JP5542672B2 - Nanosize structure comprising valve metal, valve metal suboxide, and manufacturing method thereof - Google Patents

Nanosize structure comprising valve metal, valve metal suboxide, and manufacturing method thereof Download PDF

Info

Publication number
JP5542672B2
JP5542672B2 JP2010520521A JP2010520521A JP5542672B2 JP 5542672 B2 JP5542672 B2 JP 5542672B2 JP 2010520521 A JP2010520521 A JP 2010520521A JP 2010520521 A JP2010520521 A JP 2010520521A JP 5542672 B2 JP5542672 B2 JP 5542672B2
Authority
JP
Japan
Prior art keywords
valve metal
oxide
reduction
metal
reducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010520521A
Other languages
Japanese (ja)
Other versions
JP2010537040A (en
Inventor
ギレ ゲーアハルト
シュニッター クリストフ
ブルム ホルガー
ハース ヘルムート
ミュラー ローベルト
ボベート マンフレート
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HC Starck GmbH
Original Assignee
HC Starck GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102007038581A external-priority patent/DE102007038581A1/en
Priority claimed from DE102007057761A external-priority patent/DE102007057761A1/en
Application filed by HC Starck GmbH filed Critical HC Starck GmbH
Publication of JP2010537040A publication Critical patent/JP2010537040A/en
Application granted granted Critical
Publication of JP5542672B2 publication Critical patent/JP5542672B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • B22F9/22Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds using gaseous reductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/20Obtaining niobium, tantalum or vanadium
    • C22B34/24Obtaining niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/04Dry methods smelting of sulfides or formation of mattes by aluminium, other metals or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/052Sintered electrodes
    • H01G9/0525Powder therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/1263Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction
    • C22B34/1268Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction using alkali or alkaline-earth metals or amalgams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/052Sintered electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12431Foil or filament smaller than 6 mils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12431Foil or filament smaller than 6 mils
    • Y10T428/12438Composite

Description

本発明は、1方向での寸法が100m未満である、バルブ金属及びバルブ金属亜酸化物から成る新規のラメラ構造物、及びその製造方法に関する。 The present invention relates to a novel lamellar structure comprising a valve metal and a valve metal suboxide having a dimension in one direction of less than 100 nm , and a method for producing the same.

粉末状、又は比較的大きな金属基材の表面領域に存在する、金属及び金属亜酸化物から成る微細構造物は、比表面積が高いことにより、膜分野や濾過技術では触媒、触媒用担体材料として、医療分野ではインプラント材料として、二次電池では蓄電材料として、及びキャパシタのアノード材料として、多くの幅広い用途がある。   Microstructures consisting of metals and metal suboxides that exist in the surface area of powdered or relatively large metal substrates have a high specific surface area, so they can be used as catalysts and catalyst support materials in the membrane field and filtration technology. In the medical field, it has a wide variety of uses as an implant material, as a power storage material in a secondary battery, and as an anode material of a capacitor.

WO00/67936は、Mg、Al、Ca、Li、及びBaといった気体状還元性金属を用いたバルブ金属酸化物粉末の還元による、バルブ金属微粉末の製造方法を開示している。酸化物から金属への還元の際の体積収縮によって、及び形成される還元性金属の固体酸化物に起因する体積増加によって、とりわけ固体電解質キャパシタを製造するために適した、高比面積を有する非常に多孔質なバルブ金属粉末が形成される。   WO00 / 67936 discloses a method for producing a valve metal fine powder by reduction of a valve metal oxide powder using a gaseous reducing metal such as Mg, Al, Ca, Li, and Ba. High specific area, particularly suitable for manufacturing solid electrolyte capacitors, due to volume shrinkage upon reduction from oxide to metal and due to volume increase due to the solid oxide of the reducing metal formed A porous valve metal powder is formed.

特定の還元条件下では、横断寸法をナノメーター範囲で有するラメラ構造が形成され、これらのラミネートは当初、還元されたバルブ金属酸化物と、酸化された還元性金属との交互層を含むことが判明している。   Under certain reducing conditions, lamellar structures with transverse dimensions in the nanometer range are formed, and these laminates may initially contain alternating layers of reduced valve metal oxide and oxidized reducing metal. It turns out.

還元性金属の酸化物を無機酸に溶解、及び浸出させることにより、ナノサイズのバルブ金属構造物から、還元性金属の酸化物をなくすことが可能になる。   By dissolving and leaching the reducing metal oxide in the inorganic acid, it becomes possible to eliminate the reducing metal oxide from the nano-sized valve metal structure.

開始バルブ金属酸化物の三次元構造により、比較的粗い(coarse)/大きい構造を有する金属基材上にラメラ構造、又はストリップ状若しくはラメラ表面構造を有する微粉末が得られ、この金属及び/又は亜酸化物のストリップ又はラメラは、バルブ金属酸化物次第、及びその酸化物が獲得する酸化状態次第で、幅が100nm未満であり、かつ間隔(中間スペース)がストリップ幅の最大2倍であってよい。   The three-dimensional structure of the starting valve metal oxide provides a fine powder having a lamellar structure or a strip-like or lamellar surface structure on a metal substrate having a relatively coarse / large structure, the metal and / or Suboxide strips or lamellae are less than 100 nm wide and have a spacing (intermediate space) of up to twice the strip width, depending on the valve metal oxide and the oxidation state that the oxide acquires. Good.

このようにして、一次構造粒径の寸法が平均で50〜2000nm、好ましくは500nm未満、より好ましくは300nm未満のバルブ金属酸化物微粉末を使用すれば、ラメラ構造を有し、かつ金属又は亜酸化物ストリップの幅が5〜100nm、好ましくは8〜50nm、とりわけ好ましくは最大30nmであり、かつ横断寸法が40〜500nmであり、比表面積が20m2/g超、好ましくは50m2/g超である、金属又は亜酸化物の微粉末が得られる。 In this way, if a valve metal oxide fine powder having an average primary structure particle size of 50 to 2000 nm, preferably less than 500 nm, more preferably less than 300 nm is used, it has a lamellar structure and has a metal or sub-particle size. The width of the oxide strip is 5 to 100 nm, preferably 8 to 50 nm, particularly preferably at most 30 nm, the transverse dimension is 40 to 500 nm, and the specific surface area is more than 20 m 2 / g, preferably more than 50 m 2 / g A fine powder of metal or suboxide is obtained.

前述の寸法、例えば10μmの比較的大きなバルブ金属酸化物基材を使用すれば、幅が最大100nm、好ましくは5〜80nm、とりわけ好ましくは8〜50nm、より好ましくは最大30nm、及びストリップ幅の1〜2倍の間隔を有する、金属若しくは亜酸化物のストリップが、これらの構造上に得られる。ストリップ間の溝の深さは、最大1μmであってよい。   If a relatively large valve metal oxide substrate with the aforementioned dimensions, for example 10 μm, is used, the width is at most 100 nm, preferably 5 to 80 nm, particularly preferably 8 to 50 nm, more preferably at most 30 nm, and a strip width of 1 Metal or suboxide strips with ˜2 times spacing are obtained on these structures. The depth of the groove between the strips can be up to 1 μm.

ストリップ状表面を有する比較的大きい金属構造物又は基材、例えばワイヤ又はフォイルは、まず表面を化学的に、又はアノード的に酸化し、そしてその後本発明に従って表面を還元して得ることができ、ストリップの深さは、最初に生成した酸化層の厚さにより決まる。   A relatively large metal structure or substrate having a strip-like surface, such as a wire or foil, can be obtained by first oxidizing the surface chemically or anodically and then reducing the surface according to the invention, The depth of the strip is determined by the thickness of the initially formed oxide layer.

さらに本発明による構造物は、例えばバルブ金属酸化物層を有する他の金属又はセラミックを含む基材を用意し、例えば蒸着若しくは電解質堆積によるバルブ金属層の適用、被覆の酸化、及び本発明に従い前記被覆を還元して金属又は亜酸化物にすることによって得られる。   The structure according to the invention further provides a substrate comprising, for example, another metal or ceramic with a valve metal oxide layer, for example application of the valve metal layer by vapor deposition or electrolyte deposition, oxidation of the coating, and according to the invention Obtained by reducing the coating to a metal or suboxide.

本発明の目的のために使用されるバルブ金属酸化物は、周期表の4〜6の遷移族元素、例えばTi、Zr、V、Ta、Mo、W、及びHfの、並びにAlの、好ましくはTi、Zr、Nb、及びTaの、とりわけ好ましくはNbとTaの酸化物、並びにこれらの合金(混合酸化物)であってよい。開始酸化物として好ましいのはとりわけ、Nb25、NbO2、及びTa25である。本発明による好ましい反応生成物は、開始酸化物の金属である。開始バルブ金属酸化物の低度の酸化物(亜酸化物)もまた、還元生成物として得られる。とりわけ好ましい還元生成物は、金属的伝導特性を有する式NbOXの亜酸化ニオブ[ただし、0.7<X<1.3]であり、これはタンタルとニオブに加えて、最大10Vの低活性化電流の範囲、とりわけ好ましくは最大5V、とりわけ最大3Vで使用するためのキャパシタ用アノード材料として適している。 The valve metal oxides used for the purposes of the present invention are 4 to 6 transition group elements of the periodic table, such as Ti, Zr, V, Ta, Mo, W and Hf, and Al, preferably It may be an oxide of Ti, Zr, Nb and Ta, particularly preferably an oxide of Nb and Ta, and an alloy thereof (mixed oxide). Nb 2 O 5 , NbO 2 , and Ta 2 O 5 are particularly preferred as starting oxides. The preferred reaction product according to the invention is the metal of the starting oxide. A low oxide (suboxide) of the starting valve metal oxide is also obtained as a reduction product. A particularly preferred reduction product is niobium suboxide of the formula NbO x with metallic conductivity properties, where 0.7 <X <1.3, which, in addition to tantalum and niobium, has a low activity of up to 10V Suitable as a capacitor anode material for use in a range of activation currents, particularly preferably up to 5V, especially up to 3V.

還元性金属として使用可能なのは、Li、Mg、Ca、B、及び/又はAl、及び本発明に従ったこれらの合金である。好ましいのは、開始酸化物の金属よりも卑金属である限り、Mg、Ca、及びAlである。非常にとりわけ好ましいのは、Mg、又はMgとAlの共晶である。   Usable as reducing metals are Li, Mg, Ca, B and / or Al and their alloys according to the invention. Preference is given to Mg, Ca and Al as long as they are base metals rather than starting oxide metals. Very particularly preferred is Mg or eutectic of Mg and Al.

本発明による還元生成物の特徴は、還元中のドープが原因となり還元性金属の含分が10ppm超の範囲、とりわけ50ppm〜500ppmにあることである。   The reduction product according to the invention is characterized by a reducing metal content in the range of more than 10 ppm, in particular 50 ppm to 500 ppm, due to the dope during the reduction.

ナノサイズ構造物を製造可能な本発明の方法は、WO00/67936に記載された、蒸気状の還元性金属による金属酸化物の還元に基づく。ここでは還元すべき粉末状バルブ金属酸化物を、反応器内で還元性金属の蒸気と接触させる。還元性金属は気化し、アルゴンのようなキャリアガス流によって、メッシュ上、又はボート内にあるバルブ金属酸化物粉末へと上昇された温度、通常900〜1200℃で、同様に通常は30分から数時間の周期で運ばれる。バルブ金属酸化物のモル体積は、相応するバルブ金属の体積の2〜3倍なので、還元の間にかなりの体積の減少が起こる。従って、スポンジ状の、高多孔質構造物(この中に還元性金属の酸化物が配置されている)が、還元の際に形成される。還元性金属の酸化物のモル体積は、バルブ金属酸化物と、バルブ金属との差よりも大きいので、残留応力の生成とともに細孔内に組み込まれる。還元性金属の酸化物の溶解によって、当該酸化物をこれらの構造物から無くすことができ、その結果、高多孔質の金属粉末が得られる。還元と細孔形成のメカニズム、及び細孔の分布に関する研究により、以下のことが判明している:バルブ金属酸化物粒子若しくは基材の表面上にある小さな反応核から始まって、ナノサイズの寸法の層状構造が反応の初期段階で、バルブ金属/バルブ金属酸化物の反応前線の後ろに形成される。これらの層はまず、表面に近い粒子/基材の領域にある表面に対して垂直に向かう。しかしながら、反応前線が酸化物粒子/基材内により深く移動するにつれて、ラメラの方向と寸法は、結晶方向とバルブ金属酸化物内の一次粒子の寸法、及び反応条件により決まる。バルブ金属酸化物クリスタリット内にある格子平面の特定の数が、バルブ金属の、及び還元性金属の酸化物の、格子平面の化学当量数で置き換えられる。これらのナノサイズ層構造は界面ストレスが高いため、現実的にはエネルギー面で不利ではあるが、それにも関わらず生成され、可能になるのは、還元が非常に発熱性であり、かつ過剰エネルギーの少なくとも一部が熱として散逸せず、構造形成に「つぎ込まれる」からであり、このことが反応速度を速めることを可能にするのである。層構造の多くの平坦界面は、還元性金属の原子に対して「高速道路」として作用する、つまりこれらの界面により速い拡散、ひいては反応系の総エネルギーの素早い、そして効果的な減少につながる反応速度が可能になる。しかしながら層状構造はバルブ金属からなり、そして還元性金属の酸化物は、熱エネルギーの導入の際にさらに低いエネルギーを有する構造状態につながる準安定的な状態でのみ形成される。「通常は」比較的長い加熱処理時間とともに、及び一定の反応条件(温度、還元性金属の蒸気圧など)で行われる還元工程において、この構造変形が不可避的に起こる、すなわちナノサイズの層構造が、バルブ金属領域と還元性金属酸化物領域とから成る著しく粗い相互貫入性の構造へと変わる。   The method of the present invention capable of producing nano-sized structures is based on the reduction of metal oxides with vaporous reducing metals as described in WO 00/67936. Here, the powdered valve metal oxide to be reduced is brought into contact with the reducing metal vapor in the reactor. The reducing metal vaporizes and is raised to a valve metal oxide powder on the mesh or in the boat by a carrier gas stream such as argon, typically 900-1200 ° C., as well as usually 30 minutes to a few. Carried in a cycle of time. Since the molar volume of the valve metal oxide is 2 to 3 times the volume of the corresponding valve metal, a considerable volume reduction occurs during the reduction. Accordingly, a sponge-like, highly porous structure (in which a reducing metal oxide is disposed) is formed during the reduction. Since the molar volume of the reducing metal oxide is larger than the difference between the valve metal oxide and the valve metal, it is incorporated into the pores together with the generation of residual stress. By dissolving the oxide of the reducing metal, the oxide can be eliminated from these structures, resulting in a highly porous metal powder. Studies on the mechanism of reduction and pore formation, and the distribution of pores have revealed that: starting from small reaction nuclei on the surface of a valve metal oxide particle or substrate, nano-sized dimensions A layered structure is formed behind the valve metal / valve metal oxide reaction front in the early stages of the reaction. These layers are initially oriented perpendicular to the surface in the region of the particle / substrate close to the surface. However, as the reaction front moves deeper into the oxide particles / substrate, the direction and size of the lamella is determined by the crystal orientation and the size of the primary particles in the valve metal oxide and the reaction conditions. A specific number of lattice planes within the valve metal oxide crystallite is replaced with the number of chemical equivalents of the lattice planes of the valve metal and of the reducible metal oxide. These nano-sized layer structures are actually disadvantageous in terms of energy due to their high interfacial stress, but they are nevertheless generated and made possible because reduction is very exothermic and excess energy. This is because at least a part of is not dissipated as heat and is “spent” into the structure formation, which makes it possible to increase the reaction rate. Many flat interfaces in the layer structure act as “highways” for the atoms of the reducing metal, ie reactions that lead to faster diffusion and thus a quick and effective reduction of the total energy of the reaction system. Speed is possible. However, the layered structure consists of the valve metal, and the oxide of the reducing metal is formed only in a metastable state leading to a structural state with lower energy upon introduction of thermal energy. This structural deformation inevitably occurs in a reduction process carried out with “normally” relatively long heat treatment times and under certain reaction conditions (temperature, vapor pressure of reducing metal, etc.), ie a nano-sized layer structure Is transformed into a significantly coarser interpenetrating structure consisting of a valve metal region and a reducible metal oxide region.

構造変形が起こらないうちにラメラ構造を安定的に保てる温度に、還元生成物を冷却することを保証するように気をつければ、ラメラ構造を凝固可能なことが判明した。よって本発明によれば、還元条件を調整して、短い時間内に非常に均一に還元を進められるように、すなわち酸化物の粉末床内部で微粉末の開始酸化物を使用すれば、還元完了後直ちに、還元生成物が可能な限り素早く冷却される。   It has been found that the lamella structure can be solidified if care is taken to ensure that the reduction product is cooled to a temperature at which the lamella structure can be kept stable before structural deformation occurs. Therefore, according to the present invention, the reduction can be completed by adjusting the reduction conditions so that the reduction can proceed very uniformly within a short time, that is, by using the fine oxide starting oxide inside the oxide powder bed. Immediately afterwards, the reduction product is cooled as quickly as possible.

このため好ましくは、厚さが薄い粉末床を用いて、前記床を通じて還元性金属の蒸気の均一な浸透を保証する。粉末床の厚さはとりわけ好ましくは、1cm未満、より好ましくは0.5cm未満である。   For this reason, preferably a thin powder bed is used to ensure uniform penetration of the reducing metal vapor through the bed. The thickness of the powder bed is particularly preferably less than 1 cm, more preferably less than 0.5 cm.

さらに、粉末床を通じて還元性金属の蒸気を均一に浸透させることにより、還元性金属蒸気の自由経路長を大きく得ることが保証される。よって本発明によれば、この還元は好ましくは減圧下で行い、より好ましくはキャリアガスの不存在下で行う。還元はとりわけ好ましくは、還元性金属の蒸気圧が10-2〜0.4bar、より好ましくは0.1〜0.3barで、酸素の不存在下で行う。最大0.2bar、好ましくは0.1bar未満というキャリアガス圧の低さが、不利になることなく適用可能である。適切なキャリアガスはとりわけ希ガス、例えばアルゴン、及びヘリウム、及び/又は水素である。 Furthermore, it is ensured that the reductive metal vapor can have a large free path length by uniformly infiltrating the reducible metal vapor through the powder bed. Thus, according to the invention, this reduction is preferably carried out under reduced pressure, more preferably in the absence of a carrier gas. The reduction is particularly preferably carried out in the absence of oxygen with a reducing metal vapor pressure of 10 −2 to 0.4 bar, more preferably 0.1 to 0.3 bar. A low carrier gas pressure of up to 0.2 bar, preferably less than 0.1 bar is applicable without disadvantages. Suitable carrier gases are especially noble gases such as argon and helium and / or hydrogen.

ラメラ構造の深さ増加は、深さが増すにつれて、還元された金属ラメラと、金属ラメラ間に形成された還元性金属の酸化物との間の界面に沿った拡散路が長いことの結果として減少する。還元の間、材料における深さが最大1μmまでは、ラメラ構造の変形が基本的に全く起こらないことが判明した。   The increase in the depth of the lamella structure results from a longer diffusion path along the interface between the reduced metal lamella and the reducing metal oxide formed between the metal lamellae as the depth increases. Decrease. During the reduction, it has been found that basically no deformation of the lamellar structure takes place up to a depth of 1 μm in the material.

よって本発明によれば好ましくは、最も小さい一次構造粒径断面の寸法(クリスタリットの寸法)が2μm、好ましくは1μm、とりわけ好ましくは平均0.5μmを越えない、バルブ金属酸化物粉末を用いる。一次構造の小ささが適切である場合、バルブ金属酸化物粉末を多孔質焼結アグロメレートとして使用することができる。有利には、一次粒子を強力に一緒に焼結させて(ただし、開口細孔の階層構造ネットワークがアグロメレート化された一次粒子間に存在するように)、開口細孔の細孔サイズ分布により還元性金属の蒸気を一次粒子表面の非常に大きな割合に直接到達させて、還元することが可能になる。   Thus, preferably according to the invention, valve metal oxide powders are used in which the dimension of the smallest primary structure grain size cross section (crystallite dimension) does not exceed 2 μm, preferably 1 μm, particularly preferably not exceeding 0.5 μm on average. If the primary structure is small enough, the valve metal oxide powder can be used as a porous sintered agglomerate. Advantageously, the primary particles are strongly sintered together (but so that a hierarchical network of open pores exists between the agglomerated primary particles) and reduced by the pore size distribution of the open pores. It is possible to reduce the direct metal vapor directly to a very large proportion of the primary particle surface and reduce it.

このような一次粒子は細孔チャネルよりも著しく効率が低いものの、隣接する一次粒子間の結晶粒界もまた、拡散を加速させることができる。従って有利には、一次粒子間の結晶粒界が非常に高い割合で、小さな一次粒子、及びアグリゲート化されたバルブ金属酸化物粒子内の開口細孔に加えて形成される。これは、一次粒径サイズの最適化、及び水酸化物として酸化物前駆体が沈着する際の焼結、及び水酸化物のか焼によってバルブ金属酸化物を形成することにより達成される。か焼は好ましくは、400〜700℃の温度で行う。か焼温度はとりわけ好ましくは、500〜600℃である。   Although such primary particles are significantly less efficient than pore channels, grain boundaries between adjacent primary particles can also accelerate diffusion. Thus, advantageously, the grain boundaries between the primary particles are formed in a very high proportion in addition to the small primary particles and the open pores in the aggregated valve metal oxide particles. This is accomplished by optimizing the primary particle size and forming the valve metal oxide by sintering as the oxide precursor is deposited as a hydroxide and by calcining the hydroxide. The calcination is preferably performed at a temperature of 400 to 700 ° C. The calcination temperature is particularly preferably 500 to 600 ° C.

ラメラ表面構造を有する金属フォイル又はワイヤの製造において好ましくは、表面に厚さ1μm未満、好ましくは0.5μm未満の酸化物層を有する、金属フォイル又はワイヤを使用する。大気圧未満での還元後(この還元は、使用する還元性金属蒸気若しくは金属蒸気混合物とその蒸気圧次第で、数分から数時間、好ましくは約10〜90分にわたって行うことがある)に、還元性金属蒸気の供給を遮断することによって還元を止め、そして還元されたバルブ金属を素早く100℃未満に冷却して、バルブ金属若しくはバルブ金属亜酸化物、及び還元性金属の酸化物から成る層のナノサイズラメラ構造を安定化させる。僅かに粗くはなるが、異なる方向を有する隣接ラメラ構造の焼結も、行うことができる。冷却は例えば、保護ガス(冷却ガス)、好ましくはアルゴン又はヘリウムの導入による迅速な圧力上昇によって、行うことができる。好ましくは、3分以内に300℃に、さらには次の3分以内に200℃に、そしてさらに次の5分以内に100℃に冷却する。   In the production of a metal foil or wire having a lamellar surface structure, preferably a metal foil or wire having an oxide layer on the surface with a thickness of less than 1 μm, preferably less than 0.5 μm is used. After reduction at less than atmospheric pressure (this reduction may take several minutes to several hours, preferably about 10 to 90 minutes, depending on the reducing metal vapor or metal vapor mixture used and its vapor pressure). The reduction is stopped by shutting off the supply of the reducible metal vapor, and the reduced valve metal is quickly cooled to below 100 ° C. so that the layer of the valve metal or valve metal suboxide and the reducible metal oxide is formed. Stabilizes nano-sized lamella structures. Sintering of adjacent lamellar structures with different directions, although slightly rougher, can also be performed. The cooling can be effected, for example, by a rapid pressure increase by introduction of a protective gas (cooling gas), preferably argon or helium. Preferably, cool to 300 ° C. within 3 minutes, further to 200 ° C. within the next 3 minutes, and to 100 ° C. within the next 5 minutes.

本発明によれば、還元は好ましくは比較的低い温度で行い、ナノサイズのラメラ構造が粗くなるのを最小限にする。還元すべきバルブ金属酸化物の温度は、好ましくは500℃〜850℃、より好ましくは750℃未満、とりわけ好ましくは650℃である。この際に実際の温度は、還元反応の発熱性が原因で還元当初の時点ではかなり超過していてもよい。   According to the present invention, the reduction is preferably performed at a relatively low temperature to minimize the coarsening of the nano-sized lamellar structure. The temperature of the valve metal oxide to be reduced is preferably 500 ° C. to 850 ° C., more preferably less than 750 ° C., and particularly preferably 650 ° C. At this time, the actual temperature may be significantly exceeded at the beginning of the reduction due to the exothermic nature of the reduction reaction.

反応生成物と酸化された還元性金属(これらは還元初期に形成される)とから成るナノサイズラメラ構造が分解及び粗くなるのを避けるために、本発明により様々な方法を代替法として、又は組み合わせて使用することができる。   In order to avoid the degradation and coarsening of nano-sized lamellar structures consisting of reaction products and oxidized reducing metals (which are formed early in the reduction), various methods can be used as alternatives according to the present invention, or Can be used in combination.

例えば高い還元温度では、短い還元時間を保証するために、還元性金属蒸気を効果的かつ迅速に、例えば開始金属酸化物の小粉末床、及び/又は減圧されたキャリアガス圧によって(つまり還元性金属蒸気の原子のための自由経路長を増やす)、到達させれば充分である。   For example, at high reduction temperatures, reducing metal vapor can be effectively and quickly applied to ensure a short reduction time, for example by a small powder bed of starting metal oxide and / or a reduced carrier gas pressure (ie reducing Increasing the free path length for the atoms of the metal vapor) is sufficient.

その一方で、低い還元温度でより長い還元時間も可能である。   On the other hand, longer reduction times are possible at lower reduction temperatures.

有利な開口細孔構造を有する開始バルブ金属酸化物粉末アグロメレートにより、本発明によるラメラ構造を得るためにより穏やかな工程条件が可能になる。   Initiating valve metal oxide powder agglomerates having an advantageous open pore structure allow for milder process conditions to obtain a lamellar structure according to the invention.

還元が完了し、還元されたバルブ金属酸化物を冷却し、酸素若しくは空気の漸進的な導入により不活性にした後に、生成するナノサイズ構造物から、例えば無機酸、例えば硫酸若しくは塩、又はこれらの混合物を用いて閉じこめられた還元性金属酸化物を浸出させることができ、これを中性になるまで脱イオン水で洗浄し、そして乾燥させる。 Reduction is complete, the reduced valve metal oxide is cooled, after making inert by gradual introduction of oxygen or air, from the resulting nanosize structure, for example inorganic acids, for example sulfuric acid or hydrochloric acid, or These mixtures can be used to leach entrapped reducible metal oxides, which are washed with deionized water until neutral and dried.

微粉末を還元する場合、この粉末は平板状一次構造を有する粒子(部分的に相互に樹枝状結晶のように成長している)を含む。   When reducing a fine powder, the powder contains particles having a tabular primary structure (partially growing like dendrites).

還元性金属の酸化物を浸出させた後、今や自立しているバルブ金属のラメラ構造は、隣接する一般的に異なる方向のラメラ構造に対して各層の末端部により充分にしっかり焼結されているので、形状的に安定が保たれる。こうしてもともとの(多結晶性の)バルブ金属酸化物粒子は、アグリゲート化されたバルブ金属粒子へと変わっており、その一次粒子は異なる方向の層構造群を含み、相互に焼結されている。全般的に、安定的な相互貫入金属構造、及び「平面的な」細孔は、このようにして形成される。   After leaching the reducible metal oxide, the now self-supporting valve metal lamellar structure is sintered sufficiently firmly by the end of each layer to the adjacent generally differently oriented lamellar structure. Therefore, shape stability is maintained. In this way, the original (polycrystalline) valve metal oxide particles are transformed into aggregated valve metal particles whose primary particles contain layers of groups in different directions and are sintered together. . Overall, stable interpenetrating metal structures and “planar” pores are thus formed.

本発明の方法を実施するための装置を概略的に示す。1 schematically shows an apparatus for carrying out the method of the invention. 透過電子顕微鏡による、タンタル粉末の拡大図である。It is an enlarged view of a tantalum powder by a transmission electron microscope. 透過電子顕微鏡による、タンタル粉末の拡大図である。It is an enlarged view of a tantalum powder by a transmission electron microscope. 透過電子顕微鏡による、タンタル粉末の拡大図である。It is an enlarged view of a tantalum powder by a transmission electron microscope.

図1は、本発明の方法を実施するための装置を概略的に示す。符号1を付した反応器は、還元室2を有する。参照番号3は、加熱コイルと冷却コイルとを含む温度制御部である。保護ガス若しくはフラッシュガス、又は冷却ガスは、バルブを通って還元室に矢印4の方向で導入される。還元室は矢印5の方向に脱気、又は気体を取り除く。還元室2は、隔離加熱部7を備える還元性金属用気化室6により連結されている。気化室と還元室の熱的な隔離は、バルブ領域8により行われる。還元すべきバルブ金属酸化物は、薄層粉末床としてボート10内に存在する。バルブ金属酸化物フォイル若しくはワイヤ、又はバルブ金属酸化物から成る表面を有するフォイル若しくはワイヤを使用する場合、これらは好ましくは垂直に、かつ還元室内の還元性金属蒸気流に対して平行に吊り下げられている。ボート9内の還元性金属は、所望の蒸気圧をもたらす温度に加熱する。   FIG. 1 schematically shows an apparatus for carrying out the method of the invention. The reactor denoted by reference numeral 1 has a reduction chamber 2. Reference numeral 3 is a temperature control unit including a heating coil and a cooling coil. A protective gas or flash gas or cooling gas is introduced in the direction of arrow 4 through the valve into the reduction chamber. The reduction chamber is degassed or gas is removed in the direction of arrow 5. The reduction chamber 2 is connected by a reducing metal vaporizing chamber 6 including an isolation heating unit 7. Thermal isolation of the vaporization chamber and the reduction chamber is performed by the valve region 8. The valve metal oxide to be reduced is present in the boat 10 as a thin powder bed. When using valve metal oxide foils or wires, or foils or wires having a surface made of valve metal oxides, these are preferably suspended vertically and parallel to the reducing metal vapor flow in the reduction chamber. ing. The reducing metal in the boat 9 is heated to a temperature that provides the desired vapor pressure.

酸化物粉末は、ボート内で高さ5mmの床として導入する。マグネシウム切削屑を有するボートは、気化室内に置く。反応器はアルゴンで洗浄する。この後、還元室を還元温度に加熱し、0.1barの圧力に脱気する。引き続き気化室を、800℃に加熱する。マグネシウム蒸気圧(静止圧)は、約0.04barである。30分後に還元室と気化室の加熱を切り、200barからの減圧により冷却したアルゴンを導入し、さらに一定時間、還元室を通過させる。還元室の壁面は、同時に水により冷却する。   The oxide powder is introduced as a 5 mm high floor in the boat. A boat with magnesium cuttings is placed in the vaporization chamber. The reactor is flushed with argon. After this, the reduction chamber is heated to the reduction temperature and degassed to a pressure of 0.1 bar. The vaporization chamber is subsequently heated to 800 ° C. The magnesium vapor pressure (static pressure) is about 0.04 bar. After 30 minutes, the heating of the reduction chamber and the vaporization chamber is turned off, and argon cooled by a reduced pressure from 200 bar is introduced, and further passed through the reduction chamber for a certain time. The wall of the reduction chamber is simultaneously cooled with water.

図2、3、及び4は、還元生成物を集束イオンビーム作成した後、本発明により還元されたタンタル粉末を様々な倍率で撮影した、透過型電子顕微鏡写真である。図の黒いストライプはタンタルラメラであり、色の明るいストライプは酸化マグネシウムラメラである。ラメラ構造の異なる方向は、開始タンタル五酸化物の異なるクリスタリット方向に相応する。   2, 3 and 4 are transmission electron micrographs of tantalum powder reduced according to the present invention, taken at various magnifications, after the reduction product was created with a focused ion beam. The black stripes in the figure are tantalum lamellae, and the brightly colored stripes are magnesium oxide lamellae. The different directions of the lamella structure correspond to the different crystallite directions of the starting tantalum pentoxide.

1 反応器、 2 還元室、 3 温度制御部、 4 ガス導入方向、 5 脱気方向、 6 気化室、 7 隔離加熱部、 8 バルブ領域、 9 ボート、 10 ボート   DESCRIPTION OF SYMBOLS 1 Reactor, 2 Reduction chamber, 3 Temperature control part, 4 Gas introduction direction, 5 Deaeration direction, 6 Vaporization room, 7 Isolation heating part, 8 Valve area | region, 9 boat, 10 boat

Claims (15)

横断寸法が5〜100nmであるラメラ構造を有する、バルブ金属又はバルブ金属亜酸化物から形成される構造体であって、前記バルブ金属がTi、Zr、V、Nb、Ta、Mo、W、Hf若しくはAl又はこれらの合金である、構造体。 A structure formed from a valve metal or a valve metal suboxide having a lamellar structure having a transverse dimension of 5 to 100 nm, wherein the valve metal is Ti, Zr, V, Nb, Ta, Mo, W, Hf Or the structure which is Al or these alloys. ラメラ構造の層が、中間スペースによって隔てられている、請求項1記載の構造体。   The structure of claim 1, wherein the layers of lamellar structure are separated by an intermediate space. ラメラ構造の層が、Li、Al、Mg、及びCaから選択される少なくとも1つの還元性金属の酸化物によって隔てられている、請求項1記載の構造体。   The structure of claim 1, wherein the layers of lamellar structure are separated by an oxide of at least one reducing metal selected from Li, Al, Mg, and Ca. 層状の一次構造を有する、粉末形態の、請求項1から3のいずれか1項に記載の構造体。   4. A structure according to any one of claims 1 to 3 in powder form having a layered primary structure. 前記ラメラ構造が基板表面に存在する、請求項1から3のいずれか1項に記載の構造体。   The structure according to any one of claims 1 to 3, wherein the lamellar structure is present on a substrate surface. 幅5〜100nm及び前記幅の1〜2倍の間隔を有するラメラ構造の層を有する、フォイル又はワイヤの形態の、請求項5に記載の構造体。   6. A structure according to claim 5, in the form of a foil or wire, having a lamellar structure layer having a width of 5 to 100 nm and a spacing of 1 to 2 times the width. 前記ラメラ構造の層が、まとまって並行に整列されている、請求項1から6までのいずれか1項に記載の構造体。   The structure according to any one of claims 1 to 6, wherein the layers of the lamellar structure are aligned in parallel. 前記ラメラ構造の横断寸法又は幅が、8〜50nmである、請求項1から7までのいずれか1項に記載の構造体。   The structure according to any one of claims 1 to 7, wherein a transverse dimension or a width of the lamellar structure is 8 to 50 nm. バルブ金属亜酸化物が、式NbOx[式中、0.7<x<1.3である]である、請求項1から8までのいずれか1項に記載の構造体。 Valve metal suboxide, wherein, 0.7 <x <1.3] formula NbO x is, the structure according to any one of claims 1 to 8. Li、Al、Mg、及びCaから選択される少なくとも1つの還元性金属を10〜500ppmの量で含むことを特徴とする、請求項1から9までのいずれか1項に記載の構造体。   The structure according to any one of claims 1 to 9, characterized in that it contains at least one reducing metal selected from Li, Al, Mg and Ca in an amount of 10 to 500 ppm. 5〜100nmの横断寸法を有するラメラ構造を形成するための、500〜850℃での、Li、Al、Mg、及びCaから選択される少なくとも1つの還元性金属の蒸気によるバルブ金属酸化物の還元方法において、前記ラメラ構造の熱分解前、かつ粗い構造に変形する前に、還元されたバルブ金属酸化物を11分以内に100℃未満に冷却させることを含み、前記バルブ金属が、Ti、Zr、V、Nb、Ta、Mo、W、Hf若しくはAl又はこれらの合金であることを特徴とする、還元方法。 Reduction of valve metal oxide with vapor of at least one reducing metal selected from Li, Al, Mg, and Ca at 500-850 ° C. to form a lamellar structure having a transverse dimension of 5-100 nm The method includes cooling the reduced valve metal oxide to less than 100 ° C. within 11 minutes before pyrolysis of the lamellar structure and before deformation to a rough structure, wherein the valve metal comprises Ti, Zr , V, Nb, Ta, Mo, W, characterized in that it is a Hf or Al or an alloy thereof, the reduction method. 還元されたバルブ金属酸化物を3分以内に300℃に、さらには次の3分以内に200℃に、そしてさらに次の5分以内に100℃に冷却させる、請求項11記載の還元方法。   The reduction method according to claim 11, wherein the reduced valve metal oxide is cooled to 300 ° C within 3 minutes, further to 200 ° C within the next 3 minutes, and further to 100 ° C within the next 5 minutes. 還元性金属の酸化物を浸出させることをさらに含む、請求項11又は12記載の還元方法。   The reduction method according to claim 11 or 12, further comprising leaching an oxide of the reducing metal. 前記還元を、0.2bar未満の不活性ガス圧、及び10-2〜0.4barの還元性金属の蒸気圧で行うことを特徴とする、請求項11から13のいずれか1項に記載の方法。 It said reducing, inert gas pressure of less than 0.2 bar, and characterized by performing a vapor pressure of the reducing metal 10 -2 ~0.4bar, according to any one of claims 11 to 13 Method. Al、Hf、Ti、Zr、V、Nb、Ta、Mo及び/又はWの酸化物並びにこれらの混合酸化物を、還元すべき酸化物として使用することを特徴とする、請求項11から14までのいずれか1項に記載の方法。   The oxides of Al, Hf, Ti, Zr, V, Nb, Ta, Mo and / or W and mixed oxides thereof are used as oxides to be reduced, characterized in that The method of any one of these.
JP2010520521A 2007-08-16 2008-07-23 Nanosize structure comprising valve metal, valve metal suboxide, and manufacturing method thereof Expired - Fee Related JP5542672B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE102007038581.3 2007-08-16
DE102007038581A DE102007038581A1 (en) 2007-08-16 2007-08-16 Valve metal structure and valve metal sub-oxide structure, have lateral dimension of 5 to 10 nanometers and are expanded in streaky or flat manner and valve metal structures are in form of foils or wires
DE102007057761A DE102007057761A1 (en) 2007-11-30 2007-11-30 Strip-like or sheet-like valve metal and valve metal suboxide structures in the form of surface strip structures, foils, or wires, useful e.g. as catalysts and support materials for catalysts, have specified transverse dimension
DE102007057761.5 2007-11-30
PCT/EP2008/059659 WO2009021820A1 (en) 2007-08-16 2008-07-23 Nanosize structures composed of valve metals and valve metal suboxides and process for producing them

Publications (2)

Publication Number Publication Date
JP2010537040A JP2010537040A (en) 2010-12-02
JP5542672B2 true JP5542672B2 (en) 2014-07-09

Family

ID=40139278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010520521A Expired - Fee Related JP5542672B2 (en) 2007-08-16 2008-07-23 Nanosize structure comprising valve metal, valve metal suboxide, and manufacturing method thereof

Country Status (9)

Country Link
US (1) US20110123822A1 (en)
EP (1) EP2188081A1 (en)
JP (1) JP5542672B2 (en)
KR (1) KR101530727B1 (en)
CN (2) CN104889381A (en)
MX (1) MX2010001586A (en)
RU (1) RU2493939C2 (en)
TW (1) TWI477437B (en)
WO (1) WO2009021820A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2596513C1 (en) * 2015-05-15 2016-09-10 Федеральное государственное бюджетное учреждение науки Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева Кольского научного центра Российской академии наук (ИХТРЭМС КНЦ РАН) Method of producing molybdenum powder
US10927433B2 (en) 2016-08-02 2021-02-23 Sri Lanka Institute of Nanotechnology (Pvt) Ltd. Method of producing titanium from titanium oxides through magnesium vapour reduction
CN106623980B (en) * 2016-09-18 2019-06-18 华南理工大学 A kind of preparation method of metal molybdenum nanometer sheet
US20190040503A1 (en) * 2017-08-03 2019-02-07 Hrl Laboratories, Llc Feedstocks for additive manufacturing, and methods of using the same
WO2019139554A1 (en) 2018-01-10 2019-07-18 Aselsan Elektronik Sanayi Ve Ticaret Anonim Sirketi A production method for a metallic material with high surface area nanostructures

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3421480A1 (en) * 1984-06-08 1985-12-12 Conradty GmbH & Co Metallelektroden KG, 8505 Röthenbach COATED VALVE METAL ELECTRODE FOR ELECTROLYTIC GALVANIZATION
US6369410B1 (en) * 1997-12-15 2002-04-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the semiconductor device
WO2000067936A1 (en) * 1998-05-06 2000-11-16 H.C. Starck, Inc. Metal powders produced by the reduction of the oxides with gaseous magnesium
US6416730B1 (en) * 1998-09-16 2002-07-09 Cabot Corporation Methods to partially reduce a niobium metal oxide oxygen reduced niobium oxides
US6322912B1 (en) * 1998-09-16 2001-11-27 Cabot Corporation Electrolytic capacitor anode of valve metal oxide
US6558447B1 (en) * 1999-05-05 2003-05-06 H.C. Starck, Inc. Metal powders produced by the reduction of the oxides with gaseous magnesium
US7442227B2 (en) * 2001-10-09 2008-10-28 Washington Unniversity Tightly agglomerated non-oxide particles and method for producing the same
JP3633543B2 (en) * 2001-10-23 2005-03-30 住友金属鉱山株式会社 Method for producing niobium and / or tantalum powder
DE10307716B4 (en) * 2002-03-12 2021-11-18 Taniobis Gmbh Valve metal powders and processes for their manufacture
RU2326138C2 (en) * 2003-04-28 2008-06-10 Родиа Инджиниринг Плэстикс С.Р.Л. Thermoplastic material containing nanometric layered compounds
US7515397B2 (en) * 2003-05-19 2009-04-07 Cabot Corporation Methods of making a niobium metal oxide and oxygen reduced niobium oxides
WO2004110684A2 (en) * 2003-06-10 2004-12-23 Cabot Corporation Tantalum powders and methods of producing same
JP2005085903A (en) * 2003-09-05 2005-03-31 Renesas Technology Corp Semiconductor device and its manufacturing method
BE1015823A3 (en) * 2003-12-17 2005-09-06 Ct Rech Metallurgiques Asbl Process for coating a surface by metal layer ultrafine.
DE102004020052B4 (en) * 2004-04-23 2008-03-06 H.C. Starck Gmbh Process for the preparation of niobium and tantalum powders
DE102004023161A1 (en) * 2004-05-07 2005-11-24 Eilenburger Elektrolyse- Und Umwelttechnik Gmbh Electrolysis cell with multilayer expanded metal cathodes
US20050274226A1 (en) * 2004-06-14 2005-12-15 Qingmin Cheng Method of preparing aluminum nanorods
JP2006249449A (en) * 2005-03-08 2006-09-21 Art Kagaku:Kk Method for producing metal tantalum nanosheet and metal tantalum nanosheet produced by the method
CN100443851C (en) * 2005-07-01 2008-12-17 松下电器产业株式会社 Aluminium foil for heat exchanger, its making method and heat exchanger using same and air conditioner
JP4788880B2 (en) * 2005-07-22 2011-10-05 独立行政法人物質・材料研究機構 Method for producing valve metal oxide nanostructure
US7988760B2 (en) * 2007-03-13 2011-08-02 Global Tungsten & Powders Corp. Method of making nanocrystalline tungsten powder

Also Published As

Publication number Publication date
TWI477437B (en) 2015-03-21
RU2010109437A (en) 2011-09-27
KR20100065280A (en) 2010-06-16
KR101530727B1 (en) 2015-06-22
TW200927641A (en) 2009-07-01
RU2493939C2 (en) 2013-09-27
MX2010001586A (en) 2010-03-15
EP2188081A1 (en) 2010-05-26
WO2009021820A1 (en) 2009-02-19
CN101778683A (en) 2010-07-14
JP2010537040A (en) 2010-12-02
CN104889381A (en) 2015-09-09
US20110123822A1 (en) 2011-05-26

Similar Documents

Publication Publication Date Title
Filipič et al. Copper oxide nanowires: a review of growth
JP5542672B2 (en) Nanosize structure comprising valve metal, valve metal suboxide, and manufacturing method thereof
CA2930514C (en) Carbon-coated metal powder, method for manufacturing thereof,and applications of the powder in electronic components
CN110540236A (en) MXene material and preparation method and application thereof
CN111940750B (en) Preparation method of alloy powder material
JP2017514273A (en) Methods and materials for lithium ion battery anodes
JP2021091606A (en) Metal oxide particle and generation method thereof
US20200147693A1 (en) A method for producing a metallic structure and a metallic structure obtainable by the method
CN111039291A (en) Method for preparing NbC and/or TaC powder in situ by molten salt disproportionation reaction
Bokhonov et al. Formation of self-supporting porous graphite structures by Spark Plasma Sintering of nickel–amorphous carbon mixtures
CN111039290A (en) Method for preparing transition metal carbide powder in situ by molten salt disproportionation reaction
JP5389928B2 (en) Nanostructure target for isotope production and method for producing the same
US20090298683A1 (en) Production of a material comprising a mixture of noble metal nanoparticles and rare-earth oxide nanoparticles
Li et al. Electrochemical reduction of TiO2/Al2O3/C to Ti3AlC2 and its derived two-dimensional (2D) carbides
KR100986941B1 (en) Method for synthesizing nanocrystalline/nanoporous transition metal oxides
Zan et al. Three-dimensional porous tungsten via DLP 3D printing from transparent ink
KR101284003B1 (en) Method for preparing (Ti,Cr)N nanopowders using the electrical wire explosion
Chen et al. Toward materials-by-design: achieving functional materials with physical and chemical effects
JP5046110B2 (en) Method for producing metal oxide fiber material formed body
Yu et al. Synthesis of three-dimensional tungsten oxide cactus-shaped nanostructures supported on carbon nanotubes template
JP2002105609A (en) High hydrogen storage alloy and its manufacturing method
KR102359159B1 (en) Method for producing metal nanoparticles by combustion process
JP3988981B2 (en) Method for producing linear expansion control composite material
WO2022100656A1 (en) Method for preparing aluminum-containing alloy powder, application thereof and alloy strip
JP2005324312A (en) Nano structure substance

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101228

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130422

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130709

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130717

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130820

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130827

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130920

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131209

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20140114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140507

R150 Certificate of patent or registration of utility model

Ref document number: 5542672

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees