JP5549657B2 - Silver reflective film and method for forming the same, radiation detector, and solar cell - Google Patents

Silver reflective film and method for forming the same, radiation detector, and solar cell Download PDF

Info

Publication number
JP5549657B2
JP5549657B2 JP2011221680A JP2011221680A JP5549657B2 JP 5549657 B2 JP5549657 B2 JP 5549657B2 JP 2011221680 A JP2011221680 A JP 2011221680A JP 2011221680 A JP2011221680 A JP 2011221680A JP 5549657 B2 JP5549657 B2 JP 5549657B2
Authority
JP
Japan
Prior art keywords
silver
substrate
film
reflective film
reflecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011221680A
Other languages
Japanese (ja)
Other versions
JP2012128402A (en
Inventor
浩之 長友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2011221680A priority Critical patent/JP5549657B2/en
Publication of JP2012128402A publication Critical patent/JP2012128402A/en
Application granted granted Critical
Publication of JP5549657B2 publication Critical patent/JP5549657B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Description

本発明は、銀反射膜およびその形成方法、放射線検出器、並びに太陽電池に関するものである。   The present invention relates to a silver reflective film and a method for forming the same, a radiation detector, and a solar cell.

ナノ銀インクは、銀の融点より低温で焼成可能であり、インクジェット法などと組み合わせて基板上に直接パターンを描画することが可能である。電子ペーパーやRFIDタグの分野では、耐熱性の低い基板にナノ銀インクのパターンを形成し、焼成することで、配線膜を形成する。配線膜を構成する銀粒子同士がある程度融着すると、電流の経路が確保される。配線膜の電気抵抗を下げるには、抵抗率を低くするか、膜厚を大きくする。   Nano silver ink can be baked at a temperature lower than the melting point of silver, and a pattern can be directly drawn on a substrate in combination with an inkjet method or the like. In the field of electronic paper and RFID tags, a pattern of nano silver ink is formed on a substrate with low heat resistance and baked to form a wiring film. When the silver particles constituting the wiring film are fused to some extent, a current path is secured. In order to lower the electrical resistance of the wiring film, the resistivity is lowered or the film thickness is increased.

一方、銀の光学特性に着目して、ナノ銀インクで反射膜を形成することが検討されている。反射率の高い膜を得るには、ナノ銀粒子同士を融着させるだけでなく、気孔などの欠陥が少ない平坦な膜を形成しなければならない。   On the other hand, focusing on the optical properties of silver, it has been studied to form a reflective film with nano silver ink. In order to obtain a highly reflective film, it is necessary not only to fuse nanosilver particles but also to form a flat film with few defects such as pores.

特許文献1に、ナノ銀インクを用いて太陽電池用の反射膜を形成することが開示されている。粒径10〜50nmの銀ナノ粒子を分散させた分散液を基材に塗布し、塗膜を焼結することで、銀の反射膜を得る。この反射膜は、基材に接する面に気孔を生成する。気孔の平均直径が100nm以下、気孔が位置する平均深さが100nm以下、気孔の数密度が30個/μm以下となり、高い反射率を有する銀の反射膜が得られるとしている。   Patent Document 1 discloses that a reflective film for a solar cell is formed using nano silver ink. A dispersion liquid in which silver nanoparticles having a particle diameter of 10 to 50 nm are dispersed is applied to a substrate, and the coating film is sintered to obtain a silver reflective film. This reflective film generates pores on the surface in contact with the substrate. The average diameter of the pores is 100 nm or less, the average depth at which the pores are located is 100 nm or less, and the number density of the pores is 30 / μm or less, so that a silver reflective film having a high reflectance can be obtained.

特許文献2に、金属粒子の焼成体を反射膜とすることが開示されている。粒径1μm以下、好ましくは0.1μm以下の金属微粒子を溶媒に分散させ、分散溶媒を塗布し、塗膜を焼結することで、金属反射膜が得られるとしている。   Patent Document 2 discloses that a fired body of metal particles is used as a reflective film. A metal reflective film can be obtained by dispersing metal fine particles having a particle size of 1 μm or less, preferably 0.1 μm or less in a solvent, applying a dispersion solvent, and sintering the coating film.

特許文献3には、有機銀化合物の焼成物である銀反射膜が開示されている。   Patent Document 3 discloses a silver reflective film that is a fired product of an organic silver compound.

特許文献4には薄膜シリコン型太陽電池に銀反射材を使用することが開示されている。入射した太陽光の一部はシリコン薄膜を透過するので、エネルギーとして利用されず、変換効率が低くなる。シリコン薄膜を透過した太陽光を反射させ、光電変換層に戻すために、裏面に反射膜を形成することが検討されている。   Patent Document 4 discloses the use of a silver reflector in a thin film silicon solar cell. Since a part of the incident sunlight passes through the silicon thin film, it is not used as energy and conversion efficiency is lowered. In order to reflect sunlight transmitted through the silicon thin film and return it to the photoelectric conversion layer, it has been studied to form a reflective film on the back surface.

特開2008−288568号公報JP 2008-288568 A 特開平09−246577号公報JP 09-246577 A 国際公開第2010/092869号International Publication No. 2010/092869 特開2005−175449号公報JP 2005-175449 A

従来技術では特許文献1のように、銀ナノ粒子を分散媒に分散させた液を塗布した後、塗膜を焼結して銀反射膜を形成する。銀ナノ粒子を微粒化したり、銀ナノ粒子の周囲に形成する有機保護膜の炭素数を少なくして分解温度を低温化したりするなどの方法で、気孔の発生や大きさを抑制して反射率の低下を抑制することが検討されている。   In the prior art, as in Patent Document 1, after applying a liquid in which silver nanoparticles are dispersed in a dispersion medium, the coating film is sintered to form a silver reflective film. Reflectivity by suppressing the generation and size of pores by methods such as atomizing silver nanoparticles or reducing the decomposition temperature by reducing the carbon number of the organic protective film formed around the silver nanoparticles It has been studied to suppress the decrease in the above.

しかし、銀ナノ粒子の表面は大気に晒されると容易に活性が低下する。銀ナノ粒子の表面同士は融着しやすいものの、粒子の内部までは融着しづらい。表面活性が低下すると、銀ナノ粒子同士の融着が不安定になりやすく、気孔発生の抑制には限界がある。また、焼結後の銀反射膜は銀ナノ粒子の形状を反映するため、表面の凹凸が大きい膜になりやすいという課題がある。これらのことから反射率の向上には限界があり、銀のスパッタ膜より低い反射率しか得られていない。   However, the activity of the surface of the silver nanoparticles easily decreases when exposed to the atmosphere. Although the surfaces of the silver nanoparticles are easily fused, it is difficult to fuse the inside of the particles. When the surface activity is lowered, the fusion between the silver nanoparticles tends to be unstable, and there is a limit to the suppression of pore generation. Moreover, since the silver reflecting film after sintering reflects the shape of the silver nanoparticles, there is a problem that the surface is likely to be a film with large irregularities. For these reasons, there is a limit to the improvement in reflectivity, and only reflectivity lower than that of a sputtered silver film is obtained.

さらに、特許文献2に記載されているように、銀ナノ粒子を分散媒に分散させた液を塗布、焼結して得た銀反射膜は反射面の反対の面、すなわち膜の表面が鏡面になりやすいという特徴を有している。膜の表面が鏡面の場合、アンカー効果が期待できないため、反射膜の表面に接して形成される材料との密着が得づらいという課題がある。例えば、反射膜の表面にワイヤーボンディングを行う場合、ボンディング強度が不足して断線する恐れがある。また、反射膜の表面に別の材料を積層形成する場合、密着強度不足による膜剥離の恐れがある。   Furthermore, as described in Patent Document 2, the silver reflecting film obtained by applying and sintering a liquid in which silver nanoparticles are dispersed in a dispersion medium is opposite to the reflecting surface, that is, the surface of the film is a mirror surface. It has the feature that it is easy to become. When the surface of the film is a mirror surface, since the anchor effect cannot be expected, there is a problem that it is difficult to obtain close contact with the material formed in contact with the surface of the reflective film. For example, when wire bonding is performed on the surface of the reflective film, the bonding strength is insufficient and there is a risk of disconnection. Further, when another material is laminated on the surface of the reflective film, there is a risk of film peeling due to insufficient adhesion strength.

特許文献3では、有機銀化合物を用いて高反射率の反射膜を形成している。より低温での焼成を行うと、膜の表面では銀粒子が緻密になり、平坦化が進み、反射率は高くなる。しかし、低温で焼成することで、銀粒子に与えるエネルギーが小さくなるため、膜の中では、銀粒子同士の融着および一体化は進まない。密着性を向上させることは難しい。   In Patent Document 3, a reflective film having a high reflectance is formed using an organic silver compound. When firing at a lower temperature, silver particles become dense on the surface of the film, flattening proceeds, and the reflectance increases. However, since the energy given to the silver particles is reduced by firing at a low temperature, the fusion and integration of the silver particles do not proceed in the film. It is difficult to improve adhesion.

特許文献4では、スパッタリング法で銀の裏面反射材を形成することが示されている。スパッタリング法を用いると容易に高い反射率を有する銀反射膜を得ることが可能である。しかし、製造コストが高いという問題があった。基板表面に凹凸があると、凹凸上に形成した銀の膜質が悪くなり、反射率が低下する。   Patent Document 4 discloses that a silver back reflector is formed by a sputtering method. When the sputtering method is used, it is possible to easily obtain a silver reflective film having a high reflectance. However, there is a problem that the manufacturing cost is high. If there are irregularities on the surface of the substrate, the film quality of the silver formed on the irregularities will deteriorate and the reflectance will decrease.

本願発明の銀反射膜は、有機銀化合物を溶媒に溶解した有機銀化合物溶液を、基板上に塗布し、焼成することによって得られる銀反射膜であり、
前記銀反射膜は、基板に接触する面が多結晶であり且つ結晶粒界の段差が1nm以下であることを特徴としている。
The silver reflective film of the present invention is a silver reflective film obtained by applying an organic silver compound solution in which an organic silver compound is dissolved in a solvent on a substrate and baking it.
The silver reflective film is characterized in that the surface in contact with the substrate is polycrystalline and the step of the crystal grain boundary is 1 nm or less.

前記基板に接触する面では、多結晶の結晶粒同士は凹みやボイドがほとんど無い状態で密に繋がっており、結晶粒界の段差が1nm以下である。基板は、単体の基板、或いは下地層等を被覆した基板を包含する。
結晶粒界の段差が1nmをこえると、段差部で光が散乱し銀反射膜の反射率が低下するため、結晶粒界の段差は1nm未満であることが好ましい。
On the surface in contact with the substrate, the polycrystalline crystal grains are closely connected with almost no dents or voids, and the step of the crystal grain boundary is 1 nm or less. The substrate includes a single substrate or a substrate coated with an underlayer or the like.
If the step of the crystal grain boundary exceeds 1 nm, light is scattered at the step portion and the reflectance of the silver reflecting film is lowered. Therefore, the step of the crystal grain boundary is preferably less than 1 nm.

実施態様としては、前記多結晶において平均結晶粒径が100nm以上であることが好ましい。平均結晶粒径は、SEM像に対して2μm長さのラインを5本引き、ラインにかかる銀の結晶の数をカウントして平均個数を求め、2μm長さを平均個数で割って求める。“μm”はミクロンである。銀の平均結晶粒径が大きいほど、銀反射膜の単位面積あたりの結晶粒界相の割合が低下するため、高い反射率を得ることができる。銀の平均結晶粒径が100nm未満になると銀反射膜の反射率が大きく低下するため、銀の平均結晶粒径は100nm以上であることが好ましい。   As an embodiment, the polycrystal preferably has an average crystal grain size of 100 nm or more. The average crystal grain size is obtained by drawing five lines each having a length of 2 μm from the SEM image, counting the number of silver crystals on the line, obtaining the average number, and dividing the 2 μm length by the average number. “Μm” is a micron. Since the ratio of the crystal grain boundary phase per unit area of the silver reflective film decreases as the average crystal grain size of silver increases, a high reflectance can be obtained. When the average crystal grain size of silver is less than 100 nm, the reflectance of the silver reflecting film is greatly reduced. Therefore, the average crystal grain size of silver is preferably 100 nm or more.

実施態様としては、基板に接する面の面粗さがRa1nm未満であることをが好ましい。
また、実施態様としては、銀反射膜は、良好なアンカー効果を得るために、基板に接する面と反対側の面の面粗さがRa10nm以上であることが好ましい。
As an embodiment, the surface roughness of the surface in contact with the substrate is preferably less than Ra1 nm.
Moreover, as an embodiment, in order to obtain a good anchor effect, the silver reflecting film preferably has a surface roughness Ra of 10 nm or more on the surface opposite to the surface in contact with the substrate.

本願発明の銀反射膜の形成方法は、有機銀化合物溶液を基板に塗布する工程と、前記基板を熱処理する工程とを備え、
前記還元剤は、有機銀化合物が熱分解されて析出した銀粒子の表面活性を維持するための還元剤であることを特徴とする。
The method for forming a silver reflective film of the present invention comprises a step of applying an organic silver compound solution to a substrate, and a step of heat-treating the substrate,
The reducing agent is a reducing agent for maintaining the surface activity of silver particles deposited by thermal decomposition of an organic silver compound.

有機銀化合物溶液は、前記塗布工程よりも前に、有機銀化合物及び還元剤を溶媒に溶解して有機銀化合物溶液を作製することが好ましい。
すなわち、有機銀化合物が熱分解されて析出した銀の粒子の表面活性を維持するための還元剤を有機銀化合物溶液に添加した溶液を基板上に塗布し、焼成して有機銀化合物を熱分解させた銀粒子を析出させ、銀粒子を結合させて、銀薄膜を形成することができる。
Prior to the coating step, the organic silver compound solution is preferably prepared by dissolving the organic silver compound and the reducing agent in a solvent.
That is, a solution obtained by adding a reducing agent to the organic silver compound solution to maintain the surface activity of the silver particles deposited by thermal decomposition of the organic silver compound is applied onto the substrate and baked to thermally decompose the organic silver compound. A silver thin film can be formed by precipitating the silver particles and bonding the silver particles.

前記有機銀化合物溶液は、炭素数10以上の有機銀塩をグリコール系溶媒に溶解したものが好ましい。前記還元剤は、トリプロピレングリコールn−ブチルエーテルであることが好ましい。   The organic silver compound solution is preferably prepared by dissolving an organic silver salt having 10 or more carbon atoms in a glycol solvent. The reducing agent is preferably tripropylene glycol n-butyl ether.

また、実施態様としては、前記有機銀化合物溶液を、スプレーコート法、インクジェット印刷法、スピンコート法、ディップ法、スクリーン印刷法、スリットコート法、ダイコート法のいずれかで塗布し、焼成することが好ましい。
また、実施態様としては、前記有機銀化合物溶液の塗膜の焼成温度が130℃〜200℃であることが好ましい。
Further, as an embodiment, the organic silver compound solution may be applied and baked by any one of a spray coating method, an ink jet printing method, a spin coating method, a dip method, a screen printing method, a slit coating method, and a die coating method. preferable.
Moreover, as an embodiment, it is preferable that the baking temperature of the coating film of the organic silver compound solution is 130 ° C to 200 ° C.

本発明の放射線検出器は、複数の半導体光検出素子がマトリクス状に配列された半導体光検出素子アレイ上に、複数のシンチレータ素子の各々がその底面を各半導体光検出素子に対向して配列され、シンチレータ素子の底面および表面を除く面に光反射材を設けた放射線検出器であって、
前記シンチレータ素子は互いに100μm以下の間隔をもって隣り合って配列され、前記光反射材は下地材と銀反射膜とが順に形成されたものであり、
前記銀反射膜は、シンチレータ素子側の面が多結晶であり且つ結晶粒界の段差が1nm以下であることを特徴とする。多結晶であり且つ結晶粒界の段差が1nm以下である銀反射膜の面は、下地材に接触する。ここでは、下地材を有するシンチレータ素子が、基板に相当する。
In the radiation detector of the present invention, a plurality of scintillator elements are arrayed on a semiconductor photodetector element array in which a plurality of semiconductor photodetector elements are arranged in a matrix so that the bottom faces the semiconductor photodetector elements. A radiation detector provided with a light reflecting material on the surface excluding the bottom surface and the surface of the scintillator element,
The scintillator elements are arranged adjacent to each other with an interval of 100 μm or less, and the light reflecting material is formed by sequentially forming a base material and a silver reflecting film,
The silver reflective film is characterized in that the surface on the scintillator element side is polycrystalline and the step of the crystal grain boundary is 1 nm or less. The surface of the silver reflecting film that is polycrystalline and has a grain boundary step of 1 nm or less is in contact with the base material. Here, the scintillator element having the base material corresponds to the substrate.

下地材には、酸化シリコンや酸化チタンなど、シンチレータ素子の発光波長において光透過率が高い無機酸化物材料を用いて、10nm〜10μmの厚さとすることが好ましい。銀反射膜の厚さは0.1μm〜10μmとするのが好ましい。酸化を防ぐために、銀反射膜を酸化シリコンなどの保護材で被覆してもよい。   The base material is preferably an inorganic oxide material having a high light transmittance at the emission wavelength of the scintillator element, such as silicon oxide or titanium oxide, and preferably has a thickness of 10 nm to 10 μm. The thickness of the silver reflective film is preferably 0.1 μm to 10 μm. In order to prevent oxidation, the silver reflective film may be covered with a protective material such as silicon oxide.

側面に下地材および銀反射材を形成した複数のシンチレータ素子の間に隙間が生じる場合には、隣り合うシンチレータ素子との隙間に充填材を充填しても良い。充填材にはエポキシ樹脂、紫外線硬化性樹脂、ポリイミド樹脂などの樹脂を用いることができる。さらに、これらの樹脂にタングステン、モリブデンなどの重金属粉末を混練したものを充填すれば、シンチレータ素子間の放射線遮蔽効果を強め、クロストークの発生をより一層防ぐことができる。   When a gap is generated between a plurality of scintillator elements having a base material and a silver reflecting material formed on the side surfaces, a filler may be filled in the gap between adjacent scintillator elements. As the filler, a resin such as an epoxy resin, an ultraviolet curable resin, or a polyimide resin can be used. Furthermore, if these resins are filled with a mixture of heavy metal powders such as tungsten and molybdenum, the radiation shielding effect between the scintillator elements can be enhanced, and the occurrence of crosstalk can be further prevented.

シンチレータ素子の半導体光検出素子と対向する面の反対面には、上面反射材が形成される。この上面反射材はシンチレータ側面と同様に、下地材および金属反射材を順に形成したものを用いても良いし、従来の放射線検出器で反射材として用いられる、酸化チタン粉末などをエポキシ系樹脂などで混練した白色塗料を用いても良い。   An upper surface reflecting material is formed on the surface of the scintillator element opposite to the surface facing the semiconductor photodetecting element. As with the side surface of the scintillator, this top surface reflective material may be formed by sequentially forming a base material and a metal reflective material, or titanium oxide powder or the like used as a reflective material in a conventional radiation detector may be an epoxy resin or the like. You may use the white paint knead | mixed by.

本発明の太陽電池は、基板と、透明電極と、光電変換層と、銀反射膜とを備える太陽電池であって、
前記銀反射膜は、光電変換層側の面が多結晶であり且つ結晶粒界の段差が1nm以下であることを特徴とする。ここでは、光電変換層及び透明電極を設けた基板が、上記基板に相当する。
The solar cell of the present invention is a solar cell comprising a substrate, a transparent electrode, a photoelectric conversion layer, and a silver reflective film,
The silver reflective film is characterized in that the surface on the photoelectric conversion layer side is polycrystalline and the step of the crystal grain boundary is 1 nm or less. Here, the substrate provided with the photoelectric conversion layer and the transparent electrode corresponds to the substrate.

本願発明によれば、基板に接する面は平坦で反射率が高く、基板に接する面の反対面は面が粗く、前記反対面に積層する膜との密着性に優れた銀反射膜が得られる。   According to the present invention, the surface in contact with the substrate is flat and has a high reflectance, the surface opposite to the surface in contact with the substrate is rough, and a silver reflection film excellent in adhesion with the film laminated on the opposite surface is obtained. .

本発明の実施例に係る銀反射膜を表わすSEM像である。It is a SEM image showing the silver reflective film which concerns on the Example of this invention. 本発明の実施例に係る銀反射膜を表わすSEM像である。It is a SEM image showing the silver reflective film which concerns on the Example of this invention. 本発明の実施例に係る銀反射膜の反射率を表わすグラフである。It is a graph showing the reflectance of the silver reflecting film which concerns on the Example of this invention. 本発明の実施例に係る銀反射膜を表わすSEM像であるIt is a SEM image showing the silver reflective film which concerns on the Example of this invention. 比較例の銀反射膜を表わすSEM像である。It is a SEM image showing the silver reflective film of a comparative example. 比較例の銀反射膜の反射率を表わすグラフである。It is a graph showing the reflectance of the silver reflective film of a comparative example. 本発明の実施例に係る放射線検出器の概略斜視図である。It is a schematic perspective view of the radiation detector which concerns on the Example of this invention. 図7の一部を拡大した断面模式図である。It is the cross-sectional schematic diagram which expanded a part of FIG. 本発明の他の実施例に係る放射線検出器の製造方法を示す断面模式図である。It is a cross-sectional schematic diagram which shows the manufacturing method of the radiation detector which concerns on the other Example of this invention. 本発明の他の実施例に係るシンチレータ素子の間隙に形成された銀反射膜を表わすSEM像である。It is a SEM image showing the silver reflecting film formed in the gap | interval of the scintillator element based on the other Example of this invention. 本発明の他の実施例に係る太陽電池の構造を示す断面模式図である。It is a cross-sectional schematic diagram which shows the structure of the solar cell which concerns on the other Example of this invention.

本願発明の銀反射膜およびその形成方法を以下に図面を参照しながら詳細に説明する。   The silver reflective film and method for forming the same of the present invention will be described in detail below with reference to the drawings.

(実施例1)
有機銀化合物溶液は藤倉化成(株)製、ナノ・ドータイト XA−9069を用いた。次にダウ・ケミカル日本(株)製、ダワノールTPnB(化学名 トリプロピレングリコール n−ブチルエーテル)10gを有機銀化合物溶液10gに加えて攪拌し、塗液を調製した。
Example 1
As the organic silver compound solution, Nano Dotite XA-9069 manufactured by Fujikura Kasei Co., Ltd. was used. Next, 10 g of Dawanol TPnB (chemical name: tripropylene glycol n-butyl ether) manufactured by Dow Chemical Japan Co., Ltd. was added to 10 g of the organic silver compound solution and stirred to prepare a coating solution.

液の塗布にはノードソン(株)製、精密スプレーコーターを用いた。まず、スプレーガンの液吐出量を調整した。スプレーガンに関東化学(株)製、ジエチレングリコールジエチルエーテルをセットし、ニードルバルブの開口度を所定の値に調整した。次にビーカーに不織布(旭化成せんい(株)製、ベンコット)を入れ、不織布に向けて3分間、液をスプレーし、吐出された液の重量を測定した。実施例1では、上記の方法で測定した液の重量が0.75〜0.80gの範囲になるように、ニードルバルブの開口度を調整した。   A precision spray coater manufactured by Nordson Co., Ltd. was used for coating the liquid. First, the liquid discharge amount of the spray gun was adjusted. A spray gun manufactured by Kanto Chemical Co., Inc. and diethylene glycol diethyl ether were set, and the opening degree of the needle valve was adjusted to a predetermined value. Next, a non-woven fabric (manufactured by Asahi Kasei Fibers Co., Ltd., Bencott) was put into a beaker, the liquid was sprayed for 3 minutes toward the non-woven fabric, and the weight of the discharged liquid was measured. In Example 1, the opening degree of the needle valve was adjusted so that the weight of the liquid measured by the above method was in the range of 0.75 to 0.80 g.

次に、基板をスプレーコーター内のホットプレート上に固定し、120℃に加熱した。基板は松浪硝子工業(株)製、マイクロスライドガラス S−1111を用いた。さらに、スプレーガンに前記の塗液をセットし、スプレーガンが基板表面から30mmの高さになるように位置を調整した。次にスプレーガンから塗液を噴霧し、X方向に100mm/秒の速度で往復運動しながら、Y方向に0.25mmピッチで移動させ、基板全体に塗液を塗布した。   Next, the substrate was fixed on a hot plate in a spray coater and heated to 120 ° C. The substrate used was Matsunami Glass Industrial Co., Ltd., Micro Slide Glass S-1111. Further, the coating liquid was set on a spray gun, and the position was adjusted so that the spray gun was 30 mm high from the substrate surface. Next, the coating liquid was sprayed from the spray gun and moved in the Y direction at a pitch of 0.25 mm while reciprocating in the X direction at a speed of 100 mm / second to apply the coating liquid to the entire substrate.

塗布が完了した後、基板をスプレーコーター内のホットプレートから外し、150℃に加熱した別のホットプレートに乗せて大気中で焼成を行った。基板を2枚作製し、1枚は銀ナノ粒子の析出過程を観察するため焼成途中の2分でホットプレートから外し、もう一枚は60分間焼成した後、ホットプレートから外した。   After the application was completed, the substrate was removed from the hot plate in the spray coater and placed on another hot plate heated to 150 ° C. and baked in the atmosphere. Two substrates were prepared, one was removed from the hot plate in 2 minutes during firing to observe the precipitation process of silver nanoparticles, and the other was fired for 60 minutes and then removed from the hot plate.

次に、得られた銀反射膜の膜構造評価を行った。テープで銀反射膜を基板から剥がし、基板と接触している面の評価を行った。膜構造の観察には(株)日立ハイテクノロジーズ製、FE−SEM S−4500を用いた。観察条件は、加速電圧1kV、ワーキングディスタンス10mmとした。図1に2分間焼成後の銀反射膜の表面を示す。有機銀化合物が分解し、粒径約50〜100nm程度の粒状の銀粒子が表面に析出している。図1において、右下のドットは600nmを示す目盛りである。   Next, the film structure of the obtained silver reflective film was evaluated. The silver reflective film was peeled off from the substrate with a tape, and the surface in contact with the substrate was evaluated. For observation of the film structure, FE-SEM S-4500 manufactured by Hitachi High-Technologies Corporation was used. The observation conditions were an acceleration voltage of 1 kV and a working distance of 10 mm. FIG. 1 shows the surface of the silver reflective film after firing for 2 minutes. The organic silver compound is decomposed, and granular silver particles having a particle size of about 50 to 100 nm are deposited on the surface. In FIG. 1, the lower right dot is a scale indicating 600 nm.

図2に60分間焼成後の銀反射膜の表面を示す。図1に示した粒状構造は観察されず、表面は平坦であり、多結晶であることがわかった。図2のSEM像に対して2μm長さのラインを5本引き、ラインにかかる銀の結晶粒の数をカウントして平均個数を求め、2μm長さを平均個数で割って平均結晶粒径を求めた結果、カウント数6.6個、平均粒径303nmであった。この結果から、図1で示した粒状の銀粒子が複数個結合して一つの結晶となったと考えられる。膜厚は100nmであった。   FIG. 2 shows the surface of the silver reflective film after firing for 60 minutes. The granular structure shown in FIG. 1 was not observed, and it was found that the surface was flat and polycrystalline. 2 lines are drawn from the SEM image of FIG. 2, and the average number is obtained by counting the number of silver crystal grains on the line to obtain the average grain size by dividing the 2 μm length by the average number. As a result, the count number was 6.6 and the average particle size was 303 nm. From this result, it is considered that a plurality of granular silver particles shown in FIG. 1 are combined to form one crystal. The film thickness was 100 nm.

また、Veeco社製、原子間力顕微鏡 NanoscopeIIIを用いて表面の凹凸を評価した。測定範囲は1μm角とした。結晶粒界の段差は原子間力顕微鏡で明確に検出できないほど微小であることがわかった。面粗さはRa=0.40nmであった。結晶粒界の段差は1nm未満となった。   Further, surface irregularities were evaluated using an atomic force microscope Nanoscope III manufactured by Veeco. The measurement range was 1 μm square. It was found that the grain boundary step was so small that it could not be clearly detected with an atomic force microscope. The surface roughness was Ra = 0.40 nm. The step of the crystal grain boundary was less than 1 nm.

さらに、日本分光(株)製、分光光度計 V−570を用いて、反射率の測定を行った。測定光を基板側から照射し、基板を透過して銀反射膜で反射されて帰ってきた光を、積分球で集めて測定した。測定条件は、測定波長400nm〜900nm、波長ピッチ1nmとし、標準白色板の反射率を100%としたときの相対反射率とした。反射率測定結果を図3に示す。波長500nm〜900nmの範囲で97%以上の反射率が得られた。この結果から、本実施例で得られた銀反射膜の基板に接する面は、スパッタ法で得られる銀薄膜と同等の反射率が得られることが確認された。   Further, reflectance was measured using a spectrophotometer V-570 manufactured by JASCO Corporation. The measurement light was irradiated from the substrate side, and the light that passed through the substrate and was reflected by the silver reflection film was collected by an integrating sphere and measured. The measurement conditions were a measurement wavelength of 400 nm to 900 nm, a wavelength pitch of 1 nm, and a relative reflectance when the reflectance of the standard white plate was 100%. The reflectance measurement results are shown in FIG. A reflectance of 97% or more was obtained in the wavelength range of 500 nm to 900 nm. From this result, it was confirmed that the surface of the silver reflective film obtained in the present example in contact with the substrate had a reflectance equivalent to that of the silver thin film obtained by the sputtering method.

次に、反射面の反対面、すなわち膜表面の評価を行った。SEMで膜構造の観察を、原子間力顕微鏡で面粗さを評価した。測定範囲は1μm角とした。評価方法は反射面の評価方法と同じである。膜表面は反射面として使用しないため、反射率の測定は実施しなかった。図4にSEM観察結果を示す。粒径約100nmの銀粒子の表面が融着した構造となっており、銀粒子の形状がそのまま残った構造となっている。また、原子間力顕微鏡で膜表面の面粗さを測定した。銀粒子の寸法を反映した面粗さとなっており、Ra=22.2nmであった。反射面と比較して粗い面となっており、アンカー効果が期待できるため、この面にワイヤーボンディングした場合、十分なボンディング強度が得られることが期待できる。また、この面の上に樹脂や金属膜などを積層形成する場合も、十分な密着力が得られることが期待できる。   Next, the opposite surface of the reflecting surface, that is, the film surface was evaluated. The film structure was observed with SEM, and the surface roughness was evaluated with an atomic force microscope. The measurement range was 1 μm square. The evaluation method is the same as the evaluation method of the reflecting surface. Since the film surface was not used as a reflecting surface, the reflectance was not measured. FIG. 4 shows the SEM observation results. The surface of silver particles having a particle diameter of about 100 nm is fused, and the shape of the silver particles remains as it is. Further, the surface roughness of the film surface was measured with an atomic force microscope. The surface roughness reflected the dimensions of the silver particles, and Ra = 22.2 nm. Since the surface is rougher than the reflecting surface and an anchor effect can be expected, it can be expected that sufficient bonding strength can be obtained when wire bonding is performed on this surface. Also, when a resin or metal film is laminated on this surface, it can be expected that sufficient adhesion is obtained.

このように、実施例1で得られた銀反射膜は、基板に接する面は平坦で反射率が高く、基板に接する面の反対面は面が粗く、前記反対面に積層した膜との密着性に優れた膜が得られた。   Thus, the silver reflective film obtained in Example 1 has a flat surface that is in contact with the substrate and high reflectance, and the surface opposite to the surface that is in contact with the substrate is rough, so that it is in close contact with the film laminated on the opposite surface. A film having excellent properties was obtained.

(比較例1)
藤倉化成(株)製、ナノ・ドータイト XA−9069の原液を用いて銀反射膜を形成した。塗布、焼成、評価方法は実施例1と同一とした。
(Comparative Example 1)
A silver reflective film was formed using a stock solution of Nano Dotite XA-9690 manufactured by Fujikura Kasei Co., Ltd. The application, firing, and evaluation methods were the same as in Example 1.

比較例1で得られた銀反射膜の評価を行った。銀反射膜を基板から剥がし、基板と接触している面、すなわち反射面の評価を行った。図5にSEMで膜構造を評価した結果を示す。銀粒子同士が融着して連続膜が形成されているが、銀粒子の表面同士が融着しているだけなので、銀粒子の形状が残って凹凸のある面となっている。原子間力顕微鏡で面粗さを評価した結果、Ra=1.04nmで、実施例1と比較すると粗い面が得られた。凸部の平均粒径は52nmとなった。次に反射率の測定を行った。反射率測定結果を図6に示す。波長500nmで95%の反射率が得られたが、500nmから400nmにかけての反射率低下が顕著であることがわかった。比較例1で得られた銀反射膜の基板に接する面は、実施例1と比較して反射率が低く、不安定であることが確認された。   The silver reflective film obtained in Comparative Example 1 was evaluated. The silver reflective film was peeled off from the substrate, and the surface in contact with the substrate, that is, the reflective surface was evaluated. FIG. 5 shows the results of evaluation of the film structure by SEM. The silver particles are fused together to form a continuous film, but since the surfaces of the silver particles are only fused together, the shape of the silver particles remains and the surface is uneven. As a result of evaluating the surface roughness with an atomic force microscope, a rough surface was obtained when compared with Example 1 at Ra = 1.04 nm. The average particle size of the protrusions was 52 nm. Next, the reflectance was measured. The reflectance measurement results are shown in FIG. Although a reflectance of 95% was obtained at a wavelength of 500 nm, it was found that the reflectance decrease from 500 nm to 400 nm was significant. It was confirmed that the surface of the silver reflective film obtained in Comparative Example 1 that was in contact with the substrate had a lower reflectance than Example 1 and was unstable.

(実施例2)
本願発明の銀反射膜を放射線検出器の反射膜に適用した例を説明する。
図7は、実施例2の放射線検出器を示す斜視図である。放射線検出器1では、半導体光検出素子アレイ2上にシンチレータアレイ3を接着層4を介して取り付けた。半導体光検出素子アレイ2では、複数の半導体光検出素子21を長さと幅方向のマトリクス状に配列した。柱状に加工されたシンチレータ素子31の底面を、半導体光検出素子21に接着層4を介して取り付け、放射線検出器を形成した。実施例2において、隣り合うシンチレータ素子31の間隔は100μm以下とした。
(Example 2)
An example in which the silver reflective film of the present invention is applied to the reflective film of a radiation detector will be described.
FIG. 7 is a perspective view illustrating the radiation detector according to the second embodiment. In the radiation detector 1, the scintillator array 3 is attached via the adhesive layer 4 on the semiconductor photodetector element array 2. In the semiconductor photodetector element array 2, a plurality of semiconductor photodetector elements 21 are arranged in a matrix in the length and width directions. The bottom surface of the scintillator element 31 processed into a columnar shape was attached to the semiconductor photodetecting element 21 via the adhesive layer 4 to form a radiation detector. In Example 2, the interval between adjacent scintillator elements 31 was 100 μm or less.

シンチレータ素子31にはGdSのセラミックスシンチレータ材料を用いた。接着層4には光透過率が高い光学用接着剤として、Epoxy Technologies社製、Epo−Tek301を用いた。図7中には示されていないが、シンチレータ素子31の側面および上面(半導体光検出素子21と対向する面の反対面)には、シンチレータ素子31が発した可視光を反射する反射材を形成した。 For the scintillator element 31, a ceramic scintillator material of Gd 2 O 2 S was used. Epoxy-Tek301 manufactured by Epoxy Technologies was used as the adhesive layer 4 as an optical adhesive having a high light transmittance. Although not shown in FIG. 7, a reflecting material that reflects visible light emitted by the scintillator element 31 is formed on the side surface and the upper surface of the scintillator element 31 (opposite the surface facing the semiconductor light detection element 21). did.

図8は図7に示した放射線検出器1の断面拡大図である。シンチレータ素子31の側面には、下地材32、銀反射膜33を順に形成した。銀反射膜33の形成方法を以下に詳細に述べる。   FIG. 8 is an enlarged cross-sectional view of the radiation detector 1 shown in FIG. On the side surface of the scintillator element 31, a base material 32 and a silver reflection film 33 were formed in this order. A method for forming the silver reflecting film 33 will be described in detail below.

銀反射膜33は有機銀化合物溶液を加熱して得た。有機銀化合物溶液は藤倉化成(株)製、ナノ・ドータイト XA−9069を用いた。次にダウ・ケミカル日本(株)製、ダワノールTPnB(化学名 トリプロピレングリコール n−ブチルエーテル)10gを有機銀化合物溶液10gに加えて攪拌し、塗液を調製した。   The silver reflecting film 33 was obtained by heating an organic silver compound solution. As the organic silver compound solution, Nano Dotite XA-9069 manufactured by Fujikura Kasei Co., Ltd. was used. Next, 10 g of Dawanol TPnB (chemical name: tripropylene glycol n-butyl ether) manufactured by Dow Chemical Japan Co., Ltd. was added to 10 g of the organic silver compound solution and stirred to prepare a coating solution.

液の塗布にはノードソン(株)製、精密スプレーコーターを用いた。まず、スプレーガンの液吐出量を調整した。スプレーガンに関東化学(株)製、ジエチレングリコールジエチルエーテルをセットし、ニードルバルブの開口度を所定の値に調整した。次にビーカーに不織布(旭化成せんい(株)製、ベンコット)を入れ、不織布に向けて3分間、液をスプレーし、吐出された液の重量を測定した。実施例2では、上記の方法で測定した液の重量が0.75〜0.80gの範囲になるように、ニードルバルブの開口度を調整した。   A precision spray coater manufactured by Nordson Co., Ltd. was used for coating the liquid. First, the liquid discharge amount of the spray gun was adjusted. A spray gun manufactured by Kanto Chemical Co., Inc. and diethylene glycol diethyl ether were set, and the opening degree of the needle valve was adjusted to a predetermined value. Next, a non-woven fabric (manufactured by Asahi Kasei Fibers Co., Ltd., Bencott) was put into a beaker, the liquid was sprayed for 3 minutes toward the non-woven fabric, and the weight of the discharged liquid was measured. In Example 2, the opening degree of the needle valve was adjusted so that the weight of the liquid measured by the above method was in the range of 0.75 to 0.80 g.

次に、シンチレータアレイ3をスプレーコーター内のホットプレート上に固定し、120℃に加熱した。さらに、スプレーガンに前記の塗液をセットし、スプレーガンが基板表面から30mmの高さになるように位置を調整した。次にスプレーガンから塗液を噴霧し、X方向に100mm/秒の速度で往復運動しながら、Y方向に0.25mmピッチで移動させ、シンチレータアレイ3に塗液を塗布した。   Next, the scintillator array 3 was fixed on a hot plate in a spray coater and heated to 120 ° C. Further, the coating liquid was set on a spray gun, and the position was adjusted so that the spray gun was 30 mm high from the substrate surface. Next, the coating liquid was sprayed from the spray gun and moved at a pitch of 0.25 mm in the Y direction while reciprocating in the X direction at a speed of 100 mm / second to apply the coating liquid to the scintillator array 3.

塗布が完了した後、シンチレータアレイ3をスプレーコーター内のホットプレートから外し、150℃に加熱した別のホットプレートに乗せて大気中で焼成を行い、銀反射膜33を得た。   After the application was completed, the scintillator array 3 was removed from the hot plate in the spray coater, placed on another hot plate heated to 150 ° C., and baked in the air to obtain a silver reflective film 33.

次に、図9を用いて、実施例2の放射線検出器の製造方法を、工程を追いながら説明する。   Next, the manufacturing method of the radiation detector of Example 2 will be described with reference to FIGS.

まず工程1で、幅73mm、高さ22mm、厚さ2.0mmに加工したGdSのシンチレータ基板5に、機械加工で、幅80μm、深さ1.7mmの溝を1mmピッチで格子状に形成した(図9(a))。 First, in step 1, a Gd 2 O 2 S scintillator substrate 5 processed to have a width of 73 mm, a height of 22 mm, and a thickness of 2.0 mm is machined to form grooves having a width of 80 μm and a depth of 1.7 mm at a pitch of 1 mm. (FIG. 9A).

次に工程2で、溝加工したシンチレータ基板5を、ディップコーティング法で日立化成工業(株)製、HSG−R7−13のSOG液6に浸漬して、シンチレータ基板5に形成した溝内にSOG液6を充填した(図9(b))。   Next, in step 2, the grooved scintillator substrate 5 is dipped in the SOG solution 6 of HSG-R7-13 manufactured by Hitachi Chemical Co., Ltd. by the dip coating method, and the SOG is formed in the groove formed on the scintillator substrate 5. Liquid 6 was filled (FIG. 9B).

SOG液6とシンチレータ基板5の濡れ性が悪い場合には、SOG液6を溝内部に充填する前に、HMDS(ヘキサメチルジシラザン)処理、あるいは酸素プラズマ照射を、濡れ性改善の前処理として行った。さらに、溝内のSOG液6が過剰な場合には、遠心力を使ってSOG液6を振り切るか、あるいは、不織布(旭化成せんい(株)製、ベンコット)でSOG液6を吸いとって、余分なSOG液6を除去した。   If the wettability between the SOG liquid 6 and the scintillator substrate 5 is poor, HMDS (hexamethyldisilazane) treatment or oxygen plasma irradiation is used as a pretreatment for improving the wettability before filling the groove with the SOG liquid 6. went. Further, when the SOG liquid 6 in the groove is excessive, the SOG liquid 6 is shaken off using centrifugal force, or the SOG liquid 6 is sucked with a non-woven fabric (Asahi Kasei Fibers Co., Ltd., Bencott) SOG liquid 6 was removed.

SOG液6は、粘度が高くなると溝内に充填される際に気泡を巻き込みやすく、均一充填が困難になる。本願発明者は、種々の粘度のSOG液6を作製して検討を重ねた結果、SOG液6の粘度が20cP(0.020Pa・s)以下であれば気泡を巻き込まずに均一に充填できることを確認し、実施例2では、余裕をもって15cP(0.015Pa・s)の粘度のSOG液6を用いた。   When the viscosity of the SOG liquid 6 is increased, bubbles are easily involved when filling the groove, and uniform filling becomes difficult. As a result of making and studying SOG liquids 6 having various viscosities, the present inventor has found that if the viscosity of the SOG liquid 6 is 20 cP (0.020 Pa · s) or less, it can be uniformly filled without entraining bubbles. As confirmed, in Example 2, the SOG liquid 6 having a viscosity of 15 cP (0.015 Pa · s) was used with a margin.

次に工程3で、SOG液6を焼成して酸化シリコンを含む下地材32を形成した。焼成には電気炉を用い、室温から昇温して400℃で30分間保持した。焼成中の酸素濃度は1000ppm以下とした。焼成後、酸化シリコンを含む下地材32が溝加工面に形成され、溝加工面の面荒れが平坦化された。溝加工面上の下地材32の厚さは0.1〜2μm、溝加工面の表面粗さRaは500nm以下となった(図9(c))。   Next, in Step 3, the SOG liquid 6 was baked to form a base material 32 containing silicon oxide. An electric furnace was used for firing, and the temperature was raised from room temperature and held at 400 ° C. for 30 minutes. The oxygen concentration during firing was set to 1000 ppm or less. After firing, a base material 32 containing silicon oxide was formed on the groove processing surface, and the surface roughness of the groove processing surface was flattened. The thickness of the base material 32 on the groove processed surface was 0.1 to 2 μm, and the surface roughness Ra of the groove processed surface was 500 nm or less (FIG. 9C).

無機酸化物を含む下地材32とすることで、次工程において、下地材32上の有機銀化合物溶液7から銀が偏析しにくく、均一な銀反射材33とすることができた。この効果は、無機酸化物を含む下地材32が有機銀化合物溶液7に含まれる有機溶剤と反応しにくく、銀が偏析する起点が生じにくいためと考えられる。   By using the base material 32 containing an inorganic oxide, silver was not easily segregated from the organic silver compound solution 7 on the base material 32 in the next step, and a uniform silver reflector 33 could be obtained. This effect is considered to be because the base material 32 containing an inorganic oxide hardly reacts with the organic solvent contained in the organic silver compound solution 7, and the starting point for silver segregation hardly occurs.

次に工程4で、下地材32を形成したシンチレータ基板5を、ディップコーティング法で有機銀化合物溶液7に浸漬して、シンチレータ基板5の溝内に有機銀化合物溶液7を充填した。本実施例では、有機銀化合物溶液7として、藤倉化成(株)製、ナノ・ドータイト XA−9069とダウ・ケミカル日本(株)製、ダワノールTPnB(化学名 トリプロピレングリコール n−ブチルエーテル)を重量比1:1で混合した液を用いた(図9(d))。   Next, in step 4, the scintillator substrate 5 on which the base material 32 was formed was immersed in the organic silver compound solution 7 by a dip coating method, and the organic silver compound solution 7 was filled in the grooves of the scintillator substrate 5. In this example, as the organic silver compound solution 7, a weight ratio of Fujikura Kasei Co., Ltd., Nano-Dotite XA-9690 and Dow Chemical Japan Co., Ltd., Dawanol TPnB (chemical name: tripropylene glycol n-butyl ether) The liquid mixed by 1: 1 was used (FIG. 9 (d)).

有機銀化合物溶液7は、粘度が高くなると溝内に充填される際に気泡を巻き込みやすく、均一充填が困難になる。本願発明者は、種々の粘度の有機銀化合物溶液7を作製して検討を重ねた結果、有機銀化合物溶液7の粘度が20cP(0.020Pa・s)以下であれば気泡を巻き込まずに均一に充填できることを確認し、実施例2では、余裕をもって15cP(0.015Pa・s)の粘度の有機銀化合物溶液7を用いた。   When the viscosity of the organic silver compound solution 7 is increased, bubbles are easily involved when filling the groove, and uniform filling becomes difficult. The inventor of the present application made organic silver compound solution 7 having various viscosities, and as a result of repeated examination, if the viscosity of organic silver compound solution 7 is 20 cP (0.020 Pa · s) or less, air bubbles are not involved and uniform. In Example 2, the organic silver compound solution 7 having a viscosity of 15 cP (0.015 Pa · s) was used with a margin.

次に工程5で、有機銀化合物7を焼成して銀反射材33を形成した。焼成にはホットプレートを用い、150℃で30分間保持した。焼成前の有機銀化合物7は無色透明であったが、焼成中に銀粒子が析出すると茶色に変色し、その後銀粒子どうしが結合して結晶粒となり、銀色の連続膜になった。溝内の銀反射材33の厚さは0.1〜数μmであった(図9(e))。   Next, in step 5, the organic silver compound 7 was baked to form a silver reflector 33. For baking, a hot plate was used and held at 150 ° C. for 30 minutes. The organic silver compound 7 before firing was colorless and transparent. However, when silver particles were precipitated during firing, the organic silver compound 7 turned brown, and then the silver particles joined together to form crystal grains, thereby forming a silver continuous film. The thickness of the silver reflecting material 33 in the groove was 0.1 to several μm (FIG. 9E).

図10は、焼成後の銀反射材33表面のSEM像である。図2に示したスライドガラス上に形成した銀反射膜と同様の平坦な多結晶構造の銀反射膜が得られた。   FIG. 10 is an SEM image of the surface of the silver reflector 33 after firing. A silver reflective film having a flat polycrystalline structure similar to the silver reflective film formed on the slide glass shown in FIG. 2 was obtained.

次に工程6で、シンチレータ基板5の溝内に充填材34を充填した。実施例2では、充填材34として、(株)スリーボンド製、主剤2023、硬化剤2131Dのエポキシ樹脂を、主剤100:硬化剤30(重量比)で混合したものを用い、スクリーン印刷法でシンチレータ基板5の溝内に充填した。エポキシ樹脂は、電気オーブン中100℃で1時間加熱して硬化させた(図9(f))。   Next, in step 6, the filler 34 was filled into the grooves of the scintillator substrate 5. In Example 2, as a filler 34, a scintillator substrate manufactured by Three Bond Co., Ltd., a main agent 2023, and a hardener 2131D epoxy resin mixed in a main agent 100: hardener 30 (weight ratio) is used by screen printing. 5 grooves were filled. The epoxy resin was cured by heating at 100 ° C. for 1 hour in an electric oven (FIG. 9F).

次に工程7で、シンチレータ基板5の表面を研削した。基板表面(溝加工面)を研削することで、シンチレータ基板5表面に付着した、下地材32、金属反射材33、充填材34を除去した(図9(g))。   Next, in step 7, the surface of the scintillator substrate 5 was ground. By grinding the substrate surface (grooved surface), the base material 32, the metal reflecting material 33, and the filler 34 adhered to the surface of the scintillator substrate 5 were removed (FIG. 9G).

次に工程8で、上面反射材35を形成した。実施例2では、上面反射材35として、(株)スリーボンド製、主剤2023、硬化剤2131Dのエポキシ樹脂を、主剤100:硬化剤30(重量比)で混合したものに、平均粒径約0.3μmの酸化チタン粉末を混練して白色塗料としたものを用い、シンチレータ基板5の表面(溝加工面)にスクリーン印刷法で塗布した。白色塗料は、電気オーブン中100℃で1時間加熱して硬化させた。(図9(h))。   Next, in step 8, a top reflector 35 was formed. In Example 2, as the upper surface reflecting material 35, an epoxy resin of a main agent 2023 and a curing agent 2131D manufactured by Three Bond Co., Ltd., mixed with a main agent 100: a curing agent 30 (weight ratio), an average particle size of about 0.1. A white paint obtained by kneading 3 μm titanium oxide powder was applied to the surface (grooved surface) of the scintillator substrate 5 by screen printing. The white paint was cured by heating in an electric oven at 100 ° C. for 1 hour. (FIG. 9 (h)).

次に工程9で、シンチレータ基板5の裏面(溝加工面の反対面)を研削した。シンチレータ基板5の裏面に付着した下地材32と金属反射材33、充填材34を除去し、シンチレータ基板5の厚みが、当初の2.0mmから1.7mmになるまで研削したことで、シンチレータ基板5は複数の柱状のシンチレータ素子31に分離され、シンチレータアレイ3が形成された(図9(i))。   Next, in step 9, the back surface of the scintillator substrate 5 (the surface opposite to the groove processing surface) was ground. The base material 32, the metal reflector 33, and the filler 34 attached to the back surface of the scintillator substrate 5 are removed, and the scintillator substrate 5 is ground until the thickness of the scintillator substrate 5 is reduced from 2.0 mm to 1.7 mm. 5 was separated into a plurality of columnar scintillator elements 31 to form a scintillator array 3 (FIG. 9 (i)).

最後に工程10で、複数のシンチレータ素子31と複数の半導体光検出素子21とが対向するようにして、シンチレータアレイ3の上面反射材35の反対面と半導体光検出素子アレイ2の表面とを接着層4を介して接着した。接着層4には、Epoxy Technologies社製、Epo−Tek301の光学用接着剤を用い、電気炉中80℃で1時間加熱することで、シンチレータアレイ3と半導体光検出素子アレイ2は硬化して接着し、放射線検出器1が完成した(図9(j))。   Finally, in step 10, the opposite surface of the upper surface reflector 35 of the scintillator array 3 and the surface of the semiconductor light detection element array 2 are bonded so that the plurality of scintillator elements 31 and the plurality of semiconductor light detection elements 21 face each other. Bonded through layer 4. The adhesive layer 4 is made of Epoxy Technologies, Epo-Tek301 optical adhesive, and heated in an electric furnace at 80 ° C. for 1 hour, so that the scintillator array 3 and the semiconductor photodetector array 2 are cured and bonded. Thus, the radiation detector 1 was completed (FIG. 9 (j)).

(実施例3)
本願発明の銀反射膜を、薄膜シリコン型太陽電池の反射材に適用した例を説明する。
図11は実施例3の薄膜シリコン型太陽電池を示す断面模式図である。ガラス基板8上に透明電極層9、光電変換層10を形成した後、有機銀化合物溶液7をスプレーコート法で基板上に塗布した。有機銀化合物溶液7は、藤倉化成(株)製、ナノ・ドータイト XA−9069とダウ・ケミカル日本(株)製、ダワノールTPnB(化学名 トリプロピレングリコール n−ブチルエーテル)を重量比1:1で混合した液を用いた。次に基板を150℃に加熱したホットプレート上で60分間焼成し、銀反射膜を備える金属反射材11を得た。このようにして得られた銀反射膜は、波長500nmから900nmの範囲で97%以上の反射率を有し、スパッタ膜と遜色のない特性が得られた。
(Example 3)
An example in which the silver reflective film of the present invention is applied to a reflective material of a thin film silicon type solar cell will be described.
FIG. 11 is a schematic cross-sectional view showing the thin-film silicon solar cell of Example 3. After forming the transparent electrode layer 9 and the photoelectric conversion layer 10 on the glass substrate 8, the organic silver compound solution 7 was apply | coated on the board | substrate by the spray coat method. The organic silver compound solution 7 is made by mixing Fujikura Kasei Co., Ltd., Nano-Dotite XA-9690 and Dow Chemical Japan Co., Ltd., Dowanol TPnB (chemical name: tripropylene glycol n-butyl ether) at a weight ratio of 1: 1. The obtained liquid was used. Next, the board | substrate was baked on the hotplate heated at 150 degreeC for 60 minutes, and the metal reflecting material 11 provided with a silver reflecting film was obtained. The silver reflective film thus obtained had a reflectivity of 97% or more in the wavelength range of 500 nm to 900 nm, and characteristics comparable to the sputtered film were obtained.

放射線検出器または太陽電池に、本願発明を適用することができる。   The present invention can be applied to a radiation detector or a solar cell.

1 放射線検出器、
2 半導体光検出素子アレイ、
21 半導体光検出素子、
3 シンチレータアレイ、
31 シンチレータ素子、
32 下地材、
33 金属反射材、
34 充填材、
35 上面反射材、
4 接着層、
5 シンチレータ基板、
6 SOG液、
7 有機銀化合物溶液、
8 ガラス基板、
9 透明電極層、
10 光電変換層、
11 金属反射材


1 radiation detector,
2 semiconductor photodetector array,
21 semiconductor light detection element,
3 scintillator array,
31 scintillator elements,
32 Base material,
33 metal reflector,
34 filler,
35 top reflector,
4 Adhesive layer,
5 Scintillator board,
6 SOG liquid,
7 Organic silver compound solution,
8 Glass substrate,
9 Transparent electrode layer,
10 photoelectric conversion layer,
11 Metal reflector


Claims (10)

有機銀化合物と還元剤を溶媒に溶解した有機銀化合物溶液を、基板上に塗布し、焼成することによって得られる銀反射膜であって、前記銀反射膜は、前記基板側からの光を再び基板側に反射する反射膜であり、前記基板に接触する側の面が平均結晶粒径が100nm以上の多結晶で、且つ結晶粒界の段差が1nm以下であることを特徴とする銀反射膜。 The organic silver compound and an organic silver compound solution dissolved in a solvent of a reducing agent, is applied to a substrate, a silver reflection film obtained by baking the silver reflective film, again the light from the substrate side A silver reflecting film characterized in that it is a reflecting film reflecting toward the substrate side, the surface in contact with the substrate is a polycrystal having an average crystal grain size of 100 nm or more , and the step of the crystal grain boundary is 1 nm or less. . 前記銀反射膜の基板に接触する側の面の面粗さがRa1nm未満であることを特徴とする請求項1に記載の銀反射膜。 2. The silver reflective film according to claim 1, wherein the surface roughness of the surface of the silver reflective film that contacts the substrate is less than Ra1 nm. 前記銀反射膜の反対側の面である表面の面粗さがRa10nm以上であることを特徴とする請求項1または2に記載の銀反射膜。 Silver reflection film according to claim 1 or 2 surface roughness of a surface opposite a surface of the silver reflective film is characterized in that at least Ra10nm. 前記銀反射膜の厚さは、0.1μm〜10μmであることを特徴とする請求項1〜3の何れかに記載の銀反射膜。 The silver reflective film according to claim 1, wherein the silver reflective film has a thickness of 0.1 μm to 10 μm . 有機銀化合物と還元剤を溶媒に溶解した有機銀化合物溶液を作製する工程と、前記有機銀化合物溶液を基板に塗布する工程と、前記基板を130℃〜200℃で焼成する工程とを備え、前記還元剤は、有機銀化合物が熱分解されて析出した銀粒子の表面活性を維持するための還元剤であり、前記基板に接触する側の面を、平均結晶粒径が100nm以上の多結晶で、且つ結晶粒界の段差が1nm以下である銀反射膜となすことを特徴とする銀反射膜の形成方法。 A step of preparing an organic silver compound solution in which an organic silver compound and a reducing agent are dissolved in a solvent, a step of applying the organic silver compound solution to a substrate, and a step of baking the substrate at 130 ° C. to 200 ° C. , The reducing agent is a reducing agent for maintaining the surface activity of silver particles deposited by thermal decomposition of an organic silver compound, and a polycrystal having an average crystal grain size of 100 nm or more is provided on the surface in contact with the substrate. And forming a silver reflective film having a grain boundary step of 1 nm or less . 還元剤は、トリプロピレングリコールn−ブチルエーテルであることを特徴とする請求項5に記載の銀反射膜の形成方法。 The method for forming a silver reflective film according to claim 5, wherein the reducing agent is tripropylene glycol n-butyl ether. 有機銀化合物溶液の塗布方法が、スプレーコート法、インクジェット印刷法、スピンコート法、ディップコーティング法、スクリーン印刷法、スリットコート法、ダイコート法のいずれかであることを特徴とする請求項5または6に記載の銀反射膜の形成方法。 The coating method of the organic silver compound solution is any one of a spray coating method, an ink jet printing method, a spin coating method, a dip coating method, a screen printing method, a slit coating method, and a die coating method. A method for forming a silver reflective film as described in 1. above. 複数の半導体光検出素子がマトリクス状に配列された半導体光検出素子アレイ上に、複数のシンチレータ素子からなる基板の各々がその底面を各半導体光検出素子に対向して配列され、シンチレータ素子の底面および表面を除く面に光反射材を設けた放射線検出器であって、前記シンチレータ素子は互いに100μm以下の間隔をもって隣り合って配列され、前記光反射材は下地材と銀反射膜とが順に形成されたものであり、前記銀反射膜は、シンチレータ素子側の面が請求項1〜4の何れかに記載の銀反射膜となしたことを特徴とする放射線検出器。 A plurality of substrates made of a plurality of scintillator elements are arranged on a semiconductor photodetector element array in which a plurality of semiconductor photodetector elements are arranged in a matrix so that the bottom surface of the substrate is opposed to each semiconductor photodetector element. And a radiation detector provided with a light reflecting material on a surface excluding the surface, wherein the scintillator elements are arranged adjacent to each other with an interval of 100 μm or less, and the light reflecting material is formed by a base material and a silver reflecting film in order. A radiation detector, wherein the silver reflection film has a surface on the scintillator element side that is the silver reflection film according to claim 1 . 前記下地材が無機酸化物を含む下地材であることを特徴とする請求項8に記載の放射線検出器。The radiation detector according to claim 8, wherein the base material is a base material containing an inorganic oxide. 基板と、透明電極と、光電変換層と、銀反射膜とを備える太陽電池であって、前記銀反射膜は、光電変換層側の面が請求項1〜4の何れかに記載の銀反射膜となしたことを特徴とする太陽電池。
It is a solar cell provided with a board | substrate, a transparent electrode, a photoelectric converting layer, and a silver reflecting film, Comprising: As for the said silver reflecting film, the surface at the side of a photoelectric converting layer is a silver reflection in any one of Claims 1-4. A solar cell characterized by forming a film .
JP2011221680A 2010-11-25 2011-10-06 Silver reflective film and method for forming the same, radiation detector, and solar cell Active JP5549657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011221680A JP5549657B2 (en) 2010-11-25 2011-10-06 Silver reflective film and method for forming the same, radiation detector, and solar cell

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010261924 2010-11-25
JP2010261924 2010-11-25
JP2011221680A JP5549657B2 (en) 2010-11-25 2011-10-06 Silver reflective film and method for forming the same, radiation detector, and solar cell

Publications (2)

Publication Number Publication Date
JP2012128402A JP2012128402A (en) 2012-07-05
JP5549657B2 true JP5549657B2 (en) 2014-07-16

Family

ID=46645428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011221680A Active JP5549657B2 (en) 2010-11-25 2011-10-06 Silver reflective film and method for forming the same, radiation detector, and solar cell

Country Status (1)

Country Link
JP (1) JP5549657B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6041594B2 (en) * 2012-09-14 2016-12-14 浜松ホトニクス株式会社 Scintillator panel and radiation detector
EP4006590A4 (en) 2019-07-31 2023-08-23 Canon Kabushiki Kaisha Scintillator unit, and radiation detector

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100727483B1 (en) * 2006-04-29 2007-06-13 주식회사 잉크테크 Compositions for forming reflecting layer having organic silver complexes, and method for preparing reflecting layer using same
JP2007335430A (en) * 2006-06-12 2007-12-27 Alps Electric Co Ltd Circuit board and its production process
EP2752470A1 (en) * 2006-08-07 2014-07-09 Inktec Co., Ltd. Process for preparation of silver nanoparticles, and the compositions of silver ink containing the same
WO2010092869A1 (en) * 2009-02-12 2010-08-19 日立金属株式会社 Radiation detector and method for manufacturing radiation detector

Also Published As

Publication number Publication date
JP2012128402A (en) 2012-07-05

Similar Documents

Publication Publication Date Title
US11772356B2 (en) Translucent structure
JP5418121B2 (en) Transparent conductive material
JP4463272B2 (en) Transparent laminate
JP5497001B2 (en) Conductive paste composition and conductive film formed using the same
KR101586619B1 (en) Transparent conductive coating with filler material
CN100565937C (en) Solar cell and manufacture method thereof
US8425807B2 (en) Solar cell and composition used for manufacturing solar cell
JP2019144475A (en) Light transmissive structure
JP2018198050A (en) Antifouling-film equipped transparent substrate and electrostatic capacitive in-cell touch panel type liquid crystal display device
JP5886065B2 (en) Glass article with photocatalytic film
JPH0513021A (en) Antireflection body and its application device
JP5170263B2 (en) Manufacturing method of radiation detector
JP5549657B2 (en) Silver reflective film and method for forming the same, radiation detector, and solar cell
TW201234618A (en) Process for particle doping of scattering superstrates
JP5569775B2 (en) Radiation detector
JP6117995B2 (en) Transparent scattering OLED substrate and method for producing the substrate
JP2022115901A (en) Conductive film, and conductive film roll, electronic paper, touch panel, and flat display panel using the same
TW202209351A (en) Bonding composition and formulation method for bonding composition
JP2006153950A (en) Optical filter
JP2009062524A (en) Conductive ink for offset printing and method for manufacturing electrode substrate for plasma display panel using it
JP2018190540A (en) Metal powder sinter paste and method for producing the same, and method for producing conductive material
JP2010197847A (en) Composite optical filter
TW202242910A (en) Joint structure
JP7073860B2 (en) Manufacturing method of base material with functional thin wire, and set of ink and base material
US20190097102A1 (en) Semiconductor device, and method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140505

R150 Certificate of patent or registration of utility model

Ref document number: 5549657

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350