JP5533210B2 - Heat treatment method for silicon wafer - Google Patents

Heat treatment method for silicon wafer Download PDF

Info

Publication number
JP5533210B2
JP5533210B2 JP2010106617A JP2010106617A JP5533210B2 JP 5533210 B2 JP5533210 B2 JP 5533210B2 JP 2010106617 A JP2010106617 A JP 2010106617A JP 2010106617 A JP2010106617 A JP 2010106617A JP 5533210 B2 JP5533210 B2 JP 5533210B2
Authority
JP
Japan
Prior art keywords
silicon wafer
heat treatment
shear stress
wafer
slip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010106617A
Other languages
Japanese (ja)
Other versions
JP2011238664A (en
Inventor
浩三 中村
敏昭 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2010106617A priority Critical patent/JP5533210B2/en
Publication of JP2011238664A publication Critical patent/JP2011238664A/en
Application granted granted Critical
Publication of JP5533210B2 publication Critical patent/JP5533210B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、シリコンウェーハを製造する際の熱処理に関し、特にウェーハ製造後のデバイス作製工程においてスリップが発生することのないシリコンウェーハを提供するための熱処理方法に関するものである。   The present invention relates to a heat treatment for manufacturing a silicon wafer, and more particularly to a heat treatment method for providing a silicon wafer in which no slip occurs in a device manufacturing process after the wafer is manufactured.

例えば、CZ法により作成したポリッシュドウェーハに不可避に含まれる酸素は、デバイス作製工程においてその一部が析出してゲッタリングサイトが形成されるのが通例である。   For example, oxygen that is inevitably contained in a polished wafer prepared by the CZ method is usually partly precipitated in a device manufacturing process to form a gettering site.

ここで、シリコンウェーハに熱処理が施されると、ウェーハ中に含まれる酸素がシリコンと反応して酸素析出物が発生する。この酸素析出が過剰に進行すると、シリコンウェーハの機械的強度が低下し、デバイス作製工程において低い負荷応力の下でもスリップが発生し、ウェーハに反りが発生することが知られている(例えば、非特許文献1および2参照)。さらに、非特許文献3には、酸素析出物のサイズが大きくなると、ウェーハに熱応力を印加した際のスリップの発生が増加する旨が記載されている。
こうしたデバイス作製工程におけるスリップの発生によりシリコンデバイスの歩留まり
が低下するため、デバイス作製工程においてスリップが発生することのないウェーハを提
供することが肝要である。
Here, when heat treatment is performed on the silicon wafer, oxygen contained in the wafer reacts with silicon to generate oxygen precipitates. It is known that when this oxygen precipitation proceeds excessively, the mechanical strength of the silicon wafer decreases, slip occurs even under a low load stress in the device manufacturing process, and the wafer warps (for example, non- (See Patent Documents 1 and 2). Further, Non-Patent Document 3 describes that when the size of the oxygen precipitate increases, the occurrence of slip increases when a thermal stress is applied to the wafer.
Since the yield of silicon devices decreases due to the occurrence of slip in such a device manufacturing process, it is important to provide a wafer in which no slip occurs in the device manufacturing process.

このスリップの抑制に関して、特許文献1には、酸素析出物のサイズを小さくすることにより、酸素析出物から発生するスリップの発生応力が増加し、酸素析出によるシリコンウェーハの強度低下が抑制されることが記載されている。
また、特許文献2には、ウェーハ中に小さなサイズを有する酸素析出物を高密度に形成し、大きなサイズを有する酸素析出物の密度を低く抑えることが、スリップ発生の抑制に有効である旨が記載されている。
Regarding the suppression of this slip, Patent Document 1 discloses that by reducing the size of the oxygen precipitate, the stress generated by the slip generated from the oxygen precipitate increases, and the decrease in the strength of the silicon wafer due to the oxygen precipitation is suppressed. Is described.
Patent Document 2 also states that it is effective to suppress the occurrence of slips by forming oxygen precipitates having a small size in a wafer at a high density and keeping the density of oxygen precipitates having a large size low. Have been described.

国際公開第2006/003812号パンフレットInternational Publication No. 2006/003812 Pamphlet 特開第2008−103673号公報JP 2008-103673 A

B.Leroy and C.Plougonven,Journal of the Electrochemical Society,1980,Vol.127,p.961B. Leroy and C.M. Plougonven, Journal of the Electrochemical Society, 1980, Vol. 127, p. 961 Hirofumi Shimizu,Tetsuo Watanabe and Yoshiharu Kakui,Japanese Journal of Applied Physics,1985,Vol.24,p.815Hirofumi Shimizu, Tetsuo Watanabe and Yoshiharu Kakui, Japan Journal of Applied Physics, 1985, Vol. 24, p. 815 Koji Sueoka,Masanori Akatsuka,Hisashi Katahama and Naoshi Adachi,Japanese Journal of Applied Physics,1997,Vol.36,p.7095Koji Sueoka, Masanori Akatsuka, Hisashi Katahama and Naoshi Adachi, Japan Journal of Applied Physics, 1997, Vol. 36, p. 7095

ところで、近年、シリコンのデバイス作製工程では、高速昇降温プロセスが多用されており、シリコンウェーハは従来よりも過酷な熱応力に晒されるため、シリコンウェーハ内にスリップが発生し易い環境になっている。   By the way, in recent years, a high-speed heating / cooling process is frequently used in the silicon device manufacturing process, and the silicon wafer is exposed to severer thermal stress than before, so that it is easy to generate slip in the silicon wafer. .

しかしながら、特許文献1および2は、酸素析出のサイズや密度とスリップ発生との関係について記載しているものの、かような過酷な環境下においてスリップを回避するには特許文献1および2の方法では不十分である。そのため、従来は、例えばデバイス作製工程にシリコンウェーハサンプルを投入し、酸素析出物が過剰に発生してウェーハに反りが発生した場合には、シリコンウェーハに含まれる酸素濃度を低減することにより、シリコンウェーハ中にスリップが発生しない条件を見つける、等のトライアンドエラー法により対処する以外に方途がなかった。   However, Patent Documents 1 and 2 describe the relationship between the size and density of oxygen precipitation and the occurrence of slip. However, in the method of Patent Documents 1 and 2, in order to avoid slip in such a severe environment, It is insufficient. Therefore, conventionally, for example, when a silicon wafer sample is introduced into the device manufacturing process and oxygen precipitates are excessively generated and the wafer is warped, the silicon concentration is reduced by reducing the oxygen concentration contained in the silicon wafer. There was no other way but to deal with the trial and error method, such as finding a condition in which no slip occurred in the wafer.

そこで、本発明の目的は、ウェーハ製造後のデバイス作製工程においてスリップが発生することのないシリコンウェーハを提供するための熱処理方法を提供することにある。   Therefore, an object of the present invention is to provide a heat treatment method for providing a silicon wafer in which no slip occurs in a device manufacturing process after wafer manufacture.

発明者らは、上記課題を解決するための方途について鋭意究明した結果、デバイス作製工程においてスリップが発生する臨界せん断応力は、ウェーハ製造段階で施す熱処理を経た該ウェーハにおける酸素析出物のサイズLに対する残存酸素濃度Cの比C/Lに密接に関係していることが判明した。そこで、デバイス作製工程に応じて、上記のシリコンウェーハにスリップが発生する臨界せん断応力と残存酸素濃度Cおよび酸素析出物のサイズLとの関係を予め求めておき、デバイス作製工程の温度条件およびシリコンウェーハが受ける熱応力から、ウェーハの製造段階で施される熱処理を適切に制御することが、デバイス作製工程においてスリップを発生させないことに有効であることを見出し、本発明を完成するに至った。 As a result of intensive investigations on ways to solve the above problems, the inventors have determined that the critical shear stress at which slip occurs in the device fabrication process is based on the size L of the oxygen precipitates in the wafer that has undergone the heat treatment applied in the wafer manufacturing stage. It was found that it is closely related to the ratio C o / L of the residual oxygen concentration C o . Therefore, in accordance with the device manufacturing process, the relationship between the critical shear stress at which slip occurs in the silicon wafer, the residual oxygen concentration Co, and the size L of the oxygen precipitates is determined in advance, and the temperature conditions of the device manufacturing process and From the thermal stress applied to the silicon wafer, it was found that appropriately controlling the heat treatment performed in the wafer manufacturing stage is effective in preventing slip in the device manufacturing process, and the present invention has been completed. .

即ち、本発明の熱処理方法は、デバイス作製工程において、シリコンウェーハが受けるせん断応力に起因してシリコンウェーハにスリップが発生する限界である臨界せん断応力と、シリコンウェーハの製造段階で施す熱処理を経た該ウェーハにおける酸素析出物のサイズLに対する残存酸素濃度Cの比C/Lとの相関を、前記デバイス作製工程の温度条件毎に予め求めること、シリコンウェーハを供する実際のデバイス作製工程の温度条件に対応する前記相関に基づいて、前記実際のデバイス作製工程において前記シリコンウェーハが受ける熱応力を超える臨界せん断応力に対応するC/Lを求めること、該C/L以上となる温度および時間の条件の下に前記熱処理を施すことを特徴とするものである。 That is, the heat treatment method of the present invention includes a critical shear stress, which is a limit at which a silicon wafer slips due to a shear stress applied to a silicon wafer in a device manufacturing process, and a heat treatment that is performed through a heat treatment performed at the manufacturing stage of the silicon wafer. Correlation with the ratio C o / L of the residual oxygen concentration C o to the size L of oxygen precipitates on the wafer is determined in advance for each temperature condition of the device manufacturing process, and the temperature condition of the actual device manufacturing process using the silicon wafer based on the correlation corresponding to the actual device in the manufacturing process to obtain the C o / L corresponding to the critical shear stress in excess of thermal stresses, wherein the silicon wafer is subjected, the C o / L or more to become the temperature and time The heat treatment is performed under the following conditions.

また、本発明の熱処理方法において、前記臨界せん断応力τcriは、E=0.9eV、kをボルツマン定数、Tを前記実際のデバイス作製工程の温度として、下記の式(A)および(B)にて与えられることを特徴とするものである。

前記熱処理が酸化性雰囲気中で行われる場合、

Figure 0005533210

それ以外の場合、
Figure 0005533210
In the heat treatment method of the present invention, the critical shear stress τ cri is expressed by the following formulas (A) and (B), where E = 0.9 eV, k is the Boltzmann constant, and T is the temperature of the actual device manufacturing process. It is characterized by being given by.
When the heat treatment is performed in an oxidizing atmosphere,
Figure 0005533210

Otherwise,
Figure 0005533210

本発明によれば、シリコンウェーハ製造段階で施す熱処理において、酸素析出物のサイズやシリコンウェーハ中の残存酸素濃度が適切に制御されるため、デバイス作製工程においてシリコンウェーハに対して高速昇降温プロセスが施された場合にも、スリップの発生を回避することができる。   According to the present invention, since the size of oxygen precipitates and the residual oxygen concentration in the silicon wafer are appropriately controlled in the heat treatment performed at the silicon wafer manufacturing stage, a high-speed heating / cooling process is performed on the silicon wafer in the device manufacturing process. Even when applied, the occurrence of slip can be avoided.

板状の酸素析出物のサイズおよびシリコンウェーハ中の残存酸素濃度に対する臨界せん断応力の関係を示す図である。It is a figure which shows the relationship of the critical shear stress with respect to the size of a plate-shaped oxygen precipitate, and the residual oxygen concentration in a silicon wafer. 八面体形状の酸素析出物のサイズおよびシリコンウェーハ中の残存酸素濃度に対する臨界せん断応力の関係を示す図である。It is a figure which shows the relationship of the critical shear stress with respect to the size of the oxygen precipitate of an octahedral shape, and the residual oxygen concentration in a silicon wafer.

ここで、本発明の実施形態について説明する。
シリコンウェーハを熱処理する際に生じる酸素析出物の形状には、板状と八面体形状の2種類がある。板状の酸素析出物は、酸化性雰囲気中でシリコンウェーハに熱処理を施す場合に生じる。一方、八面体形状の酸素析出物は、アニールウェーハのようにアルゴンや水素などの非酸化性雰囲気中で高温熱処理を施す場合に発生する。
Here, an embodiment of the present invention will be described.
There are two types of shapes of oxygen precipitates generated when a silicon wafer is heat-treated: a plate shape and an octahedral shape. Plate-like oxygen precipitates are generated when heat treatment is performed on a silicon wafer in an oxidizing atmosphere. On the other hand, octahedral oxygen precipitates are generated when high-temperature heat treatment is performed in a non-oxidizing atmosphere such as argon or hydrogen like an annealed wafer.

デバイス作製工程においてシリコンウェーハ中にスリップが発生しない方途を究明するために、まず、ウェーハ製造時における酸素析出物を発生させる熱処理条件と、デバイス作製工程におけるスリップが発生する臨界せん断応力との関係について調べた。   In order to find out how slip does not occur in silicon wafers in the device fabrication process, first, the relationship between the heat treatment conditions that generate oxygen precipitates during wafer manufacturing and the critical shear stress that causes slip in the device fabrication process Examined.

まず、板状の酸素析出物について調べた。そのために、初期酸素濃度が13.5×1017,12.4×1017および15.2×1017atoms/cmと異なる、3つのシリコンウェーハを用意した。これらのウェーハのそれぞれに対して3段階の熱処理を施し、ウェーハ中に酸素析出物を発生させた。即ち、まず650〜700℃にて熱処理を施すことにより、ウェーハ中に発生する酸素析出物の密度を調整した。この熱処理時間の増加と共に酸素析出物の密度も増加する。次いで、900℃、およびそれに続く1000℃にて熱処理を施すことにより、発生した酸素析出物のサイズを調整した。900℃および1000℃双方の熱処理時間の増加とともに酸素析出物のサイズも増大する。 First, a plate-like oxygen precipitate was examined. Therefore, three silicon wafers having initial oxygen concentrations different from 13.5 × 10 17 , 12.4 × 10 17, and 15.2 × 10 17 atoms / cm 3 were prepared. Each of these wafers was subjected to a three-stage heat treatment to generate oxygen precipitates in the wafer. That is, first, heat treatment was performed at 650 to 700 ° C. to adjust the density of oxygen precipitates generated in the wafer. As the heat treatment time increases, the density of oxygen precipitates also increases. Subsequently, the size of the generated oxygen precipitates was adjusted by performing heat treatment at 900 ° C. and subsequent 1000 ° C. The size of the oxygen precipitates increases with increasing heat treatment time at both 900 ° C and 1000 ° C.

次に、熱処理が施された各シリコンウェーハに対して、1000℃、1100℃および1200℃において熱応力を与え、酸素析出物を起点としてウェーハ内部からスリップが発生する臨界せん断応力を求めた。具体的な処理は以下の通りである。   Next, thermal stress was applied to each of the heat-treated silicon wafers at 1000 ° C., 1100 ° C., and 1200 ° C., and the critical shear stress at which slip occurred from the inside of the wafer starting from oxygen precipitates was determined. Specific processing is as follows.

直径200mmのシリコンウェーハをRTA(Rapid Thermal Annealing)装置により加熱して熱応力を与えた。通常のRTAの加熱条件ではウェーハ面内に温度差を生じさせないように加熱分布を調整するが、本実験においては意図して加熱バランスを変えて熱応力を発生させた。次いで、シリコンウェーハの半径方向の温度分布T(r’)を熱電対により測定した。半径方向および円周方向への応力は、それぞれ以下の式(1)および(2)で与えられる。   A silicon wafer having a diameter of 200 mm was heated by a RTA (Rapid Thermal Annealing) apparatus to give thermal stress. Under normal RTA heating conditions, the heating distribution is adjusted so as not to cause a temperature difference in the wafer surface. In this experiment, the heating balance was intentionally changed to generate thermal stress. Next, the temperature distribution T (r ′) in the radial direction of the silicon wafer was measured with a thermocouple. The stresses in the radial direction and the circumferential direction are given by the following equations (1) and (2), respectively.

Figure 0005533210
Figure 0005533210

Figure 0005533210

ただし、rはシリコンウェーハの半径方向の位置、Rはシリコンウェーハの半径、αは熱膨張率、Eはヤング率である。
Figure 0005533210

Here, r is the position in the radial direction of the silicon wafer, R is the radius of the silicon wafer, α is the coefficient of thermal expansion, and E is the Young's modulus.

シリコンウェーハのような単結晶体においては、スリップ(すべり)が生じる面および方向が特定されるため、すべり面を考慮した解析が必要となる。シリコンにおけるスリップは{111}面において<110>方向に発生する。等価なものを除外すると、4つの{111}面について3つの<110>方向のすべりが存在することになり、12種のせん断応力を求める必要がある。   In a single crystal body such as a silicon wafer, since a surface and a direction in which slip (slip) occurs are specified, an analysis in consideration of the slip surface is required. Slip in silicon occurs in the <110> direction on the {111} plane. If the equivalent is excluded, there are three slips in the <110> direction for the four {111} planes, and twelve kinds of shear stress need to be obtained.

上記の円筒座標系で求めた応力を直交座標系に変換することにより、各すべり面における各すべり方向へのせん断応力が以下の式(3)のように求められる。ただし、すべり面を(ijk)、すべり方向を[lmn]とする。   By converting the stress obtained in the above-mentioned cylindrical coordinate system into an orthogonal coordinate system, the shear stress in each slip direction on each slip surface is obtained as in the following equation (3). However, the slip plane is (ijk) and the slip direction is [lmn].

Figure 0005533210
Figure 0005533210

こうして得られる12種のせん断応力のうち、最大となるせん断応力をシリコンウェーハに負荷される熱応力とした。そして種々の酸素析出状態(即ち、サイズおよび密度)のシリコンウェーハに1000℃、1100℃および1200℃において熱応力を与え、酸素析出物を起点としてウェーハ内部からスリップが発生する領域をライトエッチング法により評価した。そして、スリップの発生領域と非発生領域との境界における熱応力を調べて臨界せん断応力を求めた。得られた結果を表1に示す。   Of the 12 types of shear stress thus obtained, the maximum shear stress was defined as the thermal stress applied to the silicon wafer. A silicon wafer in various oxygen precipitation states (ie, size and density) is subjected to thermal stress at 1000 ° C., 1100 ° C., and 1200 ° C., and a region where slip occurs from the inside of the wafer starting from the oxygen precipitate is obtained by a light etching method. evaluated. And the critical shear stress was calculated | required by investigating the thermal stress in the boundary of the generation | occurrence | production area | region and non-occurrence | production area | region of a slip. The obtained results are shown in Table 1.

ここで、表1に示された結果のうち、初期酸素濃度および熱処理後にウェーハに残存する残存酸素濃度はフーリエ変換型赤外分光計(Fourier Transform Infrared Spectroscopy,FT−IR)により測定した。また、酸素析出物の密度はライトエッチング法により、サイズは透過電子顕微鏡法によりそれぞれ求めた。   Here, among the results shown in Table 1, the initial oxygen concentration and the residual oxygen concentration remaining on the wafer after the heat treatment were measured by a Fourier Transform Infrared Spectrometer (FT-IR). The density of oxygen precipitates was determined by a light etching method, and the size was determined by a transmission electron microscope.

Figure 0005533210
Figure 0005533210

発明者らは、表1に示される結果を鋭意解析した結果、臨界せん断応力は、ウェーハに残存する酸素濃度および発生した酸素析出物のサイズと密接に関係していることを見出した。即ち、図1に示すように、デバイス作製工程において発生するスリップの臨界せん断応力は、酸素析出物のサイズに対する残存酸素濃度の比と強い相関を有していることを見出し、以下の関係式を導出した。   As a result of intensive analysis of the results shown in Table 1, the inventors have found that the critical shear stress is closely related to the oxygen concentration remaining in the wafer and the size of the generated oxygen precipitates. That is, as shown in FIG. 1, it was found that the critical shear stress of the slip generated in the device manufacturing process has a strong correlation with the ratio of the residual oxygen concentration to the size of the oxygen precipitate, and the following relational expression is obtained. Derived.

Figure 0005533210

ここで、τcriは臨界せん断応力(MPa)、Cは残存酸素濃度(atoms/cm)、Lは酸素析出物のサイズ(nm)、E=0.9eV、kはボルツマン定数、およびTはデバイス作製工程の温度(K)である。
Figure 0005533210

Here, tau cri critical shear stress (MPa), C o is the residual oxygen concentration (atoms / cm 3), L is the size of the oxygen precipitates (nm), E = 0.9eV, k is the Boltzmann constant, and T Is the temperature (K) of the device fabrication process.

こうして、ウェーハ製造段階の熱処理により発生した酸素析出物のサイズL、ウェーハ中の残存酸素濃度Cおよびデバイス作製工程の温度Tが決定されれば、デバイス作製工程においてスリップが発生する臨界せん断応力τcriを高精度に予測することができる。 Thus, the size L of the oxygen precipitates generated by heat treatment of the wafer manufacturing step, if the temperature T of the residual oxygen concentration C o and device manufacturing process in the wafer is determined, the critical shear stress slip occurs in the device manufacturing process τ Cri can be predicted with high accuracy.

同様にして、八面体形状を有する酸素析出物に対しても、上記と同様の測定を行った。即ち、まず、12.5×1017および15.1×1017atoms/cmの初期酸素濃度を有するシリコンウェーハを用意した。これらのウェーハに対してアルゴン雰囲気中において1100℃にて熱処理を施すことにより、ウェーハ中に八面体形状を有する酸素析出物を発生させた。その際、酸素析出物のサイズは熱処理時間により調整し、また酸素析出物の密度はウェーハ中の窒素濃度(1×1014または2×1014atoms/cm)により調整した。 Similarly, the same measurement as described above was performed for an oxygen precipitate having an octahedral shape. That is, first, silicon wafers having initial oxygen concentrations of 12.5 × 10 17 and 15.1 × 10 17 atoms / cm 3 were prepared. By subjecting these wafers to heat treatment at 1100 ° C. in an argon atmosphere, oxygen precipitates having an octahedral shape were generated in the wafers. At that time, the size of the oxygen precipitates was adjusted by the heat treatment time, and the density of the oxygen precipitates was adjusted by the nitrogen concentration in the wafer (1 × 10 14 or 2 × 10 14 atoms / cm 3 ).

ここで、初期酸素濃度および残存酸素濃度はFT−IRにより測定し、また、酸素析出物の密度はライトエッチング法により、サイズは透過型電子顕微鏡法によりそれぞれ求めた。   Here, the initial oxygen concentration and residual oxygen concentration were measured by FT-IR, the density of oxygen precipitates was determined by a light etching method, and the size was determined by a transmission electron microscope.

次に、板状の酸素析出物の場合と同様に、熱処理が施された各シリコンウェーハに対して、1000℃、1100℃および1200℃において熱応力を与え、酸素析出物を起点としてウェーハ内部からスリップが発生する臨界せん断応力を求めた。得られた結果を表2に示す。   Next, as in the case of the plate-like oxygen precipitate, thermal stress is applied to each of the heat-treated silicon wafers at 1000 ° C., 1100 ° C., and 1200 ° C., and the oxygen precipitate is used as a starting point from the inside of the wafer. The critical shear stress at which slip occurs was obtained. The obtained results are shown in Table 2.

Figure 0005533210
Figure 0005533210

酸素析出物が板状の場合と同様に、表2に示される八面体形状の酸素析出物に対する結果についても、臨界せん断応力は、熱処理後にウェーハに残存する酸素濃度および発生した酸素析出物のサイズと密接に関係していることが分かった。即ち、図2に示すように、デバイス作製工程において発生するスリップの臨界せん断応力は、ウェーハ製造段階の熱処理により発生した酸素析出物のサイズに対するシリコンウェーハ中の残存酸素濃度の比と強い相関を有していることを見出し、以下の関係式を導出した。   As in the case where the oxygen precipitates are plate-like, the critical shear stress of the results for the octahedral oxygen precipitates shown in Table 2 is determined by the oxygen concentration remaining on the wafer after the heat treatment and the size of the generated oxygen precipitates. It was found that it is closely related to. That is, as shown in FIG. 2, the critical shear stress of the slip generated in the device fabrication process has a strong correlation with the ratio of the residual oxygen concentration in the silicon wafer to the size of the oxygen precipitate generated by the heat treatment in the wafer manufacturing stage. The following relational expression was derived.

Figure 0005533210

ここで、τcriは臨界せん断応力(MPa)、Cは残存酸素濃度(atoms/cm)、Lは酸素析出物のサイズ(nm)、E=0.9eV、kはボルツマン定数、およびTはデバイス作製工程の温度(K)である。
Figure 0005533210

Here, tau cri critical shear stress (MPa), C o is the residual oxygen concentration (atoms / cm 3), L is the size of the oxygen precipitates (nm), E = 0.9eV, k is the Boltzmann constant, and T Is the temperature (K) of the device fabrication process.

こうして、板状の酸素析出物の場合と同様に、ウェーハ製造段階の熱処理により発生した酸素析出物のサイズL、シリコンウェーハ中の残存酸素濃度Cおよびデバイス作製工程の温度Tが決定されれば、デバイス作製工程においてスリップが発生する臨界せん断応力τcriを高精度に予測することができる。 Thus, as in the case of plate-like oxygen precipitates, the size L of the oxygen precipitates generated by heat treatment of the wafer manufacturing step, if the temperature T is determined residual oxygen concentration C o and device manufacturing process of the silicon wafer The critical shear stress τ cri that causes slip in the device manufacturing process can be predicted with high accuracy.

以上のように、酸素析出物の形状が板状および八面体形状の双方に対して、デバイス作製工程においてスリップが発生する臨界せん断応力τcriを高精度に予測することができることが分かった。従って、デバイス作製工程においてシリコンウェーハに対して如何なるせん断応力が課されるか、およびデバイス作製工程の温度が予め分かっていれば、式(4)または(5)から、デバイス作製工程においてスリップが発生することのないように、製造されるシリコンウェーハが満足すべき臨界せん断応力、および対応するC/Lの下限も求まる。 As described above, it was found that the critical shear stress τ cri at which slip occurs in the device manufacturing process can be predicted with high accuracy with respect to both the plate shape and the octahedral shape of the oxygen precipitate. Therefore, if any shear stress is imposed on the silicon wafer in the device manufacturing process and the temperature of the device manufacturing process is known in advance, a slip occurs in the device manufacturing process from Equation (4) or (5). so as not to, the critical shear stress satisfactory silicon wafers to be manufactured, and the lower limit of the corresponding C o / L also determined.

具体的には、まず、デバイス作製工程で使用されるシリコンウェーハがアニールウェーハであるか否かを特定し、スリップ発生の際の臨界せん断応力を予測する式(4)または(5)を決定する。次いで、デバイス作製工程の温度Tおよびシリコンウェーハに与えられる熱応力τを求める。熱応力の値は、式(1)〜(3)を用いて、シリコンウェーハ面における温度分布から求めることができる。   Specifically, first, it is determined whether or not the silicon wafer used in the device manufacturing process is an annealed wafer, and the formula (4) or (5) for predicting the critical shear stress at the time of occurrence of slip is determined. . Next, the temperature T in the device manufacturing process and the thermal stress τ applied to the silicon wafer are obtained. The value of the thermal stress can be obtained from the temperature distribution on the silicon wafer surface using equations (1) to (3).

こうして、デバイス作製工程におけるシリコンウェーハに与えられる熱応力および温度が得られたため、式(4)または(5)を用いて、シリコンウェーハが満足すべき臨界せん断応力τcriと対応するC/Lの下限値を求めることができる。そこで、ウェーハ製造プロセスの熱処理の際に発生する酸素析出物のサイズLと残存酸素濃度Cが、求められたC/Lの下限値以上となるように、ウェーハ製造段階の熱処理の温度および時間を適切に制御する。その際、熱処理の温度および時間は一意に決定されず、シリコンウェーハが満足すべき臨界せん断応力τcriに対応するC/Lの下限値以上となるように適切に制御しさえすればよい。 Thus, since the thermal stress and temperature applied to the silicon wafer in the device fabrication process were obtained, using Equation (4) or (5), C o / L corresponding to the critical shear stress τ cri that the silicon wafer should satisfy Can be obtained. Therefore, the temperature of the heat treatment in the wafer production stage is set so that the size L of the oxygen precipitates generated during the heat treatment in the wafer manufacturing process and the residual oxygen concentration Co are equal to or greater than the obtained lower limit of Co / L. Control time appropriately. At that time, the temperature and time of heat treatment is not uniquely determined, may be appropriately controlled even so that the above lower limit value of C o / L corresponding to the critical shear stress tau cri silicon wafer satisfactory.

こうして、シリコンウェーハ製造中の熱処理において酸素析出物のサイズやウェーハ中の残存酸素濃度が適切に制御されるため、デバイス作製工程においてシリコンウェーハに対して高速昇降温プロセスが施された場合にも、スリップが発生することのないウェーハを提供することができる。   Thus, since the size of oxygen precipitates and the residual oxygen concentration in the wafer are appropriately controlled in the heat treatment during silicon wafer production, even when a high-speed heating / cooling process is performed on the silicon wafer in the device manufacturing process, A wafer in which slip does not occur can be provided.

以下に、本発明の実施例について説明する。
(発明例1−1〜7−1)
まず、デバイス作製工程の温度条件を1000℃、シリコンウェーハが受ける熱応力を10MPa、酸素析出物の形状が板状であると設定した。次に、上記した式(4)で与えられた臨界せん断応力τcriと酸素析出物のサイズLに対する残存酸素濃度Cの比C/Lとの相関から、臨界せん断応力が10MPaとなるC/Lを求め、求めたC/L以上となる条件、即ち表1におけるA3(発明例1−1),A7(発明例2−1),A11(発明例3−1),A17(発明例4−1),A21(発明例5−1),A25(発明例6−1)およびA29(発明例7−1)の条件の下に熱処理を行った。続いて、得られたシリコンウェーハに対して1000℃でのRTA加熱により10MPaのせん断応力を与え、シリコンウェーハにおけるスリップ発生の有無を調べた。その結果、発明例1−1〜7−1の全てについて、スリップは発生しなかった。得られた結果を表3に示す。
Examples of the present invention will be described below.
(Invention Examples 1-1 to 7-1)
First, the temperature condition of the device manufacturing process was set to 1000 ° C., the thermal stress received by the silicon wafer was set to 10 MPa, and the shape of the oxygen precipitate was plate-shaped. Next, from the correlation between the critical shear stress τ cri given by the above equation (4) and the ratio C o / L of the residual oxygen concentration C o to the size L of the oxygen precipitates, the critical shear stress becomes 10 MPa. o / L is obtained, and the conditions that are equal to or greater than the obtained Co / L, that is, A3 (Invention Example 1-1), A7 (Invention Example 2-1), A11 (Invention Example 3-1), A17 in Table 1 Heat treatment was performed under the conditions of Invention Example 4-1), A21 (Invention Example 5-1), A25 (Invention Example 6-1), and A29 (Invention Example 7-1). Subsequently, a shear stress of 10 MPa was applied to the obtained silicon wafer by RTA heating at 1000 ° C., and the presence or absence of slip generation in the silicon wafer was examined. As a result, no slip occurred in all of Invention Examples 1-1 to 7-1. The obtained results are shown in Table 3.

(比較例1−1〜25−1)
発明例1−1〜7−1と同様に、デバイス作製工程の温度条件を1000℃、シリコンウェーハが受ける熱応力を10MPa、酸素析出物の形状が板状であると設定した。ただし、臨界せん断応力が10MPaとなるC/L未満となる条件で熱処理を行った。続いて、得られたシリコンウェーハに対して1000℃でのRTA加熱により10MPaのせん断応力を与え、シリコンウェーハにおけるスリップ発生の有無を調べた。その結果、全ての熱処理条件においてスリップが発生した。得られた結果を表3に示す。
(Comparative Examples 1-1 to 25-1)
Similarly to Invention Examples 1-1 to 7-1, the temperature condition of the device manufacturing process was set to 1000 ° C., the thermal stress applied to the silicon wafer was set to 10 MPa, and the shape of the oxygen precipitate was plate-shaped. However, the heat treatment was performed under the condition that the critical shear stress was less than Co / L at 10 MPa. Subsequently, a shear stress of 10 MPa was applied to the obtained silicon wafer by RTA heating at 1000 ° C., and the presence or absence of slip generation in the silicon wafer was examined. As a result, slip occurred in all heat treatment conditions. The obtained results are shown in Table 3.

Figure 0005533210
Figure 0005533210

(発明例1−2〜7−2)
まず、デバイス作製工程の温度条件を1100℃、シリコンウェーハが受ける熱応力を7MPa、酸素析出物の形状が板状であると設定した。次に、上記した式(4)で与えられた臨界せん断応力τcriと酸素析出物のサイズLに対する残存酸素濃度Cの比C/Lとの相関から、臨界せん断応力が7MPaとなるC/Lを求め、求めたC/L以上となる条件、即ち表1におけるA3(発明例1−2),A7(発明例2−2),A11(発明例3−2),A17(発明例4−2),A21(発明例5−2),A25(発明例6−2)およびA29(発明例7−2)の条件の下に熱処理を行った。続いて、得られたシリコンウェーハに対して1100℃でのRTA加熱により7MPaのせん断応力を与え、シリコンウェーハにおけるスリップ発生の有無を調べた。その結果、発明例1−2〜7−2の全てについて、スリップは発生しなかった。得られた結果を表4に示す。
(Invention Examples 1-2 to 7-2)
First, the temperature condition of the device fabrication process was set to 1100 ° C., the thermal stress received by the silicon wafer was set to 7 MPa, and the shape of the oxygen precipitate was a plate shape. Next, from the correlation between the critical shear stress τ cri given by the above equation (4) and the ratio C o / L of the residual oxygen concentration C o to the size L of the oxygen precipitates, C having a critical shear stress of 7 MPa is obtained. o / L is obtained, and the conditions that are equal to or greater than the obtained C o / L, that is, A3 (Invention Example 1-2), A7 (Invention Example 2-2), A11 (Invention Example 3-2), A17 ( Heat treatment was performed under the conditions of Invention Example 4-2), A21 (Invention Example 5-2), A25 (Invention Example 6-2), and A29 (Invention Example 7-2). Subsequently, a shear stress of 7 MPa was applied to the obtained silicon wafer by RTA heating at 1100 ° C., and the presence or absence of slip generation in the silicon wafer was examined. As a result, no slip occurred for all of Invention Examples 1-2 to 7-2. Table 4 shows the obtained results.

Figure 0005533210
Figure 0005533210

(比較例1−2〜25−2)
発明例1−2〜7−2と同様に、デバイス作製工程の温度条件を1100℃、シリコンウェーハが受ける熱応力を7MPa、酸素析出物の形状が板状であると設定した。ただし、臨界せん断応力が7MPaとなるC/L未満となる条件で熱処理を行った。続いて、得られたシリコンウェーハに対して1100℃でのRTA加熱により7MPaのせん断応力を与え、シリコンウェーハにおけるスリップ発生の有無を調べた。その結果、全ての熱処理条件においてスリップが発生した。得られた結果を表4に示す。
(Comparative Examples 1-2 to 25-2)
Similarly to Invention Examples 1-2 to 7-2, the temperature condition of the device fabrication process was set to 1100 ° C., the thermal stress received by the silicon wafer was set to 7 MPa, and the shape of the oxygen precipitate was plate-shaped. However, the heat treatment was performed under the condition that the critical shear stress was less than Co / L at 7 MPa. Subsequently, a shear stress of 7 MPa was applied to the obtained silicon wafer by RTA heating at 1100 ° C., and the presence or absence of slip generation in the silicon wafer was examined. As a result, slip occurred in all heat treatment conditions. Table 4 shows the obtained results.

(発明例1−3〜7−3)
まず、デバイス作製工程の温度条件を1200℃、シリコンウェーハが受ける熱応力を4MPa、酸素析出物の形状が板状であると設定した。次に、上記した式(4)で与えられた臨界せん断応力τcriと酸素析出物のサイズLに対する残存酸素濃度Cの比C/Lとの相関から、臨界せん断応力が4MPaとなるC/Lを求め、求めたC/L以上となる条件、即ち表1におけるA3(発明例1−3),A7(発明例2−3),A11(発明例3−3),A17(発明例4−3),A21(発明例5−3),A25(発明例6−3)およびA29(発明例7−3)の条件の下に熱処理を行った。続いて、得られたシリコンウェーハに対して1200℃でのRTA加熱により4MPaのせん断応力を与え、シリコンウェーハにおけるスリップ発生の有無を調べた。その結果、発明例1−3〜7−3の全てについて、スリップは発生しなかった。得られた結果を表5に示す。
(Invention Examples 1-3 to 7-3)
First, the temperature condition of the device fabrication process was set to 1200 ° C., the thermal stress received by the silicon wafer was 4 MPa, and the shape of the oxygen precipitate was a plate shape. Next, from the correlation between the critical shear stress τ cri given by the above formula (4) and the ratio C o / L of the residual oxygen concentration C o to the size L of the oxygen precipitates, C having a critical shear stress of 4 MPa is obtained. o / L is obtained, and the conditions that are equal to or greater than the obtained Co / L, that is, A3 (Invention Example 1-3), A7 (Invention Example 2-3), A11 (Invention Example 3-3), A17 in Table 1 Heat treatment was performed under the conditions of Invention Example 4-3), A21 (Invention Example 5-3), A25 (Invention Example 6-3), and A29 (Invention Example 7-3). Subsequently, a shear stress of 4 MPa was applied to the obtained silicon wafer by RTA heating at 1200 ° C., and the presence or absence of slip generation in the silicon wafer was examined. As a result, no slip occurred for all of Invention Examples 1-3 to 7-3. The results obtained are shown in Table 5.

Figure 0005533210
Figure 0005533210

(比較例1−3〜25−3)
発明例1−3〜7−3と同様に、デバイス作製工程の温度条件を1200℃、シリコンウェーハが受ける熱応力を4MPa、酸素析出物の形状が板状であると設定した。ただし、臨界せん断応力が4MPaとなるC/L未満となる条件で熱処理を行った。続いて、得られたシリコンウェーハに対して1200℃でのRTA加熱により4MPaのせん断応力を与え、シリコンウェーハにおけるスリップ発生の有無を調べた。その結果、全ての熱処理条件においてスリップが発生した。得られた結果を表5に示す。
(Comparative Examples 1-3 to 25-3)
Similarly to Invention Examples 1-3 to 7-3, the temperature condition of the device manufacturing process was set to 1200 ° C., the thermal stress applied to the silicon wafer was set to 4 MPa, and the shape of the oxygen precipitate was plate-shaped. However, the heat treatment was performed under the condition that the critical shear stress was less than Co / L at 4 MPa. Subsequently, a shear stress of 4 MPa was applied to the obtained silicon wafer by RTA heating at 1200 ° C., and the presence or absence of slip generation in the silicon wafer was examined. As a result, slip occurred in all heat treatment conditions. The results obtained are shown in Table 5.

(発明例8−1〜11−1)
まず、デバイス作製工程の温度条件を1000℃、シリコンウェーハが受ける熱応力を1.2MPa、酸素析出物の形状が八面体形状であると設定した。次に、上記した式(5)で与えられた臨界せん断応力τcriと酸素析出物のサイズLに対する残存酸素濃度Cの比C/Lとの相関から、臨界せん断応力が1.2MPaとなるC/Lを求め、求めたC/L以上となる条件、即ち表2におけるB1(発明例8−1),B4(発明例9−1),B7(発明例10−1)およびB9(発明例11−1)の条件の下に熱処理を行った。続いて、得られたシリコンウェーハに対して1000℃でのRTA加熱により1.2MPaのせん断応力を与え、シリコンウェーハにおけるスリップ発生の有無を調べた。その結果、発明例8−1〜11−1の全てについて、スリップは発生しなかった。得られた結果を表6に示す。
(Invention Examples 8-1 to 11-1)
First, the temperature condition of the device manufacturing process was set to 1000 ° C., the thermal stress received by the silicon wafer was set to 1.2 MPa, and the shape of the oxygen precipitate was an octahedral shape. Next, from the correlation between the critical shear stress τ cri given by the above equation (5) and the ratio C o / L of the residual oxygen concentration C o to the size L of the oxygen precipitate, the critical shear stress is 1.2 MPa. C o / L is obtained, and the conditions that are equal to or greater than the obtained C o / L, that is, B1 (Invention Example 8-1), B4 (Invention Example 9-1), B7 (Invention Example 10-1) in Table 2 and Heat treatment was performed under the conditions of B9 (Invention Example 11-1). Subsequently, a shear stress of 1.2 MPa was applied to the obtained silicon wafer by RTA heating at 1000 ° C., and the presence or absence of slip generation in the silicon wafer was examined. As a result, no slip occurred in all of Invention Examples 8-1 to 11-1. The results obtained are shown in Table 6.

Figure 0005533210
Figure 0005533210

(比較例26−1〜31−1)
発明例8−1〜11−1と同様に、デバイス作製工程の温度条件を1000℃、シリコンウェーハが受ける熱応力を1.2MPa、酸素析出物の形状が八面体形状であると設定した。ただし、臨界せん断応力が1.2MPaとなるC/L未満となる条件で熱処理を行った。続いて、得られたシリコンウェーハに対して1000℃でのRTA加熱により1.2MPaのせん断応力を与え、シリコンウェーハにおけるスリップ発生の有無を調べた。その結果、全ての熱処理条件においてスリップが発生した。得られた結果を表6に示す。
(Comparative Examples 26-1 to 31-1)
Similarly to Invention Examples 8-1 to 11-1, the temperature conditions in the device fabrication process were set to 1000 ° C., the thermal stress received by the silicon wafer was set to 1.2 MPa, and the oxygen precipitates were octahedral in shape. However, the critical shear stress is subjected to a heat treatment under the condition that the C o / less than L to be 1.2MPa. Subsequently, a shear stress of 1.2 MPa was applied to the obtained silicon wafer by RTA heating at 1000 ° C., and the presence or absence of slip generation in the silicon wafer was examined. As a result, slip occurred in all heat treatment conditions. The results obtained are shown in Table 6.

(発明例8−2〜11−2)
まず、デバイス作製工程の温度条件を1100℃、シリコンウェーハが受ける熱応力を1.0MPa、酸素析出物の形状が八面体形状であると設定した。次に、上記した式(5)で与えられた臨界せん断応力τcriと酸素析出物のサイズLに対する残存酸素濃度Cの比C/Lとの相関から、臨界せん断応力が1.0MPaとなるC/Lを求め、求めたC/L以上となる条件、即ち表2におけるB1(発明例8−2),B4(発明例9−2),B7(発明例10−2)およびB9(発明例11−2)の条件の下に熱処理を行った。続いて、得られたシリコンウェーハに対して1100℃でのRTA加熱により1.0MPaのせん断応力を与え、シリコンウェーハにおけるスリップ発生の有無を調べた。その結果、発明例8−2〜11−2の全てについて、スリップは発生しなかった。得られた結果を表7に示す。
(Invention Examples 8-2 to 11-2)
First, the temperature condition of the device manufacturing process was set to 1100 ° C., the thermal stress received by the silicon wafer was set to 1.0 MPa, and the shape of the oxygen precipitate was an octahedral shape. Next, from the correlation between the critical shear stress τ cri given by the above equation (5) and the ratio C o / L of the residual oxygen concentration C o to the size L of the oxygen precipitate, the critical shear stress is 1.0 MPa. C o / L is obtained, and the conditions that are equal to or greater than the obtained C o / L, that is, B1 (Invention Example 8-2), B4 (Invention Example 9-2), B7 (Invention Example 10-2) in Table 2 and Heat treatment was performed under the conditions of B9 (Invention Example 11-2). Subsequently, a shear stress of 1.0 MPa was applied to the obtained silicon wafer by RTA heating at 1100 ° C., and the presence or absence of slip generation in the silicon wafer was examined. As a result, no slip occurred in all of Invention Examples 8-2 to 11-2. The results obtained are shown in Table 7.

Figure 0005533210
Figure 0005533210

(比較例26−2〜31−2)
発明例8−2〜11−2と同様に、デバイス作製工程の温度条件を1100℃、シリコンウェーハが受ける熱応力を1.0MPa、酸素析出物の形状が八面体形状であると設定した。ただし、臨界せん断応力が1.0MPaとなるC/L未満となる条件で熱処理を行った。続いて、得られたシリコンウェーハに対して1100℃でのRTA加熱により1.0MPaのせん断応力を与え、シリコンウェーハにおけるスリップ発生の有無を調べた。その結果、全ての熱処理条件においてスリップが発生した。得られた結果を表7に示す。
(Comparative Examples 26-2 to 31-2)
Similarly to Invention Examples 8-2 to 11-2, the temperature condition of the device fabrication process was set to 1100 ° C., the thermal stress received by the silicon wafer was set to 1.0 MPa, and the shape of the oxygen precipitates was an octahedral shape. However, the heat treatment was performed under the condition that the critical shear stress was less than Co / L at which the pressure became 1.0 MPa. Subsequently, a shear stress of 1.0 MPa was applied to the obtained silicon wafer by RTA heating at 1100 ° C., and the presence or absence of slip generation in the silicon wafer was examined. As a result, slip occurred in all heat treatment conditions. The results obtained are shown in Table 7.

Claims (2)

デバイス作製工程において、シリコンウェーハが受けるせん断応力に起因してシリコンウェーハにスリップが発生する限界である臨界せん断応力と、シリコンウェーハの製造段階で施す熱処理を経た該ウェーハにおける酸素析出物のサイズLに対する残存酸素濃度Cの比C/Lとの相関を、前記デバイス作製工程の温度条件毎に予め求めること、
シリコンウェーハを供する実際のデバイス作製工程の温度条件に対応する前記相関に基づいて、前記実際のデバイス作製工程において前記シリコンウェーハが受ける熱応力を超える臨界せん断応力に対応するC/Lを求めること、
該C/L以上となる温度および時間の条件の下に前記熱処理を施すこと、
を特徴とする熱処理方法。
In the device fabrication process, the critical shear stress, which is the limit at which a silicon wafer slips due to the shear stress applied to the silicon wafer, and the size L of the oxygen precipitates in the wafer that has undergone the heat treatment applied in the silicon wafer manufacturing stage. Obtaining a correlation with the ratio C o / L of the residual oxygen concentration C o in advance for each temperature condition of the device fabrication process;
Obtaining Co / L corresponding to a critical shear stress exceeding the thermal stress that the silicon wafer receives in the actual device fabrication process, based on the correlation corresponding to the temperature condition of the actual device fabrication process that provides the silicon wafer. ,
Performing the heat treatment under conditions of temperature and time that are equal to or higher than the Co / L,
A heat treatment method characterized by the above.
前記臨界せん断応力τcriは、E=0.9eV、kをボルツマン定数、Tを前記実際のデバイス作製工程の温度として、下記の式(A)および(B)にて与えられることを特徴とする、請求項1に記載の熱処理方法。

前記熱処理が酸化性雰囲気中で行われる場合、
Figure 0005533210
それ以外の場合、
Figure 0005533210
The critical shear stress τ cri is given by the following equations (A) and (B), where E = 0.9 eV, k is the Boltzmann constant, and T is the temperature of the actual device fabrication process. The heat treatment method according to claim 1.
When the heat treatment is performed in an oxidizing atmosphere,
Figure 0005533210
Otherwise,
Figure 0005533210
JP2010106617A 2010-05-06 2010-05-06 Heat treatment method for silicon wafer Expired - Fee Related JP5533210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010106617A JP5533210B2 (en) 2010-05-06 2010-05-06 Heat treatment method for silicon wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010106617A JP5533210B2 (en) 2010-05-06 2010-05-06 Heat treatment method for silicon wafer

Publications (2)

Publication Number Publication Date
JP2011238664A JP2011238664A (en) 2011-11-24
JP5533210B2 true JP5533210B2 (en) 2014-06-25

Family

ID=45326356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010106617A Expired - Fee Related JP5533210B2 (en) 2010-05-06 2010-05-06 Heat treatment method for silicon wafer

Country Status (1)

Country Link
JP (1) JP5533210B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6458551B2 (en) * 2015-02-25 2019-01-30 株式会社Sumco Quality determination method for silicon wafer, method for manufacturing silicon wafer using the method, and silicon wafer
JP6413952B2 (en) 2015-06-26 2018-10-31 株式会社Sumco Quality determination method for silicon wafer, method for manufacturing silicon wafer using the method, and silicon wafer
JP6520754B2 (en) * 2016-02-22 2019-05-29 株式会社Sumco Method of predicting occurrence of slip dislocation, method of manufacturing silicon wafer using the method, method of heat treating silicon wafer, and silicon wafer

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10303208A (en) * 1997-04-30 1998-11-13 Toshiba Corp Semiconductor board and its manufacture
JPH11278991A (en) * 1998-03-27 1999-10-12 Shin Etsu Handotai Co Ltd Semiconductor silicon substrate
JP3279527B2 (en) * 1998-08-24 2002-04-30 住友金属工業株式会社 Method for evaluating IG capability in semiconductor silicon substrate and method for manufacturing semiconductor silicon substrate
JPWO2006003812A1 (en) * 2004-06-30 2008-04-17 株式会社Sumco Silicon wafer manufacturing method and silicon wafer manufactured by this method
JP5072460B2 (en) * 2006-09-20 2012-11-14 ジルトロニック アクチエンゲゼルシャフト Silicon wafer for semiconductor and manufacturing method thereof
TW200818327A (en) * 2006-09-29 2008-04-16 Sumco Techxiv Corp Silicon wafer heat treatment method

Also Published As

Publication number Publication date
JP2011238664A (en) 2011-11-24

Similar Documents

Publication Publication Date Title
JP5275036B2 (en) Heat treatment method for silicon wafer
EP1732114B1 (en) Method for producing silicon wafer for IGBT
JP6413952B2 (en) Quality determination method for silicon wafer, method for manufacturing silicon wafer using the method, and silicon wafer
US8187958B2 (en) Substrate processing method and method of manufacturing crystalline silicon carbide (SIC) substrate
JP5533210B2 (en) Heat treatment method for silicon wafer
JP6520754B2 (en) Method of predicting occurrence of slip dislocation, method of manufacturing silicon wafer using the method, method of heat treating silicon wafer, and silicon wafer
KR101882290B1 (en) Quality determination method of silicon wafer, method of manufacturing silicon wafer by using the same, and silicon wafer
JP5470769B2 (en) Heat treatment method for silicon wafer
JPH06295912A (en) Manufacture of silicon wafer and silicon wafer
KR20010040544A (en) Silicon wafer and method of manufacture thereof
JP3944958B2 (en) Silicon epitaxial wafer and manufacturing method thereof
Ono et al. Wafer strength and slip generation behavior in 300 mm wafers
JPH0897222A (en) Manufacture of silicon wafer, and silicon wafer
Yan et al. The Study of Slip Defects in Furnace High Temperature Process
JPH11297704A (en) Evaluation method for oxygen deposit density
CN117219508A (en) Method and device for processing epitaxial wafer and method for detecting epitaxial wafer
CN116646244A (en) Method and device for processing epitaxial wafer and method for detecting epitaxial wafer
Aghabekyan et al. Distribution of slip dislocations in thermally deformed silicon wafers
CN105723497B (en) The manufacturing method of epitaxial silicon chip and epitaxial silicon chip
JP2020035903A (en) Silicon wafer manufacturing method
JPH0897220A (en) Manufacture of silicon epitaxial wafer, and silicon epitaxial wafer
Moerschel et al. A study of the effects of oxygen content initial bow and furnace processing on warpage of three-inch diameter silicon wafers
JP2004296492A (en) Thermal treatment equipment
JP2001223220A (en) Heat-treating method of semiconductor wafer and semiconductor wafer
JP2006222266A (en) Method of evaluating heat treatment boat

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

R150 Certificate of patent or registration of utility model

Ref document number: 5533210

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140414

LAPS Cancellation because of no payment of annual fees