JP5555386B2 - 光学測定装置および内視鏡システム - Google Patents

光学測定装置および内視鏡システム Download PDF

Info

Publication number
JP5555386B2
JP5555386B2 JP2013554721A JP2013554721A JP5555386B2 JP 5555386 B2 JP5555386 B2 JP 5555386B2 JP 2013554721 A JP2013554721 A JP 2013554721A JP 2013554721 A JP2013554721 A JP 2013554721A JP 5555386 B2 JP5555386 B2 JP 5555386B2
Authority
JP
Japan
Prior art keywords
light
endoscope
light source
measurement
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013554721A
Other languages
English (en)
Other versions
JPWO2013154061A1 (ja
Inventor
健二 上村
武志 菅
裕基 庄野
秀行 高岡
遼佑 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Olympus Medical Systems Corp
Original Assignee
Olympus Corp
Olympus Medical Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp, Olympus Medical Systems Corp filed Critical Olympus Corp
Application granted granted Critical
Publication of JP5555386B2 publication Critical patent/JP5555386B2/ja
Publication of JPWO2013154061A1 publication Critical patent/JPWO2013154061A1/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0075Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by spectroscopy, i.e. measuring spectra, e.g. Raman spectroscopy, infrared absorption spectroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0655Control therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/012Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor
    • A61B1/018Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor for receiving instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0638Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements providing two or more wavelengths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0646Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements with illumination filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • A61B1/0669Endoscope light sources at proximal end of an endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00186Optical arrangements with imaging filters

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Endoscopes (AREA)

Description

本発明は、生体組織に照明光を照射し、生体組織で反射および/または散乱した照明光の戻り光の測定値に基づいて、生体組織の性状を推定する光学測定装置および内視鏡システムに関する。
従来、生体組織に照明光を照射し、生体組織から反射または散乱された検出光の測定値に基づいて、生体組織の性状を推定する光学測定装置が知られている。光学測定装置は、消化器等の臓器を観察する内視鏡と組み合わせて使用されている。このような光学測定装置として、空間コヒーレンス長の短い低コヒーレントの白色光をプローブの照射ファイバ先端から生体組織に照射し、複数の角度の散乱光の強度分布を複数の受光ファイバを用いて測定することによって、生体組織の性状を検出するLEBS(Low-Coherence Enhanced Backscattering)を用いた光学測定装置が提案されている。
また、内視鏡を用いて生体粘膜の分光測定を行う技術が知られている(特許文献1を参照)。この技術では、分光分析する測定プローブにおいて、測定プローブによる近赤外光の検出が行われているとき、測定プローブの観察部分に内視鏡の観察光が照射されないように照明範囲を制御することにより、内視鏡の観察光を測定プローブで検出されることを防止している。
また、測定プローブによる分光分析が行われているときに、内視鏡による観察光の照射を停止させることで、内視鏡の観察光を測定プローブで分析されることを防止する技術が知られている(特許文献2を参照)。
特開2010−063839号公報 特開平9−248281号公報
ところで、波長が異なる光を順次発光することで観察光を出射する内視鏡と、この内視鏡の処置具チャンネルを介して被検体に挿入され、測定光を出射する光学測定装置とを有する内視鏡システムにおいては、各々が出射する光が互いに干渉することで、同じタイミングで内視鏡の観察と光学測定装置の測定プローブによる測定とを精度よく両立して行うことができなかった。
本発明は、上記に鑑みてなされたものであって、内視鏡による観察と、光学測定装置の測定プローブによる測定とを行う際に、測定プローブによる測定に対して内視鏡の観察光の影響をなくし、精度の高い測定を両立して行うことができる光学測定装置および内視鏡システムを提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明にかかる内視鏡システムは、被検体の内部に挿入される挿入部を有し、該挿入部に設けられた撮像部によって前記被検体の内部を撮像して画像信号を生成する内視鏡と、前記挿入部を介して前記被検体の内部に挿入される測定プローブを有する光学測定装置と、を備えた内視鏡システムであって、前記挿入部から対象物を観察するため、複数の波長帯域の観察光を切り換えて出力可能な内視鏡光源部と、前記測定プローブを介して前記対象物の特性を測定するため、測定光を出力するプローブ光源部と、前記測定光が前記対象物で反射および/または散乱して戻ってきた戻り光を、前記測定プローブを介して受光する受光部と、前記内視鏡光源部が出力する前記観察光の波長帯域と異なる帯域に前記測定光の波長帯域を切り換える切換部と、を備えたことを特徴とする。
また、本発明にかかる内視鏡システムは、上記発明において、前記内視鏡光源部は、波長帯域が異なる前記観察光を順次出力可能であり、前記プローブ光源部は、波長帯域が異なる複数の前記測定光を切り換えて順次出力可能であり、前記切換部は、前記内視鏡光源部が出力する前記観察光の波長帯域と前記プローブ光源部が出力する波長帯域とが異なるように前記内視鏡光源部または前記プローブ光源部の波長帯域を切り換えることを特徴とする。
また、本発明にかかる内視鏡システムは、上記発明において、前記内視鏡光源部および前記プローブ光源部は、別体に設けられ、前記切換部は、前記内視鏡光源部が出力する前記観察光および前記プローブ光源部が出力する前記測定光の波長帯域を制御する制御部を有することを特徴とする。
また、本発明にかかる内視鏡システムは、上記発明において、前記内視鏡光源部および前記プローブ光源部は、一体的に設けられ、前記切換部は、平板状をなし、所定の波長帯域を透過する複数のフィルタを有する回転フィルタと、前記回転フィルタを回転させる駆動部と、前記駆動部の駆動を制御することにより前記内視鏡光源部または前記プローブ光源部がそれぞれ出射する光の波長帯域を制御する制御部と、を有することを特徴とする請求項2に記載の内視鏡システム。
また、本発明にかかる内視鏡システムは、上記発明において、前記内視鏡光源部は、波長帯域が異なる前記観察光を順次出力可能であり、前記切換部は、平板状をなし、所定の波長帯域を透過する複数のフィルタを有する回転フィルタと、前記回転フィルタを回転させる駆動部と、前記駆動部の駆動を制御することにより、前記内視鏡光源部が出力する前記観察光の波長帯域と前記受光部が受光する前記戻り光の波長帯域とが異なるように前記回転フィルタを回転させる制御を行う制御部と、を有することを特徴とする。
また、本発明にかかる内視鏡システムは、上記発明において、前記受光部は、前記戻り光を受光して分光する分光器を有し、前記切換部は、前記分光器が分光した結果に基づいて、前記対象物の特性を演算する演算部と、前記内視鏡光源部が出力する前記観察光の波長帯域と前記演算部が演算する前記戻り光の波長帯域とが異なるように前記演算部が演算する前記戻り光の波長帯域を切り換える制御を行う制御部と、を有することを特徴とする。
また、本発明にかかる内視鏡システムは、上記発明において、前記波長が異なる観察光および前記波長が異なる測定光は、赤色光、緑色光および青色光であることを特徴する。
また、本発明にかかる光学測定装置は、内視鏡の挿入部を介して挿入される測定プローブを備え、前記内視鏡および前記内視鏡に観察光を出力する内視鏡光源装置を制御する制御装置と双方向に通信可能な光学測定装置であって、前記測定プローブを介して対象物の特性を測定するため、測定光を出力するプローブ光源部と、前記測定光が前記対象物で反射および/または散乱して戻ってきた戻り光を、前記測定プローブを介して受光する受光部と、前記受光部が受光した結果に基づいて、前記対象物の特性値を演算する演算部と、前記制御装置から送信される駆動信号に基づいて、前記内視鏡光源装置が出射する前記観察光の波長帯域と異なるように前記測定光の波長帯域を切り換える切換部と、を備えたことを特徴とする。
また、本発明にかかる光学測定装置は、上記発明において、前記プローブ光源部は、波長帯域が異なる複数の前記測定光を切り換えて順次出力可能であり、前記切換部は、前記内視鏡光源部が出力する前記観察光の波長帯域と前記プローブ光源部が出力する波長帯域とが異なるように前記内視鏡光源部または前記プローブ光源部の波長帯域を切り換えることを特徴とする。
また、本発明にかかる光学測定装置は、上記発明において、前記プローブ光源部は、前記内視鏡光源部とは別体に設けられ、前記切換部は、前記内視鏡光源部が出力する前記観察光および前記プローブ光源部が出力する前記測定光の波長帯域を制御する制御部を有することを特徴とする。
また、本発明にかかる光学測定装置は、上記発明において、前記プローブ光源部は、前記内視鏡光源部と一体的に設けられ、前記切換部は、平板状をなし、所定の波長帯域を透過する複数のフィルタを有する回転フィルタと、前記回転フィルタを回転させる駆動部と、前記駆動部の駆動を制御することにより前記内視鏡光源部または前記プローブ光源部がそれぞれ出射する光の波長帯域を制御する制御部と、を有することを特徴とする。
また、本発明にかかる光学測定装置は、上記発明において、前記切換部は、平板状をなし、所定の波長帯域を透過する複数のフィルタを有する回転フィルタと、前記回転フィルタを回転させる駆動部と、前記駆動部の駆動を制御することにより、前記内視鏡光源部が出力する前記観察光の波長帯域と前記受光部が受光する前記戻り光の波長帯域とが異なるように前記回転フィルタを回転させる制御を行う制御部と、を有することを特徴とする。
また、本発明にかかる光学測定装置は、上記発明において、前記受光部は、前記戻り光を受光して分光する分光器を有し、前記切換部は、前記分光器が分光した結果に基づいて、前記対象物の特性を演算する演算部と、前記内視鏡光源部が出力する前記観察光の波長帯域と前記演算部が演算する前記戻り光の波長帯域とが異なるように前記演算部が演算する前記戻り光の波長帯域を切り換える制御を行う制御部と、を有することを特徴とする。
また、本発明にかかる光学測定装置は、上記発明において、前記波長が異なる測定光は、赤色光、緑色光および青色光であることを特徴する。
本発明によれば、制御部が光源駆動制御部および光学測定装置の光学制御部をそれぞれ制御することにより、内視鏡光源装置が発光する観察光の波長と、光学測定装置の光源部が発する測定光の波長とが異なるように内視鏡光源装置または光源部を制御する。この結果、内視鏡装置による観察と、光学測定装置の測定プローブによる測定とを同時に行うことができるとともに、測定プローブによる測定に対して内視鏡装置の観察光の影響をなくし、精度の高い測定を行うことができるという効果を奏する。
図1は、本発明の実施の形態1にかかる内視鏡システムの概略構成を示す図である。 図2は、図1に示す光学測定装置、内視鏡光源装置および制御装置の構成を模式的に示すブロック図である。 図3は、本発明の実施の形態1にかかる光学測定装置および内視鏡光源装置が異なる波長の光を順次照射する際のタイミングを示すタイミングチャートである。 図4は、本発明の実施の形態2にかかる光学測定装置の構成を示すブロック図である。 図5は、本発明の実施の形態2にかかる光学測定装置が異なる波長の光を照射する際のタイミングを示すタイミングチャートである。 図6は、本発明の実施の形態3にかかる内視鏡システムの構成を模式的に示すブロック図である。 図7は、本発明の実施の形態4にかかる内視鏡システムの構成を模式的に示すブロック図である。 図8Aは、本発明の実施の形態4にかかる内視鏡光源装置の回転フィルタの各フィルタの透過率スペクトル成分を示す図である。 図8Bは、本発明の実施の形態4にかかる光学測定装置の第1分光器および第2分光器でそれぞれ検出されるスペクトル成分のうち演算部が演算で用いる波長帯域を示す図である。 図9は、本発明の実施の形態4にかかる内視鏡光源装置が異なる波長帯域の観察光を照射する照射タイミングと光学測定装置の第1分光器および第2分光器それぞれで検出されるスペクトル成分のうち演算部が演算で用いる波長帯域のタイミングを示す図である。 図10は、本発明の実施の形態4にかかる光学測定装置が実行する処理の概要を示すフローチャートである。 図11は、本発明の実施の形態5にかかる内視鏡システムの構成を模式的に示すブロック図である。 図12は、本発明の実施の形態5にかかる内視鏡システムの内視鏡光源装置の狭帯域フィルタの透過率スペクトル成分を示す図である。 図13は、本発明の実施の形態5にかかる内視鏡システムの内視鏡光源装置の観察光の出射時に演算部が第1分光器および第2分光器がそれぞれ受光した測定光の戻り光の波長帯域から演算に用いるスペクト成分を示す図である。 図14は、本発明の実施の形態5にかかる内視鏡システムの光学測定装置が実行する処理の概要を示すフローチャートである。 図15は、本発明の実施の形態にかかる参考例の内視鏡システムの構成を示すブロック図である。 図16は、本発明の実施の形態にかかる参考例の光学測定装置および内視鏡光源装置がそれぞれ照射する照明光のタイミングを示すタイミングチャートである。
以下、図面を参照して、本発明にかかる光学測定装置および内視鏡システムの好適な実施の形態として、LEBS技術を用いた光学測定装置を例に詳細に説明する。また、この実施の形態によって本発明が限定されるものではない。また、図面の記載において、同一の部分には同一の符号を付している。また、図面は、模式的なものであり、各部材の厚みと幅との関係および各部材の比率等は、現実と異なることに留意する必要がある。また、図面の相互間においても、互いの寸法や比率が異なる部分が含まれる。
(実施の形態1)
図1は、本発明の実施の形態1にかかる内視鏡システムの概要構成を示す図である。図1に示すように、本実施の形態1にかかる内視鏡システム1は、被検体内に導入され、被検体の体内を撮像して被検体内の画像信号を生成する内視鏡装置2(内視鏡スコープ)と、内視鏡装置2を介して被検体内に導入され、被検体内の生体組織の性状を推定する光学測定装置3と、内視鏡装置2の観察光を生成する内視鏡光源装置5と、内視鏡装置2によって撮像された画像信号に対して所定の画像処理を行うとともに内視鏡システム1の各部を制御する制御装置4(プロセッサ)と、制御装置4が画像処理を施した画像信号に対応する画像を表示する表示装置6と、を備える。
内視鏡装置2は、被検体内に挿入される挿入部21と、挿入部21の基端部側であって操作者が把持する操作部22と、操作部22の側部より延伸する可撓性のユニバーサルコード23と、を備える。
挿入部21は、照明ファイバ(ライトガイドケーブル)および電気ケーブル等を用いて実現される。挿入部21は、被検体内を撮像する撮像素子としてCCDセンサまたはCMOSセンサを内蔵した撮像部を有する先端部211と、複数の湾曲駒によって構成され湾曲自在な湾曲部212と、湾曲部212の基端部側に設けられた可撓性を有する可撓管部213と、を有する。先端部211には、照明レンズを介して被検体内を照射する照明部、被検体内を撮像する観察部、処置具用チャンネルを連通する開口部214および送気・送水用ノズル(図示せず)が設けられている。
操作部22は、湾曲部212を上下方向および左右方向に湾曲させる湾曲ノブ221と、被検体の体腔内に生検鉗子、レーザメス、光学測定装置3の測定プローブ等の処置具が挿入される処置具挿入部222と、光学測定装置3、内視鏡光源装置5、制御装置4、送気装置、送水装置および送ガス装置等の周辺機器の操作を行う複数のスイッチ部223と、を有する。処置具挿入部222から挿入された処置具は、内部に設けられた処置具用チャンネルを経て挿入部21先端の開口部214から表出する。
ユニバーサルコード23は、照明ファイバおよび電気ケーブル等を用いて構成される。ユニバーサルコード23は、内視鏡光源装置5から出射された観察光を操作部22および可撓管部213を介して先端部211に伝送する。ユニバーサルコード23は、先端部211に設けられた撮像素子等の撮像部が撮像した画像信号を制御装置4に伝送する。
光学測定装置3は、内視鏡装置2の処置具挿入部222を経て被検体の体内に挿入される測定プローブ31と、測定プローブ31に測定光を出力するとともに、測定プローブ31を介して測定対象物で反射および/または散乱した測定光の戻り光を受光して測定対象物の性状(特性値)を推定する本体部32と、本体部32の測定結果等を制御装置4に伝送する伝送ケーブル33と、を備える。
制御装置4は、ユニバーサルコード23を介して伝送された内視鏡装置2の先端部211が撮像した被検体の画像信号に対して所定の画像処理を施す。制御装置4は、伝送ケーブル33を介して伝送された光学測定装置3の測定結果を記録する。制御装置4は、ユニバーサルコード23を介して内視鏡装置2の操作部22におけるスイッチ部223から送信された各種の指示信号に基づいて、内視鏡システム1の各部を制御する。
内視鏡光源装置5は、白色光源または特殊光源等を用いて構成される。内視鏡光源装置5は、白色光源または特殊光源からの光を、ユニバーサルコード23の照明ファイバを介して接続された内視鏡装置2へ観察光(照明光)として供給する。
表示装置6は、液晶または有機EL(Electro Luminescence)を用いた表示ディスプレイ等を用いて構成される。表示装置6は、映像ケーブル61を介して制御装置4によって所定の画像処理が施された画像信号に対応する画像および光学測定装置3の測定結果等を表示する。これにより、操作者は、表示装置6が表示する画像を見ながら内視鏡装置2を操作することにより、被検体内の所望の位置の観察および性状を判定することができる。
つぎに、図1で説明した光学測定装置3、制御装置4および内視鏡光源装置5の詳細な構成について説明する。図2は、図1に示す光学測定装置3、制御装置4および内視鏡光源装置5の構成を模式的に示すブロック図である。
まず、光学測定装置3の詳細な構成について説明する。光学測定装置3は、測定プローブ31と、本体部32と、を備える。
測定プローブ31は、一または複数の光ファイバ等を用いて実現される。たとえば、測定プローブ31は、測定対象物としての生体組織S1に測定光(照明光)を出射する照明ファイバ311と、測定対象物で反射および/または散乱した測定光の戻り光が異なる角度(散乱角度)で入射する複数の受光ファイバ312とを用いて実現される。照明ファイバ311および受光ファイバ312は、少なくとも先端部分が互いに平行に配列される。測定プローブ31は、基端部313と、可撓部314と、先端部315と、を有する。
基端部313は、本体部32に着脱自在に接続される。可撓部314は、可撓性を有し、本体部32から出射される測定光を照明ファイバ311の端面が露出する先端を含む先端部315に伝送するとともに、先端部315を介して入射する測定光の戻り光を本体部32に伝送する。先端部315は、可撓部314から伝送された測定光を生体組織S1に対して出射するとともに、生体組織S1で反射および/または散乱した測定光の戻り光が入射する。先端部315には、透過性を有するロッド315aが光学部材として設けられる。ロッド315aは、生体組織S1表面と照明ファイバ311および受光ファイバ312の先端との距離が一定となるように円柱形状をなす。なお、図2では、2本の受光ファイバ312を有する測定プローブ31を例に説明したが、散乱角度の異なる少なくとも2種以上の散乱光を受光できればよいため、受光ファイバ312が3本以上であってもよい。さらに、照明ファイバ311の数も測定対象物としての生体組織S1に応じて、適宜変更することができる。
本体部32は、光源部321と、受光部322と、入力部323と、出力部324と、記録部325と、通信部326と、光学制御部327と、を備える。
光源部321は、生体組織S1に照射する光を発生させる。光源部321は、波長帯域が異なる複数の測定光を順次切り換えて測定プローブ31に出力する。具体的には、光源部321は、赤色光を発する赤色LED(Light Emitting Diode)321aと、緑色光を発する緑色LED321bと、青色光を発する青色LED321cと、各LEDが発する光を集光して測定プローブ31に供給する一または複数の集光レンズ321dと、を有する。光源部321は、光学制御部327の制御のもと、赤色LED321a、緑色LED321bおよび青色LED321cのいずれかを発光させることにより、波長帯域が異なる複数の測定光(たとえば、赤:600nm〜700nm、緑:500nm〜600nm、青:400nm〜500nm)を順次切り換えて測定プローブ31に出力する。なお、光源部321は、赤色LED321a、緑色LED321bおよび青色LED321cを同時に発光させて測定プローブ31に照射してもよい。また、本実施の形態1では、光源部321がプローブ光源部として機能する。
受光部322は、測定プローブ31から出力された光であって生体組織S1で反射および/または散乱した測定光の戻り光を受光する。受光部322は、複数の分光測定器を用いて実現される。受光部322は、測定プローブ31から出力された反射および/または散乱した測定光の戻り光のスペクト成分および強度分布を測定して、各波長の測定を行う。受光部322は、測定結果を光学制御部327へ出力する。
入力部323は、プッシュ式のスイッチやタッチパネル等を用いて実現され、スイッチ等が操作されることによって、光学測定装置3の起動を指示する指示情報または他の各種の操作を指示する操作情報の入力を受けて光学制御部327へ出力する。
出力部324は、液晶または有機ELの表示ディスプレイおよびスピーカ等を用いて実現され、光学測定装置3における各種処理に関する情報を出力する。
記録部325は、揮発性メモリや不揮発性メモリを用いて実現され、光学測定装置3を動作させるための各種プログラム、光学測定処理に使用される各種データや各種パラメータを記録する。記録部325は、光学測定装置3の処理中の情報を一時的に記録する。
通信部326は、伝送ケーブル33を介して制御装置4との通信を行うための通信インターフェースである。光学測定装置3の測定結果を制御装置4に伝送するとともに、制御装置4から送信された指示信号や制御信号を光学制御部327へ出力する。
光学制御部327は、CPU(Central Processing Unit)等を用いて構成される。光学制御部327は、光学測定装置3の各部の処理動作を制御する。光学制御部327は、光学測定装置3の各構成に対する指示情報やデータの転送等を行うことによって、光学測定装置3の動作を制御する。光学制御部327は、受光部322による測定結果を記録部325に記録する。光学制御部327は、演算部327aを有する。演算部327aは、受光部322による測定結果に基づいて、複数の演算処理を行い、生体組織S1の性状に関わる特性値を演算する。この特性値の種別は、たとえば入力部323が受け付けた指示情報にしたがって設定される。
つぎに、制御装置4について説明する。制御装置4は、接続部41と、画像処理部42と、入力部43と、記録部44と、通信部45と、制御部46と、を備える。
接続部41は、ユニバーサルコード23の電気ケーブル(通信ケーブル)231が接続される。接続部41は、ユニバーサルコード23の電気ケーブル231を介して先端部211の観察窓(図示せず)の近傍に配置された撮像部211bで撮影されたデジタル信号である画像信号を受信して画像処理部42へ出力する。
画像処理部42は、接続部41から出力された画像信号に対して所定の画像処理を行って表示装置6へ出力する。具体的には、画像処理部42は、画像信号(画像データ)に対して、少なくとも、オプティカルブラック減算処理、ホワイトバランス(WB)調整処理、撮像素子がベイヤー配列の場合には画像信号の同時化処理、カラーマトリクス演算処理、ガンマ補正処理、色再現処理およびエッジ強調処理等を含む画像処理を行う。画像処理部42は、画像処理を施した画像信号に対してデジタル信号からアナログ信号に変換し、変換したアナログ信号の画像信号をハイビジョン方式等のフォーマットに変更して表示装置6へ出力する。これにより、表示装置6には、1枚の体内画像が表示される。
入力部43は、マウス、キーボードおよびタッチパネル等の操作デバイスを用いて実現され、内視鏡システム1の各種指示情報の入力を受け付ける。具体的には、入力部43は、被検体情報、内視鏡装置2の識別情報および検査内容等の各種指示情報の入力を受け付ける。
記録部44は、揮発性メモリや不揮発性メモリを用いて実現され、制御装置4および内視鏡光源装置5を動作させるための各種プログラムを記録する。記録部44は、制御装置4の処理中の情報を一時的に記録する。記録部44は、画像処理部42が画像処理を施した画像信号および光学測定装置3の測定結果を記録する。なお、記録部44は、制御装置4の外部から装着されるメモリカード等を用いて構成されてもよい。
通信部45は、伝送ケーブル33を介して光学測定装置3との通信を行うための通信インターフェースである。
制御部46は、CPU等を用いて実現される。制御部46は、制御装置4の各部の処理動作を制御する。制御部46は、制御装置4の各構成に対する指示情報やデータの転送等を行うことによって、制御装置4の動作を制御する。制御部46は、各ケーブルを介して内視鏡装置2、光学測定装置3および内視鏡光源装置5それぞれに接続されている。なお、本実施の形態1では、制御部46が切換部として機能する。
つぎに、内視鏡光源装置5について説明する。内視鏡光源装置5は、光源部51と、回転フィルタ52と、集光レンズ53と、光源ドライバ54と、モータ55と、モータドライバ56と、光源駆動制御部57と、を備える。
光源部51は、白色LEDまたはキセノンランプ等を用いて構成される。光源部51は、内視鏡装置2に供給する観察光(照明光)を発生する。
回転フィルタ52は、平板状をなし、光源部51が発する白色光の光路上に配置され、回転することにより、光源部51が発する観察光のうち所定の波長帯域を有する光のみを透過させる。具体的には、回転フィルタ52は、赤色光(R)、緑色光(G)、青色光(B)それぞれの波長帯域を有する光を透過させる赤色フィルタ521、緑色フィルタ522および青色フィルタ523を有する。回転フィルタ52は、回転することにより、赤、緑および青の波長帯域(たとえば、赤:600nm〜700nm、緑:500nm〜600nm、青:400nm〜500nm)を有する光を順次透過させる。これにより、光源部51が発する白色光は、狭帯域化した赤色光、緑色光、青色光いずれかの光を内視鏡装置2に順次出射することができる。
集光レンズ53は、光源部51が発した白色光の光路上に配置され、回転フィルタ52を透過した光を集光してユニバーサルコード23のライトガイドケーブルである照明ファイバ232に出射する。
光源ドライバ54は、光源駆動制御部57の制御のもと、光源部51に所定の電力を供給する。これにより、光源部51から発せられた光は、照明ファイバ232を介して挿入部21の先端部211の照明部211aから外部に照射される。
モータ55は、ステッピングモータやDCモータ等を用いて構成され、回転フィルタ52を回転動作させる。モータドライバ56は、光源駆動制御部57の制御のもと、モータ55に所定の電力を供給する。
光源駆動制御部57は、制御部46の制御のもと、制御部46から送信される駆動信号に基づいて、光源部51に供給する電流量および回転フィルタ52の駆動を制御する。
以上のように構成された内視鏡システム1において被検体の観察時に行う光学測定装置3および内視鏡光源装置5がそれぞれ異なる波長帯域の光を順次照射する際のタイミングについて説明する。図3は、光学測定装置3および内視鏡光源装置5がそれぞれ異なる波長帯域の光を順次照射する際のタイミングを示すタイミングチャートである。図3において、横軸が時間(t)を示す。
図3に示すように、まず、制御部46は、光源駆動制御部57に生体組織S1に対して赤色の波長帯域を有する観察光を出射させる駆動信号を送信する。この場合、光源駆動制御部57は、光源ドライバ54を駆動して光源部51を発光させるとともに、モータドライバ56を介してモータ55を駆動して、回転フィルタ52を回転させて白色LEDの光路上に赤色フィルタ521を移動させる。これにより、生体組織S1に対して内視鏡装置2の先端部211から赤色光の波長帯域を有する観察光が照射される(時間t1)。
続いて、制御部46は、光源駆動制御部57に白色LEDの発光を停止する停止信号を送信するとともに、光学測定装置3の光学制御部327に生体組織S1に対して赤色の波長帯域を有する測定光を出射させる駆動信号を送信する。この場合、光源駆動制御部57は、光源ドライバ54の駆動を停止させて光源部51の発光を停止する(時間t2)。これに対して、光学測定装置3の光学制御部327は、光源部321の赤色LED321aを発光させる。これにより、生体組織S1に対して光学測定装置3の照明ファイバ311から赤色光の波長帯域を有する測定光が照射される(時間t3)。
その後、制御部46は、光学測定装置3の光学制御部327に赤色LED321aの発光を停止する停止信号を送信するとともに、光源駆動制御部57に緑色光の波長帯域を有する観察光を出射させる駆動信号を送信する。この場合、光学制御部327は、赤色LED321aの発光を停止させる(時間t4)。これに対して、光源駆動制御部57は、光源ドライバ54を駆動して光源部51を発光させるとともに、モータドライバ56を駆動して回転フィルタ52を回転させて白色LEDの光路上に緑色フィルタ522を移動させる。これにより、生体組織S1に対して内視鏡装置2の先端部211から緑色光の波長帯域を有する観察光が照射される(時間t5)。なお、図3においては、光学測定装置3と内視鏡光源装置5とが非同期で異なる波長帯域の光をそれぞれ照射していたが、光学測定装置3と内視鏡光源装置5とを同期させながら異なる波長帯域を有する光(たとえば光学測定装置3が赤色光、内視鏡光源装置5が青色光)をそれぞれ照射してもよい。
以上説明した本発明の実施の形態1によれば、制御部46が光源駆動制御部57および光学制御部327をそれぞれ制御することにより、内視鏡光源装置5が発光する観察光の波長帯域と、光学測定装置3の光源部321が発する測定光の波長帯域とが異なる帯域に内視鏡光源装置5または光源部321を切り換える。この結果、内視鏡装置2による観察と、光学測定装置3の測定プローブ31による測定とを同時に行うことができるとともに、測定プローブ31による測定に対して内視鏡装置2の観察光の影響をなくし、精度の高い測定を行うことができる。
なお、本実施の形態1では、制御部46が光源駆動制御部57および光学制御部327をそれぞれ制御することにより、内視鏡光源装置5が発光する観察光の波長帯域と、光学測定装置3の光源部321が発する測定光の波長帯域とが異なるように内視鏡光源装置5または光源部321を切り換えていたが、光学制御部327が制御部46を介して内視鏡光源装置5が発光する観察光の波長帯域に関する狭帯域情報を取得し、取得した狭帯域情報に基づいて、光源部321が発する測定光の波長帯域を異なる帯域に切り替えてもよい。
(実施の形態2)
つぎに、本発明の実施の形態2について説明する。上述した実施の形態1では、光学測定装置の光源部と、内視鏡光源装置とがそれぞれ個別に設けられていたが、本発明の実施の形態2では、光学測定装置3の光源部321と内視鏡光源装置5とを一体的に設けられている。なお、以下においては、同一の構成には同一の符号を付して説明する。
図4は、本発明の実施の形態2にかかる光学測定装置の構成を示すブロック図である。図4に示すように、光学測定装置7は、光源部71と、コリメートレンズ72と、回転フィルタ73と、集光レンズ74,75と、モータ55と、モータドライバ56と、受光部322と、入力部323と、出力部324と、記録部325と、通信部326と、光学制御部327と、を備える。
光源部71は、白色LEDまたはキセノンランプ等の光源を用いて構成される。光源部71は、内視鏡装置2に供給する観察光および測定プローブ31の照明ファイバ311に供給する測定光を発生する。
コリメートレンズ72は、光源部71が発した光を回転フィルタ73に向けて平行にする。
回転フィルタ73は、光源部71が発した光の光路上に配置される。回転フィルタ73は、光源部71が発する光に対して所定の波長帯域を有する光のみを透過する。回転フィルタ73は、赤色光、緑色光、青色光それぞれの波長帯域を有する光を透過させる赤色フィルタ731、緑色フィルタ732および青色フィルタ733を有する。回転フィルタ73は、回転することにより、赤色光、緑色光、青色光の波長帯域を有する光を順次透過させる。これにより、回転フィルタ73は、光源部71が発する白色光に対して、赤色光、緑色光、青色光いずれかの波長帯域を有する光を内視鏡装置2の照明ファイバ232および測定プローブ31の照明ファイバ311に同時に出射することができる。
集光レンズ74は、光源部71が発する照明光の光路上に配置され、回転フィルタ73を透過した光を集光して測定プローブ31の照明ファイバ311に出射する。
集光レンズ75は、光源部71が発する照明光の光路上に配置され、回転フィルタ73を透過した光を集光して内視鏡装置2の照明ファイバ232に出射する。
以上のように構成された光学測定装置7において被検体の観察時に行う照明光のタイミングについて説明する。図5は、光学測定装置7が異なる波長の光を照射する際のタイミングを示すタイミングチャートである。図5において、横軸が時間(t)を示す。
図5に示すように、光学制御部327は、光源部71を発光させるとともに、モータドライバ56を介してモータ55を駆動して、内視鏡装置2が照射する観察光の波長と、測定プローブ31の照明ファイバ311が照射する測定光の波長とが異なるように回転フィルタ73を回転させる。これにより、内視鏡装置2が照射する観察光の波長を、赤、緑、青の順で生体組織S1に対して照射することができるとともに、測定プローブ31の照明ファイバ311が照射する測定光の波長を、青、赤、緑の順で生体組織S1に対して照射することができる。この結果、内視鏡装置2による観察と、光学測定装置7の測定プローブ31による測定とを同時に行うことができるとともに、測定プローブ31による測定に対して内視鏡装置2の観察光の影響をなくし、精度の高い測定を行うことができる。
以上説明した本発明の実施の形態2によれば、光学測定装置7の光源と、内視鏡装置2の光源とを一体的に設けているので、簡易な構成で内視鏡システム1を構成することができる。
(実施の形態3)
つぎに、本発明の実施の形態3について説明する。上述した実施の形態では、光学測定装置が出射する測定光の波長帯域と内視鏡光源部が出射する観察光の波長帯域とを異ならせていたが、本実施の形態3では、光学測定装置が受光する測定光の波長帯域と内視鏡光源装置が出射する観察光の波長帯域とを異なるように制御する。なお、以下において、上述した実施の形態と同一の構成には同一の符号を付して説明する。
図6は、本発明の実施の形態3にかかる内視鏡システム10の構成を模式的に示すブロック図である。図6に示す内視鏡システム10は、制御装置4、内視鏡光源装置5および光学測定装置8と、を備える。
光学測定装置8は、測定プローブ31と、本体部81と、を備える。本体部81は、入力部323と、出力部324と、記録部325と、通信部326と、光学制御部327と、光源部811と、集光レンズ812と、第1コリメートレンズ813と、第2コリメートレンズ814と、回転フィルタ815と、第1集光レンズ816と、第2集光レンズ817と、受光部818と、モータ819と、モータドライバ820と、を備える。
光源部811は、白色LEDまたはキセノンランプ等の光源を用いて構成される。光源部811は、測定プローブ31の照明ファイバ311に出射する測定光を発生する。集光レンズ812は、光源部811が出射した測定光を照明ファイバ311に集光する。
第1コリメートレンズ813および第2コリメートレンズ814は、受光ファイバ312が出射した生体組織S1で反射および/または散乱した測定光の戻り光をそれぞれ平行光にする。
回転フィルタ815は、受光ファイバ312が出射する戻り光の光路上に配置される。回転フィルタ815は、受光ファイバ312が出射する測定光の戻りに対して所定の波長帯域を有する光のみ透過させる。回転フィルタ815は、赤色光、緑色光、青色光それぞれの波長帯域を有する光を透過させる赤色フィルタ815a、緑色フィルタ815bおよび青色フィルタ815cを有する。回転フィルタ815は、回転することにより、赤色光、緑色光、青色光の波長帯域を有する光を順次透過させる。これにより、回転フィルタ815は、受光ファイバ312から出射される測定光の戻り光を赤色光、緑色光、青色光いずれかの波長帯域を有する光を受光部818に出射する。
受光部818は、測定プローブ31から出射された測定光の戻り光であって、第1集光レンズ816と、第2集光レンズ817および回転フィルタ815を透過した測定光の戻り光を受光して測定する。受光部818は、複数の分光測定器や受光センサを用いて実現される。受光部818は、測定プローブ31から出射された測定光の戻り光のスペクト成分および強度分布を測定して、各波長の測定を行う。受光部818は、測定結果を光学制御部327へ出力する。
モータ819は、ステッピングモータまたはDCモータ等を用いて構成され、回転フィルタ815を回転動作させる。モータドライバ820は、光学制御部327の制御のもと、モータ819に所定の電力を供給する。
このように構成された内視鏡システム10は、制御部46が光源駆動制御部57および光学制御部327をそれぞれ制御することにより、内視鏡光源装置5が出射する観察光の波長帯域と、受光部818が受光する測定光の戻り光の波長帯域とが異なるように回転フィルタ52および回転フィルタ815を回転させる。具体的には、内視鏡光源装置5が赤色の波長帯域を有する観察光を出射し、光学測定装置8が赤色の波長帯域以外、たとえば緑色または青色の波長帯域を有する測定光の戻り光を受光して生体組織S1の性状を測定する(たとえば、図3および図5を参照)。
以上説明した本発明の実施の形態3によれば、内視鏡装置2による観察と、光学測定装置8の測定プローブ31による測定とを同時に行うことができるとともに、測定プローブ31による測定に対して内視鏡装置2の観察光の影響をなくし、精度の高い測定を行うことができる。
なお、本実施の形態3では、制御部46が光源駆動制御部57および光学制御部327をそれぞれ制御することにより、内視鏡光源装置5が発光する観察光の波長帯域と、受光部818が受光する測定光の戻り光の波長帯域とが異なるように内視鏡光源装置5または回転フィルタ815を切り換えていたが、光学制御部327が制御部46を介して内視鏡光源装置5が発光する観察光の波長帯域に関する狭帯域情報を取得し、取得した狭帯域情報に基づいて、受光部818が受光する測定光の戻り光の波長帯域を異なる帯域になるように回転フィルタ815を切り替えてもよい。
(実施の形態4)
つぎに、本発明の実施の形態4について説明する。本実施の形態4では、生体測定対象物で反射および/または散乱した測定光の戻り光の波長帯域と内視鏡光源部が出射する観察光の波長帯域とを異なるように演算部が演算する測定光の戻り光の波長帯域を切り換える制御を行う。なお、以下において、上述した実施の形態と同一の構成には同一の符号を付して説明する。
図7は、本発明の実施の形態4にかかる内視鏡システムの構成を模式的に示すブロック図である。図7に示すように内視鏡システム100は、制御装置4と、内視鏡光源装置5および光学測定装置9と、を備える。
光学測定装置9は、測定プローブ31と、本体部91と、を備える。本体部91は、入力部323と、出力部324と、記録部325と、通信部326と、光学制御部327と、光源部911と、集光レンズ912と、第1分光器913と、第2分光器914と、を備える。
光源部911は、白色LEDまたはキセノンランプ等の光源を用いて構成される。光源部911は、測定プローブ31の照明ファイバ311に出射する測定光を発生する。集光レンズ912は、光源部911が出射した測定光を照明ファイバ311に集光する。
第1分光器913および第2分光器914は、測定プローブ31の受光ファイバ312から出射される生体組織S1で反射および/または散乱した測定光の戻り光をそれぞれ受光する。第1分光器913および第2分光器914は、測定プローブ31の受光ファイバ312から出射される生体組織S1で反射および/または散乱した測定光の戻り光のスペクトル成分の測定をそれぞれ行う。第1分光器913および第2分光器914は、測定結果をそれぞれ光学制御部327へ出力する。
以上のように構成された内視鏡システム100において被検体の観察時に行う観察光のタイミングと演算部327aによる測定光の戻り光の波長帯域との切り換えタイミングについて説明する。図8Aは、内視鏡光源装置5の回転フィルタ52の各フィルタの透過率スペクトル成分を示す図である。図8Bは、光学測定装置9の第1分光器913および第2分光器914でそれぞれ検出されるスペクトル成分のうち演算部327aが演算で用いる波長帯域を示す図である。図9は、内視鏡光源装置5が異なる波長帯域の観察光を照射する照射タイミングと光学測定装置9の第1分光器913および第2分光器914それぞれで検出されるスペクトル成分のうち演算部327aが演算で用いる波長帯域のタイミングを示す図である。なお、図8Aおよび図8Bにおいて、横軸が波長(λ)を示し、縦軸が強度を示す。また、図9において、横軸が時間(t)を示す。
図8A、図8Bおよび図9に示すように、制御部46は、光源駆動制御部57および光学制御部327を制御することにより、内視鏡光源装置5が出力する観察光の波長帯域と演算部327aが演算する生体組織S1で反射および/または散乱した測定光の戻り光の波長帯域とが異なるように切り換える制御を行う。具体的には、制御部46は、内視鏡光源装置5が赤色の波長帯域を有する観察光を出射する場合、演算部327aに測定光の戻り光における波長帯域に対して赤色の波長帯域(狭帯域情報)を除かせて演算させる(図8Bおよび図9を参照)。これにより、内視鏡光源装置5が出射する観察光の波長帯域を、赤、緑、青の順で生体組織S1に対して照射することができるとともに、演算部327aが内視鏡光源装置5による観察光の干渉がない波長帯域で生体組織S1の性状を演算することができる。この結果、内視鏡装置2による観察と、光学測定装置9の測定プローブ31による測定とを同時に行うことができるとともに、測定プローブ31による測定に対して内視鏡装置2の観察光の影響をなくし、精度の高い測定を行うことができる。
つぎに、光学測定装置9が実行する処理について説明する。図10は、光学測定装置9が実行する処理の概要を示すフローチャートである。
図10に示すように、光学測定装置9は、電源がオンされると(ステップS101:Yes)、光学測定装置9は、測定を開始する(ステップS102)。これに対して、電源がオンされていない場合(ステップS101:No)、光学測定装置9は、この判断を繰り返す。
光学制御部327は、入力部323を介して光学測定の終了指示信号が入力されたか否かを判断する(ステップS103)。光学測定の終了指示信号が入力されていないと光学制御部327が判断した場合(ステップS103:No)、光学測定装置9は、後述するステップS104へ移行する。これに対して、光学測定の終了指示信号が入力された光学制御部327が判断した場合(ステップS103:Yes)、光学測定装置9は、本処理を終了する。
ステップS104において、光学測定装置9は、測定処理を行う。具体的には、光学測定装置9は、光源部911に測定光を出射させ、第1分光器913および第2分光器914それぞれに受光ファイバ312から出射される測定光の戻り光を受光させて測定させる測定処理を実行する。
続いて、光学制御部327は、制御装置4を介して内視鏡光源装置5からの狭帯域情報の通知があるか否かを判断する(ステップS105)。制御装置4を介して内視鏡光源装置5からの狭帯域情報の通知があると光学制御部327が判断した場合(ステップS105:Yes)、光学測定装置9は、ステップS106へ移行する。
続いて、演算部327aは、第1分光器913および第2分光器914がそれぞれ出力した測定光の戻り光の波長帯域から内視鏡光源装置5が出射した観察光の狭帯域波長の成分を除去して生体組織S1の性状を演算する狭帯域波長データ除去処理を実行し(ステップS106)、演算結果を記録部325に記録するデータ記録処理を行う(ステップS107)。その後、光学測定装置9は、ステップS103へ戻る。
ステップS105において、制御装置4を介して内視鏡光源装置5からの狭帯域情報の通知がないと光学制御部327が判断した場合(ステップS105:No)、光学測定装置9は、ステップS107へ移行する。
以上説明した本発明の実施の形態4によれば、制御部46が光源駆動制御部57および光学制御部327をそれぞれ制御することにより、演算部327aが演算する測定光の戻り光から内視鏡光源装置5が出射した波長帯域の観察光の成分を除去して生体組織S1の性状を演算する。この結果、内視鏡装置2による観察と、光学測定装置9の測定プローブ31による測定とを同時に行うことができるとともに、測定プローブ31による測定に対して内視鏡装置2の観察光の影響をなくし、精度の高い測定を行うことができる。
なお、本実施の形態4では、制御部46が光源駆動制御部57および光学制御部327をそれぞれ制御することにより、演算部327aが演算する測定光の戻り光から内視鏡光源装置5が出射した波長帯域の観察光の成分を除去して生体組織S1の性状を演算していたが、光学制御部327が制御部46を介して内視鏡光源装置5が発光する観察光の波長帯域に関する狭帯域情報を取得し、取得した狭帯域情報に基づいて、演算部327aが演算する測定光の戻り光から内視鏡光源装置5が出射した波長帯域の観察光の成分を除去してもよい。
(実施の形態5)
つぎに、本発明の実施の形態5について説明する。本実施の形態5では、内視鏡光源装置が同時式で観察光を照射する。また、上述した実施の形態と同一の構成には同一の符号を付して説明する。
図11は、本発明の実施の形態5にかかる内視鏡システム110の構成を模式的に示すブロック図である。図11に示すように、内視鏡システム110は、制御装置4と、光学測定装置9と、内視鏡光源装置120と、を備える。
内視鏡光源装置120は、光源部51と、集光レンズ53と、光源ドライバ54と、光源駆動制御部57と、狭帯域フィルタ121と、モータ122と、モータドライバ123と、を備える。
狭帯域フィルタ121は、光源部51が出射する観察光に対して所定の波長帯域のみの光を透過させる。具体的には、図12に示すように、狭帯域フィルタ121は、狭帯域化したG(緑色)、B(青色)の成分の光を透過する。この狭帯域化した光としては、たとえば血液中のヘモグロビンに吸収されやすくなるように狭帯域化された青色光(たとえば青色光:400nm〜500nm)および緑色光(たとえば緑色光:500nm〜600nm)の2種類の帯域のNBI(Narrow Band Imaging)光を挙げることができる。
モータ122は、ステッピングモータまたはDCモータ等を用いて構成され、狭帯域フィルタ121を光源部51が出射する観察光の光路上に移動または観察光の光路上から退避させる。モータドライバ123は、光源駆動制御部57の制御のもと、モータ122に所定の電力を供給する。
以上のように構成された内視鏡システム110において被検体の観察時に行う観察光のタイミングと演算部327aが演算する際に用いる測定光の戻り光の周波数帯域との切り換えタイミングについて説明する。図13は、内視鏡光源装置120が狭帯域の観察光を出射時に演算部327aが第1分光器913および第2分光器914が受光した測定光の戻り光の波長帯域から演算に用いるスペクト成分を示す図である。なお、図13において、横軸が波長(λ)を示す。
図13に示すように、制御部46は、光源駆動制御部57および光学制御部327を制御することにより、内視鏡光源装置120が出射する観察光の波長帯域と異なるように演算部327aが演算する際に用いる生体組織S1で反射および/または散乱した測定光の戻り光の波長帯域を切り換える制御を行う。具体的には、制御部46は、内視鏡光源装置120が狭帯域の観察光を出射している場合、演算部327aに測定光の戻り光における波長帯域に対して狭帯域を除かせて演算させる(図13を参照)。これにより、内視鏡光源装置120による観察と、光学測定装置9の測定プローブ31による測定とを同時に行うことができるとともに、測定プローブ31による測定に対して内視鏡光源装置120の観察光の影響をなくし、精度の高い測定を行うことができる。
つぎに、内視鏡システム110が実行する処理について説明する。図14は、光学測定装置9が実行する処理の概要を示すフローチャートである。
ステップS201〜ステップ207は、図10のステップ101〜ステップS107にそれぞれ対応する。
以上説明した本発明の実施の形態5によれば、制御部46が光源駆動制御部57および光学制御部327をそれぞれ制御することにより、演算部327aが演算する測定光の戻り光から内視鏡光源装置120が出射した狭帯域の観察光の成分を除去して生体組織S1の性状を演算する。この結果、内視鏡装置2による観察と、光学測定装置8の測定プローブ31による測定とを同時に行うことができるとともに、測定プローブ31による測定に対して内視鏡装置2の観察光の影響をなくし、精度の高い測定を行うことができる。
なお、本実施の形態5では、制御部46が光源駆動制御部57および光学制御部327をそれぞれ制御することにより、演算部327aが演算する測定光の戻り光から内視鏡光源装置120が出射した波長帯域の観察光の成分を除去して生体組織S1の性状を演算していたが、光学制御部327が制御部46を介して内視鏡光源装置120が発光する観察光の波長帯域に関する狭帯域情報を取得し、取得した狭帯域情報に基づいて、演算部327aが演算する測定光の戻り光から内視鏡光源装置120が出射した波長帯域の観察光の成分を除去してもよい。
(参考例)
上述した実施の形態にかかる光学測定装置は、異なる波長帯域の光を照射していたが、一つの波長帯域を有する光を照射することで、測定プローブによる測定に対して内視鏡装置の照明光の影響をなくし、精度の高い測定を行うことができる。
図15は、本発明の実施の形態にかかる参考例の内視鏡システム130の構成を示すブロック図である。なお、図15においては、上述した実施の形態で説明した内視鏡システムと同じ構成を有する部位について同一の符号を付し、説明を省略する。
図15に示すように、内視鏡システム130は、制御装置4と、光学測定装置140と、内視鏡光源装置150と、を備える。
光学測定装置140は、受光部322と、入力部323と、出力部324と、記録部325と、通信部326と、光学制御部327と、光源部141と、を備える。光源部141は、白色光を発する白色LED142と、集光レンズ321dと、を有する。
内視鏡光源装置150は、集光レンズ53と、光源ドライバ54と、光源駆動制御部57と、光源部151と、を備える。光源部151は、白色LEDまたはキセノンランプ等を用いて構成される。
以上のように構成された内視鏡システム130が観察時に行う光学測定装置140および内視鏡光源装置150がそれぞれ照射する照明光のタイミングについて説明する。図16は、光学測定装置140および内視鏡光源装置150がそれぞれ照射する照明光のタイミングを示すタイミングチャートである。図16において、横軸が時間(t)を示し、縦軸が発光強度を示す。
図16に示すように、制御部46は、光源駆動制御部57に生体組織S1に対して観察光を照射させる駆動信号を送信する。この場合、光源駆動制御部57は、光源部151を駆動して白色光を発光させる(時間t1)。
続いて、制御部46は、光学測定装置140による光学測定を行う期間(時間t2〜時間t5)、光源駆動制御部57に光源部151の発光強度を光学測定装置140による光学測定に影響がないレベルまで低下させる指示信号を送信するとともに、光学測定装置140の光学制御部327に生体組織S1に対して白色光の測定光を照射させる駆動信号を送信する。この場合において、光源駆動制御部57は、光源部151に供給する電力を低下させることにより、光源部151が発する観察光の強度を光学測定装置140による光学測定に影響がないレベルまで低下させる(時間t2)。これに対して、光学制御部327は、光源部141の白色LED142を駆動して測定光を発光させる(時間t3)。このとき、内視鏡光源装置150が照射する観察光は、低下するが、先端部211の撮像素子で被検体内の通常観察画像を撮影することができる。
その後、制御部46は、光学測定装置140の光学制御部327に発光を停止する停止信号を送信するとともに、光源駆動制御部57に光源部151の発光強度を元に戻す駆動信号を送信する。この場合、光学制御部327は、光源部141の発光を停止させる(時間t4)。これに対して、光源駆動制御部57は、光源部151に供給する電力を元に戻すことにより、光源部151が発する観察光の発光強度を元に戻す。
以上説明した本発明の実施の形態にかかる参考例によれば、制御部46が光学測定装置140による測定期間(時間t2〜時間t5)において、内視鏡光源装置150の光源部151が発する照明光の発光強度を低下させる。これにより、光学測定装置140による測定に対して内視鏡光源装置150の観察光の影響を低下させることができ、精度の高い測定を行うことができる。
また、本発明の実施の形態にかかる参考例によれば、光学測定装置140による測定を行う際に、内視鏡光源装置150の照明光を停止させることがないので、通常観察画像を確認しながら測定プローブ31の操作および測定を行うことができる。
なお、上述した本発明の実施の形態にかかる参考例では、制御部46が光学測定装置140による測定期間(時間t2〜時間t5)において、内視鏡光源装置150の光源部151が発する観察光の発光強度を低下させていたが、光学測定装置140による測定の期間が撮像素子の1フレーム以下で終了する場合、内視鏡光源装置150の光源部151が発する観察光を停止または遮断するようにしてもよい。
1,10,100,110,130 内視鏡システム
2 内視鏡装置
3,7,8,140 光学測定装置
4 制御装置
5,120,150 内視鏡光源装置
6 表示装置
21 挿入部
22 操作部
23 ユニバーサルコード
31 測定プローブ
32 本体部
33 伝送ケーブル
41 接続部
42 画像処理部
43,323 入力部
44 記録部
45,326 通信部
46,327 制御部
51,71,151,321,911,811 光源部
52,73,815 回転フィルタ
53,74,75,812,816,817,912 集光レンズ
54 光源ドライバ
55,122,819 モータ
56,123,820 モータドライバ
57 光源駆動制御部
72,813,814 コリメートレンズ
121 狭帯域フィルタ
211 先端部
211a 照明部
211b 撮像部
322,818 受光部
324 出力部
327 光学制御部
327a 演算部
913 第1分光器
914 第2分光器

Claims (4)

  1. 被検体の内部に挿入される挿入部を有し、該挿入部に設けられた撮像部によって前記被検体の内部を撮像して画像信号を生成する内視鏡と、前記挿入部を介して前記被検体の内部に挿入される測定プローブを有する光学測定装置と、を備えた内視鏡システムであって、
    前記挿入部から対象物を観察するため、複数の波長帯域の観察光を切り換えて出力可能な内視鏡光源部と、
    前記測定プローブを介して前記対象物の特性を測定するため、測定光を出力するプローブ光源部と、
    前記測定光が前記対象物で反射および/または散乱して戻ってきた戻り光を、前記測定プローブを介して受光して分光する分光器と、
    記分光器が分光した結果に基づいて、前記対象物の特性を演算する演算部と、
    前記戻り光から、前記内視鏡光源部が出力する前記観察光の波長帯域の成分を除去して演算するように前記演算部を制御する制御部と、
    備えることを特徴とする内視鏡システム。
  2. 被検体の内部に挿入される挿入部を有し、該挿入部に設けられた撮像部によって前記被検体の内部を撮像して画像信号を生成する内視鏡と、前記挿入部を介して前記被検体の内部に挿入される測定プローブを有する光学測定装置と、を備えた内視鏡システムであって、
    前記挿入部から対象物を観察するため、複数の波長帯域の観察光を切り換えて出力可能な内視鏡光源部と、
    前記測定プローブを介して前記対象物の特性を測定するため、測定光を出力するプローブ光源部と、
    所定の波長帯域を透過する複数のフィルタが設けられた回転フィルタを有し、前記測定光が前記対象物で反射および/または散乱して戻ってきた戻り光を、前記測定プローブおよび前記回転フィルタを介して受光する受光部と、
    記内視鏡光源部が出力する前記観察光の波長帯域と前記受光部が受光する前記戻り光の波長帯域とが異なるように前記回転フィルタを回転させる制御を行う制御部と、
    備えたことを特徴とする内視鏡システム。
  3. 内視鏡の挿入部を介して挿入される測定プローブを備え、前記内視鏡に複数の波長帯域の観察光を切り換えて出力可能な内視鏡光源部を御する制御装置と双方向に通信可能な光学測定装置であって、
    前記測定プローブを介して対象物の特性を測定するため、測定光を出力するプローブ光源部と、
    前記測定光が前記対象物で反射および/または散乱して戻ってきた戻り光を、前記測定プローブを介して受光して分光する分光器と、
    記分光器が分光した結果に基づいて、前記対象物の特性を演算する演算部と、
    前記戻り光から、前記内視鏡光源部が出力する前記観察光の波長帯域の成分を除去して演算するように前記演算部を制御する制御部と、
    備えたことを特徴とする光学測定装置。
  4. 内視鏡の挿入部を介して挿入される測定プローブを備え、前記内視鏡に複数の波長帯域の観察光を切り換えて出力可能な内視鏡光源部を御する制御装置と双方向に通信可能な光学測定装置であって、
    前記測定プローブを介して対象物の特性を測定するため、測定光を出力するプローブ光源部と、
    所定の波長帯域を透過する複数のフィルタが設けられた回転フィルタを有し、前記測定光が前記対象物で反射および/または散乱して戻ってきた戻り光を、前記測定プローブおよび前記回転フィルタを介して受光する受光部と、
    記内視鏡光源部が出力する前記観察光の波長帯域と前記受光部が受光する前記戻り光の波長帯域とが異なるように前記回転フィルタを回転させる制御を行う制御部と、
    備えたことを特徴とする光学測定装置。
JP2013554721A 2012-04-10 2013-04-05 光学測定装置および内視鏡システム Expired - Fee Related JP5555386B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261622257P 2012-04-10 2012-04-10
US61/622,257 2012-04-10
PCT/JP2013/060555 WO2013154061A1 (ja) 2012-04-10 2013-04-05 光学測定装置および内視鏡システム

Publications (2)

Publication Number Publication Date
JP5555386B2 true JP5555386B2 (ja) 2014-07-23
JPWO2013154061A1 JPWO2013154061A1 (ja) 2015-12-17

Family

ID=49327625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013554721A Expired - Fee Related JP5555386B2 (ja) 2012-04-10 2013-04-05 光学測定装置および内視鏡システム

Country Status (5)

Country Link
US (1) US9307910B2 (ja)
EP (1) EP2837321A4 (ja)
JP (1) JP5555386B2 (ja)
CN (1) CN104080390A (ja)
WO (1) WO2013154061A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105530850B (zh) * 2013-09-11 2018-05-29 奥林巴斯株式会社 接触检测装置、光学测量装置以及接触检测方法
WO2015186691A1 (ja) * 2014-06-03 2015-12-10 オリンパス株式会社 内視鏡システム、光学測定装置および特性値演算方法
JPWO2017169732A1 (ja) * 2016-03-28 2019-02-14 オリンパス株式会社 計測装置及び計測方法
US10401610B2 (en) 2016-07-15 2019-09-03 Canon Usa, Inc. Spectrally encoded probe with multiple diffraction orders
JP6704831B2 (ja) * 2016-10-20 2020-06-03 株式会社ミツトヨ クロマティック共焦点センサ
US10898068B2 (en) 2016-11-01 2021-01-26 Canon U.S.A., Inc. Multi-bandwidth spectrally encoded endoscope
JP6438178B1 (ja) * 2017-04-27 2018-12-12 オリンパス株式会社 光源システム
JP7256876B2 (ja) * 2019-07-23 2023-04-12 オリンパス株式会社 物性値計測方法、及び物性値算出装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02299634A (ja) * 1989-05-15 1990-12-11 Hamamatsu Photonics Kk 癌診断装置
JPH03163410A (ja) * 1989-11-21 1991-07-15 Olympus Optical Co Ltd 内視鏡計測装置
JPH04297222A (ja) * 1991-02-01 1992-10-21 Olympus Optical Co Ltd 電子内視鏡装置
JPH09248281A (ja) * 1996-03-14 1997-09-22 Olympus Optical Co Ltd 内視鏡分光装置
JP2001137187A (ja) * 1999-11-11 2001-05-22 Asahi Optical Co Ltd 通常光照明と特殊波長光照明との切換可能な電子内視鏡システム
JP2009537014A (ja) * 2006-05-12 2009-10-22 ノースウェスタン ユニバーシティ 低コヒーレンスの高められた後方散乱分光法のシステム、方法および装置
JP2010063839A (ja) * 2008-09-12 2010-03-25 Olympus Corp 内視鏡装置
JP2010227200A (ja) * 2009-03-26 2010-10-14 Rohm Co Ltd 内視鏡

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5749830A (en) * 1993-12-03 1998-05-12 Olympus Optical Co., Ltd. Fluorescent endoscope apparatus
CN101785685A (zh) * 2010-03-16 2010-07-28 广州市番禺区胆囊病研究所 一体化硬质超声宫腔镜***

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02299634A (ja) * 1989-05-15 1990-12-11 Hamamatsu Photonics Kk 癌診断装置
JPH03163410A (ja) * 1989-11-21 1991-07-15 Olympus Optical Co Ltd 内視鏡計測装置
JPH04297222A (ja) * 1991-02-01 1992-10-21 Olympus Optical Co Ltd 電子内視鏡装置
JPH09248281A (ja) * 1996-03-14 1997-09-22 Olympus Optical Co Ltd 内視鏡分光装置
JP2001137187A (ja) * 1999-11-11 2001-05-22 Asahi Optical Co Ltd 通常光照明と特殊波長光照明との切換可能な電子内視鏡システム
JP2009537014A (ja) * 2006-05-12 2009-10-22 ノースウェスタン ユニバーシティ 低コヒーレンスの高められた後方散乱分光法のシステム、方法および装置
JP2010063839A (ja) * 2008-09-12 2010-03-25 Olympus Corp 内視鏡装置
JP2010227200A (ja) * 2009-03-26 2010-10-14 Rohm Co Ltd 内視鏡

Also Published As

Publication number Publication date
CN104080390A (zh) 2014-10-01
US20140180131A1 (en) 2014-06-26
WO2013154061A1 (ja) 2013-10-17
EP2837321A1 (en) 2015-02-18
US9307910B2 (en) 2016-04-12
EP2837321A4 (en) 2016-03-02
JPWO2013154061A1 (ja) 2015-12-17

Similar Documents

Publication Publication Date Title
JP5555386B2 (ja) 光学測定装置および内視鏡システム
JP5466182B2 (ja) 内視鏡システムおよび内視鏡システムの作動方法
US10806336B2 (en) Endoscopic diagnosis apparatus, lesion portion size measurement method, program, and recording medium
US20150018645A1 (en) Disposable calibration end-cap for use in a dermoscope and other optical instruments
JP5752423B2 (ja) 分光計測システムおよび分光計測システムの作動方法
US8979737B2 (en) Control apparatus, bio-optical measurement apparatus and endoscope system
EP3275358A1 (en) Endoscopic diagnosis device, image processing method, program and recording medium
KR101260291B1 (ko) 구강질환 진단을 위한 광 특성 기반의 치과용 복합 진단장치
JP4459710B2 (ja) 蛍光観察内視鏡装置
US20170354315A1 (en) Endoscopic diagnosis apparatus, image processing method, program, and recording medium
JP2006043002A (ja) 内視鏡観察装置および内視鏡観察方法
WO2013133341A1 (ja) 光学測定装置
JP2003180617A (ja) 蛍光診断用システム
JP5948191B2 (ja) 内視鏡用プローブ装置及び内視鏡システム
WO2015182674A1 (ja) 制御装置、生体光学測定装置および内視鏡システム
WO2015186691A1 (ja) 内視鏡システム、光学測定装置および特性値演算方法
JP2010022464A (ja) 画像取得方法および装置
JP2014073149A (ja) 内視鏡装置
WO2011162721A1 (en) Method and system for performing tissue measurements

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140530

R150 Certificate of patent or registration of utility model

Ref document number: 5555386

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees