JP5550013B2 - Magnetic nanocomposite and method for producing the same - Google Patents

Magnetic nanocomposite and method for producing the same Download PDF

Info

Publication number
JP5550013B2
JP5550013B2 JP2010080865A JP2010080865A JP5550013B2 JP 5550013 B2 JP5550013 B2 JP 5550013B2 JP 2010080865 A JP2010080865 A JP 2010080865A JP 2010080865 A JP2010080865 A JP 2010080865A JP 5550013 B2 JP5550013 B2 JP 5550013B2
Authority
JP
Japan
Prior art keywords
fine particles
sintering
sintered body
magnetic
mno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010080865A
Other languages
Japanese (ja)
Other versions
JP2011214026A (en
Inventor
健 廣田
将樹 加藤
元基 小幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doshisha
Original Assignee
Doshisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doshisha filed Critical Doshisha
Priority to JP2010080865A priority Critical patent/JP5550013B2/en
Publication of JP2011214026A publication Critical patent/JP2011214026A/en
Application granted granted Critical
Publication of JP5550013B2 publication Critical patent/JP5550013B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、磁性ナノコンポジット、特にMg(MnFe1−xフェライト/パーマロイFe−Ni合金系・ナノ磁性コンポジット、及びその製造方法に関する。 The present invention, the magnetic nanocomposite, especially Mg (Mn x Fe 1-x ) 2 O 4 ferrite / permalloy Fe-Ni alloy system nano magnetic composite, and a method of manufacturing the same.

電子機器に使用される軟磁性材料には、高い飽和磁束密度(B)を有し、かつ、高周波領域で使用可能な高い電気抵抗率(ρ)と高い透磁率(μ)を有することが求められているが、単相のバルク磁性材料でこれらの要求を満足するものは知られていない。
飽和磁束密度の高い金属磁性材料粒子の表面を高電気抵抗のフェライトで被覆して緻密化した複合材料(磁性ナノコンポジット)は、両者の長所を合わせもつ高周波用磁性材料として期待できるが、金属と酸化物という全く性質の異なる物質を熱処理によって緻密化することは、熱平衡下での酸化物の還元・分解や磁性金属の酸化、金属と酸化物間の塑性変形能の差異等により、通常の粉末冶金のプロセスでの製造は至難となっている。
これまでの、高周波領域で使用可能な高効率化・小型化に対応した磁性材料の研究事例としては、例えば、以下の非特許文献1〜4に示されるものが挙げられ、これら非特許文献には、センダスト(85Fe‐9.5Si‐5.5Al系(重量%))と酸化物皮膜との熱間静水圧プレス(HIP)を用いた焼結(非特許文献1)、MgFeとスーパーセンダスト(86.5Fe‐6Si‐4Al‐3.5Ni系(重量%))との混合粉体の放電プラズマ焼結(非特許文献2)、テルミット法による鉄‐フェライト複合粉体を合成する方法(非特許文献3)、酸化処理および蒸着処理により作製したZnフェライト被覆鉄粉の作製(非特許文献4)がそれぞれ開示されている。
Soft magnetic materials used in electronic equipment have a high saturation magnetic flux density (B s ) and a high electrical resistivity (ρ) and high magnetic permeability (μ) that can be used in a high frequency region. Although required, no single-phase bulk magnetic material that satisfies these requirements is known.
A composite material (magnetic nanocomposite), in which the surface of metal magnetic material particles with high saturation magnetic flux density is coated with high electrical resistance ferrite and densified, can be expected as a high-frequency magnetic material that combines the advantages of both. Densification of materials with completely different properties, such as oxides, is due to the reduction or decomposition of oxides under thermal equilibrium, oxidation of magnetic metals, differences in plastic deformability between metals and oxides, etc. Manufacturing in the metallurgical process has become difficult.
Examples of research on magnetic materials that are compatible with high efficiency and downsizing that can be used in the high-frequency region so far include, for example, those shown in Non-Patent Documents 1 to 4 below. Is sintered using a hot isostatic press (HIP) of Sendust (85Fe-9.5Si-5.5Al system (wt%)) and an oxide film (Non-patent Document 1), MgFe 2 O 4 and Discharge plasma sintering of powder mixture with super sendust (86.5Fe-6Si-4Al-3.5Ni system (wt%)) (Non-patent Document 2), Method of synthesizing iron-ferrite composite powder by thermite method (Non-Patent Document 3), preparation of Zn ferrite-coated iron powder produced by oxidation treatment and vapor deposition treatment (Non-Patent Literature 4) is disclosed.

廣田他, 粉体および粉末冶金, 48, 174-176 (2001)Iwata et al., Powder and Powder Metallurgy, 48, 174-176 (2001) 廣田他, Mater. Res. Bull., 35, 1137-41 (2000)Hamada et al., Mater. Res. Bull., 35, 1137-41 (2000) 廣田他, 粉体および粉末冶金, 39, 1015-18 (1992)Iwata et al., Powder and Powder Metallurgy, 39, 1015-18 (1992) 五十嵐他, 粉体粉末冶金協会講演概要集平成16年度春季大会, 1-34A (2004)Igarashi et al., Proceedings of the Powder and Powder Metallurgy Association, Spring Meeting 2004, 1-34A (2004)

しかしながら、高温で焼結を行った場合、Fe-Ni系高透磁率磁性合金のパーマロイが酸化されて、同時に逆にフェライトは還元され、また、磁性金属と酸化物粉体の混合原料からなる成形体に圧力を加えて緻密化させる時、金属粒子の塑性変形に対してフェライトが追従できなくなって、金属粒子同士が接触するという問題点があるため、これまでに高周波領域においても使用できる充分に高い磁束密度・透磁率および電気抵抗を有した軟磁性材料が作製されていないのが現状である。   However, when sintered at high temperature, the permalloy of Fe-Ni high magnetic permeability magnetic alloy is oxidized, and at the same time, ferrite is reduced, and the molding is made of a mixed raw material of magnetic metal and oxide powder. When pressure is applied to the body to make it dense, there is a problem that the ferrite cannot follow the plastic deformation of the metal particles and the metal particles come into contact with each other. At present, no soft magnetic material having a high magnetic flux density / permeability and electrical resistance has been produced.

本発明は、高周波領域においても使用可能な高磁束密度・高透磁率および高電気抵抗を有した磁性ナノコンポジット、特にMg(MnFe1−xフェライト/パーマロイFe−Ni合金系・ナノ磁性コンポジット、並びに当該磁性ナノコンポジットの製造方法を提供することを課題とする。
本発明者等は、金属磁性材料として、N‐アトマイズ法で製造し高磁気特性を有するパーマロイ(Fe‐Ni)合金を用い、電気的絶縁層を形成する磁性酸化物として、低温での塑性変形能が高い酸化マグネシウムMgOを構成成分とするMgフェライト系を用い、このMgフェライトに、フェライト層の磁気特性を向上させるためにMnを添加し
てこれらを複合化した新軟磁性材料の開発を行った結果、合金粒子表面にMgO微粒子及びFe微粒子、好ましくはさらにMnO微粒子、を均一にコーティングした後、高静水圧下で相対密度80%以上に成形し、さらに高速昇温可能なパルス通電加圧焼結(SPS)により、金属酸化物の混合物をフェライト層とし、かつ試料全体を相対密度92%以上に緻密化した後、熱間静水圧プレス(HIP)で金属/フェライト相が残存するようにして熱処理条件を最適化すると、高周波領域でも電気・磁気損失の少ない磁性ナノコンポジット、Mg(MnFe1−x(0≦x≦0.4)が得られることを見出して、本発明を完成した。
The present invention, the magnetic nanocomposite having a high magnetic flux density, high magnetic permeability and high electrical resistance that can be used in a high frequency range, in particular Mg (Mn x Fe 1-x ) 2 O 4 ferrite / permalloy Fe-Ni alloy system It is an object to provide a nanomagnetic composite and a method for producing the magnetic nanocomposite.
The present inventors use a permalloy (Fe—Ni) alloy produced by the N 2 -atomizing method as a metal magnetic material and having high magnetic properties, and as a magnetic oxide for forming an electrically insulating layer, plasticity at a low temperature. Development of a new soft magnetic material that uses Mg ferrite with a highly deformable magnesium oxide MgO as a constituent component and adds Mn to this Mg ferrite to improve the magnetic properties of the ferrite layer and combine them. As a result, the surface of the alloy particles is uniformly coated with MgO fine particles and Fe 2 O 3 fine particles, preferably MnO fine particles, and then molded to a relative density of 80% or more under high hydrostatic pressure, and further high temperature increase is possible. By applying pulsed current pressure sintering (SPS), the metal oxide mixture is made into a ferrite layer and the entire sample is densified to a relative density of 92% or more, and then the hot isostatic pressing is performed. If the metal / ferrite phase scan (HIP) to optimize to the heat treatment conditions so that the remaining, less magnetic nanocomposite of electric and magnetic loss in a high frequency region, Mg (Mn x Fe 1- x) 2 O 4 (0 ≦ The present invention was completed by finding that x ≦ 0.4) was obtained.

前記課題を解決可能な本発明のMg(MnFe1−xフェライト/パーマロイFe‐Ni合金系・ナノ磁性コンポジットは、パーマロイFe‐Ni合金粒子の表面が、Mg(MnFe1−x(0≦x≦0.4)からなるフェライト層にて被覆された状態で緻密化された微細構造を有することを特徴とする。
又、本発明のMg(MnFe1−xフェライト/パーマロイFe‐Ni合金系・ナノ磁性コンポジット(0≦x≦0.4)の製造方法は、
工程A:Mg(MnFe1−x(0≦x≦0.4)となる量の、MgO微粒子、Fe微粒子及びMnO微粒子をそれぞれ秤量し、当該MgO微粒子、Fe微粒子及びMnO微粒子をFe‐Ni合金粉末と混合することによってコーティングを行い、前記Fe‐Ni合金粉末の表面が、前記MgO微粒子、Fe微粒子及びMnO微粒子からなる金属酸化物の混合物により被覆されたコンポジット粉末を製造する工程、
工程B:前記工程Aで得られたコンポジット粉末を仮成形し、得られた仮成形体に超高静水圧プレスにて圧力を加えて成形体を製造する加圧工程、
工程C:前記工程Bで得られた成形体をパルス通電加圧焼結することにより、前記金属酸化物の混合物をフェライト相とし、相対密度が92%以上の焼結体を製造するパルス通電加圧焼結工程、及び
工程D:前記工程Cで得られた焼結体を熱間静水圧プレスで処理し、焼結体の相対密度94%以上とする熱間静水圧プレス工程
を含むことを特徴とする。
The Mg (Mn x Fe 1-x ) 2 O 4 ferrite / permalloy Fe-Ni alloy system / nanomagnetic composite of the present invention that can solve the above-mentioned problems is obtained when the surface of the permalloy Fe-Ni alloy particles is Mg (Mn x Fe 1-x ) 2 O 4 (0 ≦ x ≦ 0.4) having a fine structure that is densified in a state of being covered with a ferrite layer.
In addition, the production method of the Mg (Mn x Fe 1-x ) 2 O 4 ferrite / permalloy Fe-Ni alloy system / nanomagnetic composite (0 ≦ x ≦ 0.4) of the present invention is as follows:
Step A: MgO fine particles, Fe 2 O 3 fine particles, and MnO fine particles in amounts such that Mg (Mn x Fe 1-x ) 2 O 4 (0 ≦ x ≦ 0.4) are weighed, and the MgO fine particles, Fe Coating is performed by mixing 2 O 3 fine particles and MnO fine particles with Fe—Ni alloy powder, and the surface of the Fe—Ni alloy powder is made of a metal oxide composed of the MgO fine particles, Fe 2 O 3 fine particles, and MnO fine particles. Producing a composite powder coated with the mixture,
Step B: Pressurizing step of temporarily molding the composite powder obtained in Step A above and producing a molded body by applying pressure to the obtained temporary molded body with an ultrahigh hydrostatic pressure press,
Step C: Pulsed energization for producing a sintered body having a relative density of 92% or more by converting the metal oxide mixture into a ferrite phase by subjecting the formed body obtained in Step B to pulse energization and pressure sintering. Pressure sintering step, and step D: including a hot isostatic pressing step in which the sintered body obtained in the step C is processed by hot isostatic pressing to make the relative density of the sintered body 94% or more. Features.

又、本発明は、上記の特徴を有した製造方法において、上記工程Cにおけるパルス通電加圧焼結が、不活性ガス雰囲気下、焼結温度450〜550℃、加圧力50〜150MPa、焼結時間3〜10分の条件にて行われることを特徴とするものでもある。   Further, the present invention provides a manufacturing method having the above-described characteristics, in which the pulsed current pressure sintering in the step C is performed under a inert gas atmosphere, a sintering temperature of 450 to 550 ° C., a pressure of 50 to 150 MPa, It is also characterized by being performed under conditions of time 3 to 10 minutes.

更に、本発明は、上記の特徴を有した製造方法において、上記工程Dにおける熱間静水圧プレス処理が、圧力100MPa以上の不活性ガス雰囲気下で700℃〜900℃未満の温度を一定時間維持して熱処理を行うことを特徴とするものでもある。   Furthermore, the present invention provides a manufacturing method having the above-described features, wherein the hot isostatic pressing in the step D maintains a temperature of 700 ° C. to less than 900 ° C. for a certain time in an inert gas atmosphere having a pressure of 100 MPa or more. Then, heat treatment is performed.

本発明の製造方法の場合、AlやSiを含まない磁性合金を採用することで、熱処理後に金属/フェライト間の界面に非磁性酸化物のSiOやAlが生成せず、コンポジットの磁気特性の劣化が少なくなるという利点がある。また、塑性変形するMgO微粒子を磁性金属粒子の表面に均一にコーティングすることにより、最終的にはコンポジット内のフェライト層の膜厚が一定となり、良好な電気的絶縁層を形成させることができる。
本発明の製造方法を用いることによって、金属粒子と酸化物間の固相反応を出来るだけ抑制し、金属粒子の粒界を完全にフェライト層で被覆して、金属粒子相互の直接接触を防止し、試料全体の電気抵抗を高め、高周波領域でも電気・磁気損失の少ない磁性ナノコンポジットを製造することができる。
In the case of the production method of the present invention, by adopting a magnetic alloy containing no Al or Si, non-magnetic oxide SiO 2 or Al 2 O 3 is not generated at the metal / ferrite interface after the heat treatment, and the composite There is an advantage that the deterioration of magnetic characteristics is reduced. In addition, by uniformly coating the surface of the magnetic metal particles with the plastically deformed MgO fine particles, the thickness of the ferrite layer in the composite is finally constant, and a good electrical insulating layer can be formed.
By using the production method of the present invention, the solid phase reaction between the metal particles and the oxide is suppressed as much as possible, and the grain boundaries of the metal particles are completely covered with a ferrite layer to prevent direct contact between the metal particles. It is possible to increase the electrical resistance of the entire sample and to produce a magnetic nanocomposite with little electric / magnetic loss even in a high frequency region.

本発明の製造方法における製造手順(実験手順)を示すフローチャートである。It is a flowchart which shows the manufacture procedure (experiment procedure) in the manufacturing method of this invention. パルス通電加圧焼結(SPS)によって得られた焼結体のX線回折(XRD)パターンである。It is an X-ray diffraction (XRD) pattern of the sintered compact obtained by pulse electric current pressure sintering (SPS). 熱間静水圧プレス(HIP)処理時の温度が700℃、800℃、900℃である場合の焼結体のXRDパターンである。It is a XRD pattern of a sintered compact in case the temperature at the time of a hot isostatic press (HIP) process is 700 degreeC, 800 degreeC, and 900 degreeC. 上図の(a)は、SPS 550℃にて得られた焼結体のXRDパターン、(b)は、SPS 550℃後さらにHIP 700℃にて得られた焼結体のXRDパターンであり、下図の(a)は、SPS 550℃にて得られた焼結体のXRDパターン、(b)は、SPS 550℃さらにHIP 800℃にて得られた焼結体のXRDパターンである。(A) of the upper figure is an XRD pattern of a sintered body obtained at SPS 550 ° C., (b) is an XRD pattern of a sintered body obtained at SIP 550 ° C. and further at HIP 700 ° C. (A) of the following figure is the XRD pattern of the sintered compact obtained at SPS 550 degreeC, (b) is the XRD pattern of the sintered compact obtained at SPS 550 degreeC and also HIP 800 degreeC. 成形体(x=0.4)の破断面のSEM画像(3000倍〜50000倍)である。It is a SEM image (3000 times-50000 times) of the torn surface of a molded object (x = 0.4). 成形体(x=0.4)の破断面のSEM画像(300倍及び700倍)である。It is a SEM image (300 times and 700 times) of the torn surface of a molded object (x = 0.4). SPSの焼結温度550℃にて得られた焼結体(x=0.2)の表面のSEM画像(1000倍及び3000倍)である。It is a SEM image (1000 times and 3000 times) of the surface of the sintered compact (x = 0.2) obtained at the sintering temperature of 550 degreeC of SPS. SPSの焼結温度550℃にて得られた焼結体(x=0.2)の表面の、SEM画像と同じ場所のEDS(エネルギー分散型X線分光分析)マップであり、各元素(Fe,Ni,O,Mn,Mg)の分布が示されている。It is an EDS (energy dispersive X-ray spectroscopic analysis) map of the same place as the SEM image of the surface of the sintered body (x = 0.2) obtained at the sintering temperature of SPS of 550 ° C. , Ni, O, Mn, Mg). 800℃の温度でのHIP処理後の、焼結温度550℃にて得られた焼結体(x=0.2)の表面のSEM写真(1000倍及び3000倍)である。It is a SEM photograph (1000 times and 3000 times) of the surface of the sintered compact (x = 0.2) obtained at the sintering temperature of 550 degreeC after the HIP process at the temperature of 800 degreeC. 種々のHIP処理温度(700℃、800℃、900℃)にて得られた各焼結体(x=0.2)の磁気特性を示すBHカーブである。It is a BH curve which shows the magnetic characteristic of each sintered compact (x = 0.2) obtained at various HIP processing temperature (700 degreeC, 800 degreeC, 900 degreeC). HIP処理温度800℃にて得られた焼結体(x=0.2)における保磁力と磁束密度の関係を示すグラフである。It is a graph which shows the relationship between the coercive force and magnetic flux density in the sintered compact (x = 0.2) obtained at the HIP process temperature of 800 degreeC. 金属磁性材料であるパーマロイ(市販のFe‐Ni合金)と、本製法にて得られたMg(Mn0.2Fe0.8/Fe‐47Niコンポジットの、周波数と相対透磁率の関係を示すグラフであり、右側のグラフには、10〜10Hzの高周波領域における関係が示されている。The frequency and relative permeability of permalloy (commercially available Fe-Ni alloy), which is a metal magnetic material, and Mg (Mn 0.2 Fe 0.8 ) 2 O 4 / Fe-47Ni composite obtained by this production method It is a graph which shows a relationship, The relationship in the high frequency area | region of 10 < 3 > -10 < 5 > Hz is shown by the graph on the right side.

本発明の磁性ナノコンポジットの製造方法における各工程について以下に説明する。
図1は、本発明の製造方法における好ましい一例の手順を示すフローチャートである。 まず、本発明の製法における工程Aでは、Mg(MnFe1−x(0≦x≦0.4)となる量の、MgO微粒子、Fe微粒子及びMnO微粒子をそれぞれ秤量し、これらMgO微粒子、Fe微粒子及びMnO微粒子をFe‐Ni合金粉末と混合することによってFe‐Ni合金粉末表面へのコーティングを行う。本発明では、水‐アトマイズ法で精製された金属磁性材料よりも粒子内ひずみの小さいN‐アトマイズ法で精製された金属磁性材料のパーマロイ(53Fe‐47Ni(重量%)以下Fe‐47Niと記す)合金粉末を使用することが好ましく、一方、Mg(MnFe1−xのフェライト層を形成するための原料としては、純度99.9%以上で、nmオーダーの粒子径を有する市販のMgO微粒子、MnO微粒子、Fe微粒子が使用できる。尚、本発明では、焼結性を改善するために、MnO粉末を予め粉砕(例えば粒子径200nm以下)することが好ましく、この際の粉砕方法は特に限定されるものではないが、遊星ボールミルにより酸化ジルコニウム製のポットとボールを用いて一定時間粉砕を行うのが好ましい。
Fe‐Ni合金粉末の表面が、MgO微粒子、Fe微粒子及びMnO微粒子からなる金属酸化物の混合物により均一にコーティングされたコンポジット粉末を製造するには、混合を行う際、不活性ガス雰囲気下でメカノフュージョンシステム(ホソカワミクロン(株)製)を使用することが好ましく、このシステムでは、軸固定され、高速回転チャンバーとのギャップが1mm程度のインナーピースによって粉末混合物に強力な剪断応力が加えられ(圧密複合化)、インナーピースを通過した粉末がスクレーパによって掻き落とされるという工程が繰り返されることで、Fe‐Ni合金粉末の表面に、金属酸化物の混合物を均一にコーティングすることができる。
Each step in the method for producing a magnetic nanocomposite of the present invention will be described below.
FIG. 1 is a flowchart showing a procedure of a preferred example in the production method of the present invention. First, in step A in the production method of the present invention, MgO fine particles, Fe 2 O 3 fine particles, and MnO fine particles in amounts of Mg (Mn x Fe 1-x ) 2 O 4 (0 ≦ x ≦ 0.4) are respectively added. The surface of the Fe—Ni alloy powder is coated by weighing and mixing the MgO fine particles, Fe 2 O 3 fine particles and MnO fine particles with the Fe—Ni alloy powder. In the present invention, permalloy (53Fe-47Ni (% by weight) or less) of metal magnetic material purified by the N 2 -atomizing method has a smaller intra-particle strain than metal magnetic material purified by the water-atomizing method. ) Alloy powder is preferably used. On the other hand, the raw material for forming the ferrite layer of Mg (Mn x Fe 1-x ) 2 O 4 has a purity of 99.9% or more and a particle size of nm order. Commercially available MgO fine particles, MnO fine particles, and Fe 2 O 3 fine particles can be used. In the present invention, in order to improve the sinterability, it is preferable to pulverize the MnO powder in advance (for example, a particle diameter of 200 nm or less), and the pulverization method is not particularly limited. It is preferable to grind for a certain period of time using a pot and balls made of zirconium oxide.
In order to produce a composite powder in which the surface of the Fe-Ni alloy powder is uniformly coated with a mixture of metal oxides composed of MgO fine particles, Fe 2 O 3 fine particles and MnO fine particles, an inert gas atmosphere is used during mixing. It is preferable to use a mechanofusion system (manufactured by Hosokawa Micron Co., Ltd.) under this system. In this system, a strong shear stress is applied to the powder mixture by an inner piece that is fixed to the shaft and has a gap of about 1 mm with respect to the high-speed rotation chamber. (Consolidation composite) The process of scraping the powder that has passed through the inner piece with a scraper is repeated, whereby the surface of the Fe—Ni alloy powder can be uniformly coated with the metal oxide mixture.

そして、次の工程B(加圧工程)においては、前記工程Aで得られたコンポジット粉末を仮成形し、焼結性を上げるために、得られた仮成形体に超高静水圧プレスにて圧力を加えて緻密化された高密度(相対密度80%以上)の成形体を製造する。このコンポジット粉末の仮成形は、一般的には50〜100MPa程度の圧力の冷間等方圧プレス(CIP)にて行うことが好ましく、超高静水圧プレス時の圧力は1GPa程度が好ましい。   In the next step B (pressurizing step), the composite powder obtained in step A is temporarily formed, and the obtained temporary molded body is subjected to an ultrahigh hydrostatic press in order to increase the sinterability. A compact with high density (relative density of 80% or more) is produced by applying pressure. The temporary molding of the composite powder is generally preferably performed by cold isostatic pressing (CIP) at a pressure of about 50 to 100 MPa, and the pressure at the time of ultrahigh isostatic pressing is preferably about 1 GPa.

そして、次工程の工程C(パルス通電加圧焼結工程)では、前記工程Bで得られた成形体を、高速昇温可能なパルス通電加圧焼結装置を用いてパルス通電加圧焼結(SPS)することにより、MgO微粒子、Fe微粒子及びMnO微粒子からなる金属酸化物の混合物をフェライト相とし、相対密度が92%以上(92〜96%程度、より好ましくは93〜95%)の焼結体を製造する。このパルス通電加圧焼結では、低電圧でパルス状直流大電流を投入して粒子間に火花放電現象を生じさせ、これにより瞬時に高エネルギーを発生させることができ、急激なジュール加熱により高速拡散が起きることで、短時間かつ、比較的低温で粒成長を抑制した緻密な焼結体が得られ、高強度、高靭性なセラミックスを作製することが可能となる。
本発明では、使用する原料粉末の粒子径や配合割合等に応じて、工程Cにおけるパルス通電加圧焼結の条件を適宜選択することができるが、不活性ガス雰囲気下、焼結温度450〜550℃、加圧力50〜150MPa、焼結時間3〜10分の条件にて行うことが好ましく、特に好ましいパルス通電加圧焼結の条件は、アルゴンガス雰囲気下で、焼結温度550℃、加圧力100MPa、焼結時間3分である。この際、焼結温度が450℃より低い温度では、金属も塑性変形しにくくなり緻密化が困難になり、加えてフェライト相が生じにくく、かつ脆性破壊し易くなり、逆に、焼結温度が550℃を超えると還元性酸化物のFeOが生成するので好ましくない。
Then, in the next step C (pulse current pressure sintering step), the compact obtained in step B is subjected to pulse current pressure sintering using a pulse current pressure sintering apparatus capable of high-temperature heating. (SPS) makes a mixture of metal oxides composed of MgO fine particles, Fe 2 O 3 fine particles and MnO fine particles a ferrite phase, and has a relative density of 92% or more (about 92 to 96%, more preferably 93 to 95%). ) Is produced. In this pulse current pressurization sintering, a pulsed direct current is applied at a low voltage to cause a spark discharge phenomenon between particles, thereby instantly generating high energy, and rapid joule heating enables high speed. Due to the diffusion, a dense sintered body in which grain growth is suppressed at a relatively low temperature in a short time can be obtained, and high strength and high toughness ceramics can be produced.
In the present invention, depending on the particle diameter, blending ratio, etc. of the raw material powder to be used, the conditions for pulse current pressurization and sintering in the step C can be appropriately selected. In an inert gas atmosphere, the sintering temperature is 450 to 450. It is preferable to carry out under the conditions of 550 ° C., pressing force of 50 to 150 MPa, and sintering time of 3 to 10 minutes, and particularly preferable conditions for pulsed electric current pressure sintering are a sintering temperature of 550 ° C. under an argon gas atmosphere. The pressure is 100 MPa and the sintering time is 3 minutes. At this time, when the sintering temperature is lower than 450 ° C., the metal is also difficult to be plastically deformed and difficult to be densified. In addition, the ferrite phase is not easily generated and brittle fracture is easily caused. A temperature exceeding 550 ° C. is not preferable because FeO, which is a reducing oxide, is generated.

最終工程である工程D(熱間静水圧プレス工程)においては、前記工程Cで得られた焼結体を、金属/フェライト相が残存するような熱処理条件にて熱間静水圧プレスで処理し、最終的に得られる磁性ナノコンポジットの相対密度をさらに高める(94%以上、好ましくは95%以上まで)。本発明における熱間静水圧プレス工程では、圧力100MPa以上、好ましくは200MPaの不活性ガス雰囲気下で700℃〜900℃未満、好ましくは750〜850℃の温度を一定時間(3〜8時間、好ましくは6時間)維持して熱処理を行うことが好ましい。不活性ガスとしては、アルゴンガスや、0.01%Oを含むアルゴンガスが好ましい。 In step D (hot isostatic pressing step) which is the final step, the sintered body obtained in step C is processed by hot isostatic pressing under heat treatment conditions such that the metal / ferrite phase remains. The relative density of the finally obtained magnetic nanocomposite is further increased (94% or more, preferably 95% or more). In the hot isostatic pressing step in the present invention, a temperature of 700 ° C. to less than 900 ° C., preferably 750 to 850 ° C. is maintained for a certain period of time (3 to 8 hours, preferably under a pressure of 100 MPa or more, preferably 200 MPa. Is preferably maintained for 6 hours). As the inert gas, argon gas or argon gas containing 0.01% O 2 is preferable.

本発明においてxが0≦x≦0.4の範囲に限定されるのは、この範囲がMnを添加したMgFeフェライト固溶体生成領域だからであり、xが0.4を超えた場合(例えばx=0.5の場合)には、固溶限界を超えるのでスピネルフェライト相以外のγ-M相が析出して磁気特性が低下し、複合体の透磁率も低下し、実用化できなくなるという問題が生じる。
本発明の製造方法では、上記のMnの添加範囲(0≦x≦0.4)において、700℃〜900℃未満の温度で熱間静水圧プレス工程を行うことにより、高周波領域で電気・磁気損失を少ない磁性コンポジットが得られる。
In the present invention, x is limited to a range of 0 ≦ x ≦ 0.4 because this range is a MgFe 2 O 4 ferrite solid solution generation region to which Mn is added, and when x exceeds 0.4 ( For example, in the case of x = 0.5), the solid solution limit is exceeded, so that the γ-M 2 O 3 phase other than the spinel ferrite phase is precipitated, the magnetic properties are lowered, and the permeability of the composite is also lowered. The problem that it becomes impossible to become.
In the production method of the present invention, in the above-mentioned Mn addition range (0 ≦ x ≦ 0.4), a hot isostatic pressing process is performed at a temperature of 700 ° C. to less than 900 ° C., so that electric and magnetic fields are generated in a high frequency region. A magnetic composite with low loss can be obtained.

実施例1:本製法による本発明のMg(MnFe1−xフェライト/パーマロイFe‐Ni合金系・ナノ磁性コンポジット(0≦x≦0.4)の製造例
金属磁性材料として、N‐アトマイズ法で製造されたFe‐47Niパーマロイ合金(福田金属箔粉工業(株)製、平均粒径P:20μm)を準備し、Fe微粒子には堺化学(株)製の平均粒径P=60nmのものを使用し、MgO微粒子には宇部マテリアル(株)製の平均粒径P=50nmφのもの(純度99.98%)を使用した。尚、MnO微粒子としては、高純度化学(株)製の平均粒径P=10μmの市販品(純度99.9%)を遊星ボールミル(酸化ジルコニウムボール:0.3mm)にて350rpmで8時間粉砕を行い、微粒子化したものを用いた。微粒子化されたMnO微粒子の平均粒径Pは約200nmであった。
上記のMgO微粒子、MnO微粒子及びFe微粒子を、Mg(MnFe1−x(x=0.2)のフェライト相となるようにそれぞれ7.63g、5.37g、24.17g秤量し、これら金属酸化物微粒子を上記Fe‐47Ni合金粉末150gと混合し、この混合物を、市販のメカノフュージョン装置(ホソカワミクロン(株)製AMS−MINI)を用いて、アルゴンガス雰囲気下、高速回転チャンバーとインナーピースとのギャップ1mm、回転数4500rpm、混合時間30分の条件にてコーティングを行い、Fe‐47Ni合金粉末の表面に、MgO‐MnO‐Feが均質にコーティングされたコンポジット粉末を得た。そして、得られたコンポジット粉末を用いて68.6MPaの圧力でCIP仮成形し、その後、超高静水圧プレスで1GPaの圧力で緻密化した。その後、上記成形体を市販のパルス通電加圧焼結装置(シンテック(株)製、SPS−510A)を用いて、異なる焼結温度(550℃、575℃、600℃)で、アルゴンガス雰囲気下、加圧力100MPa、昇温速度100℃/分、焼結時間3分の条件にてパルス通電加圧焼結し、焼結体を得た。
図2には、このようにして得られた焼結体のXRDパターンが示されており、XRD測定には、リガク社製の自動X線回折装置RINT−2200を用いた。
この図2の実験結果から、550℃より高い温度で焼結を行うと、反磁性酸化物のFeOのピークが現れることが分かり、焼結温度は550℃が最適であると考えられる。
Example 1: Production Example metallic magnetic material Mg (Mn x Fe 1-x ) 2 O 4 ferrite / permalloy Fe-Ni alloy system nano magnetic composite (0 ≦ x ≦ 0.4) of the present invention according to the method , N 2 - Fe-47Ni permalloy alloy manufactured by the atomizing method (Fukuda metal foil & powder Co., Ltd., average particle size P s: 20 [mu] m) were prepared, Fe 2 O 3 in fine Sakai chemical industry Co., using an average particle size P s = 60 nm of the manufacturing, the MgO particles were used Ube material Co., Ltd. having an average particle size of P s = 50 nm phi (purity 99.98%). As the MnO fine particles, a commercially available product (purity 99.9%) having an average particle size P s = 10 μm manufactured by High Purity Chemical Co., Ltd. was used for 8 hours at 350 rpm with a planetary ball mill (zirconium oxide ball: 0.3 mm). After pulverization, fine particles were used. The average particle size P s of micronized MnO particles was about 200 nm.
The above MgO fine particles, MnO fine particles and Fe 2 O 3 fine particles were converted into a ferrite phase of Mg (Mn x Fe 1-x ) 2 O 4 (x = 0.2), 7.63 g, 5.37 g, 24.17 g was weighed, and these metal oxide fine particles were mixed with 150 g of the Fe-47Ni alloy powder, and this mixture was mixed under an argon gas atmosphere using a commercially available mechanofusion apparatus (AMS-MINI manufactured by Hosokawa Micron Corporation). Coating is performed under the conditions of a gap of 1 mm between the high-speed rotating chamber and the inner piece, a rotational speed of 4500 rpm, and a mixing time of 30 minutes, and the surface of the Fe-47Ni alloy powder is uniformly coated with MgO-MnO-Fe 2 O 3 A composite powder was obtained. Then, CIP temporary molding was performed using the obtained composite powder at a pressure of 68.6 MPa, and then densification was performed at a pressure of 1 GPa with an ultrahigh hydrostatic pressure press. Thereafter, the molded body was subjected to a different sintering temperature (550 ° C., 575 ° C., 600 ° C.) under an argon gas atmosphere using a commercially available pulsed electric current pressure sintering apparatus (manufactured by Shintech Co., Ltd., SPS-510A). Then, pulsed current pressure sintering was performed under the conditions of a pressure of 100 MPa, a temperature increase rate of 100 ° C./min, and a sintering time of 3 minutes to obtain a sintered body.
FIG. 2 shows an XRD pattern of the sintered body thus obtained, and an automatic X-ray diffractometer RINT-2200 manufactured by Rigaku Corporation was used for the XRD measurement.
From the experimental results shown in FIG. 2, it can be seen that when sintering is performed at a temperature higher than 550 ° C., the peak of FeO of the diamagnetic oxide appears, and the optimum sintering temperature is 550 ° C.

そして、同様にして、上記MgO微粒子、Fe微粒子及びMnO微粒子を、Mg(MnFe1−x(x=0,0.4)のフェライト相となる量にてそれぞれ秤量し、これら金属酸化物微粒子を上記Fe‐47Ni合金粉末と混合し、この混合物を、上記メカノフュージョン装置を用いて、上記の条件にてコーティングを行い、Fe‐47Ni合金粉末の表面に、MgO‐Fe又はMgO‐MnO‐Feが均質にコーティングされたコンポジット粉末を得た。そして、得られたコンポジット粉末を用いて上記のCIP仮成形を行ない、その後、超高静水圧プレスで緻密化を行った。以下の表1には、このようにして得られた成形体(x=0,0.2,0.4)の成形密度、理論密度、相対密度が示されている。 Similarly, the MgO fine particles, the Fe 2 O 3 fine particles, and the MnO fine particles are each in an amount that becomes a ferrite phase of Mg (Mn x Fe 1-x ) 2 O 4 (x = 0, 0.4). These metal oxide fine particles are weighed and mixed with the Fe-47Ni alloy powder, and this mixture is coated under the above conditions using the mechanofusion apparatus, and the surface of the Fe-47Ni alloy powder is coated with MgO. A composite powder uniformly coated with -Fe 2 O 3 or MgO-MnO-Fe 2 O 3 was obtained. And said CIP temporary molding was performed using the obtained composite powder, and it densified by the ultra-high hydrostatic pressure press after that. Table 1 below shows the molding density, theoretical density, and relative density of the molded body (x = 0, 0.2, 0.4) thus obtained.

その後、上記成形体を市販のパルス通電加圧焼結装置(SPSシンテック(株)製、SPS−510A)を用いて、アルゴンガス雰囲気下、焼結温度550℃、加圧力100MPa、昇温速度100℃/分、焼結時間3分の条件にてパルス通電加圧焼結し、焼結体を得た。以下の表2には、このようにして得られた焼結体(x=0,0.2,0.4)の焼結密度、理論密度、相対密度が示されている。   Thereafter, the molded body was sintered at a sintering temperature of 550 ° C., a pressing force of 100 MPa, and a heating rate of 100 using a commercially available pulsed electric current pressure sintering apparatus (SPS-510A, manufactured by SPS Shintec Co., Ltd.). The sintered body was obtained by pulse-current pressure sintering under conditions of ° C / min and sintering time of 3 minutes. Table 2 below shows the sintered density, theoretical density, and relative density of the sintered body (x = 0, 0.2, 0.4) thus obtained.

上記表1及び表2の結果より、上記の超高静水圧プレス処理と低温高圧パルス通電加圧焼結処理によって、相対密度93%以上の高密度焼結体が得られることがわかった。一般に相対密度が92〜93%以上の高密度になると、焼結体表面の気孔が閉気孔となってガスが焼結体内部に侵入せず、焼結体を高圧ガス雰囲気下においた場合、密閉式の容器(カプセル)に試料を入れなくても、高圧下の熱間静水圧プレス処理を行うことができる。このカプセルフリー熱間静水圧プレス処理は、高密度焼結体の作製が低コストになるとともにカプセルの大きさや形状の制限を受けずに試料の高密度化が可能となる。   From the results shown in Tables 1 and 2, it was found that a high-density sintered body having a relative density of 93% or more can be obtained by the ultra-high hydrostatic pressure pressing process and the low-temperature high-pressure pulse current pressing sintering process. In general, when the relative density is 92 to 93% or higher, the pores on the surface of the sintered body become closed pores and the gas does not enter the sintered body, and the sintered body is placed in a high-pressure gas atmosphere. Even if a sample is not put in a hermetically sealed container (capsule), hot isostatic pressing under high pressure can be performed. This capsule-free hot isostatic pressing process makes it possible to produce a high-density sintered body at low cost and to increase the density of the sample without being restricted by the size and shape of the capsule.

そして次に、熱間静水圧プレス処理における最適温度を検討するために、上記のパルス通電加圧焼結処理にて得られた焼結体(x=0.2)を、市販の熱間静水圧プレス装置((株)神戸製鋼所製、SYS−5X)を用いて、異なる焼結温度(700℃、800℃、900℃)で、アルゴンガス雰囲気下、二次熱処理圧力200MPa、焼結時間6時間の条件にて熱間静水圧プレス(熱間等方圧加圧)し、高密度焼結体を得た。
図3には、このようにして得られた3種類の焼結体のXRDパターンが示されており、この図3の実験結果から、700℃及び800℃で熱間静水圧プレス処理を行った場合は殆ど反磁性体のFeOは生成しないが、900℃で熱処理した場合には、FeOの生成を顕著に確認することができ、900℃以上で熱間静水圧プレス処理を行うと金属パーマロイが酸化されること(フェライト相が還元されること)がわかった。
Then, in order to examine the optimum temperature in the hot isostatic pressing process, a sintered body (x = 0.2) obtained by the above-mentioned pulse current pressurizing and sintering process is used as a commercially available hot isostatic press. Using a hydraulic press machine (SYS-5X, manufactured by Kobe Steel), secondary heat treatment pressure 200 MPa, sintering time at different sintering temperatures (700 ° C., 800 ° C., 900 ° C.) under an argon gas atmosphere. Hot isostatic pressing (hot isostatic pressing) was performed for 6 hours to obtain a high-density sintered body.
FIG. 3 shows XRD patterns of the three types of sintered bodies thus obtained. From the experimental results of FIG. 3, hot isostatic pressing was performed at 700 ° C. and 800 ° C. In this case, almost no diamagnetic FeO is produced, but when heat treatment is performed at 900 ° C., the formation of FeO can be remarkably confirmed. When hot isostatic pressing is performed at 900 ° C. or higher, metal permalloy is formed. It was found that it was oxidized (the ferrite phase was reduced).

又、図4には、熱間静水圧プレス処理前と処理後における焼結体のXRDパターンの変化が示されており、上側の図が熱間静水圧プレス時の温度が700℃の場合、下側の図が800℃の場合である。この結果から、パルス通電加圧焼結処理だけの試料と比べても組成の変化は見られず、マグネシウムマンガンフェライトのピークが強くなって結晶性が向上していることがわかり、熱間静水圧プレスの最適温度は800℃であると考えられる。   FIG. 4 shows changes in the XRD pattern of the sintered body before and after the hot isostatic pressing, and the upper diagram shows the case where the temperature during the hot isostatic pressing is 700 ° C. The lower diagram shows the case at 800 ° C. From this result, it can be seen that there is no change in composition even when compared with the sample with only pulse current pressure sintering treatment, the peak of magnesium manganese ferrite is strengthened and the crystallinity is improved. The optimum temperature for the press is considered to be 800 ° C.

そこで、上記のパルス通電加圧焼結処理にて得られた焼結体(x=0.2)について、焼結温度800℃にて上記熱間静水圧プレス処理を行い、得られた焼結体の焼結密度を測定した。以下の表3に、このようにして得られた焼結体の焼結密度、理論密度、相対密度を示す。   Therefore, the sintered body (x = 0.2) obtained by the pulse current pressure sintering process is subjected to the hot isostatic pressing process at a sintering temperature of 800 ° C. The sintered density of the body was measured. Table 3 below shows the sintered density, theoretical density, and relative density of the sintered body thus obtained.

又、以下の表4には、熱間静水圧プレス処理前と処理後における焼結体(x=0.2)の焼結密度及び相対密度の変化が示されている。   Table 4 below shows changes in the sintered density and relative density of the sintered body (x = 0.2) before and after the hot isostatic pressing.

上記表4の実験結果から、パルス通電加圧焼結後に熱間静水圧プレス処理を行うことによって、それぞれの温度条件において焼結体密度の上昇がみられた。しかし、熱間静水圧プレス操作の900℃の条件では、あまり焼結体密度の上昇が見られなかった。この原因として、パルス通電加圧焼結操作によりできた焼結体に閉空間気孔が残っていため、熱間静水圧プレス操作で等方的に圧力をかけても気孔が焼結体内に残ったものと考えられる。   From the experimental results shown in Table 4 above, an increase in the sintered body density was observed under each temperature condition by performing a hot isostatic pressing process after pulsed current pressure sintering. However, under the condition of 900 ° C. in the hot isostatic pressing operation, the density of the sintered body was not significantly increased. As a cause of this, since closed space pores remain in the sintered body made by the pulse current pressure sintering operation, the pores remained in the sintered body even when isotropic pressure was applied in the hot isostatic pressing operation. It is considered a thing.

実施例2:本発明の製法における成形体及び焼結体のSEM観察結果
Mg(MnFe1−x(x=0.4)のフェライト相を形成するための、パルス通電加圧焼結処理前の成形体(工程B終了時の未焼結体)の破断面を、電界放射型走査電子顕微鏡(FE−SEM、日本電子社製:JSM7001F)により観察した。図5は、この成形体の破断面のSEM画像(3000倍〜50000倍)であり、図6は、この成形体の破断面のSEM画像(300倍及び700倍)である。
又、図7は、焼結温度550℃でパルス通電加圧焼結を行うことにより得られた焼結体表面のSEM画像(1000倍及び3000倍)であり、図8は、この焼結体表面の、SEM画像と同じ場所のEDS(エネルギー分散型X線分光分析)マップで、Fe,Ni,O,Mn,Mgの元素分布が示されている。EDSによる元素分析には、エネルギー分散型X線分光分析装置(日本電子社製:JED2300)を使用した。図8のEDSマップとSEM画像から、Mg,Oの分布する位置が、金属粒子の粒界位置と対応していることが確認された。
図9は、800℃での熱間静水圧プレス処理後の焼結体表面のSEM画像(1000倍及び3000倍)であり、図7と図9の比較から、パルス通電加圧焼結操作のみの焼結体よりも、パルス通電加圧焼結+熱間静水圧プレス操作の焼結体の方が緻密になっていることが確認でき、これは、表4に示された焼結密度及び相対密度の上昇と一致している。
Example 2: to form the ferrite phase of the SEM observation of the molded body and the sintered body in the process of the present invention Mg (Mn x Fe 1-x ) 2 O 4 (x = 0.4), the pulse current pressure The fracture surface of the compact before pressure sintering treatment (unsintered body at the end of step B) was observed with a field emission scanning electron microscope (FE-SEM, manufactured by JEOL Ltd .: JSM7001F). FIG. 5 is an SEM image (3000 to 50000 times) of the fracture surface of this molded body, and FIG. 6 is an SEM image (300 and 700 times) of the fracture surface of this molded body.
FIG. 7 is an SEM image (1000 times and 3000 times) of the surface of the sintered body obtained by performing pulsed current pressure sintering at a sintering temperature of 550 ° C. FIG. 8 shows this sintered body. The element distribution of Fe, Ni, O, Mn, and Mg is shown by an EDS (energy dispersive X-ray spectroscopic analysis) map on the same location as the SEM image on the surface. For elemental analysis by EDS, an energy dispersive X-ray spectrometer (manufactured by JEOL Ltd .: JED2300) was used. From the EDS map and SEM image of FIG. 8, it was confirmed that the positions where Mg and O are distributed correspond to the grain boundary positions of the metal particles.
FIG. 9 is an SEM image (1000 times and 3000 times) of the surface of the sintered body after hot isostatic pressing at 800 ° C. From the comparison between FIG. 7 and FIG. It can be confirmed that the sintered body of the pulse current pressure sintering + hot isostatic pressing operation is denser than the sintered body of This is consistent with the increase in relative density.

実施例3:本発明の製法により得られた焼結体(ナノ磁性コンポジット)の磁気特性の測定
Mg(MnFe1−x(x=0.2)のフェライト層が形成されたパーマロイFe‐Ni系合金・ナノ磁性コンポジットについて、VSM解析によりヒステリシス曲線を作成した。図10は、種々のHIP処理温度(700℃、800℃、900℃)にて得られた各焼結体(x=0.2)の磁気特性を示すBHカーブであり、以下の表5には、各焼結体の飽和磁束密度が要約されている。
Example 3: ferrite layer measurement Mg magnetic properties of the sintered body obtained by the method of the present invention (nanomagnetic composite) (Mn x Fe 1-x ) 2 O 4 (x = 0.2) is formed Hysteresis curves were prepared by VSM analysis for permalloy Fe-Ni alloys and nanomagnetic composites. FIG. 10 is a BH curve showing the magnetic properties of each sintered body (x = 0.2) obtained at various HIP processing temperatures (700 ° C., 800 ° C., 900 ° C.). Summarizes the saturation magnetic flux density of each sintered body.

図10のBHカーブ及び表5から、熱間静水圧プレス処理温度が700,800℃である場合の焼結体の磁束密度Bは1[T]を超えており、優れた磁気特性を有する磁性材料であることがわかった。
図11には、HIP処理温度800℃にて得られた焼結体(x=0.2)における保磁力と磁束密度の関係が示されており、図12には、金属磁性材料であるパーマロイ(市販のFe‐Ni合金)と、本製法にて得られたMg(Mn0.2Fe0.8/Fe‐47Niコンポジットの、測定周波数と比透磁率の関係が示されている。図12の右側に位置するグラフは、10〜10Hzの高周波領域における周波数と比透磁率の関係を示すものである。
図12のグラフから、20000Hzを超える高周波領域においては、市販の金属磁性材料(パーマロイ)よりも、本発明の製法を用いて得られたナノ磁性コンポジットの透磁率が高いことがわかった。
From the BH curve of FIG. 10 and Table 5, the magnetic flux density B s of the sintered body when the hot isostatic pressing temperature is 700,800 ° C. exceeds 1 [T] and has excellent magnetic properties. It turned out to be a magnetic material.
FIG. 11 shows the relationship between the coercive force and the magnetic flux density in a sintered body (x = 0.2) obtained at a HIP treatment temperature of 800 ° C., and FIG. 12 shows a permalloy that is a metallic magnetic material. The relationship between the measurement frequency and relative permeability of (commercially available Fe-Ni alloy) and Mg (Mn 0.2 Fe 0.8 ) 2 O 4 / Fe-47Ni composite obtained by this production method is shown. Yes. The graph located on the right side of FIG. 12 shows the relationship between the frequency and relative permeability in a high frequency region of 10 3 to 10 5 Hz.
From the graph of FIG. 12, it was found that the magnetic permeability of the nanomagnetic composite obtained by using the production method of the present invention is higher than that of a commercially available metal magnetic material (Permalloy) in a high frequency region exceeding 20000 Hz.

本発明の製造方法を用いることで、高周波領域でも電気・磁気損失の少ない磁性ナノコンポジットが製造でき、電子機器だけでなく種々の用途に応用展開が可能である。   By using the production method of the present invention, a magnetic nanocomposite with little electric / magnetic loss can be produced even in a high frequency region, and can be applied to various applications as well as electronic devices.

Claims (1)

Mg(Mn Fe 1−x フェライト/パーマロイFe‐Ni合金系・磁性ナノコンポジットを製造するための方法であって、当該方法が、
工程A:Mg(Mn Fe 1−x (0≦x≦0.4)となる量の、MgO微粒子、Fe 微粒子及びMnO微粒子をそれぞれ秤量し、当該MgO微粒子、Fe 微粒子及びMnO微粒子をFe‐Ni合金粉末と混合することによってコーティングを行い、前記Fe‐Ni合金粉末の表面が、前記MgO微粒子、Fe 微粒子及びMnO微粒子からなる金属酸化物の混合物により被覆されたコンポジット粉末を製造する工程、
工程B:前記工程Aで得られたコンポジット粉末を仮成形し、得られた仮成形体に超高静水圧プレスにて圧力を加えて成形体を製造する加圧工程、
工程C:前記工程Bで得られた成形体を、不活性ガス雰囲気下、焼結温度450〜550℃、加圧力50〜150MPa、焼結時間3〜10分の条件にてパルス通電加圧焼結することにより、前記金属酸化物の混合物をフェライト相とし、相対密度が92%以上の焼結体を製造するパルス通電加圧焼結工程、及び
工程D:前記工程Cで得られた焼結体を、圧力100MPa以上の不活性ガス雰囲気下で700℃〜900℃未満の温度を一定時間維持して熱間静水圧プレスで処理し、焼結体の相対密度94%以上とする熱間静水圧プレス工程
を含むことを特徴とする磁性ナノコンポジットの製造方法
A Mg (Mn x Fe 1-x ) 2 O 4 ferrite / permalloy Fe-Ni alloy system Magnetic nanocomposite method for manufacturing, the method comprising
Step A: MgO fine particles, Fe 2 O 3 fine particles, and MnO fine particles in amounts such that Mg (Mn x Fe 1-x ) 2 O 4 (0 ≦ x ≦ 0.4) are weighed, and the MgO fine particles, Fe Coating is performed by mixing 2 O 3 fine particles and MnO fine particles with Fe—Ni alloy powder, and the surface of the Fe—Ni alloy powder is made of a metal oxide composed of the MgO fine particles, Fe 2 O 3 fine particles, and MnO fine particles. Producing a composite powder coated with the mixture,
Step B: Pressurizing step of temporarily molding the composite powder obtained in Step A above and producing a molded body by applying pressure to the obtained temporary molded body with an ultrahigh hydrostatic pressure press,
Process C: Pulsed pressurization firing of the molded body obtained in the above process B under the conditions of an inert gas atmosphere under a sintering temperature of 450 to 550 ° C., a pressing force of 50 to 150 MPa, and a sintering time of 3 to 10 minutes. A pulsed current pressure sintering process for producing a sintered body having a relative density of 92% or more, wherein the mixture of the metal oxides is a ferrite phase, and
Step D: The sintered body obtained in Step C is treated with a hot isostatic press while maintaining a temperature of 700 ° C. to less than 900 ° C. for a certain time in an inert gas atmosphere at a pressure of 100 MPa or more. Hot isostatic pressing process with a body relative density of 94% or more
The manufacturing method of the magnetic nanocomposite characterized by the above-mentioned .
JP2010080865A 2010-03-31 2010-03-31 Magnetic nanocomposite and method for producing the same Expired - Fee Related JP5550013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010080865A JP5550013B2 (en) 2010-03-31 2010-03-31 Magnetic nanocomposite and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010080865A JP5550013B2 (en) 2010-03-31 2010-03-31 Magnetic nanocomposite and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011214026A JP2011214026A (en) 2011-10-27
JP5550013B2 true JP5550013B2 (en) 2014-07-16

Family

ID=44944081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010080865A Expired - Fee Related JP5550013B2 (en) 2010-03-31 2010-03-31 Magnetic nanocomposite and method for producing the same

Country Status (1)

Country Link
JP (1) JP5550013B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3009884B1 (en) * 2013-08-26 2016-12-09 Centre Nat De La Rech Scient (C N R S) METHOD FOR MANUFACTURING MONOLITHIC ELECTROMAGNETIC COMPONENT AND MONOLITHIC MAGNETIC COMPONENT THEREOF
CN104550940B (en) * 2013-10-29 2016-09-21 东睦新材料集团股份有限公司 The method of a kind of soft magnetic ferrite cladding metallic magnetic powder and soft-magnetic composite material preparation method thereof
CN105330289B (en) 2014-08-14 2018-08-31 清华大学 A kind of gadolinium oxysulfide(Gd2O2S)Scintillating ceramic preparation method
JP6476989B2 (en) * 2015-02-24 2019-03-06 株式会社豊田中央研究所 Method of manufacturing dust core
JP6766399B2 (en) * 2016-03-28 2020-10-14 大同特殊鋼株式会社 Sintering powder and sintered body
JP6836106B2 (en) * 2016-04-15 2021-02-24 アイシン精機株式会社 Method for manufacturing iron-based soft magnetic material
CN109317689B (en) * 2018-11-01 2021-11-23 江西理工大学 Permalloy magnetic nano wave-absorbing material with core-shell structure and preparation method thereof
CN112872360B (en) * 2021-01-13 2024-01-02 山西盛世永恒工程咨询有限公司 Mixed forming method of iron-based wear-resistant material
CN113223843B (en) * 2021-04-25 2022-12-20 宁波中科毕普拉斯新材料科技有限公司 Insulation coating method of composite soft magnetic powder

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5638402A (en) * 1979-09-05 1981-04-13 Tdk Corp High density sintered magnetic body and its manufacture
JPS5838402A (en) * 1981-08-31 1983-03-05 立川ブラインド工業株式会社 Lighting unit
JPH05109520A (en) * 1991-08-19 1993-04-30 Tdk Corp Composite soft magnetic material
JPH0547541A (en) * 1991-08-21 1993-02-26 Tdk Corp Manufacture of magnetic core
JPH06267723A (en) * 1993-03-16 1994-09-22 Tdk Corp Composite soft magnetic material
JP2002256304A (en) * 2001-02-28 2002-09-11 Sumitomo Electric Ind Ltd Composite magnetic material and its manufacturing method
JP2005311078A (en) * 2004-04-21 2005-11-04 Fuji Electric Holdings Co Ltd Composite magnetic component and manufacturing method thereof
JP4858941B2 (en) * 2005-09-22 2012-01-18 学校法人同志社 Method for manufacturing magnetic material

Also Published As

Publication number Publication date
JP2011214026A (en) 2011-10-27

Similar Documents

Publication Publication Date Title
JP5550013B2 (en) Magnetic nanocomposite and method for producing the same
Ma et al. Two-step hot-pressing sintering of nanocomposite WC–MgO compacts
JPWO2010073590A1 (en) Composite soft magnetic material and manufacturing method thereof
Shon et al. Pulsed current activated synthesis and rapid consolidation of a nanostructured Mg 2 Al 4 Si 5 O 18 and its mechanical properties
JP2008189950A (en) Method for manufacturing soft magnetic powder, method for manufacturing soft magnetic material, method for manufacturing powder magnetic core, soft magnetic powder, soft magnetic material and powder magnetic core
WO2006009409A1 (en) Method for preparing nano-sized metal powder feedstock and method for producing sintered body using the feedstock
RU2292988C1 (en) Method for producing molybdenum-copper composition material
Kim et al. Mechanical properties of nanostructured TiN–AlN composites rapidly consolidated by pulsed current activated sintering
Kang et al. Properties and rapid low-temperature consolidation of nanocrystalline Fe-ZrO 2 composite by pulsed current activated sintering
Moon et al. A study on the microstructure of D023 Al3Zr and L12 (Al+ 12.5 at.% Cu) 3Zr intermetallic compounds synthesized by PBM and SPS
Lee et al. Processing of net‐shaped nanocrystalline Fe‐Ni material
WO2012063407A1 (en) Magnesium-based hard-magnetic composite material and method for producing same
Mani et al. Structural and magnetic characterization of spark plasma sintered Fe-50Co alloys
JP6089186B2 (en) Ultra-fine powder, high-strength steel sintered body, and production method thereof
Shon et al. Rapid consolidation of nanostructured TiCu compound by high frequency induction heating and its mechanical properties
JP2020161704A (en) Manufacturing method of rare earth magnet
JP2011243776A (en) High-specific strength magnesium functional material having magnetism
Mansourirad et al. Synthesis and characterization of Ag-8% wt Cr2O3 composites prepared by different densification processes
Yavuzer et al. The effect of milling time on microstructure and wear behaviours of AISI 304 stainless steel produced by powder metallurgy
JP2022168543A (en) Magnetic metal/ferrite composite and method of producing the same
JP2010185126A (en) Composite soft magnetic material and method for producing the same
Gülsoy et al. Injection molding of mechanical alloyed Ti–Fe–Zr powder
Rosiński et al. Nanocrystalline NiAl-TiC composites sintered by the pulse plasma method
JP2017011073A (en) Powder-compact magnetic core and method of manufacturing power-compact magnetic core
WO2022196315A1 (en) Powder for magnetic core, method for manufacturing same, and dust core

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140512

R150 Certificate of patent or registration of utility model

Ref document number: 5550013

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees