodium-supported carbon (hereinafter sometimes abbreviated as metal-catalyst-supported carbon according to the present invention). It is made by reacting with hydrazine or hydrogen as an agent. However, when the reducing agent is hydrogen, osmium-supported carbon, ruthenium-supported carbon, or platinum-supported carbon is used as the metal catalyst-supported carbon. However, in terms of selective reduction efficiency, osmium-supported carbon or ruthenium-supported carbon is used. Is preferred. When hydrazine is used as the reducing agent, platinum-supported carbon, osmium-supported carbon, ruthenium-supported carbon, palladium-supported carbon, and rhodium-supported carbon can be used for the selective reduction reaction, but platinum-supported carbon, osmium-supported carbon, Ruthenium-supported carbon and palladium-supported carbon are preferable, and osmium-supported carbon is particularly preferable.

上記還元反応においては、本発明に係る金属触媒担持炭素の使用量は、担持されている金属の種類により異なるが、金属触媒担持炭素中の金属量が、還元性基を有するニトロ芳香族化合物1molに対して通常1.0×10-6〜1.0mol、好ましくは1.0×10-3〜1.0mol、より好ましくは1.0×10-3〜1.0×10-1mol、更に好ましくは1.0×10-3〜1.0×10-2molとなるような量であればよい。In the reduction reaction, the amount of the metal catalyst-supported carbon according to the present invention varies depending on the type of the metal supported, but the amount of metal in the metal catalyst-supported carbon is 1 mol of a nitroaromatic compound having a reducing group. Usually 1.0 × 10 -6 ~1.0mol, preferably 1.0 × 10 -3 ~1.0mol, more preferably 1.0 × 10 -3 ~1.0 × 10 -1 mol, more preferably 1.0 × 10 -3 with respect to 1.0 The amount may be such that × 10 −2 mol.

上記還元反応において、還元剤として水素を使用する場合、その使用量は、還元性基を有するニトロ芳香族化合物に対して通常1〜100倍モル、好ましくは1〜50倍モルである。また、ヒドラジンを使用する場合、還元性基を有するニトロ芳香族化合物の重量に対して1〜50倍モル、好ましくは1〜30倍モルとなるような量を用いる。ヒドラジンは、水和物や予め水分を含ませた状態のものも同様に使用可能であるが、その場合には、水を除いた重量が上記範囲内となるような量が適宜選択される。   In the above reduction reaction, when hydrogen is used as a reducing agent, the amount used is usually 1 to 100 times mol, preferably 1 to 50 times mol, of the nitroaromatic compound having a reducing group. When hydrazine is used, it is used in an amount of 1 to 50 times mol, preferably 1 to 30 times mol, based on the weight of the nitroaromatic compound having a reducing group. Hydrazine can be used in the same manner as a hydrate or in a state in which water has been previously added. In that case, an amount is selected appropriately so that the weight excluding water falls within the above range.

本発明の還元方法においては、還元性基を有するニトロ芳香族化合物及び/又は還元剤が液体ではない場合等、必要に応じて適宜反応溶媒が用いられる。反応溶媒としては、例えば水、例えばメタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、sec-ブタノール、tert-ブタノール等のアルコール類、例えばジクロロメタン、1,2-ジクロロエタン、クロロホルム、四塩化炭素等のハロゲン化炭化水素、例えばジエチルエーテル、ジメトキシエタン、ジエトキシエタン、テトラヒドロフラン等のエーテル類、例えばn−ヘキサン、n−ヘプタン、シクロヘキサン等の炭化水素類、例えばベンゼン、トルエン、キシレン等の芳香族炭化水素類、例えば酢酸エチル、酢酸ブチル等のエステル類の有機溶媒が挙げられ、メタノール、酢酸エチル、テトラヒドロフラン等が好ましく、ニトロ基の選択還元を効率的に行うことができる、酢酸エチルがより好ましい。特に、白金担持炭素を触媒として用いる場合には、酢酸エチルを用いるのが好ましい。これら反応溶媒は単独で用いても、二種以上適宜組み合わせて用いてもよく、使用する反応溶媒やその組合せにより反応の選択性を変えることができる。   In the reduction method of the present invention, a reaction solvent is appropriately used as necessary when the nitroaromatic compound having a reducing group and / or the reducing agent is not liquid. Examples of the reaction solvent include water such as alcohol such as methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, sec-butanol and tert-butanol, such as dichloromethane, 1,2-dichloroethane, chloroform, Halogenated hydrocarbons such as carbon chloride, ethers such as diethyl ether, dimethoxyethane, diethoxyethane, and tetrahydrofuran, hydrocarbons such as n-hexane, n-heptane, and cyclohexane, such as benzene, toluene, and xylene Aromatic hydrocarbons, for example, organic solvents such as esters such as ethyl acetate and butyl acetate are preferred, methanol, ethyl acetate, tetrahydrofuran and the like are preferable, and ethyl acetate can efficiently perform selective reduction of a nitro group. More preferred. In particular, when platinum-supported carbon is used as a catalyst, it is preferable to use ethyl acetate. These reaction solvents may be used alone or in appropriate combination of two or more, and the selectivity of the reaction can be changed depending on the reaction solvent used and the combination thereof.

上記還元反応における反応温度は、通常20〜80℃、好ましくは40〜80℃、より好ましくは50〜80℃である。反応温度は高温にする程ニトロ基を選択的に還元する率を向上することができるため、50〜80℃で行うのが特に好ましい。特に、白金担持炭素を触媒として用いる場合には、70〜80℃が好ましい。反応時間は通常1〜24時間、好ましくは1〜10時間、より好ましくは1〜5時間、更に好ましくは2〜5時間である。また、必要に応じて加圧してもよく、その場合は通常0.1〜1MPa、好ましくは0.1〜0.5MPaで反応させればよい。   The reaction temperature in the reduction reaction is usually 20 to 80 ° C, preferably 40 to 80 ° C, more preferably 50 to 80 ° C. Since the rate at which the nitro group is selectively reduced can be improved as the reaction temperature is increased, the reaction temperature is particularly preferably 50 to 80 ° C. In particular, when platinum-supported carbon is used as a catalyst, 70 to 80 ° C. is preferable. The reaction time is usually 1 to 24 hours, preferably 1 to 10 hours, more preferably 1 to 5 hours, still more preferably 2 to 5 hours. Moreover, you may pressurize as needed, In that case, what is necessary is just to make it react with 0.1-1 MPa normally, Preferably it is 0.1-0.5 MPa.

本発明の還元方法によれば、従来の還元剤のように被毒化剤を共存させずに選択的にニトロ基のみを還元することができる。よって、被毒化剤を取り除く等の操作をすることなく、目的の化合物、即ち、還元性基を有するアミノ芳香族化合物を得ることができる。尚、本発明の還元方法によれば、目的物である還元性基を有するアミノ芳香族化合物を、反応生成物中通常60%以上、好ましくは70%、より好ましくは80%以上、更に好ましくは90%以上含む反応生成物を得ることができる。   According to the reduction method of the present invention, only a nitro group can be selectively reduced without the presence of a poisoning agent as in the case of a conventional reducing agent. Therefore, the target compound, that is, an amino aromatic compound having a reducing group can be obtained without performing an operation such as removing the poisoning agent. According to the reduction method of the present invention, the target aminoaromatic compound having a reducing group is usually 60% or more, preferably 70%, more preferably 80% or more, more preferably in the reaction product. A reaction product containing 90% or more can be obtained.

本発明の還元方法は、例えば本発明に係る金属触媒担持炭素としてロジウム担持炭素を用いる場合には、具体的には以下の如くなされる。即ち、酢酸エチル等の溶媒中に、還元性基を有するニトロ芳香族化合物(以下、本発明に係る基質と略記する場合がある)、本発明に係る基質1molに対して通常1.0×10-6〜1.0mol、好ましくは1.0×10-3〜1.0×10-2molのロジウムを含む本発明に係るロジウム担持炭素、本発明に係る基質1molに対して1〜25molのヒドラジンを添加し、40〜80℃、好ましくは50〜80℃で2〜4時間反応させることにより、基質中のニトロ基のみを選択的に還元することができる。For example, when rhodium-supported carbon is used as the metal catalyst-supported carbon according to the present invention, the reduction method of the present invention is specifically performed as follows. That is, in a solvent such as ethyl acetate, a nitroaromatic compound having a reducing group (hereinafter sometimes abbreviated as a substrate according to the present invention), usually 1.0 × 10 −6 per 1 mol of the substrate according to the present invention. ~ 1.0 mol, preferably 1.0 × 10 −3 to 1.0 × 10 −2 mol of rhodium-containing carbon according to the present invention, 1 to 25 mol of hydrazine is added to 1 mol of the substrate of the present invention, and 40 to By reacting at 80 ° C., preferably 50 to 80 ° C. for 2 to 4 hours, only the nitro group in the substrate can be selectively reduced.

また、例えば本発明に係る金属触媒担持炭素としてオスミウム担持炭素を用い、還元剤として水素を用いる場合には、以下の如くなされる。   For example, when osmium-supporting carbon is used as the metal catalyst-supporting carbon according to the present invention and hydrogen is used as the reducing agent, the following is performed.

即ち、酢酸エチル等の溶媒中に、本発明に係る基質、本発明に係る基質1molに対して通常1.0×10-6〜1.0mol、好ましくは1.0×10-3〜1.0×10-2molのオスミウムを含む本発明に係るオスミウム担持炭素を添加し、水素雰囲気下、40〜80℃、好ましくは60〜80℃、より好ましくは70〜80℃で2〜4時間反応させることにより、ニトロ基のみを選択的に還元することができる。That is, in a solvent such as ethyl acetate, the substrate according to the present invention, usually 1.0 × 10 −6 to 1.0 mol, preferably 1.0 × 10 −3 to 1.0 × 10 −2 mol with respect to 1 mol of the substrate according to the present invention. By adding the osmium-supporting carbon according to the present invention containing osmium and reacting in a hydrogen atmosphere at 40 to 80 ° C., preferably 60 to 80 ° C., more preferably 70 to 80 ° C. for 2 to 4 hours, only the nitro group Can be selectively reduced.

なお、上記反応に於いては、基質により、目的物である還元性基を有する芳香族アミノ化合物以外の、原料や還元性基も還元された芳香族アミノ化合物が得られることもあるが、その場合には適宜自体公知のHPLC法等により目的の還元性基を有する芳香族アミノ化合物を抽出すればよい。   In the above reaction, an aromatic amino compound in which the raw material and the reducing group other than the aromatic amino compound having the reducing group, which is the target product, may be obtained depending on the substrate may be obtained. In such a case, the aromatic amino compound having the target reducing group may be appropriately extracted by an HPLC method known per se.

本発明の還元性基を有するアミノ芳香族化合物の製造方法は、白金担持炭素、オスミウム担持炭素、ルテニウム担持炭素、パラジウム担持炭素及びロジウム担持炭素から選ばれる金属触媒担持炭素1種の存在下、還元性基を有するニトロ芳香族化合物とヒドラジン又は水素とを反応させることによりなされる。但し、還元剤が水素の場合、金属触媒担持炭素はオスミウム担持炭素、ルテニウム担持炭素或いは白金担持炭素が用いられるが、選択的還元の効率の点においては、オスミウム担持炭素又はルテニウム担持炭素を用いるのが好ましい。本発明の還元性基を有するアミノ芳香族化合物の製造方法における、金属触媒担持炭素、水素又はヒドラジンの使用量、反応溶媒、反応時間及び反応温度等の具体的な態様は、本発明の還元方法の項で述べた通りである。   The method for producing an aminoaromatic compound having a reducing group according to the present invention comprises reducing metal catalyst-supported carbon selected from platinum-supported carbon, osmium-supported carbon, ruthenium-supported carbon, palladium-supported carbon, and rhodium-supported carbon. It is made by reacting a nitroaromatic compound having a functional group with hydrazine or hydrogen. However, when the reducing agent is hydrogen, osmium-supported carbon, ruthenium-supported carbon, or platinum-supported carbon is used as the metal catalyst-supported carbon. However, in terms of selective reduction efficiency, osmium-supported carbon or ruthenium-supported carbon is used. Is preferred. In the method for producing an aminoaromatic compound having a reducing group of the present invention, specific aspects such as the amount of metal catalyst-supported carbon, hydrogen or hydrazine used, the reaction solvent, the reaction time, and the reaction temperature are the reduction method of the present invention. As described in the section.

本発明の還元性基を有するアミノ芳香族化合物の製造方法により、得られる還元性基を有するアミノ芳香族化合物としては、例えば下記一般式[1]で示される化合物

Figure 0005560715
(式中、R、R、Ar及びnは上記と同じ)を還元した場合、
Figure 0005560715
(式中、R、R、Ar及びnは上記と同じ)が得られ、Examples of the amino aromatic compound having a reducing group obtained by the method for producing an amino aromatic compound having a reducing group of the present invention include compounds represented by the following general formula [1]:
Figure 0005560715
(Wherein R, R 1 , Ar and n are the same as above),
Figure 0005560715
(Wherein R, R 1 , Ar and n are the same as above),

例えば下記一般式[1’]で示される化合物

Figure 0005560715
(式中、R、R、Ar及びnは上記と同じ)を還元した場合、
Figure 0005560715
(式中、R、R、Ar及びnは上記と同じ)が得られ、For example, a compound represented by the following general formula [1 ']
Figure 0005560715
(Wherein R, R 1 , Ar and n are the same as above),
Figure 0005560715
(Wherein R, R 1 , Ar and n are the same as above),

例えば下記一般式[2]で示される化合物

Figure 0005560715
(式中、R、R、Ar、n及びmは上記と同じ)を還元した場合、
Figure 0005560715
(式中、R、R、Ar、n及びmは上記と同じ)が得られ、For example, a compound represented by the following general formula [2]
Figure 0005560715
(Wherein R, R 1 , Ar, n and m are the same as above),
Figure 0005560715
(Wherein R, R 1 , Ar, n and m are the same as above),

例えば下記一般式[2']で示される化合物

Figure 0005560715
(式中、R、R、Ar、m及びnは上記と同じ)を還元した場合には、
Figure 0005560715
(式中、R、R、Ar、m及びnは上記と同じ)が得られ、For example, a compound represented by the following general formula [2 ′]
Figure 0005560715
(Wherein R, R 2 , Ar, m and n are the same as above)
Figure 0005560715
(Wherein R, R 2 , Ar, m and n are the same as above),

例えば下記一般式[3]で示される化合物

Figure 0005560715
(式中、R、R、Ar及びnは上記と同じ)を還元した場合、
Figure 0005560715
(式中、R、R、Ar及びnは上記と同じ)が得られ、For example, a compound represented by the following general formula [3]
Figure 0005560715
(Wherein R, R 1 , Ar and n are the same as above),
Figure 0005560715
(Wherein R, R 1 , Ar and n are the same as above),

例えば一般式[3']で示される化合物

Figure 0005560715
(式中、R、R、Ar及びnは上記と同じ)を還元した場合には、
Figure 0005560715
(式中、R、R、Ar及びnは上記と同じ)が得られ、For example, a compound represented by the general formula [3 ′]
Figure 0005560715
(Wherein R, R 1 , Ar and n are the same as above)
Figure 0005560715
(Wherein R, R 1 , Ar and n are the same as above),

例えば下記一般式[4]で示される化合物、

Figure 0005560715
(式中、R、R、Ar、n及びRは上記と同じ)を還元した場合
Figure 0005560715
(式中、R、R、Ar、n及びRは上記と同じ)が得られ、For example, a compound represented by the following general formula [4],
Figure 0005560715
(Wherein R, R 1 , Ar, n and R 3 are the same as above)
Figure 0005560715
(Wherein R, R 1 , Ar, n and R 3 are the same as above),

例えば一般式[4']で示される化合物

Figure 0005560715
(式中、R、R、Ar及びnは上記と同じ。)を還元した場合、
Figure 0005560715
(式中、R、R、Ar及びnは上記と同じ。)が得られ、For example, a compound represented by the general formula [4 ′]
Figure 0005560715
(Wherein R, R 3 , Ar and n are the same as above),
Figure 0005560715
(Wherein R, R 3 , Ar and n are the same as above),

例えば下記一般式[5]で示される化合物

Figure 0005560715
(式中、Ar、R及びnは上記と同じ。)を還元した場合、
Figure 0005560715
(式中、Ar、R及びnは上記と同じ。)が得られ、For example, a compound represented by the following general formula [5]
Figure 0005560715
(Wherein, Ar, R and n are the same as above)
Figure 0005560715
(Wherein Ar, R and n are the same as above),

例えば下記一般式[6]で示される化合物

Figure 0005560715
(式中、Ar、R、R及びnは上記と同じ。)を還元した場合、
Figure 0005560715
(式中、Ar、R、R及びnは上記と同じ。)が得られ、For example, a compound represented by the following general formula [6]
Figure 0005560715
(Wherein, Ar, R, R 4 and n are the same as above)
Figure 0005560715
(Wherein Ar, R, R 4 and n are the same as above), and

例えば下記一般式[7]で示される化合物

Figure 0005560715
(式中、Ar、R、R及びnは上記と同じ。)を還元した場合、
Figure 0005560715
(式中、Ar、R、R及びnは上記と同じ。)が得られ、For example, a compound represented by the following general formula [7]
Figure 0005560715
(Wherein Ar, R, R 3 and n are the same as above),
Figure 0005560715
(Wherein Ar, R, R 3 and n are the same as above),

例えば下記一般式[8]で示される化合物

Figure 0005560715
(式中、Ar、n、pは上記と同じ)を還元した場合、
Figure 0005560715
(式中、Ar、n、pは上記と同じ)が得られ、For example, a compound represented by the following general formula [8]
Figure 0005560715
(Wherein Ar, n and p are the same as above),
Figure 0005560715
(Wherein Ar, n and p are the same as above),

例えば下記一般式[9]で示される化合物

Figure 0005560715
(式中、Ar、n、R、qは上記と同じ)を還元した場合、
Figure 0005560715
(式中、Ar、n、R、qは上記と同じ)が得られる。For example, a compound represented by the following general formula [9]
Figure 0005560715
(Wherein Ar, n, R 5 and q are the same as above),
Figure 0005560715
(Wherein Ar, n, R 5 and q are the same as above).

以下、実施例を挙げて本発明を更に詳細に説明するが、本発明はこれらにより何等限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further in detail, this invention is not limited at all by these.

実験例1. オスミウムを5重量%含有する担持炭素(5%オスミウム担持炭素)の調製方法
活性炭素(粉末状)3g(和光純薬工業(株)製)、メタノール30mL(和光純薬工業(株)製)及び四酸化オスミウム0.2g(和光純薬工業(株)製)をナス型フラスコに入れ、室温で3日間攪拌する。得られた化合物をメタノール100mLで洗浄した後、ろ過し、減圧下(266.6 Pa)60℃で8時間乾燥し、3.1gのオスミウム担持炭素を得た。洗浄液にオスミウムがほとんど存在しないことから、投入したオスミウムすべてが活性炭素に吸着されたと考えられる。
Experimental Example 1. Method for preparing supported carbon containing 5% by weight of osmium (5% osmium-supported carbon ) 3 g of activated carbon (powder) (manufactured by Wako Pure Chemical Industries, Ltd.), 30 mL of methanol (Wako Pure Chemical Industries, Ltd.) )) And 0.2 g of osmium tetroxide (manufactured by Wako Pure Chemical Industries, Ltd.) are placed in an eggplant type flask and stirred at room temperature for 3 days. The obtained compound was washed with 100 mL of methanol, filtered, and dried under reduced pressure (266.6 Pa) at 60 ° C. for 8 hours to obtain 3.1 g of osmium-supported carbon. Since almost no osmium is present in the cleaning solution, it is considered that all of the osmium charged was adsorbed on the activated carbon.

比較例1. オスミウム担持炭素を用いたニトロスチレンの蟻酸アンモニウム還元
4-ニトロスチレン500 mg(3.35mmol、東京化成社製)及び上記実験例1で得たオスミウムを5%オスミウム担持炭素(Os/C) 50mgをメタノール 5 mL及び蟻酸アンモニウム2.1g(33.5mmol、和光純薬工業(株)製)を添加し、室温で4時間攪拌しながら反応させた。得られた溶液をろ過後、ろ液を減圧下(2666Pa)で20分濃縮することにより還元反応を行った。得られた反応物の1H-NMRをJNM-AL400[日本電子(株)製(JEOL社製)]で測定した結果、得られた反応物は、全て4-ニトロスチレンであった。
Comparative Example 1 Ammonium formate reduction of nitrostyrene using osmium-supported carbon
4-Nitrostyrene 500 mg (3.35 mmol, manufactured by Tokyo Chemical Industry Co., Ltd.) and osmium obtained in Experimental Example 1 50% of 5% osmium-supported carbon (Os / C) 50 ml of methanol and 2.1 g of ammonium formate (33.5 mmol, Japanese Koganei Pharmaceutical Co., Ltd.) was added and reacted at room temperature with stirring for 4 hours. After the obtained solution was filtered, the filtrate was concentrated under reduced pressure (2666 Pa) for 20 minutes to carry out a reduction reaction. As a result of measuring 1H-NMR of the obtained reaction product with JNM-AL400 [manufactured by JEOL Ltd. (manufactured by JEOL)], all the obtained reaction products were 4-nitrostyrene.

Figure 0005560715
Figure 0005560715

この結果から明らかなように、オスミウム担持炭素を触媒として用い、蟻酸アンモニウムを還元剤としてニトロスチレンの還元反応を行っても、メチレニル基及びニトロ基の何れも還元されないことが判った。即ち、還元剤として蟻酸アンモニウムを用いると選択的な還元どころか還元そのものができないことが判った。   As is clear from this result, it was found that neither the methylenyl group nor the nitro group was reduced even when the reduction reaction of nitrostyrene was performed using osmium-supported carbon as a catalyst and ammonium formate as a reducing agent. In other words, it was found that when ammonium formate was used as the reducing agent, the reduction itself could not be performed.

実施例1. オスミウム担持炭素を用いたニトロスチレンのヒドラジン還元
4-ニトロスチレン500 mg(3.35mmol、東京化成社製)及び上記実験例1で得た5%オスミウム担持炭素(Os/C) 50mgをメタノール 5 mLに添加した後、更にヒドラジン1水和物(和光純薬工業(株)製)2 mLを添加し、60℃で5時間攪拌しながら、反応させた。得られた溶液をろ過後、ろ液を減圧下(2666Pa)で20分メタノールを留去しながら、濃縮することにより反応物を得た。得られた反応物の1H-NMRをJNM-AL400(JEOL社製)で測定した結果、全て4-アミノスチレンであった。その結果を表2に示す。
Example 1. Hydrazine reduction of nitrostyrene using osmium-supported carbon.
After adding 500 mg of 4-nitrostyrene (3.35 mmol, manufactured by Tokyo Chemical Industry Co., Ltd.) and 50 mg of 5% osmium-supported carbon (Os / C) obtained in Experimental Example 1 to 5 mL of methanol, hydrazine monohydrate ( 2 mL of Wako Pure Chemical Industries, Ltd.) was added and reacted while stirring at 60 ° C. for 5 hours. After the obtained solution was filtered, the filtrate was concentrated while distilling off methanol under reduced pressure (2666 Pa) for 20 minutes to obtain a reaction product. As a result of measuring 1H-NMR of the obtained reaction product with JNM-AL400 (manufactured by JEOL), all were 4-aminostyrene. The results are shown in Table 2.

実施例2. 白金担持炭素を用いたニトロスチレンの選択的ヒドラジン還元
4-ニトロスチレン500 mg(3.35mmol、東京化成社製)及び5%白金担持炭素(Pt/C、和光純薬工業(株)製)50mgをメタノール 5 mL及びヒドラジン1水和物(和光純薬工業(株)製)2 mLを添加し、60℃で8時間攪拌して、反応させた。得られた溶液を酢酸エチル50mLで洗浄、ろ過後、ろ液に飽和食塩水20mLを加えて洗浄し、その有機層を抽出し濃縮した。得られた反応物の1H-NMRをJNM-AL400(JEOL社製)で測定した結果、全て4-アミノスチレンであった。その結果を表2に併せて示す。
Example 2 Selective hydrazine reduction of nitrostyrene using platinum-supported carbon.
4-Nitrostyrene 500 mg (3.35 mmol, manufactured by Tokyo Chemical Industry Co., Ltd.) and 5% platinum-supported carbon (Pt / C, manufactured by Wako Pure Chemical Industries, Ltd.) 50 mg, methanol 5 mL and hydrazine monohydrate (Wako Pure Chemical Industries, Ltd.) 2 mL of Kogyo Co., Ltd.) was added, and the mixture was stirred at 60 ° C. for 8 hours to be reacted. The obtained solution was washed with 50 mL of ethyl acetate and filtered, washed with 20 mL of saturated brine added to the filtrate, and the organic layer was extracted and concentrated. As a result of measuring 1H-NMR of the obtained reaction product with JNM-AL400 (manufactured by JEOL), all were 4-aminostyrene. The results are also shown in Table 2.

実施例3. ルテニウム担持炭素を用いたニトロスチレンの選択的ヒドラジン還元
4-ニトロスチレン500 mg(3.35mmol、東京化成社製)及び5%ルテニウム担持炭素50mg(Ru/C、和光純薬工業(株)製)をメタノール 5 mL及びヒドラジン1水和物(和光純薬工業(株)製)2 mLを添加し、60℃で3時間攪拌して、反応させた。得られた溶液を酢酸エチル50mLで洗浄、ろ過後、ろ液に飽和食塩水20mLを加えて洗浄し、その有機層を抽出し濃縮した。得られた反応物の1H-NMRをJNM-AL400(JEOL社製)で測定した結果、全て4-アミノスチレンであった。その結果を併せて表2に示す。
Example 3 FIG. Selective hydrazine reduction of nitrostyrene using ruthenium-supported carbon.
4-Nitrostyrene 500 mg (3.35 mmol, manufactured by Tokyo Chemical Industry Co., Ltd.) and 5% ruthenium-supported carbon 50 mg (Ru / C, manufactured by Wako Pure Chemical Industries, Ltd.) in methanol 5 mL and hydrazine monohydrate (Wako Pure Chemical Industries, Ltd.) 2 mL of Kogyo Co., Ltd.) was added, and the mixture was stirred at 60 ° C. for 3 hours to be reacted. The obtained solution was washed with 50 mL of ethyl acetate and filtered, washed with 20 mL of saturated brine added to the filtrate, and the organic layer was extracted and concentrated. As a result of measuring 1H-NMR of the obtained reaction product with JNM-AL400 (manufactured by JEOL), all were 4-aminostyrene. The results are also shown in Table 2.

実施例4. ロジウム担持炭素を用いたニトロスチレンの選択的ヒドラジン還元
4-ニトロスチレン500 mg(3.35mmol、東京化成社製)及び5%ロジウム担持炭素50mg(Rh/C、和光純薬工業(株)製)をメタノール 5 mL及びヒドラジン1水和物(和光純薬工業(株)製)2 mLを添加し、60℃で4時間攪拌して、反応させた。得られた溶液を酢酸エチル50mLで洗浄、ろ過後、ろ液に飽和食塩水20mLを加えて洗浄し、その有機層を抽出し濃縮した。得られた反応物の1H-NMRをJNM-AL400(JEOL社製)で測定した結果、4-アミノスチレン:4-エチルアニリン=71:29であった。その結果を併せて表2に示す。

Figure 0005560715
Example 4 Selective hydrazine reduction of nitrostyrene using rhodium-supported carbon.
4-Nitrostyrene 500 mg (3.35 mmol, manufactured by Tokyo Chemical Industry Co., Ltd.) and 5% rhodium-supported carbon 50 mg (Rh / C, manufactured by Wako Pure Chemical Industries, Ltd.), methanol 5 mL and hydrazine monohydrate (Wako Pure Chemical Industries, Ltd.) 2 mL of Kogyo Co., Ltd.) was added, and the mixture was stirred at 60 ° C. for 4 hours to be reacted. The obtained solution was washed with 50 mL of ethyl acetate and filtered, washed with 20 mL of saturated brine added to the filtrate, and the organic layer was extracted and concentrated. As a result of measuring 1H-NMR of the obtained reaction product with JNM-AL400 (manufactured by JEOL), it was found to be 4-aminostyrene: 4-ethylaniline = 71: 29. The results are also shown in Table 2.
Figure 0005560715

Figure 0005560715
Figure 0005560715

以上の結果から、アミン系のヒドラジンを還元剤とした還元では、オスミウム担持炭素、白金担持炭素、ルテニウム担持炭素として用いるとニトロ基のみを選択的に還元できることが判った。ロジウム担持炭素を触媒として用いた場合、29%についてはエチレニル基、ニトロ基の両方が還元されたが、残りの71%については、選択に還元できることが判った。   From the above results, it was found that in the reduction using amine-based hydrazine as a reducing agent, it is possible to selectively reduce only the nitro group when used as osmium-supported carbon, platinum-supported carbon, and ruthenium-supported carbon. When rhodium-supported carbon was used as a catalyst, both ethylenyl and nitro groups were reduced for 29%, but the remaining 71% was found to be selectively reduced.

実施例5 オスミウム担持炭素を用いた4-ニトロスチルベンの選択的ヒドラジン還元
4-ニトロスチルベン500 mg(2.22mmol、東京化成社製)及び上記実験例1で得た5%オスミウム担持炭素(Os/C)50mgをメタノール 5 mL及びヒドラジン1水和物(和光純薬工業(株)製)2 mLを添加し、60℃で4時間攪拌して、反応させた。得られた溶液を酢酸エチル50mLで洗浄、ろ過後、ろ液に飽和食塩水20mLを加えて洗浄し、その有機層を抽出し濃縮した。得られた反応物の1H-NMRをJNM-AL400(JEOL社製)で測定した結果、全て4-アミノスチルベンであった。その結果を表3に示す。
Example 5 Selective hydrazine reduction of 4-nitrostilbene using osmium-supported carbon
4-Nitrostilbene 500 mg (2.22 mmol, manufactured by Tokyo Chemical Industry Co., Ltd.) and 5 mg osmium-carrying carbon (Os / C) 50 mg obtained in Experimental Example 1 above, 5 mL of methanol and hydrazine monohydrate (Wako Pure Chemical Industries, Ltd.) 2 mL) was added and stirred at 60 ° C. for 4 hours for reaction. The obtained solution was washed with 50 mL of ethyl acetate and filtered, washed with 20 mL of saturated brine added to the filtrate, and the organic layer was extracted and concentrated. As a result of measuring 1H-NMR of the obtained reaction product with JNM-AL400 (manufactured by JEOL), all were 4-aminostilbene. The results are shown in Table 3.

実施例6. パラジウム担持炭素を用いた4-ニトロスチルベンの選択的ヒドラジン還元
4-ニトロスチルベン500 mg(2.22mmol、東京化成社製)及び5%パラジウム担持炭素(Pd/C、和光純薬工業(株)製)50mgをメタノール 5 mL及びヒドラジン1水和物(和光純薬工業(株)製)2 mLを添加し、60℃で3時間攪拌して、反応させた。得られた溶液を酢酸エチル50mLで洗浄、ろ過後、ろ液に飽和食塩水20mLを加えて洗浄し、その有機層を抽出し濃縮した。得られた反応物の1H-NMRをJNM-AL400(JEOL社製)で測定した結果、全て4-アミノスチルベンであった。その結果を表3に併せて示す。
Example 6 Selective hydrazine reduction of 4-nitrostilbene using palladium on carbon.
4-Nitrostilbene 500 mg (2.22 mmol, manufactured by Tokyo Chemical Industry Co., Ltd.) and 5% palladium on carbon (Pd / C, manufactured by Wako Pure Chemical Industries, Ltd.) 50 mg, methanol 5 mL and hydrazine monohydrate (Wako Pure Chemical Industries, Ltd.) 2 mL of Kogyo Co., Ltd.) was added, and the mixture was stirred at 60 ° C. for 3 hours to be reacted. The obtained solution was washed with 50 mL of ethyl acetate and filtered, washed with 20 mL of saturated brine added to the filtrate, and the organic layer was extracted and concentrated. As a result of measuring 1H-NMR of the obtained reaction product with JNM-AL400 (manufactured by JEOL), all were 4-aminostilbene. The results are also shown in Table 3.

実施例7. 白金担持炭素を用いた4-ニトロスチルベンの選択的ヒドラジン還元
4-ニトロスチルベン500 mg(2.22mmol、東京化成社製)及び5%白金担持炭素(Pt/C、和光純薬工業(株)製)50mgをメタノール 5 mL及びヒドラジン1水和物(和光純薬工業(株)製)2 mLを添加し、60℃で6時間攪拌して、反応させた。得られた溶液を酢酸エチル50mLで洗浄、ろ過後、ろ液に飽和食塩水20mLを加え洗浄し、その有機層を抽出し濃縮した。得られた反応物の1H-NMRをJNM-AL400(JEOL社製)で測定した結果、全て4-アミノスチルベンであった。その結果を表3に併せて示す。
Example 7 Selective hydrazine reduction of 4-nitrostilbene using platinum-supported carbon
4-Nitrostilbene 500 mg (2.22 mmol, manufactured by Tokyo Chemical Industry Co., Ltd.) and 5% platinum-supported carbon (Pt / C, manufactured by Wako Pure Chemical Industries, Ltd.) 50 mg, methanol 5 mL and hydrazine monohydrate (Wako Pure Chemical Industries, Ltd.) 2 mL of Kogyo Co., Ltd.) was added, and the mixture was stirred at 60 ° C. for 6 hours for reaction. The obtained solution was washed with 50 mL of ethyl acetate and filtered, and then the filtrate was washed with 20 mL of saturated brine, and the organic layer was extracted and concentrated. As a result of measuring 1H-NMR of the obtained reaction product with JNM-AL400 (manufactured by JEOL), all were 4-aminostilbene. The results are also shown in Table 3.

実施例8. ルテニウム担持炭素を用いた4-ニトロスチルベンの選択的ヒドラジン還元
4-ニトロスチルベン500 mg(2.22mmol、東京化成社製)及び5%ルテニウム担持炭素(Ru/C、和光純薬工業(株)製)50mgをメタノール 5 mL及びヒドラジン1水和物(和光純薬工業(株)製)2 mLを添加し、60℃で3時間攪拌して、反応させた。得られた溶液を酢酸エチル50mLで洗浄、ろ過後、ろ液に飽和食塩水20mLを加えて洗浄し、その有機層を抽出し濃縮した。得られた反応物の1H-NMRをJNM-AL400(JEOL社製)で測定した結果、全て4-アミノスチルベンであった。その結果を表3に併せて示す。
Example 8 FIG. Selective hydrazine reduction of 4-nitrostilbene using ruthenium-supported carbon
4-nitrostilbene 500 mg (2.22 mmol, manufactured by Tokyo Chemical Industry Co., Ltd.) and 5% ruthenium-supported carbon (Ru / C, manufactured by Wako Pure Chemical Industries, Ltd.) 50 mg, methanol 5 mL and hydrazine monohydrate (Wako Pure Chemical Industries, Ltd.) 2 mL of Kogyo Co., Ltd.) was added, and the mixture was stirred at 60 ° C. for 3 hours to be reacted. The obtained solution was washed with 50 mL of ethyl acetate and filtered, washed with 20 mL of saturated brine added to the filtrate, and the organic layer was extracted and concentrated. As a result of measuring 1H-NMR of the obtained reaction product with JNM-AL400 (manufactured by JEOL), all were 4-aminostilbene. The results are also shown in Table 3.

実施例9. ロジウム担持炭素を用いた4-ニトロスチルベンの選択的ヒドラジン還元
4-ニトロスチルベン500 mg(2.22mmol、東京化成社製)及び5%ロジウム担持炭素(Rh/C、和光純薬工業(株)製)50mgをメタノール 5 mL及びヒドラジン1水和物(和光純薬工業(株)製)2 mLを添加し、60℃で3時間攪拌して、反応させた。得られた溶液を酢酸エチル50mLで洗浄、ろ過後、ろ液に飽和食塩水20mLを加えて洗浄し、その有機層を抽出し濃縮した。得られた反応物の1H-NMRをJNM-AL400(JEOL社製)で測定した結果、全て4-アミノスチルベンであった。その結果を表3に併せて示す。

Figure 0005560715
Example 9 Selective hydrazine reduction of 4-nitrostilbene using rhodium-supported carbon
4-nitrostilbene 500 mg (2.22 mmol, manufactured by Tokyo Chemical Industry Co., Ltd.) and 5% rhodium-supported carbon (Rh / C, manufactured by Wako Pure Chemical Industries, Ltd.) 50 mg, methanol 5 mL and hydrazine monohydrate (Wako Pure Chemical Industries, Ltd.) 2 mL of Kogyo Co., Ltd.) was added, and the mixture was stirred at 60 ° C. for 3 hours to be reacted. The obtained solution was washed with 50 mL of ethyl acetate and filtered, washed with 20 mL of saturated brine added to the filtrate, and the organic layer was extracted and concentrated. As a result of measuring 1H-NMR of the obtained reaction product with JNM-AL400 (manufactured by JEOL), all were 4-aminostilbene. The results are also shown in Table 3.
Figure 0005560715

Figure 0005560715
Figure 0005560715

以上の結果から、オスミウム担持炭素、パラジウム担持炭素、白金担持炭素、ルテニウム担持炭素、ロジウム担持炭素を触媒として用い、ヒドラジンを還元剤として、内部オレフィンを有するニトロベンゼン化合物を還元すると、何れの触媒でもニトロ基のみを選択的に還元できることが判った。 From the above results, when osmium-supported carbon, palladium-supported carbon, platinum-supported carbon, ruthenium-supported carbon, and rhodium-supported carbon were used as catalysts, and nitrobenzene compounds having internal olefins were reduced using hydrazine as a reducing agent, any catalyst was treated with nitrobenzene. It was found that only the group can be selectively reduced.

実施例10. オスミウム担持炭素を用いたニトロスチレンの水素還元
4-ニトロスチレン500 mg(3.35mmol、東京化成社製)及び上記実験例1で得た5%オスミウム担持炭素(Os/C) 50mgをメタノール 5 mLに添加し、水素雰囲気下、オートクレーブ中1MPa、60℃で4時間攪拌しながら、反応させた。得られた溶液をろ過後、ろ液を減圧下(2666Pa)で20分濃縮することにより4-ニトロスチレンと4-アミノスチレンの混合物を得た。得られた反応物中の4-ニトロスチレンと4-アミノスチレンの量を、JNM-AL400(JEOL社製)で測定した1H-NMRの積分比で比較した。その結果を表4に示す。
Example 10 Hydrogen reduction of nitrostyrene using osmium-supported carbon.
4-Nitrostyrene 500 mg (3.35 mmol, manufactured by Tokyo Chemical Industry Co., Ltd.) and 50 mg of 5% osmium-supported carbon (Os / C) obtained in Experimental Example 1 were added to 5 mL of methanol, and 1 MPa in an autoclave under a hydrogen atmosphere. The reaction was carried out with stirring at 60 ° C. for 4 hours. The obtained solution was filtered, and the filtrate was concentrated under reduced pressure (2666 Pa) for 20 minutes to obtain a mixture of 4-nitrostyrene and 4-aminostyrene. The amounts of 4-nitrostyrene and 4-aminostyrene in the obtained reaction product were compared by the integration ratio of 1H-NMR measured with JNM-AL400 (manufactured by JEOL). The results are shown in Table 4.

実施例11.ルテニウム担持炭素を用いたニトロスチレンの選択的水素還元
4-ニトロスチレン500 mg(3.35mmol、東京化成社製)及び5%ルテニウム担持炭素(Ru/C、和光純薬工業(株)製)50mgをメタノール 5 mLに添加し、水素雰囲気下、オートクレーブ中1MPa、60℃で4時間攪拌して、反応させた。得られた溶液をろ過後、ろ液を減圧下(2666Pa)で20分濃縮することにより4-ニトロスチレンと4-アミノスチレンの混合物を得た。得られた反応物中の4-ニトロスチレンと4-アミノスチレンの量を、JNM-AL400(JEOL社製)で測定した1H-NMRの積分比で比較した。その結果を表4に併せて示す。
Example 11 Selective hydrogen reduction of nitrostyrene using ruthenium supported carbon.
4-nitrostyrene 500 mg (3.35 mmol, manufactured by Tokyo Chemical Industry Co., Ltd.) and 5% ruthenium-supported carbon (Ru / C, manufactured by Wako Pure Chemical Industries, Ltd.) 50 mg were added to 5 mL of methanol, and in an autoclave under a hydrogen atmosphere. The reaction was carried out by stirring at 1 MPa at 60 ° C. for 4 hours. The obtained solution was filtered, and the filtrate was concentrated under reduced pressure (2666 Pa) for 20 minutes to obtain a mixture of 4-nitrostyrene and 4-aminostyrene. The amounts of 4-nitrostyrene and 4-aminostyrene in the obtained reaction product were compared by the integration ratio of 1H-NMR measured with JNM-AL400 (manufactured by JEOL). The results are also shown in Table 4.

比較例2.パラジウム担持炭素を用いたニトロスチレンの選択的水素還元
4-ニトロスチレン500 mg(3.35mmol、東京化成社製)及び5%パラジウム担持炭素(Pd/C、和光純薬工業(株)製)50mgをメタノール 5 mLに添加し、水素雰囲気下、60℃で4時間攪拌して、反応させた。得られた溶液をろ過後、ろ液を減圧下(2666Pa)で20分濃縮した。得られた反応物の1H-NMRをJNM-AL400(JEOL社製)で測定した結果、全て4-エチルアニリンであった。その結果を表4に併せて示す。
Comparative Example 2 Selective hydrogen reduction of nitrostyrene using palladium on carbon.
4-Nitrostyrene 500 mg (3.35 mmol, manufactured by Tokyo Chemical Industry Co., Ltd.) and 5% palladium-supported carbon (Pd / C, manufactured by Wako Pure Chemical Industries, Ltd.) 50 mg were added to 5 mL of methanol. For 4 hours with stirring. The obtained solution was filtered, and the filtrate was concentrated under reduced pressure (2666 Pa) for 20 minutes. As a result of measuring 1H-NMR of the obtained reaction product with JNM-AL400 (manufactured by JEOL), all were 4-ethylaniline. The results are also shown in Table 4.

比較例3.ロジウム担持炭素を用いたニトロスチレンの選択的水素還元
4-ニトロスチレン500 mg(3.35mmol、東京化成社製)及び5%ロジウム担持炭素(Rh/C、和光純薬工業(株)製)50mgをメタノール 5 mLに添加し、水素雰囲気下、オートクレーブ中1MPa、60℃で4時間攪拌して、反応させた。得られた溶液をろ過後、ろ液を減圧下(2666Pa)で20分濃縮した。得られた反応物の1H-NMRをJNM-AL400(JEOL社製)で測定した結果、全て4-エチルアニリンであった。その結果を表4に併せて示す。

Figure 0005560715
Comparative Example 3 Selective hydrogen reduction of nitrostyrene using rhodium-supported carbon.
Add 500 mg of 4-nitrostyrene (3.35 mmol, manufactured by Tokyo Chemical Industry Co., Ltd.) and 50 mg of 5% rhodium-supported carbon (Rh / C, manufactured by Wako Pure Chemical Industries, Ltd.) to 5 mL of methanol, and in an autoclave under a hydrogen atmosphere The reaction was carried out by stirring at 1 MPa at 60 ° C. for 4 hours. The obtained solution was filtered, and the filtrate was concentrated under reduced pressure (2666 Pa) for 20 minutes. As a result of measuring 1H-NMR of the obtained reaction product with JNM-AL400 (manufactured by JEOL), all were 4-ethylaniline. The results are also shown in Table 4.
Figure 0005560715

Figure 0005560715
Figure 0005560715

以上の結果から、オスミウム担持炭素又はルテニウム担持炭素を触媒として用い、水素を還元剤としてニトロスチレンを還元すると、反応は遅かったものの、ニトロ基のみを選択的に還元できることが判った。   From the above results, it was found that when osmium-supported carbon or ruthenium-supported carbon was used as a catalyst and nitrostyrene was reduced using hydrogen as a reducing agent, although the reaction was slow, only the nitro group could be selectively reduced.

また、パラジウム担持炭素、ロジウム担持炭素は、水素還元ではニトロスチレンのニトロ基のみを選択的に還元することはできなかった。即ち、これら触媒は、還元剤の種類により異なる触媒活性を示すことが判った。   Further, palladium-supported carbon and rhodium-supported carbon could not selectively reduce only the nitro group of nitrostyrene by hydrogen reduction. That is, it was found that these catalysts show different catalytic activities depending on the type of reducing agent.

実験例2 3,5-ジニトロ安息香酸2-(2-メチルアクリロイルオキシ)エチルエステルの合成方法

Figure 0005560715
Experimental Example 2 Method for synthesizing 3,5-dinitrobenzoic acid 2- (2-methylacryloyloxy) ethyl ester
Figure 0005560715

2-ヒドロキシルエチルメタクリレート4.65g(0.04 mol、アルドリッチ社製)にピリジン2.82g(0.04 mol、和光純薬社製)を4℃以下で加え、さらに同温度にて3,5-ジニトロベンゾイルクロライド7.85g(0.03 mol、アルドリッチ社製)を40分かけて滴下した。室温下で3時間攪拌した後、水30mLを加え、有機層を減圧下( 2666Pa)で20分濃縮させた。得られた反応物をH-NMRで測定した結果、得られた反応物は、3,5-ジニトロ安息香酸2-(2-メチルアクリロイルオキシ)エチルエステルであった(収率:99.5%)。Add 2.82 g of pyridine (0.04 mol, manufactured by Wako Pure Chemical Industries, Ltd.) to 4-65 g of 2-hydroxylethyl methacrylate (0.04 mol, manufactured by Aldrich) at 4 ° C or lower, and then add 7.85 g of 3,5-dinitrobenzoyl chloride at the same temperature. (0.03 mol, manufactured by Aldrich) was added dropwise over 40 minutes. After stirring at room temperature for 3 hours, 30 mL of water was added, and the organic layer was concentrated under reduced pressure (2666 Pa) for 20 minutes. As a result of measuring the obtained reaction product by 1 H-NMR, the obtained reaction product was 3,5-dinitrobenzoic acid 2- (2-methylacryloyloxy) ethyl ester (yield: 99.5%). .

実施例12 オスミウム担持炭素を用いたモノマーの選択的水素還元
上記実験例2で得られた、3,5-ジニトロ安息香酸2-(2-メチルアクリロイルオキシ)エチルエステル500 mg(1.54mmol)及び上記実験例1で得た5%オスミウム担持炭素 (Os/C)50mgをテトラヒドロフラン 5 mL、水素雰囲気下、80℃で24時間攪拌して、反応させた。得られた溶液をろ過後、ろ液を減圧下(2666Pa)で20分濃縮することにより3,5-ジアミノ安息香酸2-(2-メチルアクリロイルオキシ)エチルエステルと3,5-ジアミノ安息香酸 2-イソブチリロキシエチルエステルの混合物を得た。得られた反応物の1H-NMRをJNM-AL400(JEOL社製)で測定し、3,5-ジアミノ安息香酸2-(2-メチルアクリロイルオキシ)エチルエステル(下記反応式中の6)と3,5-ジアミノ安息香酸 2-イソブチリロキシエチルエステル(下記反応式中の7)の比率を求めた。その結果を表5に示す。

Figure 0005560715
Example 12 Selective Hydrogen Reduction of Monomer Using Osmium-Supported Carbon 500 mg (1.54 mmol) of 3,5-dinitrobenzoic acid 2- (2-methylacryloyloxy) ethyl ester obtained in Experimental Example 2 and the above 50 mg of 5% osmium-supported carbon (Os / C) obtained in Experimental Example 1 was reacted by stirring at 80 ° C. for 24 hours in 5 mL of tetrahydrofuran under a hydrogen atmosphere. The resulting solution was filtered, and the filtrate was concentrated under reduced pressure (2666 Pa) for 20 minutes to give 3,5-diaminobenzoic acid 2- (2-methylacryloyloxy) ethyl ester and 3,5-diaminobenzoic acid 2 -A mixture of isobutyryloxyethyl esters was obtained. 1H-NMR of the obtained reaction product was measured with JNM-AL400 (manufactured by JEOL), and 3,5-diaminobenzoic acid 2- (2-methylacryloyloxy) ethyl ester (6 in the following reaction formula) and 3 , 5-Diaminobenzoic acid 2-isobutyryloxyethyl ester (7 in the following reaction formula) was determined. The results are shown in Table 5.
Figure 0005560715

Figure 0005560715
Figure 0005560715

上記結果から、オスミウム担持炭素を触媒としてモノマーの還元を行うと、高温・高圧で長時間の反応を要するものの、反応物の67%は、ニトロ基のみを選択的に還元できることが判った。 From the above results, it was found that when the monomer was reduced using osmium-supported carbon as a catalyst, 67% of the reaction product could selectively reduce only the nitro group, although a long-time reaction was required at high temperature and high pressure.

実施例13.白金担持炭素を用いた4-ニトロ桂皮酸エチルの選択的水素還元
4-ニトロ桂皮酸エチル500 mg(2.26mmol、東京化成社製)及び5%白金炭素(Pt/C、和光純薬工業(株))50mgを酢酸エチル 5 mLに添加し、水素雰囲気下、常圧80℃で2時間攪拌して、反応させた。得られた溶液をろ過後、ろ液を減圧下(2666Pa)で20分濃縮することにより4-アミノ桂皮酸エチルと3-(4-アミノフェニル)プロピオン酸エチルの混合物を得た。得られた反応物の1H-NMRをJNM-AL400(JEOL社製)で測定し、4-アミノ桂皮酸エチル(下記反応式中の2)と3-(4-アミノフェニル)プロピオン酸エチル(下記反応式中の3)の生成比を求めた。その結果を表6に示す。

Figure 0005560715
Example 13. Selective hydrogen reduction of ethyl 4-nitrocinnamate using platinum-supported carbon
Add 500 mg of ethyl 4-nitrocinnamate (2.26 mmol, manufactured by Tokyo Chemical Industry Co., Ltd.) and 50 mg of 5% platinum carbon (Pt / C, Wako Pure Chemical Industries, Ltd.) to 5 mL of ethyl acetate. The mixture was stirred at a pressure of 80 ° C. for 2 hours to be reacted. The obtained solution was filtered, and the filtrate was concentrated under reduced pressure (2666 Pa) for 20 minutes to obtain a mixture of ethyl 4-aminocinnamate and ethyl 3- (4-aminophenyl) propionate. 1H-NMR of the obtained reaction product was measured with JNM-AL400 (manufactured by JEOL), and ethyl 4-aminocinnamate (2 in the following reaction formula) and ethyl 3- (4-aminophenyl) propionate (below The production ratio of 3) in the reaction formula was determined. The results are shown in Table 6.

Figure 0005560715

Figure 0005560715
Figure 0005560715

上記結果から、白金担持炭素触媒は、水素を還元剤とした場合であっても、高温で溶媒として酢酸エチルを用いると選択的な還元に適用できることが判った。 From the above results, it was found that the platinum-supported carbon catalyst can be applied to selective reduction using ethyl acetate as a solvent at a high temperature even when hydrogen is used as a reducing agent.

実施例14. オスミウム担持炭素を用いた4−ニトロアセトフェノンのヒドラジン還元

Figure 0005560715
4−ニトロアセトフェノン500 mg(3.02mmol、和光純薬工業(株)製)及び上記実験例1で得た5%オスミウム担持炭素(Os/C) 50mgをメタノール 5 mLに添加した後、更にヒドラジン1水和物(和光純薬工業(株)製)2 mLを添加し、60℃で4時間攪拌しながら、反応させた。得られた溶液に酢酸エチル50mLを添加後ろ過し、そのろ液に飽和食塩水20mLを加えて撹拌洗浄し、その有機層を抽出した。抽出液を減圧下(2666Pa)で濃縮することにより反応物を得た。得られた反応物の1H-NMRをJNM-AL400(JEOL社製)で測定した結果、得られた反応物は全て4-アミノアセトフェノンであった。 Example 14 Hydrazine reduction of 4-nitroacetophenone using osmium-supported carbon

Figure 0005560715
4-Nitroacetophenone 500 mg (3.02 mmol, manufactured by Wako Pure Chemical Industries, Ltd.) and 50% 5% osmium-supported carbon (Os / C) obtained in Experimental Example 1 were added to 5 mL of methanol, and then hydrazine 1 2 mL of hydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was added and reacted while stirring at 60 ° C. for 4 hours. 50 mL of ethyl acetate was added to the resulting solution, followed by filtration. To the filtrate, 20 mL of saturated brine was added, washed with stirring, and the organic layer was extracted. The extract was concentrated under reduced pressure (2666 Pa) to obtain a reaction product. As a result of measuring 1H-NMR of the obtained reaction product with JNM-AL400 (manufactured by JEOL), all the obtained reaction products were 4-aminoacetophenone.

実施例15. オスミウム担持炭素を用いた4−ニトロシンナミルアルコールのヒドラジン還元

Figure 0005560715
4−ニトロシンナミルアルコール500 mg(3.27mmol、和光純薬工業(株)製)及び上記実験例1で得た5%オスミウム担持炭素(Os/C) 50mgをメタノール 5 mLに添加した後、更にヒドラジン1水和物(和光純薬工業(株)製)2 mLを添加し、60℃で4時間攪拌しながら反応させた。得られた溶液に酢酸エチル50mLを添加後ろ過し、そのろ液に飽和食塩水20mLを加えて撹拌洗浄し、その有機層を抽出した。抽出液を減圧下(2666Pa)で濃縮することにより反応物を得た。得られた反応物の1H-NMRをJNM-AL400(JEOL社製)で測定した結果、得られた反応物は全て4-アミノシンナミルアルコールであった。 Example 15. Hydrazine reduction of 4- nitrocinnamyl alcohol using osmium-supported carbon.
Figure 0005560715
After adding 500 mg of 4-nitrocinnamyl alcohol (3.27 mmol, manufactured by Wako Pure Chemical Industries, Ltd.) and 50 mg of 5% osmium-supported carbon (Os / C) obtained in Experimental Example 1 to 5 mL of methanol, 2 mL of hydrazine monohydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was added and reacted at 60 ° C. with stirring for 4 hours. 50 mL of ethyl acetate was added to the resulting solution, followed by filtration. To the filtrate, 20 mL of saturated brine was added, washed with stirring, and the organic layer was extracted. The extract was concentrated under reduced pressure (2666 Pa) to obtain a reaction product. As a result of measuring 1H-NMR of the obtained reaction product with JNM-AL400 (manufactured by JEOL), all the obtained reaction products were 4-aminocinnamyl alcohol.

実験例3 1-ニトロ4-フェニルエチニルベンゼンの合成方法

Figure 0005560715
4−ヨードニトロベンゼン7.47g(30mmol、和光純薬工業(株)製)、ヨウ化銅114 mg(0.6 mmol、和光純薬工業(株)製)及びジクロロビストリフェニルホスフィンパラジウム210 mg(0.3 mmol、和光純薬工業(株)製)のTHF溶液(180mL)に、エチニルベンゼン3.68 g(36 mmol、和光純薬工業(株)製)加え、室温で5Mアンモニア水120mL(和光純薬工業(株)製)を30分かけて滴下した。更に、同温度で24時間攪拌した。その後、飽和食塩水100mLと酢酸エチル300mL加え、有機層を抽出し、減圧下(2666Pa)で濃縮し、更に、WakosilC-200(和光純薬工業社製)を用いてカラムシリカゲルクロマトグラフィーで精製した。得られた反応物をH-NMRで測定した結果、反応物は1-ニトロ4-フェニルエチニルベンゼンであった(収率:77.6%)。 Experimental Example 3 Synthesis method of 1-nitro 4-phenylethynylbenzene

Figure 0005560715
4-Iodonitrobenzene 7.47 g (30 mmol, Wako Pure Chemical Industries, Ltd.), copper iodide 114 mg (0.6 mmol, Wako Pure Chemical Industries, Ltd.) and dichlorobistriphenylphosphine palladium 210 mg (0.3 mmol, Japanese) 3. Ethanolylbenzene 3.68 g (36 mmol, manufactured by Wako Pure Chemical Industries, Ltd.) was added to a THF solution (180 mL) manufactured by Kojun Pharmaceutical Co., Ltd., and 120 mL of 5M ammonia water (produced by Wako Pure Chemical Industries, Ltd.) at room temperature. ) Was added dropwise over 30 minutes. Furthermore, it stirred at the same temperature for 24 hours. Thereafter, 100 mL of saturated saline and 300 mL of ethyl acetate were added, the organic layer was extracted, concentrated under reduced pressure (2666 Pa), and further purified by column silica gel chromatography using Wakosil C-200 (manufactured by Wako Pure Chemical Industries, Ltd.). . As a result of measuring the obtained reaction product by 1 H-NMR, the reaction product was 1-nitro-4-phenylethynylbenzene (yield: 77.6%).

実施例16. オスミウム担持炭素を用いた1-ニトロ4-フェニルエチニルベンゼンのヒドラジン還元

Figure 0005560715
上記実験例3で得られた1-ニトロ4-フェニルエチニルベンゼン500 mg(2.23mmol)及び上記実験例1で得た5%オスミウム担持炭素(Os/C) 50mgをメタノール 5 mLに添加した後、更にヒドラジン1水和物(和光純薬工業(株)製)2 mLを添加し、60℃で4時間攪拌しながら反応させた。得られた溶液に酢酸エチル50mLを添加し、ろ過後、得られたろ液に飽和食塩水20mLを加えて撹拌し、その有機層を抽出し、減圧下(2666Pa)で濃縮することにより反応物を得た。得られた反応物の1H-NMRをJNM-AL400(JEOL社製)で測定した結果、反応物は全て4-フェニルエチニルフェニルアミンであった。 Example 16 Hydrazine reduction of 1-nitro-4-phenylethynylbenzene using osmium-supported carbon
Figure 0005560715
After adding 500 mg (2.23 mmol) of 1-nitro-4-phenylethynylbenzene obtained in Experimental Example 3 and 50 mg of 5% osmium-supported carbon (Os / C) obtained in Experimental Example 1 to 5 mL of methanol, Furthermore, 2 mL of hydrazine monohydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was added and reacted at 60 ° C. with stirring for 4 hours. To the obtained solution was added 50 mL of ethyl acetate, and after filtration, 20 mL of saturated brine was added to the obtained filtrate and stirred. The organic layer was extracted and concentrated under reduced pressure (2666 Pa). Obtained. As a result of measuring 1H-NMR of the obtained reaction product with JNM-AL400 (manufactured by JEOL), all the reaction products were 4-phenylethynylphenylamine.

実験例4 2-(4-ニトロフェニル)エチル]カルバミン酸ベンジルエステルの合成方法

Figure 0005560715
2-(4-ニトロフェニル)エチルアミン5g (30 mmol、和光純薬工業(株)製)に、N-カルバミン酸ベンジルスクシンイミド(Cbzスクシンイミド)8.2 g(33 mmol、和光純薬工業(株)製)とジクロロメタン100mL(和光純薬工業(株)製)を加え、室温下で24時間攪拌した。次いで、飽和食塩水100mLと酢酸エチル300mL加えて攪拌後、有機層を抽出し、該有機層を減圧下(2666Pa)で濃縮し、更に、WakosilC-200(和光純薬工業社製)を用いてカラムシリカゲルクロマトグラフィーで精製した。得られた反応物をH-NMRで測定した結果、2-(4-ニトロフェニル)エチル]カルバミン酸ベンジルエステルであった(収率:88.2%)。 Experimental Example 4 Synthesis of 2- (4-nitrophenyl) ethyl] carbamic acid benzyl ester

Figure 0005560715
N-carbamic acid benzyl succinimide (Cbz succinimide) 8.2 g (33 mmol, Wako Pure Chemical Industries, Ltd.) to 2- (4-nitrophenyl) ethylamine 5g (30 mmol, Wako Pure Chemical Industries, Ltd.) And 100 mL of dichloromethane (manufactured by Wako Pure Chemical Industries, Ltd.) were added and stirred at room temperature for 24 hours. Next, 100 mL of saturated saline and 300 mL of ethyl acetate were added and stirred, and then the organic layer was extracted. The organic layer was concentrated under reduced pressure (2666 Pa), and further, using Wakosil C-200 (manufactured by Wako Pure Chemical Industries, Ltd.). Purification by column silica gel chromatography. The obtained reaction product was measured by 1 H-NMR and found to be 2- (4-nitrophenyl) ethyl] carbamic acid benzyl ester (yield: 88.2%).

実施例17. オスミウム担持炭素を用いた2-(4-ニトロフェニル)エチル]カルバミン酸ベンジルエステルのヒドラジン還元

Figure 0005560715
実験例4で合成した2-(4-ニトロフェニル)エチル]カルバミン酸ベンジルエステル500 mg(1.66mmol)及び上記実験例1で得た5%オスミウム担持炭素(Os/C) 50mgをメタノール 5 mLに添加した後、ヒドラジン1水和物(和光純薬工業(株)製)2 mLを添加して60℃で4時間攪拌しながら反応させた。次いで、得られた溶液に酢酸エチル50mLを添加し、ろ過した。その後、得られたろ液に飽和食塩水20mLを加えて撹拌し、そこから有機層を抽出し、減圧下(2666Pa)で濃縮することにより反応物を得た。得られた反応物の1H-NMRをJNM-AL400(JEOL社製)で測定した結果、反応物は全て2-(4-アミノフェニル)エチル] カルバミン酸ベンジルエステルであった。 Example 17. Hydrazine reduction of 2- (4-nitrophenyl) ethyl] carbamic acid benzyl ester using osmium-supported carbon
Figure 0005560715
500 mg (1.66 mmol) of 2- (4-nitrophenyl) ethyl] carbamic acid benzyl ester synthesized in Experimental Example 4 and 50 mg of 5% osmium-supported carbon (Os / C) obtained in Experimental Example 1 were added to 5 mL of methanol. After the addition, 2 mL of hydrazine monohydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was added and reacted at 60 ° C. with stirring for 4 hours. Next, 50 mL of ethyl acetate was added to the resulting solution and filtered. Thereafter, 20 mL of saturated brine was added to the obtained filtrate and stirred, and the organic layer was extracted therefrom, and concentrated under reduced pressure (2666 Pa) to obtain a reaction product. As a result of measuring 1H-NMR of the obtained reaction product with JNM-AL400 (manufactured by JEOL), all the reaction products were 2- (4-aminophenyl) ethyl] carbamic acid benzyl ester.

実験例5.アリル-(3-ニトロフェニル)カルバミン酸ベンジルエステルの合成方法

Figure 0005560715
3-ニトロフェニルアミン10g(72.4 mmol和光純薬工業(株)製)に、トリエチルアミン10.1 g(100 mmol、和光純薬工業(株)製)、カルバミン酸ベンジルクロライド(Cbz-Cl)12.3 g(100 mmol、和光純薬工業(株)製)及びジクロロメタン100mL(和光純薬工業(株)製)を加え、室温下で24時間攪拌した。その後、飽和食塩水100mLと酢酸エチル300mL加えて攪拌後、有機層を抽出し、減圧下(2666Pa)で濃縮した。更に、WakosilC-200(和光純薬工業社製)を用いて、該濃縮物をカラムシリカゲルクロマトグラフィーで精製した。得られた反応物をH-NMRで測定した結果、(3-ニトロフェニル)カルバミン酸ベンジルエステルであった(収率:61.4%)。次いで、得られた(3-ニトロフェニル)カルバミン酸ベンジルエステル4g(14.7 mmol、和光純薬工業(株)製)に、水素化ナトリウム(60%ミネラルオイル)920mg(23.6mmol和光純薬工業(株)製)とDMF50mL(和光純薬工業(株)製)を添加し、室温で1時間攪拌して反応させ、更に、アリルブロマイド2.5g(23.6 mmol、和光純薬工業(株)製)のDMF溶液(30mL)を滴下し、さらに室温下で6時間攪拌反応させた。その後、飽和食塩水100mLと酢酸エチル300mL加えて撹拌し、有機層を抽出後、減圧下(2666Pa)で濃縮させた。更に、WakosilC-200(和光純薬工業社製)を用いて、該濃縮物をカラムシリカゲルクロマトグラフィーで精製した。得られた反応物の1H-NMRをJNM-AL400(JEOL社製)で測定した結果、反応物はアリル-(3-ニトロフェニル)カルバミン酸ベンジルエステルであった。(収率:88.2%) Experimental Example 5. Method for the synthesis of allyl- (3-nitrophenyl) carbamic acid benzyl ester
Figure 0005560715
3-Nitrophenylamine 10g (72.4 mmol Wako Pure Chemical Industries, Ltd.), triethylamine 10.1 g (100 mmol, Wako Pure Chemical Industries, Ltd.), carbamic acid benzyl chloride (Cbz-Cl) 12.3 g (100 mmol, Wako Pure Chemical Industries, Ltd.) and dichloromethane 100 mL (Wako Pure Chemical Industries, Ltd.) were added, and the mixture was stirred at room temperature for 24 hours. Thereafter, 100 mL of saturated brine and 300 mL of ethyl acetate were added and stirred, and then the organic layer was extracted and concentrated under reduced pressure (2666 Pa). Further, the concentrate was purified by column silica gel chromatography using Wakosil C-200 (manufactured by Wako Pure Chemical Industries, Ltd.). The obtained reaction product was measured by 1 H-NMR and found to be (3-nitrophenyl) carbamic acid benzyl ester (yield: 61.4%). Next, to the obtained (3-nitrophenyl) carbamic acid benzyl ester 4g (14.7 mmol, manufactured by Wako Pure Chemical Industries, Ltd.), sodium hydride (60% mineral oil) 920 mg (23.6 mmol Wako Pure Chemical Industries, Ltd.) )) And 50 mL of DMF (manufactured by Wako Pure Chemical Industries, Ltd.), and the reaction is allowed to stir at room temperature for 1 hour, followed by DMF of 2.5 g of allyl bromide (23.6 mmol, manufactured by Wako Pure Chemical Industries, Ltd.) A solution (30 mL) was added dropwise, and the mixture was further reacted with stirring at room temperature for 6 hours. Thereafter, 100 mL of saturated brine and 300 mL of ethyl acetate were added and stirred, and the organic layer was extracted and then concentrated under reduced pressure (2666 Pa). Further, the concentrate was purified by column silica gel chromatography using Wakosil C-200 (manufactured by Wako Pure Chemical Industries, Ltd.). As a result of measuring 1H-NMR of the obtained reaction product with JNM-AL400 (manufactured by JEOL), the reaction product was allyl- (3-nitrophenyl) carbamic acid benzyl ester. (Yield: 88.2%)

実施例18. オスミウム担持炭素を用いたアリル-(3-ニトロフェニル)カルバミン酸ベンジルエステルのヒドラジン還元

Figure 0005560715
上記実験例5で合成したアリル-(3-ニトロフェニル)カルバミン酸ベンジルエステル500 mg(1.60mmol)及び上記実験例1で得た5%オスミウム担持炭素(Os/C) 50mgをメタノール 5 mLに添加した後、更にヒドラジン1水和物(和光純薬工業(株)製)2 mLを添加し、60℃で4時間攪拌しながら反応させた。得られた溶液に酢酸エチル50mLを添加して、ろ過した。該ろ液に飽和食塩水20mLを加えて撹拌後、有機層を抽出し、減圧下(2666Pa)で濃縮することにより反応物を得た。得られた反応物の1H-NMRをJNM-AL400(JEOL社製)で測定した結果、反応物は全てアリル(3-アミノフェニル)カルバミン酸エステルであった。 Example 18 Hydrazine reduction of allyl- (3-nitrophenyl) carbamic acid benzyl ester using osmium-supported carbon

Figure 0005560715
Allyl- (3-nitrophenyl) carbamic acid benzyl ester 500 mg (1.60 mmol) synthesized in Experimental Example 5 and 50 mg of 5% osmium-supported carbon (Os / C) obtained in Experimental Example 1 were added to 5 mL of methanol. Then, 2 mL of hydrazine monohydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was further added, and the mixture was reacted at 60 ° C. with stirring for 4 hours. 50 mL of ethyl acetate was added to the resulting solution and filtered. 20 mL of saturated brine was added to the filtrate and stirred, and then the organic layer was extracted and concentrated under reduced pressure (2666 Pa) to obtain a reaction product. As a result of measuring 1H-NMR of the obtained reaction product with JNM-AL400 (manufactured by JEOL), all the reaction products were allyl (3-aminophenyl) carbamic acid ester.

実験例6 1-ベンジルオキシメチル-4-ニトロベンゼンの合成方法

Figure 0005560715
4-ニトロベンズアルデヒド5g(33.1 mmol和光純薬工業(株)製)に、トリエチルシラン4.6g (39.7mmol、和光純薬工業(株)製)、塩化鉄 0.268 g(和光純薬工業(株)製)、ニトロメタン100mL(和光純薬工業(株)製)及び、ヘキサメチルジシラザン(和光純薬工業(株)製)とベンジルアルコール(和光純薬工業(株)製)から得られるベンジルオキシトリメチルシラン7.16g(39.7mmol)を添加し、氷冷下で1時間攪拌した。次いで、飽和食塩水100mLと酢酸エチル300mL加えて撹拌した後、有機層を抽出して減圧下(2666Pa)で濃縮し、更に、WakosilC-200(和光純薬工業社製)を用いてカラムシリカゲルクロマトグラフィーで精製した。得られた反応物をH-NMRで測定した結果、反応物は1-ベンジルオキシメチル-4-ニトロベンゼンであった(収率:82.3%)。 Experimental Example 6 Synthesis method of 1-benzyloxymethyl-4-nitrobenzene
Figure 0005560715
4-Nitrobenzaldehyde 5g (33.1 mmol Wako Pure Chemical Industries, Ltd.), Triethylsilane 4.6g (39.7 mmol, Wako Pure Chemical Industries, Ltd.), Iron chloride 0.268 g (Wako Pure Chemical Industries, Ltd.) ), Nitromethane 100mL (manufactured by Wako Pure Chemical Industries, Ltd.), and benzyloxytrimethylsilane obtained from hexamethyldisilazane (manufactured by Wako Pure Chemical Industries, Ltd.) and benzyl alcohol (manufactured by Wako Pure Chemical Industries, Ltd.) 7.16 g (39.7 mmol) was added, and the mixture was stirred for 1 hour under ice cooling. Next, 100 mL of saturated brine and 300 mL of ethyl acetate were added and stirred, and then the organic layer was extracted and concentrated under reduced pressure (2666 Pa), and further column silica gel chromatography using Wakosil C-200 (manufactured by Wako Pure Chemical Industries, Ltd.). Purified by chromatography. As a result of measuring the obtained reaction product by 1 H-NMR, the reaction product was 1-benzyloxymethyl - 4-nitrobenzene (yield: 82.3%).

実施例19. オスミウム担持炭素を用いた1-ベンジルオキシメチル-4-ニトロベンゼンのヒドラジン還元

Figure 0005560715
実験例6で合成した1-ベンジルオキシメチル-4-ニトロベンゼン500 mg(2.06mmol)及び上記実験例1で得た5%オスミウム担持炭素(Os/C) 50mgをメタノール 5 mLに添加した後、更にヒドラジン1水和物(和光純薬工業(株)製)2 mLを添加し、60℃で4時間攪拌しながら反応させた。得られた溶液に酢酸エチル50mLを添加し、ろ過した。得られたろ液に飽和食塩水20mLを加えて撹拌した後、その有機層を抽出し、減圧下(2666Pa)で濃縮することにより反応物を得た。得られた反応物の1H-NMRをJNM-AL400(JEOL社製)で測定した結果、反応物は全て4-ベンジルオキシメチルフェニルアミンであった。 Example 19. Hydrazine reduction of 1-benzyloxymethyl-4-nitrobenzene using osmium-supported carbon
Figure 0005560715
500 mg (2.06 mmol) of 1-benzyloxymethyl - 4-nitrobenzene synthesized in Experimental Example 6 and 50 mg of 5% osmium-supported carbon (Os / C) obtained in Experimental Example 1 were added to 5 mL of methanol. 2 mL of hydrazine monohydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was added and reacted at 60 ° C. with stirring for 4 hours. 50 mL of ethyl acetate was added to the resulting solution and filtered. 20 mL of saturated brine was added to the obtained filtrate and stirred, and then the organic layer was extracted and concentrated under reduced pressure (2666 Pa) to obtain a reaction product. As a result of measuring 1H-NMR of the obtained reaction product with JNM-AL400 (manufactured by JEOL), all the reaction products were 4-benzyloxymethylphenylamine.

実施例20. オスミウム担持炭素を用いた1-フルオロ-4-ニトロベンゼンのヒドラジン還元

Figure 0005560715
1-フルオロ-4-ニトロベンゼン500 mg(3.54mmol、和光純薬工業(株)製))及び上記実験例1で得た5%オスミウム担持炭素(Os/C) 50mgをメタノール 5 mLに添加した後、更にヒドラジン1水和物(和光純薬工業(株)製)2 mLを添加し、60℃で5時間攪拌しながら反応させた。得られた溶液に酢酸エチル50mLを添加し、ろ過した。得られたろ液に飽和食塩水20mLを加えて撹拌した後、その有機層を抽出し、減圧下(2666Pa)で濃縮することにより反応物を得た。得られた反応物の1H-NMRをJNM-AL400(JEOL社製)で測定した結果、反応物は全て4-フルオロフェニルアミンであった。 Example 20. Hydrazine reduction of 1-fluoro-4-nitrobenzene using osmium-supported carbon
Figure 0005560715
1-Fluoro-4-nitrobenzene 500 mg (3.54 mmol, manufactured by Wako Pure Chemical Industries, Ltd.)) and 5% osmium-supported carbon (Os / C) 50 mg obtained in Experimental Example 1 were added to 5 mL of methanol. Furthermore, 2 mL of hydrazine monohydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was added and reacted at 60 ° C. with stirring for 5 hours. 50 mL of ethyl acetate was added to the resulting solution and filtered. 20 mL of saturated brine was added to the obtained filtrate and stirred, and then the organic layer was extracted and concentrated under reduced pressure (2666 Pa) to obtain a reaction product. As a result of measuring 1H-NMR of the obtained reaction product with JNM-AL400 (manufactured by JEOL), all the reaction products were 4-fluorophenylamine.

実施例21. オスミウム担持炭素を用いた1-クロロ-4-ニトロベンゼンのヒドラジン還元

Figure 0005560715
1-クロロ-4-ニトロベンゼン500 mg(3.17mmol、和光純薬工業(株)製))及び上記実験例1で得た5%オスミウム担持炭素(Os/C) 50mgをメタノール 5 mLに添加した後、更にヒドラジン1水和物(和光純薬工業(株)製)2 mLを添加し、60℃で5時間攪拌しながら反応させた。得られた溶液に酢酸エチル50mLを添加し、ろ過した。得られたろ液に飽和食塩水20mLを加えて撹拌した後、有機層を抽出し、減圧下(2666Pa)で濃縮することにより反応物を得た。得られた反応物の1H-NMRをJNM-AL400(JEOL社製)で測定した結果、反応物は全て4-クロロフェニルアミンであった。 Example 21. Hydrazine reduction of 1-chloro-4-nitrobenzene using osmium-supported carbon
Figure 0005560715
1-chloro-4-nitrobenzene 500 mg (3.17 mmol, manufactured by Wako Pure Chemical Industries, Ltd.)) and 5% osmium-supported carbon (Os / C) 50 mg obtained in Experimental Example 1 were added to 5 mL of methanol. Furthermore, 2 mL of hydrazine monohydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was added and reacted at 60 ° C. with stirring for 5 hours. 50 mL of ethyl acetate was added to the resulting solution and filtered. 20 mL of saturated saline was added to the obtained filtrate and stirred, and then the organic layer was extracted and concentrated under reduced pressure (2666 Pa) to obtain a reaction product. As a result of measuring 1H-NMR of the obtained reaction product with JNM-AL400 (manufactured by JEOL), all the reaction products were 4-chlorophenylamine.

実施例22. オスミウム担持炭素を用いた1-ブロモ-4-ニトロベンゼンのヒドラジン還元

Figure 0005560715
1-ブロモ-4-ニトロベンゼン500 mg(3.17mmol、和光純薬工業(株)製)及び上記実験例1で得た5%オスミウム担持炭素(Os/C) 50mgをメタノール 5 mLに添加した後、更にヒドラジン1水和物(和光純薬工業(株)製)2 mLを添加し、60℃で5時間攪拌しながら反応させた。得られた溶液に酢酸エチル50mLを添加し、ろ過した。得られたろ液に飽和食塩水20mLを加えて撹拌した後、その有機層を抽出し、更に、減圧下(2666Pa)で濃縮することにより反応物を得た。得られた反応物の1H-NMRをJNM-AL400(JEOL社製)で測定した結果、反応物は全て4-ブロモフェニルアミンであった。 Example 22. Hydrazine reduction of 1-bromo-4-nitrobenzene using osmium-supported carbon
Figure 0005560715
After adding 50 mg of 1-bromo-4-nitrobenzene 500 mg (3.17 mmol, manufactured by Wako Pure Chemical Industries, Ltd.) and 5% osmium-supported carbon (Os / C) obtained in Experimental Example 1 to 5 mL of methanol, Furthermore, 2 mL of hydrazine monohydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was added and reacted at 60 ° C. with stirring for 5 hours. 50 mL of ethyl acetate was added to the resulting solution and filtered. 20 mL of saturated brine was added to the obtained filtrate and stirred, and then the organic layer was extracted, and further concentrated under reduced pressure (2666 Pa) to obtain a reaction product. As a result of measuring 1H-NMR of the obtained reaction product with JNM-AL400 (manufactured by JEOL), all the reaction products were 4-bromophenylamine.

実施例23. オスミウム担持炭素を用いた1-ヨード-4-ニトロベンゼンのヒドラジン還元

Figure 0005560715
1-ヨード-4-ニトロベンゼン500 mg(2.01mmol、和光純薬工業(株)製))及び上記実験例1で得た5%オスミウム担持炭素(Os/C) 50mgをメタノール 5 mLに添加した後、更にヒドラジン1水和物(和光純薬工業(株)製)2 mLを添加し、60℃で5時間攪拌しながら反応させた。得られた溶液に酢酸エチル50mLを添加し、ろ過した。得られたろ液に飽和食塩水20mLを加えて撹拌した後、その有機層を抽出し、更に減圧下(2666Pa)で濃縮することにより反応物を得た。得られた反応物の1H-NMRをJNM-AL400(JEOL社製)で測定した結果、反応物は全て4-ヨードフェニルアミンであった。 Example 23. Hydrazine reduction of 1-iodo-4-nitrobenzene using osmium-supported carbon
Figure 0005560715
1-iodo-4-nitrobenzene 500 mg (2.01 mmol, manufactured by Wako Pure Chemical Industries, Ltd.)) and 5% osmium-supported carbon (Os / C) 50 mg obtained in Experimental Example 1 were added to 5 mL of methanol. Furthermore, 2 mL of hydrazine monohydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was added and reacted at 60 ° C. with stirring for 5 hours. 50 mL of ethyl acetate was added to the resulting solution and filtered. 20 mL of saturated saline was added to the obtained filtrate and stirred, and then the organic layer was extracted and further concentrated under reduced pressure (2666 Pa) to obtain a reaction product. As a result of measuring 1H-NMR of the obtained reaction product with JNM-AL400 (manufactured by JEOL), all the reaction products were 4-iodophenylamine.

実施例24. オスミウム担持炭素を用いた1-メトキシ-3-ニトロベンゼンのヒドラジン還元

Figure 0005560715

1-メトキシ-3-ニトロベンゼン500 mg(3.26mmol、和光純薬工業(株)製)及び上記実験例1で得た5%オスミウム担持炭素(Os/C) 50mgをメタノール 5 mLに添加した後、更にヒドラジン1水和物(和光純薬工業(株)製)2 mLを添加し、60℃で4時間攪拌しながら、反応させた。得られた溶液に酢酸エチル50mLを添加後ろ過し、そのろ液に飽和食塩水20mLを加えて撹拌洗浄し、その有機層を抽出した。抽出液を減圧下(2666Pa)で濃縮することにより反応物を得た。得られた反応物の1H-NMRをJNM-AL400(JEOL社製)で測定した結果、得られた反応物は全て3-メトキシフェニルアミンあった。
以上の結果から明らかなように、オスミウム担持炭素を触媒として還元剤としてヒドラジンを用いれば、不飽和炭化水素基を有するニトロベンゼンのみならず、ベンジルオキシ基、N-カルバミン酸ベンジルエステル(ベンジルオキシカルバモイル基)、アルキルカルボニル基、ハロゲン原子、アルコキシル基等の還元されやすい置換基を有するニトロベンゼン誘導体についてもニトロ基のみを選択的に還元し得ることが判った。 Example 24. Hydrazine reduction of 1-methoxy-3-nitrobenzene using osmium-supported carbon
Figure 0005560715

1-methoxy-3-nitrobenzene 500 mg (3.26 mmol, Wako Pure Chemical Industries, Ltd.) and 5% osmium-supported carbon (Os / C) 50 mg obtained in Experimental Example 1 were added to 5 mL of methanol. Furthermore, 2 mL of hydrazine monohydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was added and reacted while stirring at 60 ° C. for 4 hours. 50 mL of ethyl acetate was added to the resulting solution, followed by filtration. To the filtrate, 20 mL of saturated brine was added, washed with stirring, and the organic layer was extracted. The extract was concentrated under reduced pressure (2666 Pa) to obtain a reaction product. As a result of measuring 1H-NMR of the obtained reaction product with JNM-AL400 (manufactured by JEOL), all the obtained reaction products were 3-methoxyphenylamine.
As is clear from the above results, when hydrazine is used as a reducing agent using osmium-supported carbon as a catalyst, not only nitrobenzene having an unsaturated hydrocarbon group, but also benzyloxy group, N-carbamic acid benzyl ester (benzyloxycarbamoyl group) ), Nitrobenzene derivatives having substituents that are easily reduced, such as alkylcarbonyl groups, halogen atoms, and alkoxyl groups, were found to be able to selectively reduce only the nitro group.

Claims (6)

オスミウム担持炭素の存在下、炭素数2〜3のアルケニル基、炭素数2〜3のアルケニレン基、炭素数2〜3のアルキニル基、炭素数2〜3のアルキニレン基、ベンジルオキシ基、ベンジルオキシカルバモイル基及び炭素数2〜6のアルキルカルボニル基から選ばれる還元性基を有するニトロ芳香族化合物と、ヒドラジン又は水素から選ばれる還元剤とを反応させることを特徴とする、還元性基を有するニトロ芳香族化合物中のニトロ基の選択的還元方法。 In the presence of osmium-supported carbon, alkenyl group having 2 to 3 carbon atoms, alkenylene group having 2 to 3 carbon atoms, alkynyl group having 2 to 3 carbon atoms, alkynylene group having 2 to 3 carbon atoms, benzyloxy group, benzyloxycarbamoyl A nitroaromatic compound having a reducing group, characterized by reacting a nitroaromatic compound having a reducing group selected from a group and an alkylcarbonyl group having 2 to 6 carbon atoms with a reducing agent selected from hydrazine or hydrogen For selective reduction of nitro groups in group compounds. ニトロ芳香族化合物がニトロベンゼン誘導体である、請求項1記載の還元方法。 The reduction method according to claim 1, wherein the nitroaromatic compound is a nitrobenzene derivative. 被毒化剤を共存させずに反応させることを特徴とする、請求項2記載の還元方法。 3. The reduction method according to claim 2, wherein the reaction is carried out without causing a poisoning agent to coexist. オスミウム担持炭素の存在下、炭素数2〜3のアルケニル基、炭素数2〜3のアルケニレン基、炭素数2〜3のアルキニル基、炭素数2〜3のアルキニレン基、ベンジルオキシ基、ベンジルオキシカルバモイル基及び炭素数2〜6のアルキルカルボニル基から選ばれる還元性基を有するニトロ芳香族化合物と、ヒドラジン又は水素とを反応させることを特徴とする、還元性基を有するアミノ芳香族化合物の製造方法。 In the presence of osmium-supported carbon, alkenyl group having 2 to 3 carbon atoms, alkenylene group having 2 to 3 carbon atoms, alkynyl group having 2 to 3 carbon atoms, alkynylene group having 2 to 3 carbon atoms, benzyloxy group, benzyloxycarbamoyl A method for producing an amino aromatic compound having a reducing group, comprising reacting a nitroaromatic compound having a reducing group selected from a group and an alkylcarbonyl group having 2 to 6 carbon atoms with hydrazine or hydrogen . ニトロ芳香族化合物がニトロベンゼン誘導体である、請求項4記載の製造方法。 The production method according to claim 4, wherein the nitroaromatic compound is a nitrobenzene derivative. 被毒化剤を共存させずに反応させることを特徴とする、請求項5記載の製造方法。 6. The production method according to claim 5, wherein the reaction is carried out without causing a poisoning agent to coexist.
JP2009540074A 2007-11-09 2008-11-06 Selective reduction of nitro group by metal catalyst supported carbon Active JP5560715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009540074A JP5560715B2 (en) 2007-11-09 2008-11-06 Selective reduction of nitro group by metal catalyst supported carbon

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2007291755 2007-11-09
JP2007291755 2007-11-09
JP2008076518 2008-03-24
JP2008076518 2008-03-24
JP2009540074A JP5560715B2 (en) 2007-11-09 2008-11-06 Selective reduction of nitro group by metal catalyst supported carbon
PCT/JP2008/070182 WO2009060886A1 (en) 2007-11-09 2008-11-06 Method for selectively reducing nitro group by metal catalyst-supported carbon

Publications (2)

Publication Number Publication Date
JPWO2009060886A1 JPWO2009060886A1 (en) 2011-03-24
JP5560715B2 true JP5560715B2 (en) 2014-07-30

Family

ID=40625773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009540074A Active JP5560715B2 (en) 2007-11-09 2008-11-06 Selective reduction of nitro group by metal catalyst supported carbon

Country Status (2)

Country Link
JP (1) JP5560715B2 (en)
WO (1) WO2009060886A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101442439B1 (en) 2010-08-24 2014-09-17 캐논 가부시끼가이샤 Polyester, pigment composition, and toner
JP4995334B2 (en) 2010-08-27 2012-08-08 キヤノン株式会社 Azo compound, pigment dispersant, pigment composition, pigment dispersion and toner containing the azo compound
BR112013004224A2 (en) 2010-09-07 2016-07-05 Canon Kk azo compound, and pigment dispersant, pigment composition, pigment dispersion and toner, including azo compound.
US8815484B2 (en) 2011-10-12 2014-08-26 Canon Kabushiki Kaisha Toner including compound having bisazo skeleton
US8962726B2 (en) 2011-10-12 2015-02-24 Canon Kabushiki Kaisha Compound having bisazo skeleton, pigment dispersant containing the compound, pigment composition, pigment dispersion, ink and resist composition for color filter
EP2634633B1 (en) 2012-02-29 2015-07-01 Canon Kabushiki Kaisha Cyan toner containing compound having azo skeleton
EP2634632A1 (en) 2012-02-29 2013-09-04 Canon Kabushiki Kaisha Black toner containing compound having azo skeleton
EP2634635A1 (en) 2012-02-29 2013-09-04 Canon Kabushiki Kaisha Magenta toner containing compound having azo skeleton
JP6018928B2 (en) * 2012-03-02 2016-11-02 国立大学法人大阪大学 Selective hydrogenation method, catalyst used in the method
RU2485094C1 (en) * 2012-06-07 2013-06-20 Федеральное государственное бюджетное учреждение науки Институт высокомолекулярных соединений Российской академии наук Method of producing 4-aminostyrene
WO2014178435A1 (en) 2013-04-30 2014-11-06 Canon Kabushiki Kaisha Compound having azo skeleton structure, pigment-dispersing agent, pigment composition, pigment dispersion, and toner
US9593243B2 (en) 2013-08-28 2017-03-14 Canon Kabushiki Kaisha Compound, pigment dispersing agent, pigment composition, pigment dispersion and toner containing said compound
CN105531293B (en) 2013-08-29 2018-04-17 佳能株式会社 Compound, pigment dispersing agent, color compositions, pigment dispersion and toner with azo skeleton
JP2015121727A (en) * 2013-12-25 2015-07-02 株式会社リコー Toner for electrostatic image development and manufacturing method of the same
US9715187B2 (en) 2014-04-01 2017-07-25 Canon Kabushiki Kaisha Method of producing a compound having a colorant structure, and toner containing a compound obtained by the production method
US9556290B2 (en) 2014-04-01 2017-01-31 Canon Kabushiki Kaisha Method for producing compound having colorant structure at main chain terminal of polymer, and pigment dispersant, pigment composition, pigment dispersion and toner containing compound obtained by the production method
US9618867B2 (en) 2015-02-20 2017-04-11 Canon Kabushiki Kaisha Pigment dispersion and toner
CN114471540B (en) * 2022-02-22 2023-08-08 北京化工大学 Sub-nanometer Pt selective hydrogenation catalyst, preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02170862A (en) * 1988-10-28 1990-07-02 L'oreal Sa 5-substituted ortho-aminophenol, its preparation, and dyeing composition
JPH06321871A (en) * 1993-04-20 1994-11-22 Hoechst Ag Preparation of aromatic amines and diazonium salts
JPH0717923A (en) * 1993-06-30 1995-01-20 Asahi Glass Co Ltd Production of 3,5-difluoroaniline
JPH1036325A (en) * 1996-07-18 1998-02-10 Fuji Photo Film Co Ltd Production of aminophenylacetylene compound
JP2003292476A (en) * 2002-04-02 2003-10-15 Nissan Chem Ind Ltd Method for producing diaminoresorcinol compound

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02170862A (en) * 1988-10-28 1990-07-02 L'oreal Sa 5-substituted ortho-aminophenol, its preparation, and dyeing composition
JPH06321871A (en) * 1993-04-20 1994-11-22 Hoechst Ag Preparation of aromatic amines and diazonium salts
JPH0717923A (en) * 1993-06-30 1995-01-20 Asahi Glass Co Ltd Production of 3,5-difluoroaniline
JPH1036325A (en) * 1996-07-18 1998-02-10 Fuji Photo Film Co Ltd Production of aminophenylacetylene compound
JP2003292476A (en) * 2002-04-02 2003-10-15 Nissan Chem Ind Ltd Method for producing diaminoresorcinol compound

Also Published As

Publication number Publication date
JPWO2009060886A1 (en) 2011-03-24
WO2009060886A1 (en) 2009-05-14

Similar Documents

Publication Publication Date Title
JP5560715B2 (en) Selective reduction of nitro group by metal catalyst supported carbon
Yang et al. Direct palladium/carboxylic acid-catalyzed allylation of anilines with allylic alcohols in water
WO2012065571A1 (en) Chiral spiro-pyridylamidophosphine ligand compound, synthesis method therefor and application thereof
JP2019089766A (en) Metalorganocatalysis for asymmetric transformations
JP2019108352A (en) Halogenated biphenyl anilide, and improved manufacturing method of biphenyl aniline
US9175004B2 (en) Catalyst precursor, method for producing the same, method for using the same, and reactor that uses the same
KR20090118032A (en) Chiral iridium aqua complex and method for producing optically active hydroxy compound by using the same
Mohanty et al. Glaser–Hay hetero-coupling in a bimetallic regime: a Ni (ii)/Ag (i) assisted base, ligand and additive free route to selective unsymmetrical 1, 3-diynes
JP2005126433A (en) Reduction method for binaphthyl derivative and use of catalyst for the reduction
JP2003292476A (en) Method for producing diaminoresorcinol compound
JP2007063275A (en) Allyl-type alkylation by iron catalyst action
JP5212109B2 (en) Metal catalyst-supported carbon-ethylenediamine composite and method for producing the same
KR101615157B1 (en) Production method for 2-alkenylamine compound
CN112694430B (en) Preparation method of 1, 5-dihydro-2H-pyrrole-2-ketone compound
JP4286486B2 (en) Ruthenium compound, diamine ligand and method for producing optically active alcohol
Zimmermann et al. Mono‐and Bidentate Phosphine Ligands in the Palladium‐Catalyzed Methyl Acrylate Dimerization
EP0189694B1 (en) Process for the preparation of isocyanates and isocyanate derivatives
EP1268496A1 (en) Water soluble chiral diphosphines
JP4928798B2 (en) Catalyst for asymmetric synthesis, ligand used therein, and method for producing optically active compound by asymmetric synthesis reaction using them
Gan et al. Platinum-catalyzed allylation of aminonaphthalenes with allylic acetates in water
JP5762288B2 (en) Method for producing allylamine
WO2004103990A1 (en) Process for producing optically active n-monoalkyl-3­hydroxy-3-arylpropylamine compound and intermediate
JP3463919B2 (en) Benzoic acid amide
JP2011042607A (en) Method for producing tetraaminobenzene derivative and intermediate thereof
JP2900565B2 (en) Method for producing aminoanthraquinone

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111019

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131015

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140304

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140526

R150 Certificate of patent or registration of utility model

Ref document number: 5560715

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250