JP5538458B2 - Steam supply plant and solar heat insulation device - Google Patents

Steam supply plant and solar heat insulation device Download PDF

Info

Publication number
JP5538458B2
JP5538458B2 JP2012056616A JP2012056616A JP5538458B2 JP 5538458 B2 JP5538458 B2 JP 5538458B2 JP 2012056616 A JP2012056616 A JP 2012056616A JP 2012056616 A JP2012056616 A JP 2012056616A JP 5538458 B2 JP5538458 B2 JP 5538458B2
Authority
JP
Japan
Prior art keywords
steam
heat
boiler
pipe
supply plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012056616A
Other languages
Japanese (ja)
Other versions
JP2013190156A (en
Inventor
幸徳 片桐
尚之 永渕
良和 石井
俊明 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2012056616A priority Critical patent/JP5538458B2/en
Publication of JP2013190156A publication Critical patent/JP2013190156A/en
Application granted granted Critical
Publication of JP5538458B2 publication Critical patent/JP5538458B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、ボイラ等で発生した蒸気を圧送する蒸気配管の保温装置を備えた蒸気供給プラントに関する。   The present invention relates to a steam supply plant provided with a heat retaining device for a steam pipe that pumps steam generated in a boiler or the like.

ガスタービン、ガスエンジン等内燃機関の回転運動エネルギーから電力を得るとともに、前記機関の排気ガスから熱エネルギーを回収し蒸気あるいは温水を得るシステムとして熱電併給システム(コジェネレーションシステム、コジェネシステム)が提案されている。   A combined heat and power system (cogeneration system, cogeneration system) has been proposed as a system that obtains electric power from the rotational kinetic energy of internal combustion engines such as gas turbines and gas engines, and collects thermal energy from the exhaust gas of the engines to obtain steam or hot water. ing.

コジェネシステムは、従来の発電システムでは電力エネルギーに変換困難な低位の熱エネルギーを高温・高圧の蒸気や温水として回収、直接利用することでシステム全体のエネルギー効率の向上を図ることから、電力に加え蒸気や温水を必要とする施設・地域への導入に適する。高温・高圧の蒸気を得る手段としては排熱回収ボイラが有効である。排熱回収ボイラで得られた蒸気は、蒸気配管を通じて遠地の蒸気消費設備(例えば蒸気を必要とする工場、冷暖房用の住宅等)へと供給可能となる。   The cogeneration system collects and directly uses low-temperature heat energy, which is difficult to convert into electric energy with conventional power generation systems, as high-temperature and high-pressure steam and hot water, and improves the overall energy efficiency of the system. Suitable for introduction to facilities and areas that require steam and hot water. An exhaust heat recovery boiler is effective as a means for obtaining high-temperature and high-pressure steam. The steam obtained by the exhaust heat recovery boiler can be supplied to a steam consuming facility (for example, a factory that requires steam, a house for air conditioning or the like) through a steam pipe.

蒸気配管を通じての蒸気の圧送に際しては、排熱回収ボイラから蒸気消費設備までの熱損失(蒸気温度低下)を低減する手段として蒸気配管への断熱材の被覆、電熱線による配管保温、配管の加熱源に蒸気を用いた配管保温などが存在する。一例として特許文献1には、蒸気を用いて燃料配管等を加温するスチームトレース装置に関し、配管の温度低下に応じて加熱源である蒸気流量を制御する技術が開示されている。   When pumping steam through the steam pipe, as a means to reduce heat loss (steam temperature drop) from the exhaust heat recovery boiler to the steam consuming equipment, cover the steam pipe with insulation, heat insulation of the pipe with heating wires, and pipe heating There is pipe insulation using steam as a source. As an example, Patent Literature 1 relates to a steam trace device that uses steam to heat a fuel pipe or the like, and discloses a technique for controlling a steam flow rate that is a heating source in accordance with a temperature drop of the pipe.

特開2006−46476号公報JP 2006-46476 A

しかしながら、特許文献1に記載のスチームトレース装置は、加熱源としてボイラの発生蒸気を必要とする。また、電熱線による保温方式は熱を発生させるための電力が必要となる。なお、断熱材のみで蒸気配管を被覆する方式では、特にボイラから蒸気消費設備までの距離が長い場合、熱損失の低減効果は限定的となる。   However, the steam tracing device described in Patent Literature 1 requires boiler generated steam as a heating source. Moreover, the heat retention method using a heating wire requires electric power for generating heat. In addition, in the system which coat | covers steam piping only with a heat insulating material, especially when the distance from a boiler to steam consumption equipment is long, the reduction effect of a heat loss becomes limited.

本発明の目的は、蒸気配管を保温するための熱源としてボイラの蒸気や電力を用いなくとも、蒸気配管の熱損失を抑制することができる蒸気供給プラントを提供することにある。   The objective of this invention is providing the steam supply plant which can suppress the heat loss of steam piping, without using the steam and electric power of a boiler as a heat source for heat-retaining a steam piping.

上記目的を解決するために、本発明の蒸気供給プラントは、蒸気を発生させるボイラと、該ボイラの発生蒸気を蒸気消費設備に供給する蒸気配管を備えた蒸気供給プラントにおいて、太陽熱を集熱して媒体を加熱する集熱器と、該集熱器で加熱された媒体を用いて前記蒸気配管を保温或いは加熱するヒータと、該ヒータを経由した媒体を前記集熱器に還流させる循環ポンプとを有する太陽熱配管保温装置を備え、前記ヒータは、複数の電熱管と、該複数の電熱管の各々と接続されたフレキシブルパイプとを有し、前記フレキシブルパイプを前記蒸気配管の周方向に巻きつけることで着脱可能としたことを特徴とする。 In order to solve the above-described object, a steam supply plant of the present invention collects solar heat in a steam supply plant including a boiler that generates steam and a steam pipe that supplies steam generated by the boiler to steam consuming equipment. A heat collector that heats the medium, a heater that retains or heats the steam pipe using the medium heated by the heat collector, and a circulation pump that recirculates the medium via the heater to the heat collector. The heater has a plurality of electric heating tubes and a flexible pipe connected to each of the plurality of electric heating tubes, and the flexible pipe is wound around in the circumferential direction of the steam piping. It is characterized by being removable .

本発明によれば、蒸気配管の保温の熱源としてボイラの蒸気や電力を用いなくとも、蒸気配管の熱損失を抑制した蒸気供給プラントを提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the steam supply plant which suppressed the heat loss of steam piping can be provided, without using the steam and electric power of a boiler as a heat source of the heat insulation of steam piping.

本発明の一実施例である太陽熱配管保温装置のシステムフロー図。The system flow figure of the solar thermal pipe heat retention apparatus which is one Example of this invention. 本発明の一実施例である太陽熱配管保温装置のヒータ構造図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a heater structure diagram of a solar heat pipe heat retention device according to an embodiment of the present invention. 本実施例の太陽熱配管保温装置による蒸気配管温度特性。Steam pipe temperature characteristics by the solar heat pipe heat insulating device of this example. 本実施例の太陽熱配管保温装置による蒸気配管圧力特性。The steam pipe pressure characteristic by the solar heat pipe heat insulation apparatus of a present Example.

図1を用いて本発明の実施例を説明する。なお、本実施例ではガスタービンと排熱回収ボイラによるコジェネレーションシステム(以下、コジェネシステム)を例に用いて説明する。図1は、太陽熱配管保温装置を用いたコジェネシステムの全体系統図である。   An embodiment of the present invention will be described with reference to FIG. In this embodiment, a cogeneration system (hereinafter referred to as a cogeneration system) using a gas turbine and an exhaust heat recovery boiler will be described as an example. FIG. 1 is an overall system diagram of a cogeneration system using a solar heat pipe heat insulating device.

本実施例では、ガスタービン1(内燃機関)、ボイラ2(排熱回収ボイラ)、蒸気配管3、圧力調整弁4及び蒸気消費設備9により構成されるコジェネシステムに、太陽熱配管保温装置5、太陽熱配管保温装置制御手段10及びボイラ制御手段11を含む太陽熱配管保温システムを備えている。   In this embodiment, a solar heat pipe heat retaining device 5, solar heat is added to a cogeneration system including a gas turbine 1 (internal combustion engine), a boiler 2 (exhaust heat recovery boiler), a steam pipe 3, a pressure regulating valve 4 and a steam consuming equipment 9. A solar heat pipe heat retaining system including a pipe heat retaining device control means 10 and a boiler control means 11 is provided.

ガスタービン1は、燃料を空気とともに燃焼した燃焼ガスのエネルギーにてタービンを駆動し、この駆動力を回転力エネルギーとして発電するとともに、タービン駆動後の燃焼ガスを排気ガスとしてボイラ2に送る。ボイラ2は、排気ガスの熱エネルギーによって給水を沸騰・蒸発させ蒸気を発生させる。また、この蒸気を蒸気配管3を通じて蒸気消費設備9へと圧送する。蒸気の圧力は、ボイラ2出口に設置した圧力調整弁4にて調整する。   The gas turbine 1 drives the turbine with the energy of combustion gas obtained by combusting fuel together with air, generates power using this driving force as rotational energy, and sends the combustion gas after driving the turbine to the boiler 2 as exhaust gas. The boiler 2 generates steam by boiling and evaporating the feed water with the heat energy of the exhaust gas. Further, the steam is pumped to the steam consuming equipment 9 through the steam pipe 3. The pressure of the steam is adjusted by a pressure regulating valve 4 installed at the boiler 2 outlet.

かかるコジェネシステムに対し、本実施例の太陽熱配管保温装置5は、集熱器6、ヒータ7、循環ポンプ8から構成される。また太陽熱配管保温装置の制御システムとして、蒸気消費設備入口蒸気温度計測手段16、蒸気消費設備入口蒸気圧力計測手段14、太陽高度測定器20、ボイラ蒸気圧力計測手段12、太陽熱配管保温装置制御手段10、ボイラ制御手段11、を備える。   For such a cogeneration system, the solar heat pipe heat insulating device 5 of the present embodiment includes a heat collector 6, a heater 7, and a circulation pump 8. Further, as a control system for the solar heat pipe heat insulation device, steam consumption facility inlet steam temperature measurement means 16, steam consumption facility inlet steam pressure measurement means 14, solar altitude measuring device 20, boiler steam pressure measurement means 12, solar heat pipe heat insulation device control means 10 The boiler control means 11 is provided.

前記集熱器6は、太陽の熱エネルギーを曲面鏡を用いて鏡の前に設置した配管に太陽光を集め、配管内を流れる媒体を加熱するものである。曲面鏡は東西方向に配管が位置するよう配置し、ギア、モータなどにより鏡の角度を変えることで配管への集熱量を調整できる。なお、配管内が水の沸点以上となることを想定し、引火点の高い油を用いる。   The heat collector 6 collects sunlight from solar heat energy into a pipe installed in front of the mirror using a curved mirror, and heats a medium flowing in the pipe. The curved mirror is arranged so that the pipe is located in the east-west direction, and the amount of heat collected in the pipe can be adjusted by changing the angle of the mirror with a gear, a motor, or the like. In addition, assuming that the inside of the pipe is equal to or higher than the boiling point of water, oil having a high flash point is used.

ヒータ7は、前記集熱器6にて得られた高温の媒体を用いて、蒸気配管3を加温する装置である。ヒータ7の構造例を図2に示す。ヒータを配管に着脱可能とするため、ヒータを複数かつ小口径の伝熱管22及び曲げることが可能なフレキシブルパイプ23で構成し、結束ベルト等を用いて図中矢印Kの方向(周方向)に蒸気配管に巻きつける構造とする。冷媒は図中Xより投入し、フレキシブルパイプ23を伝熱管22及びもう一つのフレキシブルパイプ24を経てYより抜き出す。Yより抜き出した冷媒は、循環ポンプに還流する。さらに、配管内を流れる媒体の熱エネルギーの大気へと放熱を防止するため、伝熱管22を被覆して断熱材を巻きつける構造としてもよい。なお、図中矢印にて示すとおり蒸気配管3の蒸気流れ方向Aと、伝熱管22の媒体流れ方向Bは対向するよう構成し、蒸気と媒体との温度差を確保して蒸気から媒体への熱伝導を促進する。   The heater 7 is a device that heats the steam pipe 3 using the high-temperature medium obtained by the heat collector 6. An example of the structure of the heater 7 is shown in FIG. In order to make the heater attachable to and detachable from the pipe, the heater is composed of a plurality of small-diameter heat transfer tubes 22 and a flexible pipe 23 that can be bent, and a binding belt or the like is used in the direction of arrow K (circumferential direction) in the figure. The structure shall be wound around the steam pipe. The refrigerant is introduced from X in the figure, and the flexible pipe 23 is extracted from Y through the heat transfer tube 22 and another flexible pipe 24. The refrigerant extracted from Y returns to the circulation pump. Furthermore, in order to prevent the heat energy of the medium flowing in the pipe from being released into the atmosphere, the heat transfer tube 22 may be covered and a heat insulating material may be wound around. In addition, as shown by the arrow in the figure, the steam flow direction A of the steam pipe 3 and the medium flow direction B of the heat transfer tube 22 are configured to face each other, ensuring a temperature difference between the steam and the medium, from the steam to the medium. Promotes heat conduction.

再び図1にて本発明の実施例を説明する。
ヒータ7からの媒体は、循環ポンプ8を経て集熱器6へと再び流れ込む構成となる。なお、本図ではヒータからの媒体を直接循環ポンプへと供給する構成としたが、ヒータからの媒体を油タンクなどに貯留し、循環ポンプがタンク内の油を抜き出す構成としても良い。
The embodiment of the present invention will be described with reference again to FIG.
The medium from the heater 7 is configured to flow again into the heat collector 6 through the circulation pump 8. In this figure, the medium from the heater is directly supplied to the circulation pump. However, the medium from the heater may be stored in an oil tank or the like, and the circulation pump may extract the oil in the tank.

以上に述べた太陽熱配管保温装置5の制御システムについて述べる。
制御システムは、太陽熱配管保温装置制御手段10、太陽高度測定器20、蒸気消費設備入口蒸気圧力計測手段14、蒸気消費設備入口蒸気温度計測手段16、ボイラ制御手段11及びボイラ蒸気圧力計測手段12を備える。
The control system of the solar heat pipe heat insulating device 5 described above will be described.
The control system includes a solar heat pipe heat retaining device control means 10, a solar altitude measuring device 20, a steam consumption facility inlet steam pressure measurement means 14, a steam consumption facility inlet steam temperature measurement means 16, a boiler control means 11 and a boiler steam pressure measurement means 12. Prepare.

太陽熱配管保温装置制御手段10は、蒸気消費設備入口蒸気温度計測手段16より蒸気消費設備入口蒸気温度17を、太陽高度測定器20より太陽高度21を入力し、制御指令として集熱器6に対し集熱器角度指令18を出力する。すなわち、太陽熱配管保温装置制御手段10において蒸気消費設備入口蒸気温度計測手段16が目標設定温度よりも低い場合、集熱器の仰角が太陽高度に追従するよう集熱器角度指令18を計算する。また、蒸気消費設備入口蒸気温度計測手段16が目標設定温度よりも高い場合、集熱器の仰角が太陽高度に対して小さく(水平方向と)なるよう集熱器角度指令18を計算する。   The solar heat pipe heat retaining device control means 10 inputs the steam consumption facility inlet steam temperature 17 from the steam consumption facility inlet steam temperature measurement means 16 and the solar altitude 21 from the solar altitude measuring device 20, and controls the heat collector 6 as a control command. The collector angle command 18 is output. That is, when the steam consumption facility inlet steam temperature measuring means 16 is lower than the target set temperature in the solar heat pipe heat retaining device control means 10, the heat collector angle command 18 is calculated so that the elevation angle of the heat collector follows the solar altitude. Further, when the steam consumption facility inlet steam temperature measuring means 16 is higher than the target set temperature, the collector angle command 18 is calculated so that the elevation angle of the collector is smaller than the solar altitude (horizontal direction).

なお、太陽熱配管保温装置5と蒸気消費設備9の距離が離れている場合には、蒸気消費設備入口蒸気温度計測手段16からの計測信号を無線にて太陽熱配管保温装置制御手段10へと送信する構成としても良い。   In addition, when the distance of the solar heat pipe heat insulation apparatus 5 and the steam consumption equipment 9 is separated, the measurement signal from the steam consumption equipment entrance steam temperature measurement means 16 is wirelessly transmitted to the solar heat pipe heat insulation apparatus control means 10. It is good also as a structure.

次に、ボイラ制御手段11は、蒸気消費設備入口蒸気圧力計測手段14より蒸気消費設備入口蒸気圧力15を、ボイラ蒸気圧力計測手段12よりボイラ蒸気圧力13を入力し、制御指令として圧力調整弁4に対し圧力調整弁開度指令19を出力する。具体的には、ボイラ制御手段11において蒸気消費設備入口蒸気圧力15と蒸気消費設備入口蒸気圧力15の目標値との差を求め、この差とボイラ蒸気圧力13の目標圧力を加算してあらたなボイラ蒸気圧力制御目標修正値を得る。さらにボイラ蒸気圧力13が前記ボイラ蒸気圧力制御目標修正値に一致するよう、圧力調整弁4を計算する。なお、本制御は蒸気消費設備9における蒸気消費量の変動、ガスタービン1におけるタービン出力の変動に伴う蒸気圧力の変動を制御するとともに、ボイラから蒸気消費設備までの蒸気圧力損失を、ボイラ出口蒸気圧力を高めに維持することにより蒸気の質を維持し、配管途中での圧力低下によるドレンの発生を防止する。   Next, the boiler control means 11 inputs the steam consumption facility inlet steam pressure 15 from the steam consumption facility inlet steam pressure measurement means 14 and the boiler steam pressure 13 from the boiler steam pressure measurement means 12, and the pressure regulating valve 4 as a control command. In response to this, a pressure adjustment valve opening command 19 is output. More specifically, the difference between the steam consumption facility inlet steam pressure 15 and the steam consumption facility inlet steam pressure 15 is obtained in the boiler control means 11, and this difference is added to the boiler steam pressure 13 target pressure. A boiler steam pressure control target correction value is obtained. Further, the pressure regulating valve 4 is calculated so that the boiler steam pressure 13 matches the boiler steam pressure control target correction value. In addition, this control controls the fluctuation | variation of the steam consumption in the steam consumption equipment 9, and the fluctuation | variation of the steam pressure accompanying the fluctuation | variation of the turbine output in the gas turbine 1, and the steam pressure loss from a boiler to a steam consumption equipment is used as a boiler exit steam. By maintaining the pressure at a high level, the quality of the steam is maintained, and the generation of drain due to the pressure drop in the middle of the piping is prevented.

以上に述べた太陽熱配管保温装置5の運転結果を図3及び図4に示す。
図3は、太陽熱配管保温装置5を2基、蒸気配管途中に設置して配管保温した場合の蒸気配管内蒸気温度の概略図である。
The operation results of the solar heat pipe heat insulating device 5 described above are shown in FIGS.
FIG. 3 is a schematic diagram of the steam temperature in the steam pipe when two solar heat pipe heat retaining devices 5 are installed in the middle of the steam pipe to keep the pipe warm.

図中横軸は配管長を表し、配管長0をボイラ出口、配管長Lを蒸気消費設備入口と仮定する。また、H1、H2の2地点にそれぞれ太陽熱配管保温装置を設置している。   In the figure, the horizontal axis represents the pipe length, and it is assumed that the pipe length 0 is the boiler outlet and the pipe length L is the steam consumption facility inlet. Moreover, the solar heat piping heat retention apparatus is each installed in two points, H1 and H2.

一方、図中縦軸は蒸気配管内の蒸気温度を表す。ボイラ出口における蒸気温度がT0であった場合、本発明の太陽熱配管保温装置5を適用しない場合においては、蒸気配管の距離に応じて蒸気温度は低下する。図では蒸気消費設備入口においてはTまで温度が低下したことを示している。 On the other hand, the vertical axis in the figure represents the steam temperature in the steam pipe. When the steam temperature at the boiler outlet is T 0 , the steam temperature is lowered according to the distance of the steam pipe when the solar heat pipe heat retaining device 5 of the present invention is not applied. The figure shows that the temperature has dropped to T at the steam consumption facility entrance.

これに対し、本実施例の太陽熱配管保温装置5を適用した場合には、図中H1、H2の地点において太陽熱による蒸気加温を実施することにより、蒸気温度がそれぞれの地点で上昇し、蒸気消費設備入口における蒸気温度はT′と、ボイラ出口における蒸気温度T0から温度低下することなく蒸気を圧送することが可能となる。 On the other hand, when the solar heat pipe heat insulating device 5 of the present embodiment is applied, the steam temperature rises at each point by performing steam heating by solar heat at the points H1 and H2 in the figure. The steam temperature at the consumption facility inlet is T ′, and the steam can be pumped without a temperature drop from the steam temperature T 0 at the boiler outlet.

図4は、図3と同条件下における蒸気配管内蒸気圧力の概略図である。
図中横軸は図3と同じく配管長を表す。図中縦軸は蒸気配管内の蒸気圧力を表す。本発明の太陽熱配管保温装置を適用せず、ボイラ出口における蒸気圧力をP0として圧送した場合、配管内を流れる蒸気の流速及び配管長に応じて圧力が低下し、図では蒸気消費設備入口においてPまで圧力が低下する。
FIG. 4 is a schematic diagram of the steam pressure in the steam pipe under the same conditions as FIG.
The horizontal axis in the figure represents the pipe length as in FIG. The vertical axis in the figure represents the steam pressure in the steam pipe. If the steam pressure at the boiler outlet is pumped at P 0 without applying the solar heat insulation apparatus of the present invention, the pressure decreases according to the flow velocity of the steam flowing in the pipe and the pipe length. The pressure drops to P.

これに対し、本実施例の太陽熱配管保温装置5を適用した場合には、蒸気消費設備入口蒸気圧力の計測結果に基づきドラム蒸気圧力をP0′まで高めることにより、蒸気消費設備入口における蒸気圧力をP′として蒸気品質を維持することが可能となる。 On the other hand, when the solar heat pipe heat insulation device 5 of the present embodiment is applied, the steam pressure at the steam consumption facility inlet is increased by increasing the drum steam pressure to P 0 ′ based on the measurement result of the steam consumption facility inlet steam pressure. It is possible to maintain the steam quality with P ′.

なお、本実施例では蒸気発生の手段としてガスタービン及びボイラによるコジェネレーションシステムを用いたが、本発明の太陽熱配管保温装置は、微粉炭をボイラ内部で燃焼して蒸気を得る石炭焚きボイラにも適用可能である。同様に、油をボイラ内部で燃焼して蒸気を得る油焚きボイラやバイオマスやごみなどを燃焼して蒸気を得るボイラプラントにも適用可能である。   In this embodiment, a cogeneration system using a gas turbine and a boiler is used as a means for generating steam. However, the solar heat pipe heat insulating device of the present invention is also used in a coal-fired boiler that obtains steam by burning pulverized coal inside the boiler. Applicable. Similarly, the present invention can be applied to an oil-fired boiler that obtains steam by burning oil inside the boiler, or a boiler plant that obtains steam by burning biomass or garbage.

また、本実施例に記載の太陽熱配管保温装置は、集熱器にて太陽からの熱エネルギーを利用し蒸気配管を加温したが、本装置に太陽からの光エネルギーを電力へと変換する太陽光発電装置を併設しても良い。太陽光発電装置により本発明に記載のポンプの動力、集熱器の仰角を調整する駆動装置及び太陽熱配管保温装置制御手段で消費される電力が供給される場合、本発明の太陽熱配管保温装置は、電源によらず設置可能となる。この場合、配管での温度低下が顕著な位置に太陽熱配管保温装置を設置することにより、さらに蒸気品質を向上することが可能となる。   Moreover, although the solar heat pipe heat insulation apparatus described in the present embodiment uses the heat energy from the sun in the heat collector to heat the steam pipe, the solar heat conversion apparatus converts the light energy from the sun into electric power in this apparatus. A photovoltaic device may also be provided. When the power consumed by the solar power generator and the driving device for adjusting the elevation angle of the heat collector and the solar heat pipe heat insulation device control means is supplied by the solar power generation device, the solar heat pipe heat insulation device of the present invention is It can be installed regardless of the power source. In this case, it is possible to further improve the steam quality by installing the solar heat pipe heat retaining device at a position where the temperature drop in the pipe is remarkable.

以上説明した本実施例によれば、集熱器にて得られた太陽からの熱エネルギーを用いて媒体を加熱し、この媒体の熱エネルギーを配管に伝えることにより、蒸気や電力などのエネルギーに頼ることなく、配管内流体の保温、あるいは加温の効果が得られ、熱損失を低下させることができる。この結果、蒸気消費設備入口ではより高温の蒸気が得られるため、蒸気消費設備内の稼働率、エネルギー利用率が改善し、システム全体としてのエネルギー利用率が向上する。   According to the present embodiment described above, the medium is heated using the heat energy from the sun obtained by the heat collector, and the heat energy of the medium is transmitted to the pipe, thereby converting the energy such as steam and electric power into energy. Without relying on, it is possible to obtain the effect of heat retention or heating of the fluid in the piping, and to reduce heat loss. As a result, higher temperature steam can be obtained at the entrance of the steam consumption facility, so that the operating rate and energy utilization rate in the steam consumption facility are improved, and the energy utilization rate of the entire system is improved.

さらに、本実施例の太陽熱配管保温装置では、蒸気配管を保温あるいは加温するヒータを配管から着脱可能とすることにより、配管経路が変更となった場合においても、熱源の確保を考慮することなく、容易に蒸気配管の保温、あるいは加温が可能となる。   Furthermore, in the solar heat pipe heat insulation device of the present embodiment, by making the heater for keeping or heating the steam pipe detachable from the pipe, even when the pipe route is changed, it is not considered to secure the heat source. This makes it easy to keep the steam piping warm or warm.

また、これまでヒータが敷設不可能であった配管に対してもヒータを設置可能として、システム全体としてのエネルギー利用率が向上する。   In addition, the heater can be installed even on the piping where the heater could not be installed so far, and the energy utilization rate of the entire system is improved.

さらに、本実施例の太陽熱配管保温装置では、蒸気消費設備入口における蒸気の温度を計測し、この計測値及び太陽高度に基づき集熱器の角度を制御することにより、時刻により太陽高度が変化した場合においても、加熱対象である媒体の温度を最大として一日を通じて安定した蒸気配管の保温、あるいは加温が可能となる。   Furthermore, in the solar heat pipe heat insulating device of the present embodiment, the temperature of the steam at the entrance of the steam consuming facility is measured, and the solar altitude changes with time by controlling the angle of the collector based on this measured value and the solar altitude. Even in this case, the temperature of the medium to be heated can be maximized, and the steam pipe can be kept warm or heated throughout the day.

さらには、蒸気消費設備入口における蒸気の圧力を計測し、この計測値に基づきボイラ出口に設置した圧力調整弁の開度を制御することにより、配管経路が変更となった場合においても、蒸気消費設備入口における蒸気の圧力を維持し、蒸気圧力低下によるドレンの発生を最小としてシステム全体としてのエネルギー利用率が向上する。   Furthermore, by measuring the steam pressure at the inlet of the steam consuming equipment and controlling the opening of the pressure regulating valve installed at the boiler outlet based on this measured value, the steam consumption can be changed even when the piping route is changed. The steam pressure at the entrance of the facility is maintained, and the generation of drain due to a drop in steam pressure is minimized to improve the energy utilization rate of the entire system.

蒸気を供給するプラント、特に蒸気配管を用いて蒸気を遠地へと供給するコジェネレーションプラントに利用可能である。   The present invention can be used in a steam supply plant, particularly a cogeneration plant that supplies steam to a distant place using steam piping.

1 ガスタービン
2 ボイラ
3 蒸気配管
4 圧力調整弁
5 太陽熱配管保温装置
6 集熱器
7 ヒータ
8 循環ポンプ
9 蒸気消費設備
10 太陽熱配管保温装置制御手段
11 ボイラ制御手段
12 ボイラ蒸気圧力計測手段
13 ボイラ蒸気圧力
14 蒸気消費設備入口蒸気圧力計測手段
15 蒸気消費設備入口蒸気圧力
16 蒸気消費設備入口蒸気温度計測手段
17 蒸気消費設備入口蒸気温度
18 集熱器角度指令
19 圧力調整弁開度指令
20 太陽高度測定器
21 太陽高度
22 伝熱管
23、24 フレキシブルパイプ
DESCRIPTION OF SYMBOLS 1 Gas turbine 2 Boiler 3 Steam piping 4 Pressure control valve 5 Solar heat insulation apparatus 6 Heat collector 7 Heater 8 Circulation pump 9 Steam consumption equipment 10 Solar heat insulation apparatus control means 11 Boiler control means 12 Boiler steam pressure measurement means 13 Boiler steam Pressure 14 Steam consumption facility inlet steam pressure measurement means 15 Steam consumption facility inlet steam pressure 16 Steam consumption facility inlet steam temperature measurement means 17 Steam consumption facility inlet steam temperature 18 Collector angle command 19 Pressure adjustment valve opening command 20 Solar altitude measurement Unit 21 Solar altitude 22 Heat transfer tube 23, 24 Flexible pipe

Claims (6)

蒸気を発生させるボイラと、該ボイラの発生蒸気を蒸気消費設備に供給する蒸気配管を備えた蒸気供給プラントにおいて、
太陽熱を集熱して媒体を加熱する集熱器と、該集熱器で加熱された媒体を用いて前記蒸気配管を保温或いは加熱するヒータと、該ヒータを経由した媒体を前記集熱器に還流させる循環ポンプとを有する太陽熱配管保温装置を備え
前記ヒータは、複数の電熱管と、該複数の電熱管の各々と接続されたフレキシブルパイプとを有し、前記フレキシブルパイプを前記蒸気配管の周方向に巻きつけることで着脱可能としたことを特徴とする蒸気供給プラント。
In a steam supply plant equipped with a steam generating steam and steam piping for supplying steam generated by the boiler to steam consuming equipment,
A heat collector that collects solar heat to heat the medium, a heater that retains or heats the steam pipe using the medium heated by the heat collector, and a medium that passes through the heater is returned to the heat collector. comprising a solar heat pipe insulation system and a circulation pump for,
The heater has a plurality of heating tubes and a flexible pipe connected to each of the plurality of heating tubes, and is detachable by winding the flexible pipe in a circumferential direction of the steam pipe. And steam supply plant.
請求項に記載の蒸気供給プラントにおいて、
前記蒸気消費設備の入口の蒸気温度を計測する蒸気温度計測手段と、
太陽高度情報と前記蒸気温度計測手段で計測された蒸気温度を入力し、前記蒸気消費設備の入口蒸気温度が所定の温度となるように前記集熱器の角度を制御する太陽熱配管保温装置制御手段を備えたことを特徴とする蒸気供給プラント。
The steam supply plant according to claim 1 ,
Steam temperature measuring means for measuring the steam temperature at the inlet of the steam consuming equipment;
Solar heat pipe heat retaining device control means for inputting solar altitude information and the steam temperature measured by the steam temperature measuring means, and controlling the angle of the heat collector so that the inlet steam temperature of the steam consuming equipment becomes a predetermined temperature. A steam supply plant comprising:
請求項に記載の蒸気供給プラントにおいて、
前記ボイラ出口の蒸気圧力を制御する圧力制御弁と、
前記蒸気消費設備の入口の蒸気圧力を計測する蒸気圧力計測手段と、
前記蒸気圧力計測手段で計測された蒸気温度を入力し、前記蒸気消費設備の入口の蒸気圧力が所定の圧力となるように前記圧力制御弁の開度を制御するボイラ制御手段を備えたことを特徴とする蒸気供給プラント。
The steam supply plant according to claim 1 ,
A pressure control valve for controlling the steam pressure at the boiler outlet;
Steam pressure measuring means for measuring the steam pressure at the inlet of the steam consuming equipment;
Boiler control means for inputting the steam temperature measured by the steam pressure measuring means and controlling the opening of the pressure control valve so that the steam pressure at the inlet of the steam consuming equipment becomes a predetermined pressure is provided. A featured steam supply plant.
請求項1に記載の蒸気供給プラントにおいて、
前記ボイラは、内燃機関の排熱回収ボイラ、微粉炭をボイラ内部で燃焼させる石炭焚きボイラ、油燃料を用いる油焚きボイラ、バイオマス燃料を用いるバイオマスボイラ、或いは焼却炉の排熱を利用する焼却炉ボイラであることを特徴とする蒸気供給プラント。
The steam supply plant according to claim 1,
The boiler is an exhaust heat recovery boiler of an internal combustion engine, a coal fired boiler that burns pulverized coal inside the boiler, an oil fired boiler that uses oil fuel, a biomass boiler that uses biomass fuel, or an incinerator that uses the exhaust heat of an incinerator A steam supply plant characterized by being a boiler.
請求項1に記載の蒸気供給プラントにおいて、
その回転駆動により電力を得るガスタービンを備え、前記ボイラとして前記ガスタービンの排熱を回収して蒸気を発生させる排熱回収ボイラを用い、電力と熱を供給するコジェネレーションシステムに適用したことを特徴とする蒸気供給プラント。
The steam supply plant according to claim 1,
It has a gas turbine that obtains electric power by its rotational drive, uses a waste heat recovery boiler that recovers exhaust heat of the gas turbine and generates steam as the boiler, and applies it to a cogeneration system that supplies electric power and heat A featured steam supply plant.
ボイラの発生蒸気を蒸気消費設備に供給する蒸気配管内の蒸気を太陽熱エネルギーを用いて加熱或いは保温する太陽熱配管保温装置であって、
太陽熱を集熱して媒体を加熱する集熱器と、
該集熱器で加熱された媒体を用いて前記蒸気配管を保温或いは加熱するヒータと、
該ヒータを経由した媒体を前記集熱器に還流させる循環ポンプとを備え、
前記ヒータは、複数の電熱管と、該複数の電熱管の各々と接続されたフレキシブルパイプとを有し、前記フレキシブルパイプを前記蒸気配管の周方向に巻きつけることで着脱可能としたことを特徴とする太陽熱配管保温装置。
A solar heat pipe heat retaining device that heats or heats the steam in a steam pipe that supplies steam generated by a boiler to steam consuming equipment using solar thermal energy ,
A collector that collects solar heat to heat the medium;
A heater for keeping or heating the steam pipe using a medium heated by the heat collector;
A circulation pump for refluxing the medium passing through the heater to the heat collector,
The heater has a plurality of heating tubes and a flexible pipe connected to each of the plurality of heating tubes, and is detachable by winding the flexible pipe in a circumferential direction of the steam pipe. Solar heat pipe insulation device.
JP2012056616A 2012-03-14 2012-03-14 Steam supply plant and solar heat insulation device Expired - Fee Related JP5538458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012056616A JP5538458B2 (en) 2012-03-14 2012-03-14 Steam supply plant and solar heat insulation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012056616A JP5538458B2 (en) 2012-03-14 2012-03-14 Steam supply plant and solar heat insulation device

Publications (2)

Publication Number Publication Date
JP2013190156A JP2013190156A (en) 2013-09-26
JP5538458B2 true JP5538458B2 (en) 2014-07-02

Family

ID=49390605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012056616A Expired - Fee Related JP5538458B2 (en) 2012-03-14 2012-03-14 Steam supply plant and solar heat insulation device

Country Status (1)

Country Link
JP (1) JP5538458B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6613176B2 (en) * 2016-03-04 2019-11-27 三菱日立パワーシステムズ株式会社 Power generation system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4409197A1 (en) * 1994-03-17 1995-09-21 Siemens Ag Method and device for solar steam generation
JP3412089B2 (en) * 1999-10-18 2003-06-03 川重冷熱工業株式会社 Steam pressure control method and steam pressure control device
JP4786504B2 (en) * 2006-11-10 2011-10-05 川崎重工業株式会社 Heat medium supply facility, solar combined power generation facility, and control method thereof
JP5291541B2 (en) * 2009-06-01 2013-09-18 三菱重工業株式会社 Solar gas turbine and solar gas turbine power generator
JP2010286200A (en) * 2009-06-12 2010-12-24 Mitsubishi Heavy Ind Ltd Solar heat collector
US9423185B2 (en) * 2009-11-04 2016-08-23 Toshiba Mitsubishi-Electric Industrial Systems Corporation Heat transfer device
JP5479192B2 (en) * 2010-04-07 2014-04-23 株式会社東芝 Steam turbine plant

Also Published As

Publication number Publication date
JP2013190156A (en) 2013-09-26

Similar Documents

Publication Publication Date Title
JP5399565B2 (en) Combined cycle power plant using solar heat
US8833051B2 (en) Method for operation of an integrated solar combined-cycle power station, and a solar combined-cycle power station for carrying out this method
EP2920514B1 (en) System for selectively producing steam from solar collectors and heaters for processes including enhanced oil recovery
CN103912464B (en) The combined generating system that solar energy optical-thermal is integrated with BIGCC
US20120255309A1 (en) Utilizing steam and/or hot water generated using solar energy
GB2449181A (en) Solar hybrid combined cycle power plant
JP5707546B2 (en) Solar thermal boiler system
KR101660923B1 (en) Steam turbine plant
JP6407730B2 (en) Generation power smoothing system
CN101545404A (en) A system for extending the turndown range of a turbomachine
US20130056993A1 (en) Use of thermal hydraulic DC generators meets the requirements to qualify as a "Green Energy" source
KR20170105257A (en) cooling and heating system using geothermal and solar energy connection control and its control method
JP6613176B2 (en) Power generation system
US20130014508A1 (en) Optimized Heliostat Aiming
EP2871359A1 (en) Auxiliary steam supply system in solar power plants
JP5538458B2 (en) Steam supply plant and solar heat insulation device
JP5422057B2 (en) Gas turbine system and control method thereof
JP2011214732A (en) Solar heat utilizing waste power generation device and method of operating the same
JP5745647B2 (en) Solar thermal combined cycle power plant
CN105247208A (en) Solar collector plant with thermal storage
RU191262U1 (en) INSTALLATION COGENERATIVE ON THE BASIS OF EXTERNAL COMBUSTION ENGINE
Kröger The Stellenbosch University solar power thermodynamic cycle
WO2020068011A1 (en) A solar power generating system and the method of generating electricity and providing heat in such a system
RU2405942C2 (en) Operating method of heat-and-power plant
RU183122U1 (en) Station for generating electric energy on any type of heat using convection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140121

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140224

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140225

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140422

R150 Certificate of patent or registration of utility model

Ref document number: 5538458

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140428

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees