JP5540318B2 - Low temperature sintering method for silicon carbide powder - Google Patents

Low temperature sintering method for silicon carbide powder Download PDF

Info

Publication number
JP5540318B2
JP5540318B2 JP2010118851A JP2010118851A JP5540318B2 JP 5540318 B2 JP5540318 B2 JP 5540318B2 JP 2010118851 A JP2010118851 A JP 2010118851A JP 2010118851 A JP2010118851 A JP 2010118851A JP 5540318 B2 JP5540318 B2 JP 5540318B2
Authority
JP
Japan
Prior art keywords
sintering
silicon carbide
carbon
carbide powder
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010118851A
Other languages
Japanese (ja)
Other versions
JP2011246295A (en
Inventor
達 鈴木
真康 関本
英彦 田中
義雄 目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2010118851A priority Critical patent/JP5540318B2/en
Publication of JP2011246295A publication Critical patent/JP2011246295A/en
Application granted granted Critical
Publication of JP5540318B2 publication Critical patent/JP5540318B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明はマイクロ波加熱により高密度の炭化ケイ素焼結体を低温で得る方法に関する。   The present invention relates to a method for obtaining a high-density silicon carbide sintered body at a low temperature by microwave heating.

炭化ケイ素(SiC)焼結体は高温構造材料や耐摩耗性材料として多用されている。この焼結体を得るための焼結方法には、再結晶法、反応焼結法、微粉末の液相焼結法と固相焼結法など多くのものがこれまで提案、使用されてきた。   Silicon carbide (SiC) sintered bodies are frequently used as high-temperature structural materials and wear-resistant materials. As a sintering method for obtaining this sintered body, many methods such as a recrystallization method, a reaction sintering method, a liquid phase sintering method and a solid phase sintering method for fine powder have been proposed and used so far. .

近年応用が拡大した半導体製造部品用炭化ケイ素焼結体は、固相反応焼結法によっている。炭化ケイ素粉末の焼結において工業的に利用されている手法は炭化ケイ素粉末に焼結助剤としてホウ素(B)と炭素(C)を加え、2100℃前後で焼結するものである。アルミニウム−B−C系助剤で低温での焼結が可能であることが報告されているが、これは低温で粒界に液相が生成し高温構造材料としての特性を劣化する原因となる。また、焼結温度を低くするためにホットプレスを用いる場合もあるが、部品としての形状付与を行うことが難しい。例えば、非特許文献1は、SiC粉末をマイクロ波で焼結しているが、助剤に液相となる酸化物(マイクロ波を吸収しにくい物質)を使っているため、従来の焼結と同様に1950℃の高温を必要としている。非特許文献2はSiC粉末の固相焼結法を初めて開発した米国GE社のProchazkaの解説であるが、粒界での液相生成を伴うことなく低温焼結を行うことは開示されていない。非特許文献3では、液相焼結を用いてSiC粉末を緻密化しているが、高温での強度が低下する。   In recent years, silicon carbide sintered bodies for semiconductor manufacturing parts, whose applications have been expanded, are based on a solid phase reaction sintering method. An industrially utilized technique for sintering silicon carbide powder is to add boron (B) and carbon (C) as sintering aids to silicon carbide powder and sinter at around 2100 ° C. It has been reported that sintering at a low temperature is possible with an aluminum-B-C auxiliary agent, but this causes a liquid phase to form at the grain boundary at a low temperature, which causes deterioration of properties as a high-temperature structural material. . Moreover, although a hot press may be used to lower the sintering temperature, it is difficult to impart a shape as a part. For example, Non-Patent Document 1 sinters SiC powder with microwaves, but uses an oxide that becomes a liquid phase (a substance that hardly absorbs microwaves) as an auxiliary agent. Similarly, a high temperature of 1950 ° C. is required. Non-Patent Document 2 is a description of Prochazka of US GE Corp., which first developed a solid-phase sintering method for SiC powder, but does not disclose that low-temperature sintering is performed without generating a liquid phase at grain boundaries. . In Non-Patent Document 3, SiC powder is densified using liquid phase sintering, but the strength at high temperature is reduced.

本発明の課題は、上述した従来技術の問題点を解消し、適切に選択された助剤を使用することで、理論密度の89%の密度の炭化ケイ素焼結体を、液相を形成することなく、マイクロ波加熱によって得ることにある。   An object of the present invention is to solve the above-mentioned problems of the prior art and to form a liquid phase from a silicon carbide sintered body having a density of 89% of the theoretical density by using an appropriately selected auxiliary agent. Without being obtained by microwave heating.

本発明の一側面によれば、炭化ケイ素粉末に、炭素源として炭素または炭化することが可能な物質を炭素換算量で1wt%から10wt%、及びホウ素源としてホウ素またはホウ素化合物をホウ素換算量で0.1wt%−5wt%混合した混合物を準備し、前記混合物に対して1750℃以上でマイクロ波焼結を行う、炭化ケイ素粉末の焼結方法が提供される。   According to one aspect of the present invention, a silicon carbide powder contains carbon or a material that can be carbonized as a carbon source in an amount of 1 to 10 wt% in terms of carbon, and boron or a boron compound in terms of boron as a boron source. A silicon carbide powder sintering method is provided, in which a 0.1 wt% -5 wt% mixed mixture is prepared, and microwave sintering is performed on the mixture at 1750 ° C. or higher.

前記炭素または炭化することが可能な物質の比率は炭素換算量で2.5wt%から5wt%であってよい。   The ratio of the carbon or the substance capable of being carbonized may be 2.5 wt% to 5 wt% in terms of carbon.

前記炭素または炭化することが可能な物質の比率は炭素換算量で3wt%から5wt%であるとともに、前記マイクロ波焼結の温度が1700℃以上であってよい。   The ratio of the carbon or material that can be carbonized is 3 wt% to 5 wt% in terms of carbon, and the microwave sintering temperature may be 1700 ° C. or higher.

前記マイクロ波焼結の温度が2500℃以下であってよい。   The temperature of the microwave sintering may be 2500 ° C. or less.

前記炭素源が炭化することが可能な物質であり、前記マイクロ波焼結の前に、真空中で前記混合物を昇温状態に維持してよい。   The carbon source is a substance that can be carbonized, and the mixture may be maintained in a heated state in a vacuum before the microwave sintering.

前記混合物を予め加圧により成型してよい。   You may shape | mold the said mixture previously by pressurization.

本発明によれば、理論密度の89%以上という緻密な炭化ケイ素焼結体を従来よりもはるかに低温で作成することができる。   According to the present invention, a dense silicon carbide sintered body having a theoretical density of 89% or more can be produced at a much lower temperature than in the past.

焼結助剤としての炭素が3wt%になるようにフェノール樹脂を添加して成形体を作製し、マイクロ波焼結機を用いて1800℃で30分保持した焼結体の微構造組織写真(表1の番号5に対応)。A phenolic resin was added so that carbon as a sintering aid would be 3 wt%, and a molded body was prepared, and a microstructure microstructure photograph of the sintered body held at 1800 ° C. for 30 minutes using a microwave sintering machine ( Corresponds to number 5 in Table 1). 焼結助剤としての炭素が4wt%になるようにフェノール樹脂を添加して成形体を作製し、マイクロ波焼結機を用いて1800℃で30分保持した焼結体の微構造組織写真(表1の番号6に対応)。A phenolic resin was added so that carbon as a sintering aid would be 4 wt% to produce a molded body, and a microstructure microstructure photograph of the sintered body held at 1800 ° C. for 30 minutes using a microwave sintering machine ( Corresponds to number 6 in Table 1). 焼結助剤としての炭素が4wt%になるようにフェノール樹脂を添加して成形体を作製し、抵抗加熱炉を用いて1800℃で30分保持した焼結体の微構造組織写真(表1の番号12に対応)。A phenolic resin was added so that carbon as a sintering aid would be 4 wt% to prepare a molded body, and a microstructure microstructure photograph of the sintered body held at 1800 ° C. for 30 minutes using a resistance heating furnace (Table 1). No. 12). 焼結助剤としての炭素が4wt%になるようにフェノール樹脂を添加して成形体を作製し、抵抗加熱炉を用いて2200℃で30分保持した焼結体の微構造組織写真(表1の番号14に対応)。A phenolic resin was added so that the carbon as a sintering aid would be 4 wt%, and a molded body was produced, and a microstructure microstructure photograph of the sintered body held at 2200 ° C. for 30 minutes using a resistance heating furnace (Table 1). No. 14).

本願発明者は、炭素を含む焼結助剤を用い、さらにマイクロ波加熱を行うことで、1700℃〜1950℃という低温で、理論密度に対する密度(相対密度)が89%以上となる炭化ケイ素焼結体が得られることを見出した。もちろんこの焼結方法はこの上限よりも高い焼結温度の場合も使用可能であるが、2500℃以下が好ましい。この温度よりも高温で焼結を行うと、炭化ケイ素の分解の問題が現れるからである。マイクロ波加熱による焼結温度の下限は、更に好ましくは1750℃、更には1800℃である。1700℃よりも低い温度では89%という相対密度は達成できないと考えられる。   The inventor of the present application uses a sintering aid containing carbon and further performs microwave heating, so that the silicon carbide baked at a low temperature of 1700 ° C. to 1950 ° C. has a density (relative density) of 89% or more with respect to the theoretical density. It was found that a knot was obtained. Of course, this sintering method can be used even at a sintering temperature higher than this upper limit, but 2500 ° C. or lower is preferable. This is because if the sintering is performed at a temperature higher than this temperature, a problem of decomposition of silicon carbide appears. The lower limit of the sintering temperature by microwave heating is more preferably 1750 ° C, further 1800 ° C. It is believed that a relative density of 89% cannot be achieved at temperatures below 1700 ° C.

マイクロ波加熱の特徴として、物質内部からの自己発熱と選択加熱があげられる。この発明は、これら二つの特徴を用いている。炭素は炭化ケイ素よりもマイクロ波を吸収しやすい。この場合には、選択加熱されることにより、マイクロ波は炭素に優先的に吸収されて自己発熱する。このことにより、本発明の方法においては、高温が必要となる助剤部分のみが高温になることで焼結が促進される。なお、マイクロ波加熱に使用するマイクロ波の波長は、最も広い意味で使用されている「マイクロ波」の範囲であればよい。具体的には1mから1μmの範囲であればよい。   Features of microwave heating include self-heating from the inside of the substance and selective heating. The present invention uses these two features. Carbon is easier to absorb microwaves than silicon carbide. In this case, by selective heating, the microwave is preferentially absorbed by carbon and self-heats. As a result, in the method of the present invention, only the auxiliary part that requires a high temperature is heated to promote the sintering. The wavelength of the microwave used for microwave heating may be in the range of “microwave” used in the broadest sense. Specifically, it may be in the range of 1 m to 1 μm.

助剤および発熱体として作用する炭素の添加方法は、炭素を添加してもよいし、あるいは炭化することが可能な化合物として添加してもよい。炭素添加量としては、炭素換算量で1wt%から10wt%とすることが好ましいが、2.5wtから5wt%の範囲が一層有効である。更には、特に3wt%から5wt%が一層有効である。ホウ素(B)の添加に関しては、BまたはB化合物の形態で加える。その添加量は、Bに換算して0.1wt%−5wt%とする。   As a method of adding carbon acting as an auxiliary agent and a heating element, carbon may be added or a compound capable of carbonization may be added. The amount of carbon added is preferably 1 wt% to 10 wt% in terms of carbon, but a range of 2.5 wt% to 5 wt% is more effective. Furthermore, 3 wt% to 5 wt% is particularly effective. Regarding the addition of boron (B), it is added in the form of B or B compound. The amount of addition is 0.1 wt% -5 wt% in terms of B.

焼結の低温化のために助剤を添加する場合には、低い温度で液相となることで低温焼結が促進された。しかし、このことは他方では高温における粒界相の軟化などの原因となり、上述のように、高温での強度などの機械特性の劣化を引き起こすこととなる。   When an auxiliary agent is added to lower the sintering temperature, the low temperature sintering is promoted by becoming a liquid phase at a low temperature. However, this, on the other hand, causes a softening of the grain boundary phase at a high temperature and causes deterioration of mechanical properties such as strength at a high temperature as described above.

それに対して、マイクロ波を用いた場合には、焼結助剤である炭素がある粒界付近のみが非常に局所的な範囲で高温状態となるが、焼結体全体は比較的低温のままである。従って、焼結体の温度をあまり上昇させない場合に従来技術で必要とされたところの、低い温度で液相となる助剤を必要としない。これにより、高温での焼結体の機械特性の劣化を防ぐことができる。   On the other hand, when microwaves are used, only the vicinity of the grain boundary where carbon, which is a sintering aid, is present, is in a very local range, but the entire sintered body remains at a relatively low temperature. It is. Therefore, an auxiliary agent that becomes a liquid phase at a low temperature, which is required in the prior art when the temperature of the sintered body is not increased so much, is not required. Thereby, deterioration of the mechanical properties of the sintered body at a high temperature can be prevented.

また、本発明の方法によれば、組織粒内部は、焼結中期間中、比較的低温となっているので、粒成長しにくい。そのため、出来上がった焼結体を、異常粒成長が抑えられた微細組織粒とすることが出来る。   Further, according to the method of the present invention, the inside of the textured grains is relatively low temperature during the sintering, so that the grain growth is difficult. Therefore, the finished sintered body can be made into fine textured grains in which abnormal grain growth is suppressed.

更には、マイクロ波は被加熱物にだけ吸収され、雰囲気などの温度を上昇させない物質の自己発熱であるため、本来的に、通常の抵抗炉のような外部加熱に比べて効率の良い加熱手法である。本発明では、高温が必要となる粒子表面の焼結助剤自身を集中して発熱させるため、一層省エネルギーとなる。   Furthermore, since microwaves are absorbed only by the object to be heated and are self-heating of substances that do not raise the temperature such as the atmosphere, they are inherently more efficient heating methods than external heating such as ordinary resistance furnaces. It is. In the present invention, the sintering aid itself on the particle surface, which requires a high temperature, is concentrated and generates heat, thus further saving energy.

なお、上述したように、本発明では助剤がマイクロ波を優先的に吸収することで選択加熱されることを利用している。従って、炭化ケイ素よりもマイクロ波を吸収しやすい物質であれば、炭素以外の助剤を用いて同様に低温での焼結を行うことが可能となる。   As described above, the present invention utilizes the fact that the auxiliary agent is selectively heated by preferentially absorbing microwaves. Therefore, if it is a substance that absorbs microwaves more easily than silicon carbide, it becomes possible to similarly perform sintering at a low temperature using an auxiliary agent other than carbon.

平均粒径0.45μmの炭化ケイ素粉末に、平均粒径0.8μmのホウ素粉末と、炭素供給源としてフェノール樹脂を添加し、エタノールを溶媒として遊星型ボールミルを用いて8時間混合した。それぞれが重量百分率で95.7:0.3:4となるように秤量した。これを乾燥させて150meshのふるいにかけた粉末を1軸加圧(10MPa)で成形し、その後に392MPaにて冷間静水圧プレスをした。この成形体を28GHzのマイクロ波によって加熱した。はじめにフェノール樹脂を炭化させるため1500℃までは真空中にて加熱しながら30分保持し、その後にArガスを導入し1800℃の焼結温度まで昇温して30分保持した。いずれも昇温速度は30℃/minとした。この焼結体の密度は理論密度に対して97%となり、組織粒の平均粒径が数μmとなった。   Boron powder with an average particle diameter of 0.8 μm and a phenol resin as a carbon source were added to silicon carbide powder with an average particle diameter of 0.45 μm, and mixed for 8 hours using a planetary ball mill with ethanol as a solvent. Each was weighed so that the weight percentage would be 95.7: 0.3: 4. The dried powder was passed through a 150 mesh sieve and molded by uniaxial pressing (10 MPa), followed by cold isostatic pressing at 392 MPa. The molded body was heated by a 28 GHz microwave. First, in order to carbonize the phenol resin, the temperature was maintained at 1500 ° C. for 30 minutes while heating in a vacuum, and then Ar gas was introduced to raise the temperature to a sintering temperature of 1800 ° C. and maintained for 30 minutes. In all cases, the temperature rising rate was 30 ° C./min. The density of the sintered body was 97% of the theoretical density, and the average grain size of the textured grains was several μm.

比較として炭素抵抗加熱炉にて、同じ条件(1500℃までは真空中にて加熱し30分保持、その後にArガスを導入し1800℃の焼結温度まで昇温、30分保持)で焼結した試料では、理論密度78%となり、緻密化することは出来なかった。   For comparison, sintering in a carbon resistance heating furnace under the same conditions (up to 1500 ° C in a vacuum and hold for 30 minutes, then introduce Ar gas, raise the temperature to 1800 ° C and hold for 30 minutes) The sample thus obtained had a theoretical density of 78% and could not be densified.

表1に実験条件を変化させて行った本発明の実施例と比較例を示す。   Table 1 shows an example of the present invention and a comparative example performed by changing the experimental conditions.

表1からわかるように、1700℃という従来に比べて大幅に低い焼結温度でも、炭素成分の組成比を調節することによって89%以上という高い相対密度を実現できた。更に、焼結温度をわずかに上げて1800℃とするだけで、炭素成分の組成比を2.5wt%まで下げても94%以上という更に緻密な焼結体を得ることができた。   As can be seen from Table 1, a high relative density of 89% or more could be realized by adjusting the composition ratio of the carbon component even at a sintering temperature of 1700 ° C., which is significantly lower than the conventional sintering temperature. Furthermore, by only raising the sintering temperature to 1800 ° C., a denser sintered body of 94% or more could be obtained even if the composition ratio of the carbon component was lowered to 2.5 wt%.

図1は表の番号5に対応する焼結体の写真である。この写真からわかるように、この条件で作成した焼結体は緻密化されていることが確認できる。更には、組織粒は等軸粒となっており、破壊の起点となる異常粒成長している組織粒がない。   FIG. 1 is a photograph of a sintered body corresponding to number 5 in the table. As can be seen from this photograph, it can be confirmed that the sintered body produced under these conditions is densified. Furthermore, the texture grains are equiaxed grains, and there are no texture grains in which abnormal grains have grown as a starting point of fracture.

図2は表の番号6に対応する焼結体の写真である。この場合も、焼結体は緻密化されていることが確認できる。また、組織粒は等軸粒となっており、破壊の起点となる異常粒成長している組織粒がない。   FIG. 2 is a photograph of the sintered body corresponding to number 6 in the table. Also in this case, it can be confirmed that the sintered body is densified. In addition, the texture grains are equiaxed grains, and there are no texture grains in which abnormal grains have grown as a starting point of fracture.

これに対して、常圧焼結した番号7以降は、いずれも相対密度が57%〜77.8%と、本発明により作成された焼結体の相対密度にはるかに及ばない。   On the other hand, the numbers 7 and after that were sintered under normal pressure, the relative density of 57% to 77.8%, which is far below the relative density of the sintered body produced according to the present invention.

図3は表の番号12に対応する比較例の焼結体の写真である。この写真には、このようにして作成された焼結体には穴が多く緻密化されていないことが明確に示されている。   FIG. 3 is a photograph of a comparative sintered body corresponding to number 12 in the table. This photograph clearly shows that the sintered body thus produced has many holes and is not densified.

図4は表の番号14に対応する比較例の焼結体の写真である。この写真には、2200℃という高温での緻密化では、組織粒が異方的に異常粒成長しており、破壊の起点となりやすい組織粒が多くなっていることが示されている。   FIG. 4 is a photograph of a sintered body of a comparative example corresponding to number 14 in the table. In this photograph, it is shown that, when densification is performed at a high temperature of 2200 ° C., the texture grains are anisotropically grown abnormally, and the number of texture grains that are likely to be the starting point of fracture increases.

本発明によれば、低温で高密度であるとともに、破壊の起点となる異常粒成長が抑制された高品質の炭化ケイ素焼結体を、低温かつ低消費エネルギーで得ることができるため、本発明は、このような炭化ケイ素焼結体を必要とする応用分野へ供給される炭化ケイ素焼結体の焼結方法として広く利用されることが期待される。   According to the present invention, it is possible to obtain a high-quality silicon carbide sintered body at a low temperature and with low energy consumption, which has a high density at a low temperature and has suppressed abnormal grain growth that is a starting point of fracture. Is expected to be widely used as a method for sintering a silicon carbide sintered body supplied to an application field that requires such a silicon carbide sintered body.

J. Euro. Cera., 22 (2002) 1891-1896J. Euro. Cera., 22 (2002) 1891-1896 Bull. Amer. Ceram. Soc., 52号885-891 1973年Bull. Amer. Ceram. Soc., 52, 885-891 1973 J. Mater. Sci., 35 (2000) 3849-3855J. Mater. Sci., 35 (2000) 3849-3855

Claims (6)

炭化ケイ素粉末に、炭素源としてフェノール樹脂を炭素換算量で4wt%から10wt%、及びホウ素源としてホウ素またはホウ素化合物をホウ素換算量で0.1wt%−5wt%混合した混合物を準備し、
前記混合物に対して1700℃以上でマイクロ波焼結を行う、
炭化ケイ素粉末の焼結方法。
A mixture prepared by mixing silicon carbide powder with phenol resin as a carbon source in an amount of 4 to 10 wt% in terms of carbon, and boron or a boron compound as a boron source in an amount of 0.1 wt% to 5 wt% in terms of boron,
Microwave sintering is performed on the mixture at 1700 ° C. or higher.
A method for sintering silicon carbide powder.
前記フェノール樹脂の比率が炭素換算量で4wt%から5wt%である、請求項1に記載の炭化ケイ素粉末の焼結方法。 The method for sintering silicon carbide powder according to claim 1, wherein a ratio of the phenol resin is 4 wt% to 5 wt% in terms of carbon. 前記炭素または炭化することが可能な物質の比率が炭素換算量で3wt%から5wt%である、請求項1に記載の炭化ケイ素粉末の焼結方法。   The method for sintering silicon carbide powder according to claim 1, wherein a ratio of the carbon or a substance that can be carbonized is 3 wt% to 5 wt% in terms of carbon. 前記マイクロ波焼結の温度が2500℃以下である、請求項1から3の何れかに記載の炭化ケイ素粉末焼結方法。   The silicon carbide powder sintering method according to claim 1, wherein a temperature of the microwave sintering is 2500 ° C. or less. 前記炭素源が炭化することが可能な物質であり、
前記マイクロ波焼結の前に、真空中で前記混合物を昇温された状態に維持する
請求項1から4の何れかに記載の炭化ケイ素粉末の焼結方法。
The carbon source is a substance that can be carbonized,
Wherein prior to the microwave sintering, the sintering process of the silicon carbide powder according to any one of claims 1 to 4 for maintaining the state of being heated the mixture in vacuo.
前記混合物を予め加圧により整形する、請求項1から5の何れかに記載の炭化ケイ素粉末の焼結方法。

The method for sintering silicon carbide powder according to any one of claims 1 to 5, wherein the mixture is shaped by pressurization in advance.

JP2010118851A 2010-05-24 2010-05-24 Low temperature sintering method for silicon carbide powder Expired - Fee Related JP5540318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010118851A JP5540318B2 (en) 2010-05-24 2010-05-24 Low temperature sintering method for silicon carbide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010118851A JP5540318B2 (en) 2010-05-24 2010-05-24 Low temperature sintering method for silicon carbide powder

Publications (2)

Publication Number Publication Date
JP2011246295A JP2011246295A (en) 2011-12-08
JP5540318B2 true JP5540318B2 (en) 2014-07-02

Family

ID=45412051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010118851A Expired - Fee Related JP5540318B2 (en) 2010-05-24 2010-05-24 Low temperature sintering method for silicon carbide powder

Country Status (1)

Country Link
JP (1) JP5540318B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6329462B2 (en) * 2014-08-11 2018-05-23 イビデン株式会社 Manufacturing method of ceramic structure
CN114907131A (en) * 2022-04-26 2022-08-16 湖南航天诚远精密机械有限公司 Microwave sintering method of silicon carbide prefabricated part
CN115231925A (en) * 2022-07-20 2022-10-25 洛阳理工学院 Method for preparing calcium hexaluminate combined silicon carbide ceramic by microwave

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62113764A (en) * 1985-11-14 1987-05-25 三菱電機株式会社 Manufacture of high heat conductivity silicon carbide sintered body
US5321223A (en) * 1991-10-23 1994-06-14 Martin Marietta Energy Systems, Inc. Method of sintering materials with microwave radiation
JP3792283B2 (en) * 1995-10-30 2006-07-05 京セラ株式会社 Manufacturing method of ceramic substrate
JP4988252B2 (en) * 2006-06-05 2012-08-01 株式会社エフ・シー・シー Method for producing sintered metal carbide
JP4802178B2 (en) * 2007-12-03 2011-10-26 新日本製鐵株式会社 Microwave heat treatment method for Al or / and Al-Mg alloy-added MgO-C brick

Also Published As

Publication number Publication date
JP2011246295A (en) 2011-12-08

Similar Documents

Publication Publication Date Title
JP6182082B2 (en) Dense composite material, manufacturing method thereof, and member for semiconductor manufacturing equipment
Zhu et al. Microwave sintering of a ZrB2–B4C particulate ceramic composite
JP4734674B2 (en) Low CTE isotropic graphite
JP5444384B2 (en) High thermal conductivity aluminum nitride sintered body
KR101160140B1 (en) Manufacturing method of zirconium diboride-silicon carbide composite
CN106904977B (en) Preparation of surface hard and core tough Si by two-step sintering method3N4Method for producing ceramic material
JP2005330178A (en) High thermoconductivity high strength silicon nitride ceramic and manufacturing method therefor
CN110304923B (en) Preparation method of boron carbide-based ceramic composite material based on particle grading
CN111410536A (en) Method for preparing compact (HfZrTaNbTi) C high-entropy ceramic sintered body by normal-pressure sintering
CN101734923A (en) Aluminum nitride porous ceramic and preparation method thereof
CN104045349B (en) A kind of nano aluminium oxide strengthens aluminum oxynitride ceramic and preparation method thereof
JP5540318B2 (en) Low temperature sintering method for silicon carbide powder
CN113416076A (en) Preparation method of self-reinforced silicon carbide ceramic material
CN101734920B (en) Titanium nitride porous ceramics and preparation method thereof
Yu et al. Densifying (Hf0. 2Zr0. 2Ta0. 2Nb0. 2Ti0. 2) C high‐entropy ceramics by two‐step pressureless sintering
KR100917038B1 (en) Ceramic compositions for sintered silicon carbide body, sintered body and its preparing method
KR20190048811A (en) Method for manufacturing silicon carbide dense bodies having excellent thermal conductivity and thermal durability
JP3607939B2 (en) Reaction synthesis of silicon carbide-boron nitride composites
CN110446693B (en) SiC sintered body, heater, and method for producing SiC sintered body
JP5189712B2 (en) AlN substrate and manufacturing method thereof
CN104591769A (en) Al/Mg/B toughened and strengthened ceramic and preparation method thereof
KR101972350B1 (en) A ZrC Composites and A Manufacturing method of the same
CN109467442B (en) Silicon nitride ceramic and preparation method thereof
CN108892528B (en) Porous silicon nitride ceramic material and preparation method thereof
KR101659823B1 (en) A HfC Composites and A Manufacturing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140409

R150 Certificate of patent or registration of utility model

Ref document number: 5540318

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees