JP5547796B2 - Thermoplastic resin composition and molded article - Google Patents

Thermoplastic resin composition and molded article Download PDF

Info

Publication number
JP5547796B2
JP5547796B2 JP2012277586A JP2012277586A JP5547796B2 JP 5547796 B2 JP5547796 B2 JP 5547796B2 JP 2012277586 A JP2012277586 A JP 2012277586A JP 2012277586 A JP2012277586 A JP 2012277586A JP 5547796 B2 JP5547796 B2 JP 5547796B2
Authority
JP
Japan
Prior art keywords
weight
parts
composite rubber
copolymer
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012277586A
Other languages
Japanese (ja)
Other versions
JP2014122255A (en
Inventor
一 富田
春樹 奥野
俊策 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon A&L Inc
Original Assignee
Nippon A&L Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon A&L Inc filed Critical Nippon A&L Inc
Priority to JP2012277586A priority Critical patent/JP5547796B2/en
Publication of JP2014122255A publication Critical patent/JP2014122255A/en
Application granted granted Critical
Publication of JP5547796B2 publication Critical patent/JP5547796B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ポリカーボネート樹脂と、特定構造を有する複合ゴムを用いたグラフト共重合体を含み、耐衝撃性や流動性、耐熱性などの物性バランスや耐候性だけでなく、滞留熱安定性と表面外観に優れた熱可塑性樹脂組成物及び該熱可塑性樹脂組成物から得られた成形品に関するものである。   The present invention includes a graft resin using a polycarbonate resin and a composite rubber having a specific structure, and not only balance of physical properties such as impact resistance, fluidity, heat resistance, and weather resistance, but also residence heat stability and surface The present invention relates to a thermoplastic resin composition excellent in appearance and a molded product obtained from the thermoplastic resin composition.

ポリカーボネート樹脂とABS系樹脂からなる組成物(以下、PC/ABS系樹脂と記す)は、耐衝撃性、耐熱性、成形加工性に優れることから、車輌用部品、家庭電化製品、事務機器部品をはじめとする多様な用途に使用されている。また、ABS系樹脂は、ブタジエン系ゴムを使用していることより、耐候性に劣るため、このジエンをポリマーの主鎖に含まないエチレンープロピレンー非共役ジエン系ゴムを使用したAES樹脂やアクリル系ゴムを使用したASA系樹脂とポリカーボネート樹脂からなる組成物(以下、PC/ASA系樹脂と記す)が提案されている。例えば特許文献1には特定構造を有するアクリル系ゴムを用いたASA樹脂とポリカーボネート樹脂から構成される熱可塑性樹脂組成物が提案されている。   A composition comprising a polycarbonate resin and an ABS resin (hereinafter referred to as a PC / ABS resin) has excellent impact resistance, heat resistance, and molding processability. Therefore, it is suitable for vehicle parts, home appliances, and office equipment parts. It is used for various purposes including the beginning. In addition, since ABS resin is inferior in weather resistance due to the use of butadiene rubber, AES resin or acrylic using ethylene-propylene-nonconjugated diene rubber that does not contain this diene in the polymer main chain. There has been proposed a composition (hereinafter referred to as a PC / ASA resin) composed of an ASA resin and a polycarbonate resin using a base rubber. For example, Patent Document 1 proposes a thermoplastic resin composition composed of an ASA resin and a polycarbonate resin using an acrylic rubber having a specific structure.

また、特許文献2には、成形加工性、耐候性、成形外観だけでなく、低温衝撃性が改良された熱可塑性樹脂組成物として、特定構造を有するシロキサンゴムとアクリル系ゴムを用いたASA系樹脂とポリカーボート樹脂及び硬質共重合体から構成された熱可塑性樹脂組成物が提案されているが、耐衝撃性(特に低温衝撃性)と成形加工性(流動性)のバランスと、パール状の表面外観が成形品の表面に現れるという外観の不具合や艶ムラの改善が不十分であり、滞留熱安定性が悪化する問題については何ら言及されていない。   Patent Document 2 discloses an ASA system using a siloxane rubber and an acrylic rubber having a specific structure as a thermoplastic resin composition having improved low-temperature impact properties as well as molding processability, weather resistance, and molding appearance. A thermoplastic resin composition composed of a resin, a polycarbonate resin and a hard copolymer has been proposed, but the balance between impact resistance (especially low temperature impact) and moldability (fluidity) No mention is made of the problem that the appearance of the surface appears on the surface of the molded article and the improvement of unevenness in gloss is insufficient, and the problem that the stability of staying heat deteriorates.

特開平10−231416号JP-A-10-231416

特開平11−335512号JP-A-11-335512

本発明の目的は、耐衝撃性や流動性、耐熱性などの物性バランスや耐候性だけでなく、滞留熱安定性と表面外観に優れた熱可塑性樹脂組成物及び該熱可塑性樹脂組成物から得られた成形品を提供することにある。   The object of the present invention is obtained from a thermoplastic resin composition excellent in staying heat stability and surface appearance as well as a balance of physical properties such as impact resistance, fluidity, and heat resistance and weather resistance, and the thermoplastic resin composition. Is to provide a molded article.

本発明者らは、従来技術の問題点を解決するために鋭意検討を行った結果、ASA系樹脂として特定のポリマー構成を持つ複合ゴムに、シアン化ビニル系単量体、芳香族ビニル系単量体等の単量体混合物を重合して得られるグラフト共重合体を用いることで、上記目的を達成できることを見出し、本発明に到達した。   As a result of diligent studies to solve the problems of the prior art, the present inventors have found that a composite rubber having a specific polymer structure as an ASA resin has a vinyl cyanide monomer and an aromatic vinyl monomer. The inventors have found that the above object can be achieved by using a graft copolymer obtained by polymerizing a monomer mixture such as a monomer, and have reached the present invention.

すなわち、本発明はポリカーボネート樹脂(A)と、共役ジエン系ゴム状重合体5〜50重量%と架橋アクリル酸エステル系重合体50〜95重量%から構成される複合ゴム10〜80重量部に、シアン化ビニル系単量体、芳香族ビニル系単量体及びこれらと共重合可能な他のビニル系単量体から選ばれた少なくとも1種からなる単量体20〜90重量部をグラフト重合して得られ、グラフト共重合体中に存在する複合ゴムに関して、円相当粒子径が150nm以下である複合ゴムの粒子数が複合ゴム粒子全体の50%以下であることを特徴とするグラフト共重合体(B)、必要に応じて共重合体(C)から構成される熱可塑性樹脂組成物に関する。   That is, the present invention provides a polycarbonate resin (A), 10 to 80 parts by weight of a composite rubber composed of 5 to 50% by weight of a conjugated diene rubbery polymer and 50 to 95% by weight of a crosslinked acrylate polymer. Graft polymerization of 20 to 90 parts by weight of at least one monomer selected from vinyl cyanide monomers, aromatic vinyl monomers and other vinyl monomers copolymerizable therewith. The number of particles of the composite rubber having a circle equivalent particle diameter of 150 nm or less with respect to the composite rubber present in the graft copolymer is 50% or less of the total composite rubber particles. (B) relates to a thermoplastic resin composition composed of the copolymer (C) as required.

本発明により、耐衝撃性や流動性、耐熱性などの物性バランスや耐候性だけでなく、滞留熱安定性と表面外観に優れた熱可塑性樹脂組成物及び該熱可塑性樹脂から得られた成形品を提供することができる。   According to the present invention, a thermoplastic resin composition excellent in staying heat stability and surface appearance as well as physical property balance and weather resistance such as impact resistance, fluidity, and heat resistance, and a molded product obtained from the thermoplastic resin Can be provided.

以下、本発明を詳しく説明する。
本発明の熱可塑性樹脂組成物は、ポリカーボネート樹脂(A)10〜90重量部、グラフト共重合体(B)10〜90重量部、共重合体(C)0〜50重量部から構成される熱可塑性樹脂組成物((A)+(B)+(C)=100重量部)である。これらの成分が上記範囲外である場合は、耐衝撃性や流動性、耐熱性などの物性バランスに劣る。物性バランスの観点から、ポリカーボネート樹脂(A)は20〜85重量部であることが好ましく、30〜80重量部であることがより好ましい。グラフト共重合体(B)は15〜80重量部であることが好ましく、20〜70重量部であることがより好ましい。共重合体(C)は0〜45重量部であることが好ましく、0〜40重量部であることがより好ましい。
The present invention will be described in detail below.
The thermoplastic resin composition of the present invention comprises 10 to 90 parts by weight of a polycarbonate resin (A), 10 to 90 parts by weight of a graft copolymer (B), and 0 to 50 parts by weight of a copolymer (C). It is a plastic resin composition ((A) + (B) + (C) = 100 parts by weight). When these components are outside the above range, the physical property balance such as impact resistance, fluidity, and heat resistance is poor. From the viewpoint of balance of physical properties, the polycarbonate resin (A) is preferably 20 to 85 parts by weight, and more preferably 30 to 80 parts by weight. The graft copolymer (B) is preferably 15 to 80 parts by weight, and more preferably 20 to 70 parts by weight. The copolymer (C) is preferably 0 to 45 parts by weight, and more preferably 0 to 40 parts by weight.

本発明にて用いられるポリカーボネート樹脂(A)とは、種々のジヒドロキシジアリール化合物とホスゲンとを反応させるホスゲン法、又はジヒドロキシジアリール化合物とジフェニルカーボネート等の炭酸エステルとを反応させるエステル交換法によって得られる重合体であり、代表的なものとしては、2,2−ビス(4−ヒドロキシフェニル)プロパン、;“ビスフェノールA”から製造されたポリカーボネート樹脂が挙げられる。   The polycarbonate resin (A) used in the present invention is a phosgene method in which various dihydroxydiaryl compounds and phosgene are reacted, or a transesterification method obtained by reacting a dihydroxydiaryl compound and a carbonate such as diphenyl carbonate. Typical examples of the coalescence include 2,2-bis (4-hydroxyphenyl) propane; polycarbonate resin produced from “bisphenol A”.

上記ジヒドロキシジアリール化合物としては、ビスフェノールAの他に、ビス(4−ヒドロキシジフェニル)メタン、1,1−ビス(4−ヒドロキシフェニル)エタン、2,2−ビス(4−ヒドロキシフェニル)ブタン、2,2−ビス(4−ヒドロキシフェニル)オクタン、ビスビス(4−ヒドロキシジフェニル)フェニルメタン、2,2−ビス(4−ヒドロキシジフェニル−3−メチルフェニル)プロパン、1,1−ビス(4−ヒドロキシ−3−第3ブチルフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−ブロモフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3,5ジブロモフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3,5−ジクロロフェニル)プロパンのようなビス(ヒドロキシアリール)アルカン類、1,1−ビス(4−ヒドロキシフェニル)シクロペンタン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサンのようなビス(ヒドロキシアリール)シクロアルカン類、4,4‘−ジヒドロキシジフェニルエーテル、4,4’−ジヒドロキシ−3,3‘−ジメチルジフェニルエーテルのようなジヒドロキシジアリールエーテル類、4,4’−ジヒドロキシジフェニルスルファイド、4,4‘−ジヒドロキシ−3,3’−ジメチルジフェニルスルファイドのようなジヒドロキシジアリールスルファイド類、4,4‘−ジヒドロキシジフェニルスルホキシドのようなジヒドロキシジアリールスルホキシド類、4,4’−ジヒドロキシジフェニルスルホン、4,4‘−ジヒドロキシ−3,3’−ジメチルジフェニルスルホンのようなジヒドロキシジアリールスルホン類等が挙げられる。   Examples of the dihydroxydiaryl compound include bisphenol A, bis (4-hydroxydiphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 2,2-bis (4-hydroxyphenyl) butane, 2, 2-bis (4-hydroxyphenyl) octane, bisbis (4-hydroxydiphenyl) phenylmethane, 2,2-bis (4-hydroxydiphenyl-3-methylphenyl) propane, 1,1-bis (4-hydroxy-3) -Tert-butylphenyl) propane, 2,2-bis (4-hydroxy-3-bromophenyl) propane, 2,2-bis (4-hydroxy-3,5dibromophenyl) propane, 2,2-bis (4 Bis (hydroxyaryl) alkanes such as -hydroxy-3,5-dichlorophenyl) propane; , 1-bis (4-hydroxyphenyl) cyclopentane, bis (hydroxyaryl) cycloalkanes such as 1,1-bis (4-hydroxyphenyl) cyclohexane, 4,4′-dihydroxydiphenyl ether, 4,4′- Dihydroxy diaryl ethers such as dihydroxy-3,3′-dimethyldiphenyl ether, 4,4′-dihydroxydiphenyl sulfide, dihydroxydiaryl sulfides such as 4,4′-dihydroxy-3,3′-dimethyldiphenyl sulfide Dihydroxy diaryl sulfoxides such as 4,4'-dihydroxydiphenyl sulfoxide, dihydro such as 4,4'-dihydroxydiphenyl sulfone, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfone Siji aryl sulfones and the like.

これらは単独または2種類以上混合して使用されるが、これらの他に、ピペラジン、ジピペリジルハイドロキノン、レゾルシン、4,4‘−ジヒドロキシジフェニル類等を混合しても良い。   These may be used alone or in combination of two or more. In addition to these, piperazine, dipiperidyl hydroquinone, resorcin, 4,4′-dihydroxydiphenyls, and the like may be mixed.

さらに、上記のジヒドロキシジアリール化合物と以下に示すような3価以上のフェノール化合物を混合使用しても良い。3価以上のフェノールとしてはフロログルシン、4,6−ジメチル−2,4,6−トリ−(4−ヒドロキシフェニル)−ヘプテン−2,4,6−ジメチル−2,4,6−トリ−(4−ヒドロキシフェニル)−ヘプタン、1,3,5−トリ−(4−ヒドロキシフェニル)−ベンゾール、1,1,1−トリ−(4−ヒドロキシフェニル)−エタン及び2,2−ビス−(4,4’−(4,4’−ヒドロキシジフェニル)シクロヘキシル)−プロパン等が挙げられる。なお、これらポリカーボネート樹脂を製造するに際し、重量平均分子量は、通常10000〜80000であり、好ましくは15000〜60000である。分子量調整剤、触媒等を必要に応じて使用することが出来る。   Further, the above-mentioned dihydroxydiaryl compound and a trivalent or higher valent phenol compound as shown below may be mixed and used. Trihydric or higher phenols include phloroglucin, 4,6-dimethyl-2,4,6-tri- (4-hydroxyphenyl) -heptene-2,4,6-dimethyl-2,4,6-tri- (4 -Hydroxyphenyl) -heptane, 1,3,5-tri- (4-hydroxyphenyl) -benzol, 1,1,1-tri- (4-hydroxyphenyl) -ethane and 2,2-bis- (4 4 '-(4,4'-hydroxydiphenyl) cyclohexyl) -propane and the like. In producing these polycarbonate resins, the weight average molecular weight is usually 10,000 to 80,000, preferably 15,000 to 60,000. A molecular weight regulator, a catalyst, etc. can be used as needed.

本発明で使用されるグラフト共重合体(B)は、共役ジエン系ゴム状重合体と架橋アクリル酸エステル系重合体から構成される複合ゴムの存在下に芳香族ビニル系単量体、シアン化ビニル系単量体、及びこれらと共重合可能な他のビニル系単量体から選ばれた少なくとも1種の単量体をグラフト重合して得られた、グラフト共重合体である。   The graft copolymer (B) used in the present invention is an aromatic vinyl monomer, cyanide in the presence of a composite rubber composed of a conjugated diene rubber polymer and a crosslinked acrylate polymer. A graft copolymer obtained by graft polymerization of at least one monomer selected from vinyl monomers and other vinyl monomers copolymerizable therewith.

本発明で使用される複合ゴムを構成する共役ジエン系ゴム状重合体としては、ポリブタジエンゴム、スチレン−ブタジエンゴム(SBR)、スチレン−ブタジエン−スチレン(SBS)ブロックコポリマー、スチレン−(エチレン−ブタジエン)−スチレン(SEBS)ブロックコポリマー、アクリロニトリル−ブタジエンゴム(NBR)、メチルメタクリレート−ブタジエンゴムが挙げられる。特に、ポリブタジエンゴム、スチレン−ブタジエンゴムが好ましい。   Examples of the conjugated diene rubber-like polymer constituting the composite rubber used in the present invention include polybutadiene rubber, styrene-butadiene rubber (SBR), styrene-butadiene-styrene (SBS) block copolymer, and styrene- (ethylene-butadiene). -Styrene (SEBS) block copolymer, acrylonitrile-butadiene rubber (NBR), methyl methacrylate-butadiene rubber. In particular, polybutadiene rubber and styrene-butadiene rubber are preferable.

複合ゴムを構成する共役ジエン系ゴム状重合体の重量平均粒子径に特に制限は無いが、物性バランスの観点から、0.1〜1.0μmであることが好ましく、0.2〜0.5μmであることがより好ましい。また、共役ジエン系ゴム状重合体の重量平均粒子径の調節は公知の方法が使用できるが、比較的小粒子径の共役ジエン系ゴム状重合体を予め製造し、凝集肥大化させることで目的とする重量平均粒子径とした、凝集肥大化共役ジエン系ゴム状重合体を用いることも可能である。   Although there is no restriction | limiting in particular in the weight average particle diameter of the conjugated diene type rubber-like polymer which comprises a composite rubber, From a viewpoint of a physical-property balance, it is preferable that it is 0.1-1.0 micrometer, 0.2-0.5 micrometer. It is more preferable that The weight average particle diameter of the conjugated diene rubber-like polymer can be adjusted by a known method, but the purpose is to produce a conjugated diene rubber-like polymer having a relatively small particle diameter in advance and agglomerate it. It is also possible to use an agglomerated enlarged conjugated diene rubbery polymer having a weight average particle diameter of

本発明で使用される複合ゴムを構成する架橋アクリル酸エステル系重合体は、架橋剤の存在下にアルキル基の炭素数が1〜16のアクリル酸エステル系単量体、例えばメチルアクリレート、エチルアクリレート、ブチルアクリレート、2−エチルヘキシルアクリレート等を一種又は二種以上、さらには必要に応じて他の共重合可能な単量体、例えばスチレン、アクリロニトリル、メチルメタクリレート等を一種又は二種以上を重合して得られる重合体である。   The crosslinked acrylate polymer constituting the composite rubber used in the present invention is an acrylate monomer having an alkyl group having 1 to 16 carbon atoms in the presence of a crosslinking agent, such as methyl acrylate or ethyl acrylate. , Butyl acrylate, 2-ethylhexyl acrylate, or the like, or, if necessary, other copolymerizable monomers such as styrene, acrylonitrile, methyl methacrylate, etc. The resulting polymer.

架橋アクリル酸エステル系重合体に用いられる架橋剤としては、例えばジビニルベンゼン、アリル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジアリルフタレート、ジシクロペンタジエンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、トリアリルシアヌレート、トリアリルイソシアヌレート等が挙げられる。   Examples of the crosslinking agent used in the crosslinked acrylic ester polymer include divinylbenzene, allyl (meth) acrylate, ethylene glycol di (meth) acrylate, diallyl phthalate, dicyclopentadiene di (meth) acrylate, trimethylolpropane tri ( Examples include meth) acrylate, pentaerythritol hexa (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, triallyl cyanurate, triallyl isocyanurate, and the like.

本発明で使用される複合ゴムは、共役ジエン系ゴム状重合体の存在下で、架橋アクリル酸エステル系重合体を構成する単量体(混合物)を乳化重合することによって得ることができる。すなわち、本発明の複合ゴムは共役ジエン系ゴム状重合体がコアであり、アクリル酸エステル系重合体がシェルであるコアシェル構造を有している。   The composite rubber used in the present invention can be obtained by emulsion polymerization of a monomer (mixture) constituting a crosslinked acrylate polymer in the presence of a conjugated diene rubber-like polymer. That is, the composite rubber of the present invention has a core-shell structure in which the conjugated diene rubber-like polymer is the core and the acrylate polymer is the shell.

本発明で使用される複合ゴムを構成する、共役ジエン系ゴム状重合体とアクリル酸エステル系重合体の比率は、共役ジエン系ゴム状重合体5〜50重量%、アクリル酸エステル系重合体50〜95重量%であることが必要であるが、物性バランスの観点から共役ジエン系ゴム状重合体が7〜40重量%であることが好ましく、10〜30重量%であることがより好ましい。   The ratio of the conjugated diene rubbery polymer and the acrylate polymer constituting the composite rubber used in the present invention is 5 to 50% by weight of the conjugated diene rubbery polymer, and the acrylate polymer 50. Although it is necessary to be ˜95% by weight, the conjugated diene rubber-like polymer is preferably 7 to 40% by weight and more preferably 10 to 30% by weight from the viewpoint of balance of physical properties.

本発明で使用される複合ゴムは、上述の通り共役ジエン系ゴム状重合体コアであり、架橋アクリル酸エステル系重合体がシェルであるコアシェル構造を有していることを特徴としているが、架橋アクリル酸エステル系重合体全てが共役ジエン系ゴム状重合体に重合しているとは限らず、一部は架橋アクリル酸エステル系重合体の単独粒子として存在している可能性がある。以後、共役ジエン系ゴム状重合体と架橋アクリル酸エステル系重合体とがコアシェル構造を有している複合ゴムのみだけでなく、単独で存在している架橋アクリル酸エステル系重合体を含んだ状態であっても複合ゴムと呼称する。   The composite rubber used in the present invention is a conjugated diene rubber-like polymer core as described above, and is characterized by having a core-shell structure in which the cross-linked acrylate polymer is a shell. Not all acrylate-based polymers are polymerized into conjugated diene rubber-like polymers, and some may exist as single particles of crosslinked acrylate-based polymers. Thereafter, the conjugated diene rubber-like polymer and the cross-linked acrylic acid ester polymer include not only the composite rubber having a core-shell structure but also the cross-linked acrylic acid ester polymer present alone. Even so, it is called composite rubber.

本発明ではグラフト共重合体(B)中に存在する複合ゴムに関して、円相当粒子径が150nm以下である複合ゴムの粒子数が、複合ゴム粒子全体の50%以下となっている必要がある。円相当粒子径が150nm以下である複合ゴムの粒子数が50%より多いと、得られる熱可塑性樹脂組成物の滞留熱安定性に劣る。円相当粒子径が150nm以下である粒子数が40%以下であることが好ましく、20%以下であることがより好ましい。   In the present invention, regarding the composite rubber present in the graft copolymer (B), the number of composite rubber particles having an equivalent circle particle diameter of 150 nm or less needs to be 50% or less of the total composite rubber particles. When the number of particles of the composite rubber having an equivalent circle particle size of 150 nm or less is more than 50%, the residence heat stability of the resulting thermoplastic resin composition is inferior. The number of particles having a circle-equivalent particle diameter of 150 nm or less is preferably 40% or less, and more preferably 20% or less.

グラフト共重合体(B)中に存在する、円相当粒子径が150nm以下である複合ゴムとしては、上述の架橋アクリル酸エステル系重合体の単独粒子である場合が多く、該単独粒子が熱可塑性樹脂組成物の滞留熱安定性に悪影響を及ぼす主要因となる。従って、円相当粒子径が150nm以下である粒子を減らすためには、複合ゴムの製造の際に、出来るだけ架橋アクリル酸エステル系重合体の単独粒子を生成させないようにする必要がある。   The composite rubber present in the graft copolymer (B) and having an equivalent circle particle diameter of 150 nm or less is often a single particle of the above-mentioned crosslinked acrylate polymer, and the single particle is thermoplastic. This is a main factor that adversely affects the residence heat stability of the resin composition. Therefore, in order to reduce particles having an equivalent circle particle diameter of 150 nm or less, it is necessary to prevent the generation of single particles of a crosslinked acrylate ester polymer as much as possible during the production of the composite rubber.

また、コアシェル構造を有している複合ゴムであっても、円相当粒子径が150nm以下であれば滞留熱安定性に悪影響を与えるため、本発明は架橋アクリル酸エステル系重合体の単独粒子を含む複合ゴムに対して、円相当粒子径が150nm以下である粒子数が50%以下である事が必要である。   In addition, even if the composite rubber having a core-shell structure is used, since the equivalent thermal particle diameter has an adverse effect on the residence heat stability if the equivalent-circle particle diameter is 150 nm or less, the present invention is not limited to a single particle of a crosslinked acrylate ester polymer. It is necessary that the number of particles having a circle equivalent particle diameter of 150 nm or less is 50% or less with respect to the composite rubber to be included.

本発明で用いる複合ゴムの重合時に架橋アクリル酸エステル系重合体の単独粒子を生成させない方法としては、いかなる方法であっても構わないが、例えば乳化剤量、モノマー添加速度等を変更する方法が挙げられる。   Any method may be used as a method of not producing single particles of the crosslinked acrylic ester polymer at the time of polymerization of the composite rubber used in the present invention. For example, a method of changing an emulsifier amount, a monomer addition rate, etc. It is done.

複合ゴムを重合する際、使用する重合開始剤としては、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等の水溶性重合開始剤、クメンハイドロパーオキサイド、過酸化ベンゾイル、t−ブチルハイドロパーオキサイド、アセチルパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、1,1,3,3−テトラメチルブチルハイドロパーオキサイド等の油溶性重合開始剤を適宜用いることができる。さらに、好ましく用いられる還元剤の具体例としては、硫酸第一鉄7水塩、亜硫酸塩、亜硫酸水素塩、ピロ亜硫酸塩、亜ニチオン酸塩、ニチオン酸塩、チオ硫酸塩、ホルムアルデヒドスルホン酸塩、ベンズアルデヒドスルホン酸塩、また、L−アスコルビン酸、酒石酸、クエン酸などのカルボン酸類、更にはラクトース、デキストロース、サッカロースなどの還元糖類、更にはジメチルアニリン、トリエタノールアミンなどのアミン類が挙げられる。また、キレート剤としては、ピロリン酸四ナトリウム、エチレンジアミン四酢酸ナトリウムなどが挙げられる。   When polymerizing the composite rubber, the polymerization initiator used is a water-soluble polymerization initiator such as potassium persulfate, sodium persulfate, ammonium persulfate, cumene hydroperoxide, benzoyl peroxide, t-butyl hydroperoxide, acetyl Oil-soluble polymerization initiators such as peroxide, diisopropylbenzene hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide can be appropriately used. Furthermore, specific examples of the reducing agent preferably used include ferrous sulfate heptahydrate, sulfite, bisulfite, pyrosulfite, nitrite, nithionate, thiosulfate, formaldehyde sulfonate, Examples thereof include benzaldehyde sulfonate, carboxylic acids such as L-ascorbic acid, tartaric acid and citric acid, further reducing sugars such as lactose, dextrose and saccharose, and amines such as dimethylaniline and triethanolamine. Examples of the chelating agent include tetrasodium pyrophosphate and sodium ethylenediaminetetraacetate.

複合ゴムを重合する際、使用する乳化剤としては、カルボン酸塩、硫酸エステル塩、スルホン酸塩等を適宜用いることができる。さらに、好ましく用いられる乳化剤の具体例としては、オレイン酸カリウム、アルケニルコハク酸ジカリウム、ロジン酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム等が挙げられる。   As the emulsifier used when polymerizing the composite rubber, carboxylate, sulfate, sulfonate and the like can be used as appropriate. Furthermore, specific examples of emulsifiers preferably used include potassium oleate, dipotassium alkenyl succinate, sodium rosinate, sodium dodecylbenzenesulfonate, and the like.

本発明で使用される複合ゴムのトルエン溶媒でのゲル含有量に特に制限はないが、物性バランスの観点から、複合ゴムのゲル含有量が90%以上であることが好ましく、95%以上であることがより好ましい。   The gel content in the toluene solvent of the composite rubber used in the present invention is not particularly limited, but from the viewpoint of physical properties balance, the gel content of the composite rubber is preferably 90% or more, and 95% or more. It is more preferable.

本発明で使用されるグラフト共重合体(B)は、上述の複合ゴムの存在下に、芳香族ビニル系単量体、シアン化ビニル系単量体、及びこれらと共重合可能な他のビニル系単量体から選ばれた少なくとも1種の単量体をグラフト重合して得られるグラフト共重合体である。   The graft copolymer (B) used in the present invention includes an aromatic vinyl monomer, a vinyl cyanide monomer, and other vinyls copolymerizable with these in the presence of the above composite rubber. It is a graft copolymer obtained by graft polymerization of at least one monomer selected from the system monomers.

グラフト共重合体(B)は該グラフト共重合体100重量部中に複合ゴムが10〜80重量部含まれている必要がある。複合ゴムが10重量部より少ないと耐衝撃性に劣り、80重量部を超えると流動性に劣る。複合ゴムの含有量は30〜70重量部であることが好ましく、40〜60重量部であることがより好ましい。   The graft copolymer (B) needs to contain 10 to 80 parts by weight of composite rubber in 100 parts by weight of the graft copolymer. If the composite rubber is less than 10 parts by weight, the impact resistance is poor, and if it exceeds 80 parts by weight, the fluidity is poor. The content of the composite rubber is preferably 30 to 70 parts by weight, and more preferably 40 to 60 parts by weight.

グラフト共重合体(B)を構成する芳香族ビニル系単量体としては、スチレン、α−メチルスチレン、パラメチルスチレン、ブロムスチレン等が挙げられ、一種又は二種以上用いることができる。特にスチレン、α−メチルスチレンが好ましい。   Examples of the aromatic vinyl monomer constituting the graft copolymer (B) include styrene, α-methylstyrene, paramethylstyrene, bromostyrene, and the like, and one or more of them can be used. In particular, styrene and α-methylstyrene are preferable.

グラフト共重合体(B)を構成するシアン化ビニル系単量体としては、アクリロニトリル、メタクリロニトリル、エタクリロニトリル、フマロニトリル等が挙げられ、一種又は二種以上用いることができる。特にアクリロニトリルが好ましい。   Examples of the vinyl cyanide monomer constituting the graft copolymer (B) include acrylonitrile, methacrylonitrile, ethacrylonitrile, fumaronitrile and the like, and one or more of them can be used. Particularly preferred is acrylonitrile.

グラフト共重合体(B)を構成する共重合可能な他のビニル系単量体としては、(メタ)アクリル酸エステル系単量体、マレイミド系単量体、アミド系単量体等が挙げられ、一種又は二種以上用いることができる。(メタ)アクリル酸エステル系単量体としては(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、アクリル酸2−エチルヘキシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸4−t−ブチルフェニル、(メタ)アクリル酸(ジ)ブロモフェニル、(メタ)アクリル酸クロルフェニル等を例示でき、マレイミド系単量体としてはN−フェニルマレイミド、N−シクロヘキシルマレイミド等を例示でき、アミド系単量体としてはアクリルアミド、メタクリルアミド等を例示できる。   Examples of other copolymerizable vinyl monomers constituting the graft copolymer (B) include (meth) acrylate monomers, maleimide monomers, amide monomers, and the like. 1 type, or 2 or more types can be used. (Meth) acrylic acid ester monomers include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl acrylate, (meth) acrylic Examples include phenyl acid, 4-t-butylphenyl (meth) acrylate, (di) bromophenyl (meth) acrylic acid, chlorophenyl (meth) acrylate, and the maleimide monomer includes N-phenylmaleimide, N-cyclohexylmaleimide and the like can be exemplified, and examples of the amide monomer include acrylamide and methacrylamide.

複合ゴムとグラフト重合する、上述の単量体の組成比率に特に制限はないが、芳香族ビニル系単量体60〜90重量%、シアン化ビニル系単量体10〜40重量%及び共重合可能な他のビニル系単量体0〜30重量%の組成比率、芳香族ビニル系単量体30〜80重量%、(メタ)アクリル酸エステル系単量体20〜70重量%及び共重合可能な他のビニル系単量体0〜50重量%の組成比率、芳香族ビニル系単量体20〜70重量%、(メタ)アクリル酸エステル系単量体20〜70重量%、シアン化ビニル系単量体10〜60重量%及び共重合可能な他のビニル系単量体0〜30重量%の組成比率等であることが好ましい。   There is no particular limitation on the composition ratio of the above-mentioned monomer that is graft-polymerized with the composite rubber, but the aromatic vinyl-based monomer is 60 to 90% by weight, the vinyl cyanide-based monomer is 10 to 40% by weight, and copolymerization Possible composition ratio of 0-30% by weight of other vinyl monomers, 30-80% by weight of aromatic vinyl monomers, 20-70% by weight of (meth) acrylate monomers, and copolymerizable Other vinyl monomer composition ratio of 0 to 50% by weight, aromatic vinyl monomer 20 to 70% by weight, (meth) acrylic acid ester monomer 20 to 70% by weight, vinyl cyanide The composition ratio is preferably 10 to 60% by weight of the monomer and 0 to 30% by weight of another copolymerizable vinyl monomer.

グラフト共重合体(B)を重合するための手法に特に制限はなく、乳化重合法、懸濁重合法、塊状重合法等を用いることが出来る。乳化重合法を用いた場合、上述の複合ゴムに上述の単量体をグラフト重合することによって、グラフト共重合体(B)のラテックスを得ることが出来る。グラフト共重合体(B)のラテックスは、公知の方法により凝固され、洗浄、脱水、乾燥工程を経ることでグラフト共重合体(B)のパウダーを得ることができる。   There is no restriction | limiting in particular in the method for superposing | polymerizing a graft copolymer (B), An emulsion polymerization method, suspension polymerization method, block polymerization method, etc. can be used. When the emulsion polymerization method is used, a latex of the graft copolymer (B) can be obtained by graft polymerization of the above-described monomer to the above-described composite rubber. The latex of the graft copolymer (B) is coagulated by a known method, and a powder of the graft copolymer (B) can be obtained through washing, dehydration, and drying steps.

グラフト共重合体(B)のグラフト率(グラフト共重合体のアセトン可溶分量と不溶分量及びグラフト共重合体中の複合ゴムの重量から求める。)、及びアセトン可溶分の還元粘度(0.4g/100cc、N,Nジメチルホルムアミド溶液として30℃で測定)に特に制限はなく、要求性能によって任意の構造のものを使用することができるが、物性バランスの観点から、グラフト率は5〜150%であることが好ましく、還元粘度は0.2〜2.0dl/gであることが好ましい。   Graft ratio of graft copolymer (B) (determined from the amount of acetone-soluble and insoluble components in the graft copolymer and the weight of the composite rubber in the graft copolymer), and the reduced viscosity (0. 4 g / 100 cc, measured at 30 ° C. as an N, N dimethylformamide solution), any structure can be used depending on the required performance, but from the viewpoint of balance of physical properties, the graft ratio is 5 to 150 %, And the reduced viscosity is preferably 0.2 to 2.0 dl / g.

本発明で使用される共重合体(C)は、芳香族ビニル系単量体、シアン化ビニル系単量体、必要に応じてその他の共重合可能な他のビニル系単量体を共重合することで得られるが、共重合体(C)を構成する各単量体は、グラフト共重合体(B)で用いられる単量体と同様のものを用いる事ができる。   The copolymer (C) used in the present invention is a copolymer of an aromatic vinyl monomer, a vinyl cyanide monomer, and other vinyl monomers that can be copolymerized if necessary. As the monomer constituting the copolymer (C), the same monomers as those used in the graft copolymer (B) can be used.

本発明の熱可塑性樹脂組成物は、必要に応じてヒンダードアミン系の光安定剤、ヒンダードフェノール系、含硫黄有機化合物系、含リン有機化合物系等の酸化防止剤、フェノール系、アクリレート系等の熱安定剤、ベンゾエート系、ベンゾトリアゾール系、ベンゾフェノン系、サリシレート系の紫外線吸収剤、有機ニッケル系、高級脂肪酸アミド類等の滑剤、リン酸エステル類等の可塑剤、ポリブロモフェニルエーテル、テトラブロモビスフェノール−A、臭素化エポキシオリゴマー、臭素化等の含ハロゲン系化合物、リン系化合物、三酸化アンチモン等の難燃剤・難燃助剤、臭気マスキング剤、カーボンブラック、酸化チタン、顔料、及び染料等を添加することもできる。更に、タルク、炭酸カルシウム、水酸化アルミニウム、ガラス繊維、ガラスフレーク、ガラスビーズ、炭素繊維、金属繊維等の補強剤や充填剤を添加することもできる。   The thermoplastic resin composition of the present invention includes hindered amine-based light stabilizers, hindered phenol-based, sulfur-containing organic compound-based, phosphorus-containing organic compound-based antioxidants, phenol-based, acrylate-based and the like as necessary. Thermal stabilizer, benzoate, benzotriazole, benzophenone, salicylate UV absorbers, organic nickel, lubricants such as higher fatty acid amides, plasticizers such as phosphate esters, polybromophenyl ether, tetrabromobisphenol -A, brominated epoxy oligomers, halogenated compounds such as brominated compounds, phosphorus compounds, flame retardants and flame retardants such as antimony trioxide, odor masking agents, carbon black, titanium oxide, pigments, dyes, etc. It can also be added. Furthermore, reinforcing agents and fillers such as talc, calcium carbonate, aluminum hydroxide, glass fiber, glass flake, glass bead, carbon fiber, and metal fiber can be added.

本発明の熱可塑性樹脂組成物は、上述の成分を混合することで得ることができる。混合するために、例えば、押出し機、ロール、バンバリーミキサー、ニーダー等の公知の混練装置を用いることができる。   The thermoplastic resin composition of the present invention can be obtained by mixing the above-described components. In order to mix, well-known kneading apparatuses, such as an extruder, a roll, a Banbury mixer, a kneader, can be used, for example.

ポリカーボネート樹脂(A)、グラフト共重合体(B)及び共重合体(C)の混合順序、方法には何ら制限はなく、これら3成分のうち、予め任意の2成分を混合・混錬後、残る1成分を混合・混錬することもできる。なお、溶融混錬に際しては各種公知の押出機により、200〜300℃で溶融混錬することができる。   The mixing order and method of the polycarbonate resin (A), the graft copolymer (B) and the copolymer (C) are not limited, and after mixing and kneading any two of these three components in advance, The remaining one component can be mixed and kneaded. In the melt kneading, it can be melt kneaded at 200 to 300 ° C. by various known extruders.

本発明の熱可塑性樹脂組成物は、その目的を損なわない範囲内において、他の熱可塑性樹脂と混合して使用することもできる。このような他の熱可塑性樹脂として、例えば、ポリメチルメタクリレートなどのアクリル系樹脂、ポリブチレンテレフタレート樹脂、ポリエチレンテレフタレート樹脂、ポリ乳酸樹脂などのポリエステル系樹脂、ポリアミド系樹脂等を使用することができる。   The thermoplastic resin composition of the present invention can be used by mixing with other thermoplastic resins as long as the purpose is not impaired. Examples of such other thermoplastic resins that can be used include acrylic resins such as polymethyl methacrylate, polyester resins such as polybutylene terephthalate resin, polyethylene terephthalate resin, and polylactic acid resin, and polyamide resins.

以下に実施例を示して本発明を具体的に説明するが、本発明はこれらによって何ら制限されるものではない。なお、実施例中にて示す「部」及び「%」は重量に基づくものである。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. In the examples, “parts” and “%” are based on weight.

ポリカーボネート樹脂(A)
住化スタイロンポリカーボネート(株)製 カリバー 200−15
Polycarbonate resin (A)
Sumika Stylon Polycarbonate Co., Ltd. Caliber 200-15

小粒子径スチレン−ブタジエンゴムラテックスの製造
10リットルの耐圧容器の内部を窒素で置換後、1,3−ブタジエン95重量部、スチレン5重量部、n−ドデシルメルカプタン0.5重量部、過硫酸カリウム0.3重量部、不均化ロジン酸ナトリウム1.8重量部、水酸化ナトリウム0.1重量部、脱イオン水145重量部を仕込み、攪拌しつつ70℃で8時間反応させた。その後、不均化ロジン酸ナトリウム0.2重量部、水酸化ナトリウム0.1重量部及び脱イオン水5重量部を添加した。さらに温度を70℃に維持しながら6時間攪拌を継続して反応を終了した。その後、減圧して残存している1,3−ブタジエンを除去し、スチレン−ブタジエンゴムラテックスを得た。得られたスチレン−ブタジエンゴムラテックスを、四酸化オスミウム(OsO)で染色し、乾燥後に透過型電子顕微鏡で写真撮影した。画像解析処理装置(装置名:旭化成(株)製 IP−1000PC)を用いて1000個のゴム粒子の面積を計測し、その円相当粒子径(直径)を求め、スチレン−ブタジエンゴムの重量平均粒子径を算出した結果、重量平均粒子径は120nmであった。
Production of small particle size styrene-butadiene rubber latex After replacing the inside of a 10 liter pressure vessel with nitrogen, 95 parts by weight of 1,3-butadiene, 5 parts by weight of styrene, 0.5 parts by weight of n-dodecyl mercaptan, potassium persulfate 0.3 parts by weight, disproportionated sodium rosinate 1.8 parts by weight, sodium hydroxide 0.1 parts by weight, and deionized water 145 parts by weight were charged and reacted at 70 ° C. for 8 hours with stirring. Thereafter, 0.2 parts by weight of disproportionated sodium rosinate, 0.1 parts by weight of sodium hydroxide and 5 parts by weight of deionized water were added. Further, stirring was continued for 6 hours while maintaining the temperature at 70 ° C. to complete the reaction. Thereafter, the remaining 1,3-butadiene was removed under reduced pressure to obtain a styrene-butadiene rubber latex. The obtained styrene-butadiene rubber latex was dyed with osmium tetroxide (OsO 4 ), dried, and photographed with a transmission electron microscope. Using an image analysis processor (apparatus name: IP-1000PC manufactured by Asahi Kasei Co., Ltd.), the area of 1000 rubber particles was measured, and the equivalent-circle particle diameter (diameter) was obtained. The weight average particle of styrene-butadiene rubber As a result of calculating the diameter, the weight average particle diameter was 120 nm.

凝集肥大化スチレン−ブタジエンゴムラテックスの製造
10リットルの耐圧容器に、上記で得られたスチレン−ブタジエンゴムラテックス270重量部、ドデシルベンゼンスルホン酸ナトリウム0.1重量部を添加して10分間攪拌混合した後、5%リン酸水溶液20重量部を10分間にわたり添加した。次いで10%水酸化カリウム水溶液10重量部を添加し、凝集肥大化したスチレン−ブタジエンゴムラテックス(1)を得た。
上述の方法で、凝集肥大化スチレン−ブタジエンゴムの重量平均粒子径を算出した結果、重量平均粒子径は330nmであった。
Production of agglomerated styrene-butadiene rubber latex 270 parts by weight of the styrene-butadiene rubber latex obtained above and 0.1 part by weight of sodium dodecylbenzenesulfonate were added to a 10-liter pressure vessel and stirred for 10 minutes. Thereafter, 20 parts by weight of 5% aqueous phosphoric acid solution was added over 10 minutes. Subsequently, 10 parts by weight of a 10% aqueous potassium hydroxide solution was added to obtain an agglomerated styrene-butadiene rubber latex (1).
As a result of calculating the weight average particle diameter of the agglomerated styrene-butadiene rubber by the above-described method, the weight average particle diameter was 330 nm.

10リットルの耐圧容器に、上記で得られたスチレン−ブタジエンゴムラテックス270重量部、ドデシルベンゼンスルホン酸ナトリウム0.3重量部を添加して10分間攪拌混合した後、5%リン酸水溶液20重量部を10分間にわたり添加した。次いで10%水酸化カリウム水溶液10重量部を添加し、凝集肥大化したスチレン−ブタジエンゴムラテックス(2)を得た。
上述の方法で、凝集肥大化スチレン−ブタジエンゴムの重量平均粒子径を算出した結果、重量平均粒子径は250nmであった。
To a 10 liter pressure vessel, 270 parts by weight of the styrene-butadiene rubber latex obtained above and 0.3 parts by weight of sodium dodecylbenzenesulfonate were added and stirred and mixed for 10 minutes, and then 20 parts by weight of 5% aqueous phosphoric acid solution. Was added over 10 minutes. Next, 10 parts by weight of a 10% aqueous potassium hydroxide solution was added to obtain an agglomerated styrene-butadiene rubber latex (2).
As a result of calculating the weight average particle size of the agglomerated styrene-butadiene rubber by the above-mentioned method, the weight average particle size was 250 nm.

架橋アクリル酸ブチルゴムラテックスの製造
窒素置換したガラスリアクターに、脱イオン水180重量部、アクリル酸ブチル15重量部、メタクリル酸アリル0.1重量部、アルケニルコハク酸ジカリウム0.16重量部(固形分換算)、過硫酸カリウム0.15重量部を仕込み、65℃で1時間反応させた。その後、アクリル酸ブチル85重量部、メタクリル酸アリル0.53重量部の混合液及び脱イオン水20重量部にアルケニルコハク酸ジカリウム0.64重量部(固形分換算)を溶解した乳化剤水溶液を3時間かけて連続的に添加した。滴下後、3時間保持して、架橋アクリル酸ブチルゴムラテックスを得た。
Production of cross-linked butyl acrylate rubber latex In a nitrogen-replaced glass reactor, 180 parts by weight of deionized water, 15 parts by weight of butyl acrylate, 0.1 parts by weight of allyl methacrylate, 0.16 parts by weight of dipotassium alkenyl succinate (in terms of solid content) ), 0.15 part by weight of potassium persulfate was added and reacted at 65 ° C. for 1 hour. Thereafter, an emulsifier aqueous solution in which 0.64 parts by weight of dipotassium alkenyl succinate (in terms of solid content) was dissolved in 85 parts by weight of butyl acrylate and 0.53 parts by weight of allyl methacrylate and 20 parts by weight of deionized water was added for 3 hours. Over time. After dripping, it was kept for 3 hours to obtain a crosslinked butyl acrylate rubber latex.

得られた架橋アクリル酸ブチルゴムラテックスの重量平均粒子径を下記に記載する方法で算出した。得られた架橋アクリル酸ブチルゴムラテックスを15部(固形分)、スチレンを64部、アクリロニトリルを21部用いてグラフト共重合を行い、グラフト共重合体を得た。グラフト共重合体のパウダーを溶融混練してペレットを得た。得られたペレットを、クライオミクロトームを用いて−85℃の雰囲気下で超薄切片を切り出し、四酸化ルテニウム(RuO)で染色し、透過型電子顕微鏡(JEM−1400:日本電子製)で写真撮影した。画像解析装置(旭化成 IP−1000PC)を用いて、1000個の架橋アクリル酸ブチルゴム粒子の面積を計測し、その円相当径(直径)を求め、架橋アクリル酸ブチルゴムラテックスの重量平均粒子径を算出した結果、重量平均粒子径は200nmであった。 The weight average particle diameter of the obtained crosslinked butyl acrylate rubber latex was calculated by the method described below. Graft copolymerization was performed using 15 parts (solid content) of the obtained crosslinked butyl acrylate rubber latex, 64 parts of styrene, and 21 parts of acrylonitrile to obtain a graft copolymer. The graft copolymer powder was melt-kneaded to obtain pellets. From the obtained pellet, an ultrathin section was cut out at −85 ° C. using a cryomicrotome, stained with ruthenium tetroxide (RuO 4 ), and photographed with a transmission electron microscope (JEM-1400: manufactured by JEOL Ltd.). I took a picture. Using an image analyzer (Asahi Kasei IP-1000PC), the area of 1000 crosslinked butyl acrylate rubber particles was measured, the equivalent circle diameter (diameter) was determined, and the weight average particle diameter of the crosslinked butyl acrylate rubber latex was calculated. As a result, the weight average particle diameter was 200 nm.

複合ゴムラテックス(b−1)の製造
10Lのガラスリアクターに、上記の凝集肥大化スチレン−ブタジエンゴムラテックス(1)を20重量部(固形分)、脱イオン水を160重量部仕込み、窒素置換を行った。窒素置換後、槽内を昇温し45℃に到達したところで脱イオン水20重量部にブドウ糖0.2重量部、無水ピロリン酸ナトリウム0.03重量部及び硫酸第1鉄0.001重量部を溶解した水溶液を添加した。さらに、アクリル酸ブチル20重量部、メタクリル酸アリル0.1重量部を添加した。槽内の温度が50℃に到達した後、1時間保持し、脱イオン水25重量部にアルケニルコハク酸ジカリウム0.9重量部、ターシャリーブチルハイドロパーオキサイド0.1重量部を溶解した水溶液とアクリル酸ブチル60重量部、メタクリル酸アリル0.4重量部を5時間かけて連続的に滴下した。滴下後、3時間保持して、肥大化スチレン−ブタジエンゴムと架橋アクリル酸ブチル重合体から構成される複合ゴムラテックス(b−1)を得た。
Manufacture of composite rubber latex (b-1) A 10 liter glass reactor is charged with 20 parts by weight (solid content) of the above-mentioned agglomerated styrene-butadiene rubber latex (1) and 160 parts by weight of deionized water, and nitrogen replacement is performed. went. After nitrogen substitution, when the temperature in the tank reached 45 ° C., 0.2 parts by weight of glucose, 0.03 part by weight of anhydrous sodium pyrophosphate and 0.001 part by weight of ferrous sulfate were added to 20 parts by weight of deionized water. Dissolved aqueous solution was added. Furthermore, 20 parts by weight of butyl acrylate and 0.1 parts by weight of allyl methacrylate were added. An aqueous solution in which 0.9 part by weight of dipotassium alkenyl succinate and 0.1 part by weight of tertiary butyl hydroperoxide are dissolved in 25 parts by weight of deionized water after the temperature in the tank reaches 50 ° C. 60 parts by weight of butyl acrylate and 0.4 parts by weight of allyl methacrylate were continuously added dropwise over 5 hours. After dropping, the mixture was held for 3 hours to obtain a composite rubber latex (b-1) composed of an enlarged styrene-butadiene rubber and a crosslinked butyl acrylate polymer.

複合ゴムラテックス(b−2)の製造
10Lのガラスリアクターに、上記の凝集肥大化スチレン−ブタジエンゴムラテックス(2)を20重量部(固形分)、脱イオン水を160重量部仕込み、窒素置換を行った。窒素置換後、槽内を昇温し45℃に到達したところで脱イオン水20重量部にブドウ糖0.2重量部、無水ピロリン酸ナトリウム0.03重量部及び硫酸第1鉄0.001重量部を溶解した水溶液を添加した。さらに、アクリル酸ブチル20重量部、メタクリル酸アリル0.1重量部を添加した。槽内の温度が50℃に到達した後、1時間保持し、脱イオン水25重量部にアルケニルコハク酸ジカリウム0.9重量部、ターシャリーブチルハイドロパーオキサイド0.1重量部を溶解した水溶液とアクリル酸ブチル60重量部、メタクリル酸アリル0.4重量部を5時間かけて連続的に滴下した。滴下後、3時間保持して、肥大化スチレン−ブタジエンゴムと架橋アクリル酸ブチル重合体から構成される複合ゴムラテックス(b−2)を得た。
Manufacture of composite rubber latex (b-2) A 10 L glass reactor was charged with 20 parts by weight (solid content) of the above-mentioned agglomerated styrene-butadiene rubber latex (2) and 160 parts by weight of deionized water, and nitrogen substitution was performed. went. After nitrogen substitution, when the temperature in the tank reached 45 ° C., 0.2 parts by weight of glucose, 0.03 part by weight of anhydrous sodium pyrophosphate and 0.001 part by weight of ferrous sulfate were added to 20 parts by weight of deionized water. Dissolved aqueous solution was added. Furthermore, 20 parts by weight of butyl acrylate and 0.1 parts by weight of allyl methacrylate were added. An aqueous solution in which 0.9 part by weight of dipotassium alkenyl succinate and 0.1 part by weight of tertiary butyl hydroperoxide are dissolved in 25 parts by weight of deionized water after the temperature in the tank reaches 50 ° C. 60 parts by weight of butyl acrylate and 0.4 parts by weight of allyl methacrylate were continuously added dropwise over 5 hours. After dropping, the mixture was held for 3 hours to obtain a composite rubber latex (b-2) composed of an enlarged styrene-butadiene rubber and a crosslinked butyl acrylate polymer.

複合ゴムラテックス(b−3)の製造
10Lのガラスリアクターに、上記の凝集肥大化スチレン−ブタジエンゴムラテックス(1)を20重量部(固形分)、脱イオン水を160重量部仕込み窒素置換を行った。窒素置換後、槽内を昇温し45℃に到達したところで脱イオン水20重量部にブドウ糖0.2重量部、無水ピロリン酸ナトリウム0.03重量部及び硫酸第1鉄0.001重量部を溶解した水溶液を添加した。さらに、脱イオン水25重量部にアルケニルコハク酸ジカリウム0.9重量部、ターシャリーブチルハイドロパーオキサイド0.1重量部を溶解した乳化剤溶液の5%、アクリル酸ブチル16重量部、メタクリル酸アリル0.1重量部を添加し、槽内の温度が50℃に到達した後、1時間保持し、残りの乳化剤溶液とアクリル酸ブチル64重量部、メタクリル酸アリル0.4重量部を5時間かけて連続的に滴下した。滴下後、3時間保持して、肥大化スチレン−ブタジエンゴムと架橋アクリル酸ブチル重合体から構成される複合ゴムラテックス(b−3)を得た。
Manufacture of composite rubber latex (b-3) A 10 L glass reactor was charged with 20 parts by weight (solid content) of the above-mentioned agglomerated styrene-butadiene rubber latex (1) and 160 parts by weight of deionized water, followed by nitrogen substitution. It was. After nitrogen substitution, when the temperature in the tank reached 45 ° C., 0.2 parts by weight of glucose, 0.03 part by weight of anhydrous sodium pyrophosphate and 0.001 part by weight of ferrous sulfate were added to 20 parts by weight of deionized water. Dissolved aqueous solution was added. Furthermore, 5% of an emulsifier solution prepared by dissolving 0.9 parts by weight of dipotassium alkenyl succinate and 0.1 parts by weight of tertiary butyl hydroperoxide in 25 parts by weight of deionized water, 16 parts by weight of butyl acrylate, 0% of allyl methacrylate .1 part by weight was added, and after the temperature in the tank reached 50 ° C., it was kept for 1 hour. It was dripped continuously. After dropping, the mixture was held for 3 hours to obtain a composite rubber latex (b-3) composed of an enlarged styrene-butadiene rubber and a crosslinked butyl acrylate polymer.

複合ゴムラテックス(b−4)の製造
10Lのガラスリアクターに、上記の凝集肥大化スチレン−ブタジエンゴムラテックス(1)を20重量部(固形分)、脱イオン水を160重量部仕込み窒素置換を行った。窒素置換後、槽内を昇温し45℃に到達したところで脱イオン水20重量部にブドウ糖0.2重量部、無水ピロリン酸ナトリウム0.03重量部及び硫酸第1鉄0.001重量部を溶解した水溶液を添加した。さらに、脱イオン水25重量部にアルケニルコハク酸ジカリウム0.9重量部、ターシャリーブチルハイドロパーオキサイド0.1重量部を溶解した乳化剤溶液の20%、アクリル酸ブチル16重量部、メタクリル酸アリル0.1重量部を添加し、槽内の温度が50℃に到達した後、1時間保持し、残りの乳化剤溶液とアクリル酸ブチル64重量部、メタクリル酸アリル0.4重量部を5時間かけて連続的に滴下した。滴下後、3時間保持して、肥大化スチレン−ブタジエンゴムと架橋アクリル酸ブチル重合体から構成される複合ゴムラテックス(b−4)を得た。
Manufacture of composite rubber latex (b-4) A 10 L glass reactor was charged with 20 parts by weight (solid content) of the above-mentioned agglomerated styrene-butadiene rubber latex (1) and 160 parts by weight of deionized water, followed by nitrogen substitution. It was. After nitrogen substitution, when the temperature in the tank reached 45 ° C., 0.2 parts by weight of glucose, 0.03 part by weight of anhydrous sodium pyrophosphate and 0.001 part by weight of ferrous sulfate were added to 20 parts by weight of deionized water. Dissolved aqueous solution was added. Furthermore, 20% of an emulsifier solution obtained by dissolving 0.9 parts by weight of dipotassium alkenyl succinate and 0.1 parts by weight of tertiary butyl hydroperoxide in 25 parts by weight of deionized water, 16 parts by weight of butyl acrylate, 0% of allyl methacrylate .1 part by weight was added, and the temperature in the tank reached 50 ° C., and held for 1 hour. The remaining emulsifier solution, 64 parts by weight of butyl acrylate, and 0.4 parts by weight of allyl methacrylate were added over 5 hours. It was dripped continuously. After dropping, the mixture was held for 3 hours to obtain a composite rubber latex (b-4) composed of an enlarged styrene-butadiene rubber and a crosslinked butyl acrylate polymer.

複合ゴムラテックス(b−5)の製造
10Lのガラスリアクターに、上記の凝集肥大化スチレン−ブタジエンゴムラテックス(1)を20重量部(固形分)、脱イオン水を160重量部仕込み窒素置換を行った。窒素置換後、槽内を昇温し45℃に到達したところで脱イオン水20重量部にブドウ糖0.2重量部、無水ピロリン酸ナトリウム0.03重量部及び硫酸第1鉄0.001重量部を溶解した水溶液を添加した。さらに、脱イオン水25重量部にアルケニルコハク酸ジカリウム0.9重量部、ターシャリーブチルハイドロパーオキサイド0.1重量部を溶解した乳化剤溶液の40%、アクリル酸ブチル16重量部、メタクリル酸アリル0.1重量部を添加し、槽内の温度が50℃に到達した後、1時間保持し、残りの乳化剤溶液とアクリル酸ブチル64重量部、メタクリル酸アリル0.4重量部を5時間かけて連続的に滴下した。滴下後、3時間保持して、肥大化スチレン−ブタジエンゴムと架橋アクリル酸ブチル重合体から構成される複合ゴムラテックス(b−5)を得た。
Manufacture of composite rubber latex (b-5) A 10 L glass reactor was charged with 20 parts by weight (solid content) of the above-mentioned agglomerated styrene-butadiene rubber latex (1) and 160 parts by weight of deionized water, followed by nitrogen substitution. It was. After nitrogen substitution, when the temperature in the tank reached 45 ° C., 0.2 parts by weight of glucose, 0.03 part by weight of anhydrous sodium pyrophosphate and 0.001 part by weight of ferrous sulfate were added to 20 parts by weight of deionized water. Dissolved aqueous solution was added. Furthermore, 40% of an emulsifier solution obtained by dissolving 0.9 parts by weight of dipotassium alkenyl succinate and 0.1 parts by weight of tertiary butyl hydroperoxide in 25 parts by weight of deionized water, 16 parts by weight of butyl acrylate, 0% of allyl methacrylate .1 part by weight was added, and the temperature in the tank reached 50 ° C., and held for 1 hour. The remaining emulsifier solution, 64 parts by weight of butyl acrylate, and 0.4 parts by weight of allyl methacrylate were added over 5 hours. It was dripped continuously. After dropping, the mixture was held for 3 hours to obtain a composite rubber latex (b-5) composed of an enlarged styrene-butadiene rubber and a crosslinked butyl acrylate polymer.

グラフト共重合体(B−1)の製造
ガラスリアクターに、複合ゴムラテックス(b−1)60重量部(固形分)を仕込み窒素置換を行った。窒素置換後、槽内を昇温し60℃に到達したところで、ブドウ糖0.2重量部、無水ピロリン酸ナトリウム0.1重量部及び硫酸第1鉄0.005重量部を脱イオン水10重量部に溶解した水溶液を添加した。65℃に到達後、アクリロニトリル12重量部、スチレン28重量部、ターシャリードデシルメルカプタン0.1部、クメンハイドロパーオキサイド0.3重量部の混合液及び脱イオン水20重量部にオレイン酸カリウム1.0重量部を溶解した乳化剤水溶液を5時間かけて連続的に滴下した。滴下後、3時間保持してグラフト共重合体ラテックス(B−1)を得た。その後、塩析・脱水・乾燥し、グラフト重合体(B−1)のパウダーを得た。
Production of Graft Copolymer (B-1) Into a glass reactor, 60 parts by weight (solid content) of the composite rubber latex (b-1) was charged and nitrogen substitution was performed. After nitrogen substitution, when the temperature inside the tank reached 60 ° C., 0.2 part by weight of glucose, 0.1 part by weight of anhydrous sodium pyrophosphate and 0.005 part by weight of ferrous sulfate were added by 10 parts by weight of deionized water. An aqueous solution dissolved in was added. After reaching 65 ° C., a mixture of 12 parts by weight of acrylonitrile, 28 parts by weight of styrene, 0.1 part by weight of tertiary decyl mercaptan, 0.3 part by weight of cumene hydroperoxide and 20 parts by weight of deionized water was mixed with potassium oleate. An aqueous emulsifier solution in which 0 part by weight was dissolved was continuously added dropwise over 5 hours. After dropping, the mixture was held for 3 hours to obtain a graft copolymer latex (B-1). Thereafter, salting out, dehydration, and drying were performed to obtain a graft polymer (B-1) powder.

グラフト共重合体(B−2)〜(B−5)の製造
複合ゴムラテックス(b−1)から(b−2)〜(b−5)に変更した以外はグラフト共重合体(B−1)と同様に製造し、グラフト共重合体ラテックス(B−2)〜(B−5)を得た。その後、塩析・脱水・乾燥し、グラフト重合体(B−2)〜(B−5)のパウダーを得た。
Manufacture of graft copolymers (B-2) to (B-5) Graft copolymers (B-1) except that the composite rubber latex (b-1) was changed to (b-2) to (b-5) ) To obtain graft copolymer latexes (B-2) to (B-5). Thereafter, salting out, dehydration, and drying were performed to obtain powders of graft polymers (B-2) to (B-5).

グラフト共重合体(B−6)の製造
ガラスリアクターに、凝集肥大化スチレン−ブタジエンゴムラテックス(1)を固形分換算で60重量部仕込み、窒素置換を行った。窒素置換後、槽内を昇温し60℃に到達したところで、ブドウ糖0.2重量部、無水ピロリン酸ナトリウム0.1重量部及び硫酸第1鉄0.005重量部を脱イオン水10重量部に溶解した水溶液を添加した後に、65℃に昇温した。その後、アクリロニトリル12重量部、スチレン28重量部、ターシャリードデシルメルカプタン0.1部、クメンハイドロパーオキサイド0.3重量部の混合液及び脱イオン水20重量部にオレイン酸カリウム1.0重量部を溶解した乳化剤水溶液を4時間かけて連続的に滴下した。滴下後、3時間保持してグラフト共重合体ラテックス(B−6)を得た。その後、塩析・脱水・乾燥し、グラフト重合体(B−6)のパウダーを得た。
Production of Graft Copolymer (B-6) Into a glass reactor, 60 parts by weight of the coagulated and enlarged styrene-butadiene rubber latex (1) was charged in terms of solid content, and nitrogen substitution was performed. After nitrogen substitution, when the temperature inside the tank reached 60 ° C., 0.2 part by weight of glucose, 0.1 part by weight of anhydrous sodium pyrophosphate and 0.005 part by weight of ferrous sulfate were added by 10 parts by weight of deionized water. After adding the aqueous solution dissolved in the solution, the temperature was raised to 65 ° C. Thereafter, 12 parts by weight of acrylonitrile, 28 parts by weight of styrene, 0.1 part of tertiary decyl mercaptan, 0.3 part by weight of cumene hydroperoxide and 20 parts by weight of deionized water were added with 1.0 part by weight of potassium oleate. The dissolved aqueous emulsifier solution was continuously added dropwise over 4 hours. After dropping, the mixture was held for 3 hours to obtain a graft copolymer latex (B-6). Thereafter, salting-out, dehydration and drying were performed to obtain a graft polymer (B-6) powder.

グラフト共重合体(B−7)の製造
ガラスリアクターに、凝集肥大化スチレン−ブタジエンゴムラテックス(1)を固形分換算で15重量部、架橋アクリル酸ブチルゴムラテックスを固形分換算で45重量部仕込み、窒素置換を行った。窒素置換後、槽内を昇温し60℃に到達したところで、ブドウ糖0.2重量部、無水ピロリン酸ナトリウム0.1重量部及び硫酸第1鉄0.005重量部を脱イオン水10重量部に溶解した水溶液を添加した後に、65℃に昇温した。その後、アクリロニトリル12重量部、スチレン28重量部、ターシャリードデシルメルカプタン0.1部、クメンハイドロパーオキサイド0.3重量部の混合液及び脱イオン水20重量部にオレイン酸カリウム1.0重量部を溶解した乳化剤水溶液を4時間かけて連続的に滴下した。滴下後、3時間保持してグラフト共重合体ラテックス(B−7)を得た。その後、塩析・脱水・乾燥し、グラフト重合体(B−7)のパウダーを得た。
Production of Graft Copolymer (B-7) A glass reactor was charged with 15 parts by weight of agglomerated and enlarged styrene-butadiene rubber latex (1) in terms of solids and 45 parts by weight of crosslinked butyl acrylate rubber latex in terms of solids. Nitrogen replacement was performed. After nitrogen substitution, when the temperature inside the tank reached 60 ° C., 0.2 part by weight of glucose, 0.1 part by weight of anhydrous sodium pyrophosphate and 0.005 part by weight of ferrous sulfate were added by 10 parts by weight of deionized water. After adding the aqueous solution dissolved in the solution, the temperature was raised to 65 ° C. Thereafter, 12 parts by weight of acrylonitrile, 28 parts by weight of styrene, 0.1 part of tertiary decyl mercaptan, 0.3 part by weight of cumene hydroperoxide and 20 parts by weight of deionized water were added with 1.0 part by weight of potassium oleate. The dissolved aqueous emulsifier solution was continuously added dropwise over 4 hours. After dropping, the mixture was held for 3 hours to obtain a graft copolymer latex (B-7). Thereafter, salting-out, dehydration and drying were performed to obtain a graft polymer (B-7) powder.

共重合体(C)の製造
窒素置換したガラスリアクターに、脱イオン水150重量部、スチレン7重量部、アクリロニトリル3重量部、ターシャリードデシルメルカプタン0.02重量部、ドデシルベンゼンスルホン酸ナトリウム0.5部(固形分換算)及び過硫酸カリウム0.3重量部を仕込み、65℃で1時間重合した。その後、スチレン63重量部、アクリロニトリル27重量部、ターシャリードデシルメルカプタン0.18重量部及びドデシルベンゼンスルホン酸ナトリウム2.5重量部(固形分換算)を含む乳化剤水溶液30重量部を各々3時間かけて連続的に滴下した。滴下後2時間保持して、共重合体ラテックス(C)を得た。その後、塩析・脱水・乾燥し、共重合体(C)のパウダーを得た。
Production of copolymer (C) A nitrogen-replaced glass reactor was charged with 150 parts by weight of deionized water, 7 parts by weight of styrene, 3 parts by weight of acrylonitrile, 0.02 parts by weight of tarlead decyl mercaptan, 0.5% sodium dodecylbenzenesulfonate. Part (in terms of solid content) and 0.3 part by weight of potassium persulfate were charged and polymerized at 65 ° C. for 1 hour. Thereafter, 30 parts by weight of an emulsifier aqueous solution containing 63 parts by weight of styrene, 27 parts by weight of acrylonitrile, 0.18 parts by weight of tarsiad decyl mercaptan and 2.5 parts by weight of sodium dodecylbenzenesulfonate (in terms of solid content) was added over 3 hours. It was dripped continuously. After dropping, the mixture was held for 2 hours to obtain a copolymer latex (C). Thereafter, salting out, dehydration, and drying were performed to obtain a powder of the copolymer (C).

添加剤(D)
ベンゾトリアゾール系紫外線吸収剤(D−1) BASF(株)製:TINUVIN 329
ヒンダードアミン系光安定剤(D−2) BASF(株)製:UVINUL 5050H
Additive (D)
Benzotriazole ultraviolet absorber (D-1) manufactured by BASF Corporation: TINUVIN 329
Hindered amine light stabilizer (D-2) manufactured by BASF Corporation: UVINUL 5050H

<実施例1〜5及び比較例1〜5>
表1に示すポリカーボネート樹脂(A)、グラフト共重合体(B)、共重合体(C)及び添加剤(D)を混合した後、東芝TEM−35B二軸押出機を用いて250℃にて溶融混練してペレット化することで実施例1〜5及び比較例1〜5の熱可塑性樹脂組成物のペレットを得た。得られたペレットを用いて物性評価を行った。評価結果を表1に示す。なお、それぞれの評価方法を以下に示す。
<Examples 1-5 and Comparative Examples 1-5>
After mixing the polycarbonate resin (A), graft copolymer (B), copolymer (C) and additive (D) shown in Table 1, using a Toshiba TEM-35B twin screw extruder at 250 ° C. The pellets of the thermoplastic resin compositions of Examples 1 to 5 and Comparative Examples 1 to 5 were obtained by melting and kneading into pellets. Physical properties were evaluated using the obtained pellets. The evaluation results are shown in Table 1. In addition, each evaluation method is shown below.

粒子径分布の測定
グラフト共重合体(B)中の複合ゴムの粒子径分布を下記に記載する方法で算出した。上述のグラフト共重合体(B−1)25部と共重合体(C)75部を溶融混練してペレットを得た。得られたペレットを、クライオミクロトームを用いて−85℃の雰囲気下で超薄切片を切り出し、四酸化ルテニウム(RuO)で染色し、透過型電子顕微鏡(JEM−1400:日本電子製)で写真撮影した。画像解析装置(旭化成 IP−1000PC)を用いて、1000個の複合ゴム粒子の面積を計測し、その円相当径(直径)を求めることで、150nm以下であるゴムの粒子数の割合を算出した。グラフト共重合体(B−2)〜(B−7)も同様の方法で測定を行った。測定結果を表1に示す。
Measurement of particle size distribution The particle size distribution of the composite rubber in the graft copolymer (B) was calculated by the method described below. 25 parts of the graft copolymer (B-1) and 75 parts of the copolymer (C) were melt-kneaded to obtain pellets. From the obtained pellet, an ultrathin section was cut out at −85 ° C. using a cryomicrotome, stained with ruthenium tetroxide (RuO 4 ), and photographed with a transmission electron microscope (JEM-1400: manufactured by JEOL Ltd.). I took a picture. Using an image analysis device (Asahi Kasei IP-1000PC), the area of 1000 composite rubber particles was measured, and the equivalent circle diameter (diameter) was determined to calculate the ratio of the number of rubber particles that is 150 nm or less. . The graft copolymers (B-2) to (B-7) were also measured by the same method. The measurement results are shown in Table 1.

耐衝撃性
各実施例及び比較例で得られたペレットを用いISO試験方法294に準拠して各種試験片を成形し、各温度(23℃、−30℃)での耐衝撃性を測定した。
耐衝撃性はISO179に準拠し、4mm厚みで、ノッチ付きシャルピー衝撃値を測定した。単位:kJ/m
Impact Resistance Various test pieces were molded in accordance with ISO test method 294 using the pellets obtained in each Example and Comparative Example, and impact resistance at each temperature (23 ° C., −30 ° C.) was measured.
The impact resistance was in conformity with ISO 179, and a Charpy impact value with a notch was measured at a thickness of 4 mm. Unit: kJ / m 2

流動性
各実施例及び比較例で得られたペレットを用い、ISO1133に準拠して、220℃、10kg荷重の条件でメルトボリュームフローレイトを測定した。単位;cm/10分
The pellets obtained in Examples and Comparative Examples fluidity, in compliance with ISO 1133, 220 ° C., was measured melt volume flow rate under the condition of 10kg load. Unit; cm 3/10 minutes

耐熱性
各実施例及び比較例で得られたペレットを用い、ISO試験方法294に準拠して試験片を成形し、耐熱性の測定をした。耐熱性はISO75に準拠して、荷重1.8MPaの荷重たわみ温度を測定し、単位を(℃)とした。
Heat resistance Using the pellets obtained in each Example and Comparative Example, a test piece was molded in accordance with ISO test method 294, and the heat resistance was measured. As for heat resistance, a deflection temperature under a load of 1.8 MPa was measured according to ISO 75, and the unit was (° C.).

滞留熱安定性
各実施例及び比較例で得られたペレットを用い、射出成形機(山城精機製作所製 SAV−30−30 シリンダー温度:270℃ 金型温度:60℃)を用いて、成形サイクルが30秒の時の成形品(90mm×55mm×2.5mm)と、成形サイクルが10分の時の成形品を得た。得られた各成形品の光沢を、光沢計を用いて測定した。成形サイクルが30秒の時を基準として、10分の時の光沢保持率を求めた。光沢保持率が良いほど、滞留熱安定性が優れていることになる。
光沢保持率が90%以上の場合;○
光沢保持率が90%未満の場合;×
Stability heat stability Using the pellets obtained in each Example and Comparative Example, using an injection molding machine (SAV-30-30 manufactured by Yamashiro Seiki Seisakusho, cylinder temperature: 270 ° C., mold temperature: 60 ° C.), the molding cycle was A molded product at 30 seconds (90 mm × 55 mm × 2.5 mm) and a molded product at a molding cycle of 10 minutes were obtained. The gloss of each molded product obtained was measured using a gloss meter. Based on the time when the molding cycle was 30 seconds, the gloss retention at 10 minutes was determined. The better the gloss retention, the better the residence heat stability.
When gloss retention is 90% or more;
When gloss retention is less than 90%; ×

耐候性
各実施例及び比較例で得られたペレットを用い、射出成形機(山城精機製作所製 SAV−30−30 シリンダー温度:250℃ 金型温度:60℃)を用いて成形品(90mm×55mm×2.5mm)を得た。スガ試験機(株)製紫外線オートフェードメーターU48AUを使用し、83℃、雨なしの条件下で各成形品の400時間の促進曝露試験を行った。その後、JIS Z8729にのっとり、曝露前後の測色を行った。色差が小さいほど耐候性に優れていることになる。
色差ΔE<4未満の場合;○
色差ΔE≧4以上の場合;×
Using the pellets obtained in each of the weather resistance examples and comparative examples, a molded product (90 mm × 55 mm) using an injection molding machine (SAV-30-30 manufactured by Yamashiro Seiki Seisakusho, cylinder temperature: 250 ° C., mold temperature: 60 ° C.) × 2.5 mm) was obtained. Using a UV auto fade meter U48AU manufactured by Suga Test Instruments Co., Ltd., an accelerated exposure test for 400 hours was performed on each molded product under the conditions of 83 ° C. and no rain. Thereafter, color measurement was performed before and after exposure according to JIS Z8729. The smaller the color difference, the better the weather resistance.
When color difference ΔE <4; ○
When color difference ΔE ≧ 4; x

表面外観
耐候性の評価に用いるための成形品の表面外観を目視にて観察し、パール状(真珠調)の外観が見られるかで表面外観の判断を行った。
パール状(真珠調)の外観が見られない場合;○
パール状(真珠調)の外観が見られる場合;×
The surface appearance of a molded product for use in the evaluation of the surface appearance weather resistance was visually observed, and the surface appearance was judged based on whether a pearly (pearly) appearance was observed.
When pearl-like appearance is not seen; ○
When a pearl-like appearance is seen; ×

表1に示すように、本願発明の熱可塑性樹脂組成物を用いた場合は、耐衝撃性、耐候性だけでなく、滞留熱安定性及び表面外観も良好な結果であった。   As shown in Table 1, when the thermoplastic resin composition of the present invention was used, not only impact resistance and weather resistance, but also retention heat stability and surface appearance were good results.

比較例1では、ポリカーボネート樹脂(A)が10部以下のため、耐衝撃性、耐熱性に劣る結果となった。比較例2〜3は円相当粒子径が150nm以下である複合ゴムの粒子数が50%を超えていたため、滞留熱安定性、表面外観が劣っていた。共役ジエン系ゴムを用いた比較例4や共役ジエン系ゴム状重合体とアクリル酸エステル系重合体が複合ゴムとして存在していない比較例5では耐候性に劣る結果となった。   In Comparative Example 1, since the polycarbonate resin (A) was 10 parts or less, the results were inferior in impact resistance and heat resistance. In Comparative Examples 2 to 3, the number of particles of the composite rubber having an equivalent circle particle diameter of 150 nm or less exceeded 50%, so the residence heat stability and the surface appearance were inferior. In Comparative Example 4 using a conjugated diene rubber and Comparative Example 5 in which a conjugated diene rubber-like polymer and an acrylate polymer were not present as a composite rubber, the weather resistance was poor.

以上のとおり、本発明の熱可塑性樹脂組成物を使用することにより、耐衝撃性や流動性、耐熱性などの物性バランスや耐候性だけでなく、滞留熱安定性と表面外観に優れた熱可塑性樹脂組成物及び該熱可塑性樹脂組成物から得られた成形品を提供することができる。   As described above, by using the thermoplastic resin composition of the present invention, not only the balance of physical properties such as impact resistance, fluidity and heat resistance, and weather resistance, but also thermoplasticity excellent in residence thermal stability and surface appearance. A resin composition and a molded product obtained from the thermoplastic resin composition can be provided.

Claims (3)

ポリカーボネート樹脂(A)10〜90重量部と、グラフト共重合体(B)10〜90重量部と共重合体(C)0〜50重量部から構成される熱可塑性樹脂組成物(但し、(A)+(B)+(C)=100重量部)であって、
グラフト共重合体(B)は共役ジエン系ゴム状重合体5〜50重量%と架橋アクリル酸エステル系重合体50〜95重量%から構成される複合ゴム10〜80重量部に、シアン化ビニル系単量体、芳香族ビニル系単量体及びこれらと共重合可能な他のビニル系単量体から選ばれた少なくとも1種からなる単量体20〜90重量部をグラフト重合して得られ、グラフト共重合体中に存在する複合ゴムに関して、円相当粒子径が150nm以下である複合ゴムの粒子数が複合ゴム粒子全体の50%以下であることを特徴とするグラフト共重合体(複合ゴムと単量体の合計は100重量部)であり、
共重合体(C)は芳香族ビニル系単量体とシアン化ビニル系単量体とを共重合することで得られる共重合体、または、芳香族ビニル系単量体とシアン化ビニル系単量体とその他の共重合可能な他のビニル系単量体を共重合することで得られる共重合体であることを特徴とする熱可塑性樹脂組成物。
A thermoplastic resin composition comprising 10 to 90 parts by weight of a polycarbonate resin (A), 10 to 90 parts by weight of a graft copolymer (B) and 0 to 50 parts by weight of a copolymer (C) (where (A ) + (B) + (C) = 100 parts by weight),
The graft copolymer (B) is a vinyl cyanide based on 10-80 parts by weight of a composite rubber composed of 5-50% by weight of a conjugated diene rubbery polymer and 50-95% by weight of a crosslinked acrylate polymer. Obtained by graft polymerization of 20 to 90 parts by weight of at least one monomer selected from monomers, aromatic vinyl monomers and other vinyl monomers copolymerizable therewith, With respect to the composite rubber present in the graft copolymer, the number of particles of the composite rubber having a circle equivalent particle diameter of 150 nm or less is 50% or less of the total composite rubber particles (composite rubber and The total of the monomers is 100 parts by weight),
The copolymer (C) is a copolymer obtained by copolymerizing an aromatic vinyl monomer and a vinyl cyanide monomer, or an aromatic vinyl monomer and a vinyl cyanide monomer. A thermoplastic resin composition, which is a copolymer obtained by copolymerizing a monomer and another copolymerizable vinyl monomer .
ポリカーボネート樹脂(A)30〜80重量部、グラフト共重合体(B)20〜70重量部及び共重合体(C)0〜40重量部(但し、(A)+(B)+(C)=100重量部)から構成されることを特徴とする、請求項1に記載の熱可塑性樹脂組成物。   30-80 parts by weight of polycarbonate resin (A), 20-70 parts by weight of graft copolymer (B) and 0-40 parts by weight of copolymer (C) (provided that (A) + (B) + (C) = The thermoplastic resin composition according to claim 1, comprising 100 parts by weight). 請求項1又は2のいずれかに記載の熱可塑性樹脂組成物から得られた成形品   A molded article obtained from the thermoplastic resin composition according to claim 1.
JP2012277586A 2012-12-20 2012-12-20 Thermoplastic resin composition and molded article Active JP5547796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012277586A JP5547796B2 (en) 2012-12-20 2012-12-20 Thermoplastic resin composition and molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012277586A JP5547796B2 (en) 2012-12-20 2012-12-20 Thermoplastic resin composition and molded article

Publications (2)

Publication Number Publication Date
JP2014122255A JP2014122255A (en) 2014-07-03
JP5547796B2 true JP5547796B2 (en) 2014-07-16

Family

ID=51403040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012277586A Active JP5547796B2 (en) 2012-12-20 2012-12-20 Thermoplastic resin composition and molded article

Country Status (1)

Country Link
JP (1) JP5547796B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201609505XA (en) * 2014-06-13 2016-12-29 Umg Abs Ltd Thermoplastic resin composition and molded product thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4567872B2 (en) * 1999-12-01 2010-10-20 三菱レイヨン株式会社 Thermoplastic resin composition
JP2002080684A (en) * 2000-09-07 2002-03-19 Nippon A & L Kk Thermoplastic resin composition and various parts
JP5453511B2 (en) * 2012-03-05 2014-03-26 日本エイアンドエル株式会社 Graft copolymer, thermoplastic resin composition, and method for producing graft copolymer

Also Published As

Publication number Publication date
JP2014122255A (en) 2014-07-03

Similar Documents

Publication Publication Date Title
WO2013008829A1 (en) Graft copolymer, thermoplastic resin composition, molding, and method for producing graft copolymer
JP5950059B2 (en) Thermoplastic resin composition and molded article thereof
JP5547793B2 (en) Thermoplastic resin composition and molded article
JP6298935B2 (en) Thermoplastic resin composition
JP5453511B2 (en) Graft copolymer, thermoplastic resin composition, and method for producing graft copolymer
JP7216628B2 (en) Graft copolymer and thermoplastic resin composition
JP5547796B2 (en) Thermoplastic resin composition and molded article
JP5453512B2 (en) Graft copolymer and thermoplastic resin composition
JP5547826B2 (en) Flame retardant thermoplastic resin composition and resin molded product
JP5547795B2 (en) Thermoplastic resin composition and molded article
CN113614178A (en) Thermoplastic resin composition and molded article
JP5547828B2 (en) Thermoplastic resin composition and extruded product
JP5329702B1 (en) Graft copolymer, thermoplastic resin composition, and method for producing graft copolymer
JP2013245284A (en) Thermoplastic resin composition
JP6405923B2 (en) Thermoplastic resin composition and molded article thereof
WO2017104508A1 (en) Thermoplastic resin composition
JP5547794B2 (en) Thermoplastic resin composition and extruded product
JP2003138122A (en) Exterior material for vehicle and exterior for vehicle
JP2022187748A (en) Thermoplastic resin composition and molded article
EP4310138A1 (en) Thermoplastic resin composition and molded article thereof
JP5701849B2 (en) Flame retardant thermoplastic resin composition and resin molded product
JP6041381B2 (en) Thermoplastic resin composition for vehicle lamp and molded product
JP2013227502A (en) Thermoplastic resin composition and molding
JP2021084947A (en) Polycarbonate resin modifier, thermoplastic resin composition and molded article of the same
JP2013018949A (en) Graft copolymer and thermoplastic resin composition

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140423

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140515

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5547796

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150