JP5532305B2 - Metal oxide nanocrystal manufacturing method, metal oxide nanocrystal array film manufacturing method, metal oxide nanocrystal array film-coated substrate, and manufacturing method thereof - Google Patents

Metal oxide nanocrystal manufacturing method, metal oxide nanocrystal array film manufacturing method, metal oxide nanocrystal array film-coated substrate, and manufacturing method thereof Download PDF

Info

Publication number
JP5532305B2
JP5532305B2 JP2010002843A JP2010002843A JP5532305B2 JP 5532305 B2 JP5532305 B2 JP 5532305B2 JP 2010002843 A JP2010002843 A JP 2010002843A JP 2010002843 A JP2010002843 A JP 2010002843A JP 5532305 B2 JP5532305 B2 JP 5532305B2
Authority
JP
Japan
Prior art keywords
metal oxide
substrate
oxide nanocrystal
array film
nanocrystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010002843A
Other languages
Japanese (ja)
Other versions
JP2011140426A (en
Inventor
一実 加藤
鋒 党
誠 桑原
肇 羽田
宏明 今井
智志 和田
匡 細倉
幸恵 中野
利昌 鈴木
直仁 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
National Institute of Advanced Industrial Science and Technology AIST
Taiyo Yuden Co Ltd
TDK Corp
Original Assignee
NGK Insulators Ltd
National Institute of Advanced Industrial Science and Technology AIST
Taiyo Yuden Co Ltd
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd, National Institute of Advanced Industrial Science and Technology AIST, Taiyo Yuden Co Ltd, TDK Corp filed Critical NGK Insulators Ltd
Priority to JP2010002843A priority Critical patent/JP5532305B2/en
Publication of JP2011140426A publication Critical patent/JP2011140426A/en
Application granted granted Critical
Publication of JP5532305B2 publication Critical patent/JP5532305B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、金属酸化物ナノ結晶の製造方法、金属酸化物ナノ結晶配列膜の作製方法、金属酸化物ナノ結晶配列膜被覆基板及びその製造方法に関するものであり、特に、触媒、燃料電池、センサー、薄膜キャパシタ等に利用することができる金属酸化物ナノ結晶の製造方法、金属酸化物ナノ結晶配列膜の作製方法、金属酸化物ナノ結晶配列膜被覆基板及びその製造方法に関するものである。   The present invention relates to a method for producing a metal oxide nanocrystal, a method for producing a metal oxide nanocrystal array film, a metal oxide nanocrystal array film-coated substrate, and a method for producing the same, and in particular, a catalyst, a fuel cell, and a sensor. The present invention relates to a method for producing a metal oxide nanocrystal, a method for producing a metal oxide nanocrystal array film, a metal oxide nanocrystal array film-coated substrate, and a method for producing the same.

酸化セリウム(CeO2)等の金属酸化物のナノ粒子(ナノ結晶)のモルフォロジー(形態)は触媒、磁性及び光学等においてその特性を決定する主要な因子であるため、明確に定義された形態を有するナノ結晶の合成に大きな関心が寄せられている。また、ナノ結晶が規則的に配列した膜はバルクとは異なる優れた特性を示すことが期待されることから、その配列を制御する方法が模索されている。特に酸化セリウムは機械的強度、酸素イオン伝導度、酸素貯蔵容量が高いという優れた特性を有するため、明確に定義された酸化セリウムナノ結晶及びその配列膜は触媒、燃料電池、センサー、薄膜キャパシタその他多くの応用が考えられ、その基礎研究が進められている(非特許文献1~10)。 The morphology (form) of metal oxide nanoparticles (nanocrystals) such as cerium oxide (CeO 2 ) is a major factor that determines their properties in catalysts, magnetism, optics, etc. There is great interest in the synthesis of nanocrystals. In addition, since a film in which nanocrystals are regularly arranged is expected to exhibit excellent characteristics different from the bulk, a method for controlling the arrangement is being sought. In particular, cerium oxide has excellent properties such as mechanical strength, oxygen ion conductivity, and high oxygen storage capacity, so well-defined cerium oxide nanocrystals and their alignment films are catalysts, fuel cells, sensors, thin film capacitors and many others The basic research is underway (Non-Patent Documents 1 to 10).

非特許文献1〜10において、酸化セリウムのナノ結晶の合成方法について報告されている。また、非特許文献7及び10においては、酸化セリウムの立方形状ナノ結晶の配列についても報告されている。   Non-Patent Documents 1 to 10 report methods for synthesizing cerium oxide nanocrystals. Non-Patent Documents 7 and 10 also report the arrangement of cubic nanocrystals of cerium oxide.

Yang, S.; Gao,L., J. Am. Chem. Soc.,128(2006) 9330-9331Yang, S .; Gao, L., J. Am. Chem. Soc., 128 (2006) 9330-9331 Yang, Z.; Yang, Y.; Liang, H.; Liu, L., Materials Letters 63(200)9) 1774-1777Yang, Z .; Yang, Y .; Liang, H .; Liu, L., Materials Letters 63 (200) 9) 1774-1777 Yang, Z.; Zhou, K.; Liu, X.; Tain, Q.; Lu., D; Yang, S., Nanotechnology 18(2007) 1-4Yang, Z .; Zhou, K .; Liu, X .; Tain, Q .; Lu., D; Yang, S., Nanotechnology 18 (2007) 1-4 Chen, H. I.; Chang, H. Y., Colloids and Surfaces A: Physicochem. Eng. Aspects 242(2004) 61-69Chen, H. I .; Chang, H. Y., Colloids and Surfaces A: Physicochem. Eng. Aspects 242 (2004) 61-69 Lu, X.; Li, X.; Chen, F.; Ni, C.; Chen, Z., Journal of Alloys and Compounds 474(2009) 958-962Lu, X .; Li, X .; Chen, F .; Ni, C .; Chen, Z., Journal of Alloys and Compounds 474 (2009) 958-962 Hirano, M.; Kato, E., J. Am. Ceram. Soc., 82[3] (1999) 786-788Hirano, M .; Kato, E., J. Am. Ceram. Soc., 82 [3] (1999) 786-788 Zhou, Fu.; Ni, Y.; Zhang, Y.; Zheng, H., Journal of Colloid and Interface Science 307(2007) 135-138Zhou, Fu .; Ni, Y .; Zhang, Y .; Zheng, H., Journal of Colloid and Interface Science 307 (2007) 135-138 Hirano, M.; Inagaki, M., J. Mater. Chem., 10 (2000) 473-477Hirano, M .; Inagaki, M., J. Mater. Chem., 10 (2000) 473-477 Qian L.; Zhu, J.; Du, W.; Qian, X., Materials Chemistry and Physics 115(2009) 835-840Qian L .; Zhu, J .; Du, W .; Qian, X., Materials Chemistry and Physics 115 (2009) 835-840 Zhang, J.; Ohara, S.; Umetsu, M.; Hatakeyama, Y.; Adschiri, T., Materials Adv. Mater., 19(2007) 203-206Zhang, J .; Ohara, S .; Umetsu, M .; Hatakeyama, Y .; Adschiri, T., Materials Adv. Mater., 19 (2007) 203-206

非特許文献1には、硝酸セリウム(III)水溶液に、トルエン、オレイン酸(OLA)及びt-ブチルアミンを混合して原料溶液を作製し、その原料溶液を用いて水熱反応によって酸化セリウムナノ結晶を合成する方法が開示されている。しかしながら、この方法ではt-ブチルアミンが硝酸セリウム(III)水溶液を急激に加水分解するため、ナノ結晶の形態を制御するのは容易ではない。また、非特許文献10に開示された酸化セリウムのナノ結晶の合成方法では、原料溶液を超臨界状態にする必要がある。
また、非特許文献7及び10において広範囲の領域(例えば、1μm以上)に酸化セリウムナノ結晶を配列された膜の作製方法については開示も示唆もない。
Non-Patent Document 1 discloses that a raw material solution is prepared by mixing toluene, oleic acid (OLA), and t-butylamine with a cerium (III) nitrate aqueous solution, and cerium oxide nanocrystals are formed by hydrothermal reaction using the raw material solution. A method of synthesis is disclosed. However, in this method, since t-butylamine rapidly hydrolyzes the cerium (III) nitrate aqueous solution, it is not easy to control the nanocrystal morphology. Further, in the method for synthesizing cerium oxide nanocrystals disclosed in Non-Patent Document 10, the raw material solution needs to be in a supercritical state.
In addition, in Non-Patent Documents 7 and 10, there is no disclosure or suggestion of a method for manufacturing a film in which cerium oxide nanocrystals are arranged in a wide range (for example, 1 μm or more).

本発明は、上記事情に鑑みてなされたものであって、金属酸化物ナノ結晶の形態を制御する新規な方法、及び、金属酸化物ナノ結晶を規則的に配列する新規な方法に基づいて、金属酸化物ナノ結晶の製造方法、金属酸化物ナノ結晶配列膜の作製方法、金属酸化物ナノ結晶配列膜被覆基板及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and based on a novel method for controlling the form of metal oxide nanocrystals, and a novel method for regularly arranging metal oxide nanocrystals, It aims at providing the manufacturing method of a metal oxide nanocrystal, the preparation method of a metal oxide nanocrystal arrangement film, a metal oxide nanocrystal arrangement film covering substrate, and its manufacturing method.

本発明者は、上記目的を達成するべく鋭意検討を行なった結果、水相と有機相との二液界面を利用することによって形態を制御して金属酸化物ナノ結晶を製造することができること、また、金属酸化物ナノ結晶を含む分散液を基板に滴下した際に溶媒をすばやく吸収して除去することによって金属酸化物ナノ結晶が規則的に配列した膜を作製することができることを見出し、本発明を完成させた。   As a result of intensive studies to achieve the above object, the present inventor can produce metal oxide nanocrystals by controlling the form by utilizing a two-liquid interface between an aqueous phase and an organic phase, In addition, when a dispersion liquid containing metal oxide nanocrystals is dropped onto a substrate, it is found that a film in which metal oxide nanocrystals are regularly arranged can be produced by quickly absorbing and removing the solvent. Completed the invention.

本発明は以下の構成を採用する。すなわち、
(1)金属塩の水溶液の上部に、前記水溶液よりも比重の小さい非極性有機溶媒及び有機界面活性剤の混合溶液を加えて二相に分離後に、前記二相のうちの上相に塩基性有機化合物を添加した溶液を加熱して合成することを特徴とする金属酸化物ナノ結晶の製造方法。
(2)前記金属塩が、セリウム塩、インジウム塩、鉄塩、コバルト塩、チタン塩、ジルコニウム塩、バリウム塩、及びストロンチウム塩の群から選択されたことを特徴とする前項(1)に記載の金属酸化物ナノ結晶の製造方法。
(3)前記非極性有機溶媒がトルエン及びヘキサンの群から選択され、前記有機界面活性剤がオレイン酸、デカン酸などのカルボン酸、ポリエチレンイミン(PEI)、ヘキサデシルトリメチルアンモニウムブロマイド(HTAB)、及びポリエチレンソルビタントリオレアーテ(Tween−85)の群から選択され、前記塩基性有機化合物がt-ブチルアミン、へプチルアミン、オクチルアミン、ドデシルアミン、ヘキサデシルアミン、オレイルアミン、及びヘキサメチレンテトラミンなどのアミン類の群から選択されたことを特徴とする前項(1)又は(2)のいずれかに記載の金属酸化物ナノ結晶の製造方法。
(4)前記セリウム塩が硝酸セリウムであり、前記非極性有機溶媒がトルエンであり、前記有機界面活性剤がオレイン酸であり、前記塩基性有機化合物がt-ブチルアミンであることを特徴とする前項(3)に記載の金属酸化物ナノ結晶の製造方法。
(5)前記合成を、前記オレイン酸の濃度:前記セリウムの濃度=7:1〜12:1とし、前記合成の温度を180〜220℃とし、前記合成の時間を30〜60時間として行うことを特徴とする前項(4)に記載の金属酸化物ナノ結晶の製造方法。
(6)前項(1)〜(5)に記載の金属酸化物ナノ結晶の製造方法によって製造された金属酸化物ナノ結晶を含む前記上相を、基板上に滴下する工程と、滴下した前記上相の溶媒を吸収して除去する工程と、を備えたことを特徴とする金属酸化物ナノ結晶配列膜の作製方法。
(7)前記溶媒の除去を、吸湿部材を用いて行うことを特徴とする前項(6)に記載の金属酸化物ナノ結晶配列膜の作製方法。
(8)前記吸湿部材が濾紙であることを特徴とする前項(7)に記載の金属酸化物ナノ結晶配列膜の作製方法。
(9)基板と、前項(6)〜(8)のいずれか一項に記載の金属酸化物ナノ結晶配列膜の作製方法によって前記基板上に作製された金属酸化物ナノ結晶配列膜と、を備えたことを特徴とする金属酸化物ナノ結晶配列膜被覆基板の製造方法。
(10)前記基板が、FTO、ITO、ガラス、シリコン、金属、セラミックス、ポリマー、紙、ゴム、及び、低耐熱性基材の群から選択されたことを特徴とする前項(9)に記載の金属酸化物ナノ結晶配列膜被覆基板の製造方法。
(11)基板と、該基板上に、立方形状の金属酸化物ナノ結晶が四方格子状に配列した領域と六方格子状に配列した領域とからなる金属酸化物ナノ結晶膜と、を備えたことを特徴とする金属酸化物ナノ結晶配列膜被覆基板。
(12)前記金属酸化物ナノ結晶が酸化セリウムナノ結晶であり、前記四方格子状に配列した領域と前記六方格子状に配列した領域の比が3:1〜1:3であることを特徴とする前項(11)に記載の金属酸化物ナノ結晶配列膜被覆基板。
(13)前記基板が、FTO、ITO、ガラス、シリコン、金属、セラミックス、ポリマー、紙、ゴム、及び、低耐熱性基材の群から選択されたことを特徴とする前項(11)又は(12)のいずれかに記載の金属酸化物ナノ結晶配列膜被覆基板。
The present invention employs the following configuration. That is,
(1) A mixed solution of a nonpolar organic solvent and an organic surfactant having a specific gravity smaller than that of the aqueous solution is added to the upper part of the aqueous solution of the metal salt, and after separation into two phases, the upper phase of the two phases is basic. A method for producing metal oxide nanocrystals, comprising heating and synthesizing a solution to which an organic compound has been added.
(2) The metal salt is selected from the group consisting of a cerium salt, an indium salt, an iron salt, a cobalt salt, a titanium salt, a zirconium salt, a barium salt, and a strontium salt, as described in (1) above A method for producing metal oxide nanocrystals.
(3) the nonpolar organic solvent is selected from the group of toluene and hexane, and the organic surfactant is a carboxylic acid such as oleic acid or decanoic acid, polyethyleneimine (PEI), hexadecyltrimethylammonium bromide (HTAB), and Selected from the group of polyethylene sorbitan trioleate (Tween-85), wherein the basic organic compound is a group of amines such as t-butylamine, heptylamine, octylamine, dodecylamine, hexadecylamine, oleylamine, and hexamethylenetetramine The method for producing metal oxide nanocrystals according to any one of (1) and (2) above, wherein
(4) The preceding item, wherein the cerium salt is cerium nitrate, the nonpolar organic solvent is toluene, the organic surfactant is oleic acid, and the basic organic compound is t-butylamine. The manufacturing method of the metal oxide nanocrystal as described in (3).
(5) The synthesis is performed with the oleic acid concentration: the cerium concentration = 7: 1 to 12: 1, the synthesis temperature of 180 to 220 ° C., and the synthesis time of 30 to 60 hours. The method for producing a metal oxide nanocrystal according to item (4), wherein
(6) A step of dripping the upper phase containing the metal oxide nanocrystals produced by the method for producing metal oxide nanocrystals according to the above (1) to (5) onto a substrate, and the upper portion dropped And a step of absorbing and removing the phase solvent. A method for producing a metal oxide nanocrystal array film, comprising:
(7) The method for producing a metal oxide nanocrystal array film as described in (6) above, wherein the solvent is removed using a hygroscopic member.
(8) The method for producing a metal oxide nanocrystal array film as described in (7) above, wherein the hygroscopic member is a filter paper.
(9) A substrate and a metal oxide nanocrystal array film manufactured on the substrate by the method for manufacturing a metal oxide nanocrystal array film according to any one of (6) to (8) above. A method for producing a substrate coated with a metal oxide nanocrystal array film, comprising:
(10) The said board | substrate was selected from the group of FTO, ITO, glass, a silicon | silicone, a metal, ceramics, a polymer, paper, rubber | gum, and a low heat resistant base material, The said clause (9) characterized by the above-mentioned. A method for producing a metal oxide nanocrystal array film-coated substrate.
(11) A substrate, and a metal oxide nanocrystal film comprising a region in which cubic metal oxide nanocrystals are arranged in a tetragonal lattice and a region in which hexagonal lattices are arranged on the substrate are provided on the substrate. A metal oxide nanocrystal array film-coated substrate characterized by the above.
(12) The metal oxide nanocrystal is a cerium oxide nanocrystal, and a ratio of the region arranged in the tetragonal lattice shape to the region arranged in the hexagonal lattice shape is 3: 1 to 1: 3. The metal oxide nanocrystal array film-coated substrate according to (11) above.
(13) In the previous item (11) or (12), the substrate is selected from the group consisting of FTO, ITO, glass, silicon, metal, ceramics, polymer, paper, rubber, and a low heat resistant substrate. The metal oxide nanocrystal array film-coated substrate according to any one of the above.

本発明の金属酸化物ナノ結晶の製造方法において、金属塩の水溶液の上部に、その水溶液よりも比重の小さい非極性有機溶媒及び有機界面活性剤の混合溶液を加える際は、水溶液の上部に静かに比重の小さい混合溶液を加えるのが好ましく、混合攪拌操作は行わない。その後に加える塩基性有機化合物が水溶液相に入って急速に加水分解が起こるのを防止するためである。   In the method for producing metal oxide nanocrystals of the present invention, when a mixed solution of a nonpolar organic solvent and an organic surfactant having a specific gravity smaller than that of the aqueous solution is added to the upper part of the aqueous solution of the metal salt, It is preferable to add a mixed solution having a small specific gravity, and no mixing and stirring operation is performed. This is to prevent the basic organic compound added thereafter from entering the aqueous solution phase and causing rapid hydrolysis.

本発明の金属酸化物ナノ結晶の製造方法は、水相と有機相との二液界面を形成し、この二液界面という狭い二次元領域においてナノ結晶を合成するのが特徴である。すなわち、有機相に添加した塩基性有機化合物は水相と有機相との二液界面まで自然拡散し、その二液界面で加水分解が生じて、金属水酸化物が生成され、金属水酸化物から脱水若しくは酸化により金属酸化物が生成され、この金属酸化物が凝集してナノ結晶が生成される。
例えば、酸化セリウムナノ結晶を製造する場合、二液界面におけるナノ結晶の成長のメカニズムは以下のように考えられる。酸化セリウムナノ結晶は、結晶成長が十分に進むと、表面エネルギーの一番小さな(111)面で囲まれた正八面体になるが、その八面体状のナノ結晶になる途中段階では、(111)面のほかに、八面体状の頂点が面取りされた(100)面を最大6個有する形状の状態(以下「多面形状」という)がある。この際、(111)面よりも(100)面の方が表面エネルギーが大きいために、有機界面活性剤の分子は(111)面よりも(100)面に吸着し易い。そのため、(100)面は結晶成長が進みにくくなるのに対して、(111)面の結晶成長は有機界面活性剤分子に邪魔されずに進み、8個全ての(111)面の成長が進んで頂点を形成すると、全体として立方形状となる。
本発明は、二液界面において加水分解を生じてさせて金属水酸化物を生成すると共に、界面活性剤が界面に集中する性質を利用して、二液界面という狭い二次元領域において、立方形状の酸化セリウムナノ結晶の成長を行うことにより、各ナノ結晶の成長環境や成長時間等のばらつきを抑制することで、ナノ結晶の形態やサイズを制御するものである。
The metal oxide nanocrystal production method of the present invention is characterized by forming a two-liquid interface between an aqueous phase and an organic phase and synthesizing nanocrystals in a narrow two-dimensional region called the two-liquid interface. That is, the basic organic compound added to the organic phase spontaneously diffuses to the two-liquid interface between the aqueous phase and the organic phase, and hydrolysis occurs at the two-liquid interface to produce a metal hydroxide, thereby producing a metal hydroxide. A metal oxide is produced by dehydration or oxidation, and the metal oxide aggregates to form nanocrystals.
For example, when producing cerium oxide nanocrystals, the mechanism of nanocrystal growth at the two-liquid interface is considered as follows. When the crystal growth proceeds sufficiently, the cerium oxide nanocrystal becomes a regular octahedron surrounded by the (111) plane having the smallest surface energy, but in the middle of becoming the octahedral nanocrystal, the (111) plane In addition, there is a state (hereinafter referred to as “polyhedral shape”) having a maximum of six (100) planes whose chamfered octahedral vertices are formed. At this time, since the (100) plane has a larger surface energy than the (111) plane, the molecules of the organic surfactant are more easily adsorbed to the (100) plane than the (111) plane. Therefore, the crystal growth on the (100) plane is difficult to proceed, whereas the crystal growth on the (111) plane proceeds without being obstructed by the organic surfactant molecules, and the growth of all eight (111) planes proceeds. When the apex is formed, the whole becomes a cubic shape.
The present invention produces a metal hydroxide by causing hydrolysis at the two-liquid interface, and utilizes the property that the surfactant concentrates on the interface, so that the cubic shape is formed in a narrow two-dimensional region called the two-liquid interface. By controlling the growth of cerium oxide nanocrystals and suppressing variations in the growth environment and growth time of each nanocrystal, the morphology and size of the nanocrystals are controlled.

本発明の金属酸化物ナノ結晶配列膜の作製方法において、金属酸化物ナノ結晶を含む上相を基板上に滴下した後、滴下した上相の溶媒を吸収して除去する構成によって、溶媒を自然乾燥によってゆっくり除去するのではなく、吸収によって急速に除去する。この構成により、滴下した液滴の乾燥過程で、液滴に含まれるナノ結晶と界面活性剤からなる微細構造の破壊を防ぎ、規則的な配列構造を広範囲に形成することを可能にしている。   In the method for producing a metal oxide nanocrystal array film according to the present invention, after the upper phase containing the metal oxide nanocrystals is dropped on the substrate, the solvent is naturally removed by absorbing and removing the dropped upper phase solvent. Rather than remove slowly by drying, remove rapidly by absorption. With this configuration, it is possible to prevent a fine structure composed of nanocrystals and a surfactant contained in the droplet during the drying process of the dropped droplet and form a regular array structure over a wide range.

本発明の金属酸化物ナノ結晶配列膜被覆基板において、「立方形状の金属酸化物ナノ結晶…からなる膜」は、透過電子顕微鏡(TEM)像において、立方形状の金属酸化物ナノ結晶のみが観察され、多面形状の金属酸化物ナノ結晶は観察されないことで確認できるが、後述の実施例においては、透過電子顕微鏡(TEM)の電子回折スポットで、(111)面(これと等価な面を含む)に対応するスポットを目視できないことにより確認した。   In the metal oxide nanocrystal array film-coated substrate of the present invention, “a film made of cubic metal oxide nanocrystals” is observed only in a cubic metal oxide nanocrystal in a transmission electron microscope (TEM) image. In addition, in the examples described later, the electron diffraction spot of the transmission electron microscope (TEM) is a (111) plane (including a plane equivalent to this). This was confirmed by the fact that the spot corresponding to) was not visible.

本発明の金属酸化物ナノ結晶配列膜被覆基板の製造方法で製造した金属酸化物ナノ結晶配列膜被覆基板は、金属酸化物ナノ結晶が酸化セリウムナノ結晶である場合、立方形状の金属酸化物ナノ結晶が四方格子状に配列した領域と六方格子状に配列した領域の比が3:1〜1:3となる。   When the metal oxide nanocrystal is a cerium oxide nanocrystal, the metal oxide nanocrystal array film coated substrate manufactured by the method for manufacturing the metal oxide nanocrystal array film coated substrate of the present invention has a cubic shape. The ratio of the region arranged in a tetragonal lattice to the region arranged in a hexagonal lattice is 3: 1 to 1: 3.

本発明の金属酸化物ナノ結晶の製造方法は、金属塩の水溶液の上部に、その水溶液よりも比重の小さい非極性有機溶媒及び有機界面活性剤の混合溶液を加えて二相に分離後に、二相のうちの上相に塩基性有機化合物を添加する構成なので、塩基性有機化合物が水相に入って急速に加水分解が起こり、酸化セリウムナノ結晶の形態を制御することが困難になるという不都合を回避できる。
また、本発明の金属酸化物ナノ結晶の製造方法では、水相と有機相の二液界面という狭い二次元領域においてナノ結晶の合成を行うため、その形態の制御が容易である。例えば、合成されるナノ結晶が酸化セリウムナノ結晶の場合は全てのナノ結晶を立方形状にすることができる。
また、本発明の金属酸化物ナノ結晶の製造方法では、水相と有機相の二液界面という狭い二次元領域においてナノ結晶の合成を行うため、そのサイズの制御も容易であり、ナノ結晶のサイズのばらつきが小さい。例えば、合成されるナノ結晶が酸化セリウムナノ結晶の場合は、サイズのばらつきを、合成される酸化セリウムナノ結晶のうちの80%以上で3nm以下にすることができる。ナノ結晶の性質はサイズ依存性が大きいため、ばらつきが小さいナノ結晶を用いると特性を正確に制御することが可能になる。
In the method for producing metal oxide nanocrystals of the present invention, a mixed solution of a nonpolar organic solvent and an organic surfactant having a specific gravity smaller than that of the aqueous solution is added to the upper part of the aqueous solution of the metal salt and separated into two phases. Since the basic organic compound is added to the upper phase of the phase, the basic organic compound enters the aqueous phase and rapidly hydrolyzes, making it difficult to control the morphology of the cerium oxide nanocrystals. Can be avoided.
In addition, in the method for producing metal oxide nanocrystals of the present invention, since the nanocrystals are synthesized in a narrow two-dimensional region such as a two-liquid interface between an aqueous phase and an organic phase, the form can be easily controlled. For example, when the synthesized nanocrystal is a cerium oxide nanocrystal, all the nanocrystals can be made into a cubic shape.
In addition, in the method for producing metal oxide nanocrystals of the present invention, since the nanocrystals are synthesized in a narrow two-dimensional region, ie, the two-liquid interface between the aqueous phase and the organic phase, the size of the nanocrystals can be easily controlled. Small variation in size. For example, when the synthesized nanocrystal is a cerium oxide nanocrystal, the variation in size can be 80% or more of the synthesized cerium oxide nanocrystal to 3 nm or less. Since the properties of nanocrystals are large in size dependence, it is possible to accurately control the characteristics by using nanocrystals with small variations.

本発明の金属酸化物ナノ結晶の製造方法において、金属塩としてセリウム塩、インジウム塩、鉄塩、コバルト塩、チタン塩、ジルコニウム塩、バリウム塩、ストロンチウム塩の群から選択し、非極性有機溶媒としてトルエン及びヘキサンの群から選択し、有機界面活性剤としてオレイン酸、デカン酸などのカルボン酸、ポリエチレンイミン(PEI)、ヘキサデシルトリメチルアンモニウムブロマイド(HTAB)、ポリエチレンソルビタントリオレアーテ(Tween−85)の群から選択し、塩基性有機化合物としてt-ブチルアミン、へプチルアミン、オクチルアミン、ドデシルアミン、ヘキサデシルアミン、オレイルアミン、ヘキサメチレンテトラミンなどのアミン類の群から選択する構成とするのが好ましく、この場合、酸化セリウム、酸化インジウム、酸化鉄、酸化コバルト、酸化チタン、酸化ジルコニウム、チタン酸バリウム、チタン酸ストロンチウム、チタン酸バリウムストロンチウム、ジルコン酸バリウム、ジルコン酸ストロンチウム、ジルコン酸バリウムストロンチウム、チタン酸ジルコン酸バリウム、チタン酸ジルコン酸ストロンチウム、チタン酸ジルコン酸バリウムストロンチウムのナノ結晶を合成することができる。   In the method for producing metal oxide nanocrystals of the present invention, the metal salt is selected from the group of cerium salt, indium salt, iron salt, cobalt salt, titanium salt, zirconium salt, barium salt, strontium salt, and the nonpolar organic solvent A group selected from the group of toluene and hexane, carboxylic acids such as oleic acid and decanoic acid, polyethyleneimine (PEI), hexadecyltrimethylammonium bromide (HTAB), and polyethylene sorbitan trioleate (Tween-85) as organic surfactants Preferably, the basic organic compound is selected from the group of amines such as t-butylamine, heptylamine, octylamine, dodecylamine, hexadecylamine, oleylamine, hexamethylenetetramine, and in this case, Cerium oxide Indium oxide, iron oxide, cobalt oxide, titanium oxide, zirconium oxide, barium titanate, strontium titanate, barium strontium titanate, barium zirconate, strontium zirconate, barium strontium zirconate, barium zirconate titanate, zirconate titanate Nanocrystals of strontium acid and barium strontium zirconate titanate can be synthesized.

本発明の金属酸化物ナノ結晶の製造方法において、セリウム塩が硝酸セリウムであり、非極性有機溶媒がトルエンであり、有機界面活性剤がオレイン酸であり、塩基性有機化合物がt-ブチルアミンであり、合成を、オレイン酸の濃度:セリウムの濃度=7:1〜12:1とし、合成の温度を180〜220℃とし、合成の時間を30〜60時間として行うのが好ましく、この構成とすることにより、立方形状の酸化セリウムナノ結晶をサイズのばらつきが抑制された状態で合成することができる。これに対して、かかる数値範囲外で酸化セリウムナノ結晶を合成した場合には、結晶サイズが大きな酸化セリウムナノ結晶が含まれたり、また、立方形状ではなく、球状形状や多面形状の酸化セリウムナノ結晶の割合が高くなるという不都合が生ずる。
この構成によって合成される立方形状の酸化セリウムナノ結晶は、80%以上は5nm〜8nmのサイズであって、かつ、そのばらつきは80%以上の立方形状の酸化セリウムナノ結晶を3nm以下である。
しかしながら、セリウムの濃度に対するオレイン酸の濃度が上記7:1よりも低い場合には、10nm以上の立方形状の酸化セリウムナノ結晶も形成されてしまい、また、上記12:1よりも高い場合は、酸化セリウムナノ結晶のサイズ及び形状の制御が困難である。
また、上記7:1よりも低い場合には、基板上に規則的に配列させるのが難しいという不都合もある。
また、合成の温度が180℃より低い場合には、(111)面に対応するスポットが現れるほど、多面形状の酸化セリウムナノ結晶の割合が高く、また、220℃より高い場合は、酸化セリウムナノ結晶のサイズ及び形状の制御が困難である。
また、合成の時間を30時間よりも短い場合、及び、60時間よりも長い場合には、(111)面に対応するスポットが現れるほど、多面形状の酸化セリウムナノ結晶の割合が高くなる。
In the method for producing metal oxide nanocrystals of the present invention, the cerium salt is cerium nitrate, the nonpolar organic solvent is toluene, the organic surfactant is oleic acid, and the basic organic compound is t-butylamine. The synthesis is preferably carried out at a concentration of oleic acid: concentration of cerium = 7: 1 to 12: 1, a synthesis temperature of 180 to 220 ° C., and a synthesis time of 30 to 60 hours. Thus, cubic cerium oxide nanocrystals can be synthesized in a state where variation in size is suppressed. On the other hand, when cerium oxide nanocrystals were synthesized outside this numerical range, cerium oxide nanocrystals with a large crystal size were included, and the ratio of cerium oxide nanocrystals with spherical or multifaceted shapes instead of cubic shapes Inconvenience occurs.
Cubic cerium oxide nanocrystals synthesized by this configuration are 80% or more in size of 5 nm to 8 nm, and the variation is 80 nm or more of cubic cerium oxide nanocrystals of 3 nm or less.
However, when the concentration of oleic acid with respect to the concentration of cerium is lower than 7: 1, cubic cerium oxide nanocrystals of 10 nm or more are formed, and when the concentration is higher than 12: 1, oxidation occurs. It is difficult to control the size and shape of cerium nanocrystals.
Further, when the ratio is lower than 7: 1, it is difficult to regularly arrange on the substrate.
In addition, when the synthesis temperature is lower than 180 ° C., the proportion of polyhedral cerium oxide nanocrystals is higher as the spot corresponding to the (111) plane appears, and when the synthesis temperature is higher than 220 ° C., the cerium oxide nanocrystals. Size and shape are difficult to control.
In addition, when the synthesis time is shorter than 30 hours and longer than 60 hours, the more the spots corresponding to the (111) plane appear, the higher the ratio of polyhedral cerium oxide nanocrystals.

本発明の金属酸化物ナノ結晶配列膜の作製方法において、金属酸化物ナノ結晶を含む上相を基板上に滴下した後、滴下した上相の溶媒を吸収して除去するのが好ましく、この構成とすることによって、金属酸化物ナノ結晶を基板上の広範囲の領域(1μm以上)においても規則的に配列させて金属酸化物ナノ結晶の配列膜を製造することができる。
この溶媒の除去は吸湿部材を用いて行うのが好ましく、この吸湿部材としては濾紙が好ましい。
吸湿部材を利用して溶媒を急速に除去することにより、滴下した液滴の乾燥過程で、液滴に含まれるナノ結晶と界面活性剤からなる微細構造の破壊を防ぎ、規則的な配列構造を広範囲に形成することを可能にしている。
In the method for producing a metal oxide nanocrystal array film of the present invention, it is preferable that after dropping an upper phase containing a metal oxide nanocrystal on a substrate, the solvent of the dropped upper phase is absorbed and removed. By doing so, the metal oxide nanocrystals can be regularly arranged even in a wide area (1 μm or more) on the substrate to produce an array film of metal oxide nanocrystals.
The removal of the solvent is preferably performed using a hygroscopic member, and filter paper is preferred as the hygroscopic member.
By removing the solvent rapidly using a moisture absorbing member, the microstructure of the nanocrystals and surfactant contained in the droplet is prevented from being destroyed during the drying process of the dropped droplet, and a regular array structure is obtained. It is possible to form a wide range.

本発明の金属酸化物ナノ結晶配列膜被覆基板の製造方法により製造した金属酸化物ナノ結晶配列膜被覆基板では、単結晶からなる金属酸化物ナノ結晶が規則的に配列された金属酸化物ナノ結晶配列膜を備えているので、ナノ結晶一つ一つの性質や、ナノ結晶間の界面が導く機能を有効に発現させることができ、様々な電子デバイスへの応用が可能になる。   In the metal oxide nanocrystal array film-coated substrate manufactured by the method for manufacturing a metal oxide nanocrystal array film-coated substrate of the present invention, metal oxide nanocrystals in which metal oxide nanocrystals composed of single crystals are regularly arranged are arranged. Since the array film is provided, the properties of each nanocrystal and the function guided by the interface between the nanocrystals can be expressed effectively, and application to various electronic devices becomes possible.

本発明の金属酸化物ナノ結晶配列膜被覆基板は、基板上に、立方形状の金属酸化物ナノ結晶が四方格子状に配列した領域と六方格子状に配列した領域とからなる金属酸化物ナノ結晶膜を備えた金属酸化物ナノ結晶配列膜被覆基板であって規則的に配列された金属酸化物ナノ結晶の配列膜を備えているので、ナノ結晶一つ一つの性質や、ナノ結晶間の界面が導く機能を有効に発現させることができ、様々な電子デバイスへの応用が可能になる。   The metal oxide nanocrystal array film-coated substrate of the present invention is a metal oxide nanocrystal comprising a region in which cubic metal oxide nanocrystals are arranged in a tetragonal lattice and a region in which a hexagonal lattice is arranged on the substrate. Metal oxide nanocrystal array film coated substrate with a film, which has an array film of regularly arranged metal oxide nanocrystals, so the properties of each nanocrystal and the interface between nanocrystals Therefore, it is possible to effectively develop the function guided by the above-mentioned, and application to various electronic devices becomes possible.

本発明の金属酸化物ナノ結晶配列膜被覆基板において、その金属酸化物ナノ結晶が酸化セリウムナノ結晶であり、酸化セリウムナノ結晶が規則的に配列された金属酸化物ナノ結晶配列膜を備えているので、ナノ結晶一つ一つの性質や、ナノ結晶間の界面が導く機能を有効に発現させることができ、様々な電子デバイスへの応用が可能になる。   In the metal oxide nanocrystal array film-coated substrate of the present invention, the metal oxide nanocrystal is a cerium oxide nanocrystal, and has a metal oxide nanocrystal array film in which cerium oxide nanocrystals are regularly arranged. The properties of each nanocrystal and the function guided by the interface between the nanocrystals can be expressed effectively, and application to various electronic devices becomes possible.

本発明を適用した一実施形態である酸化セリウムナノ結晶配列膜被覆基板表面の透過型電子顕微鏡像である。It is a transmission electron microscope image of the cerium oxide nanocrystal arrangement film coating substrate surface which is one embodiment to which the present invention is applied. 本発明を適用した一実施形態である酸化セリウムナノ結晶配列膜被覆基板表面の透過型電子顕微鏡の高分解能像である。It is a high-resolution image of the transmission electron microscope of the cerium oxide nanocrystal arrangement | sequence film | membrane coated substrate surface which is one Embodiment to which this invention is applied. 本発明の実施例1における2種類の領域(a)及び(b)のTEM像、電子回折スポット像、及びTEM像の2次元パターンのFFT像である。It is the TEM image of two types of area | regions (a) and (b) in Example 1 of this invention, an electron diffraction spot image, and the FFT image of the two-dimensional pattern of a TEM image. 本発明の(a)実施例2、(b)実施例3、及び(c)比較例1、のそれぞれのTEM像、電子回折スポット像、及びTEM像の2次元パターンのFFT像である。It is the FFT image of the two-dimensional pattern of each TEM image, electron diffraction spot image, and TEM image of (a) Example 2, (b) Example 3, and (c) Comparative Example 1 of this invention. 本発明の(a)実施例4、(b)実施例5、(c)実施例6、及び(d)比較例2、のそれぞれのTEM像、電子回折スポット像、及びTEM像の2次元パターンのFFT像である。Two-dimensional patterns of TEM images, electron diffraction spot images, and TEM images of (a) Example 4, (b) Example 5, (c) Example 6, and (d) Comparative Example 2 of the present invention. It is the FFT image of this. 本発明の実施例7における2種類(a)及び(b)の領域のTEM像、電子回折スポット像、及びTEM像の2次元パターンのFFT像である。It is a TEM image of two types (a) and (b) field in Example 7 of the present invention, an electron diffraction spot image, and an FFT image of a two-dimensional pattern of a TEM image. 本発明の実施例8における2種類(a)及び(b)のTEM像、電子回折スポット像、及びTEM像の2次元パターンのFFT像である。It is an FFT image of the two-dimensional pattern of two types (a) and (b) of TEM images, electron diffraction spot images, and TEM images in Example 8 of the present invention. (a)比較例3、(b)比較例4、及び(c)比較例5のTEM像、電子回折スポット像、及びTEM像の2次元パターンのFFT像である。2A is an FFT image of a two-dimensional pattern of a TEM image, an electron diffraction spot image, and a TEM image of Comparative Example 3, (b) Comparative Example 4, and (c) Comparative Example 5. FIG. 比較例6のTEM像、及び電子回折スポット像である。It is a TEM image of comparative example 6, and an electron diffraction spot image.

以下、本発明を適用した一実施形態である酸化セリウムナノ結晶及び酸化セリウムナノ結晶配列膜について、図面を用いて詳細に説明する。   Hereinafter, a cerium oxide nanocrystal and a cerium oxide nanocrystal array film according to an embodiment to which the present invention is applied will be described in detail with reference to the drawings.

図1は、本発明を適用した一実施形態である酸化セリウムナノ結晶配列膜被覆基板の表面の透過型電子顕微鏡(日本電子株式会社製JEM 2010(200kV))で観察した広範囲のTEM像である。酸化セリウムナノ結晶配列膜を被覆した基板はTEMグリッドである。
700nm×700nmの広範囲に、酸化セリウムナノ結晶が整然と並んで配列しているのが観察できる。10μm×10μm以上の広範囲にわたってこのような規則的な酸化セリウムナノ結晶の配列膜が確認できた。
FIG. 1 is a wide-range TEM image observed with a transmission electron microscope (JEM 2010 (200 kV) manufactured by JEOL Ltd.) on the surface of a cerium oxide nanocrystal array film-coated substrate according to an embodiment to which the present invention is applied. The substrate coated with the cerium oxide nanocrystal array film is a TEM grid.
It can be observed that cerium oxide nanocrystals are regularly arranged in a wide range of 700 nm × 700 nm. Such a regular array film of cerium oxide nanocrystals was confirmed over a wide range of 10 μm × 10 μm or more.

図2(a)は、本発明を適用した一実施形態である酸化セリウムナノ結晶配列膜被覆基板の表面の透過型電子顕微鏡で観察した高分解能のTEM像である。酸化セリウムナノ結晶配列膜を被覆した基板は図1と同様にTEMグリッドである。
図2(b)及び図2(d)はそれぞれ、図2(a)において符号1で示した酸化セリウムナノ結晶の拡大像、符号2で示した酸化セリウムナノ結晶の拡大像である。図2(c)及び図2(e)はそれぞれ、図2(b)、図2(d)の電子回折スポット像である。
尚、図2で示したTEM像のみ、株式会社日立製作所製H−9000UHR III(300kV)を用いて測定したものであり、以下の図3〜図9については図1と同様に日本電子株式会社製JEM 2010(200kV)を用いた。
図2(a)において、符号1及び2で示した酸化セリウムナノ結晶のサイズはいずれも、5nm×5nmであった。
また、図2(b)及び図2(d)で示したいずれの酸化セリウムナノ結晶においても、結晶の格子点が整然と並んでいることが確認できる。
さらに、電子回折スポット像の各点のスポットの位置からそのナノ結晶の格子面間隔を決定できるが、図2(c)で示した2個の1.91Åのスポットはそれぞれ、酸化セリウム単結晶の(220)面、(2−20)面に対応する(尚、本明細書では、ミラー指数の表記において、“−”はその直後の指数につくバーを意味する)。また、2.71Å及び2.70Åのスポットはそれぞれ、酸化セリウム単結晶の(200)面、(020)面に対応する。また、図2(e)で示した2個の1.91Åのスポットもそれぞれ、同様に(220)面、(2−20)面に対応し、2.71Å及び2.70Åのスポットはそれぞれ、(200)面、(0−20)面に対応する。
従って、本発明を適用した酸化セリウムナノ結晶は、酸化セリウムの単結晶からなることがわかる。
符号1及び2で示した酸化セリウムナノ結晶の像は正方形を示しており、この正方形のTEM像は酸化セリウムナノ結晶の(200)面が基板に平行に配置していることを示している。
尚、酸化セリウムナノ結晶の像が略長方形(長辺が短辺の1.4倍程度)を示す場合は、立方形状の酸化セリウムナノ結晶の対角面である(220)面を基板に平行に配置していることを示す。
図2で示した酸化セリウムナノ結晶配列膜被覆基板では、酸化セリウムナノ結晶の合成条件は、オレイン酸の濃度:セリウムの濃度(OLA:Ce)の比については、8:1であり、合成温度及び合成時間はそれぞれ、180℃、24時間であった。二液の調製条件と合成時間が最適なものでなかったために、酸化セリウムナノ結晶の配列は良好ではなかったが、以下に良好な配列を有する実施例を示す。
FIG. 2A is a high-resolution TEM image observed with a transmission electron microscope on the surface of the cerium oxide nanocrystal array film-coated substrate according to an embodiment to which the present invention is applied. The substrate coated with the cerium oxide nanocrystal array film is a TEM grid as in FIG.
FIGS. 2B and 2D are an enlarged image of the cerium oxide nanocrystal indicated by reference numeral 1 and an enlarged image of the cerium oxide nanocrystal indicated by reference numeral 2 in FIG. 2C and 2E are electron diffraction spot images of FIGS. 2B and 2D, respectively.
Note that only the TEM image shown in FIG. 2 was measured using an H-9000UHR III (300 kV) manufactured by Hitachi, Ltd. The following FIGS. JEM 2010 (200 kV) manufactured by the manufacturer was used.
In FIG. 2A, the size of the cerium oxide nanocrystals indicated by reference numerals 1 and 2 was 5 nm × 5 nm.
Moreover, it can be confirmed that the lattice points of the crystals are regularly arranged in any of the cerium oxide nanocrystals shown in FIG. 2B and FIG.
Furthermore, the lattice spacing of the nanocrystals can be determined from the positions of the spots of each point in the electron diffraction spot image. The two 1.91 mm spots shown in FIG. It corresponds to the (220) plane and the (2-20) plane (in this specification, in the Miller index notation, “-” means a bar attached to the index immediately after that). The spots of 2.71 and 2.70 correspond to the (200) plane and (020) plane of the cerium oxide single crystal, respectively. Also, the two 1.91 mm spots shown in FIG. 2 (e) correspond to the (220) plane and (2-20) plane, respectively, and the 2.71 mm and 2.70 mm spots respectively. Corresponds to the (200) plane and the (0-20) plane.
Therefore, it can be seen that the cerium oxide nanocrystal to which the present invention is applied is composed of a single crystal of cerium oxide.
The images of the cerium oxide nanocrystals denoted by reference numerals 1 and 2 indicate a square, and the square TEM image indicates that the (200) plane of the cerium oxide nanocrystal is arranged in parallel to the substrate.
When the image of the cerium oxide nanocrystal is substantially rectangular (the long side is about 1.4 times the short side), the diagonal (220) plane of the cubic cerium oxide nanocrystal is arranged parallel to the substrate. Indicates that
In the cerium oxide nanocrystal array film-coated substrate shown in FIG. 2, the synthesis condition of the cerium oxide nanocrystal is 8: 1 for the ratio of oleic acid concentration: cerium concentration (OLA: Ce). The times were 180 ° C. and 24 hours, respectively. Since the preparation conditions and the synthesis time of the two liquids were not optimal, the arrangement of the cerium oxide nanocrystals was not good, but examples having good arrangement are shown below.

以下、本発明を実施例に基づいて具体的に説明する。但し、これらの実施例はあくまでも本発明を容易に理解するための一助として開示するためのものであって、本発明をこれによって限定する趣旨ではない。   Hereinafter, the present invention will be specifically described based on examples. However, these examples are merely disclosed as an aid for easily understanding the present invention, and the present invention is not limited thereto.

図3及び図4に、本発明の実施例1〜3と比較例1のTEM像、電子回折スポット像、及びTEM像の2次元パターンのFFT像を示す。   3 and 4 show TEM images, electron diffraction spot images, and two-dimensional FFT images of the TEM images of Examples 1 to 3 and Comparative Example 1 of the present invention.

[実施例1]
(1)酸化セリウムナノ結晶(金属酸化物ナノ結晶)の合成
まず、金属塩である硝酸セリウム(III)の水溶液15mL(16.7mmol)を、50mLのオートクレーブに投入した。次いで、トルエン(非極性有機溶媒)15mL、及び、オレイン酸(OLA)(有機界面活性剤)0.6mL(OLA:Ce=8:1)の混合溶液を、オートクレーブ内の硝酸セリウム(III)水溶液の上部にそっと(静かに)加えた。硝酸セリウム(III)水溶液、トルエン及びオレイン酸の混合溶液からなる原料溶液は、比重が大きな硝酸セリウム(III)水溶液が下相で、比重が小さいトルエン及びオレイン酸の混合溶液が上相となって二相に分離した。二相に分離した原料溶液の上相に、t-ブチルアミン(塩基性有機化合物)0.15mLを滴下した。次いで、密閉したオートクレーブを180℃で36時間加熱した後、室温まで冷却した。
[Example 1]
(1) Synthesis of cerium oxide nanocrystal (metal oxide nanocrystal) First, 15 mL (16.7 mmol) of an aqueous solution of cerium (III) nitrate, which is a metal salt, was put into a 50 mL autoclave. Next, 15 mL of toluene (nonpolar organic solvent) and 0.6 mL (OLA: Ce = 8: 1) of oleic acid (OLA) (organic surfactant) were mixed with an aqueous solution of cerium (III) nitrate in the autoclave. Gently (quietly) added to the top of. The raw material solution consisting of a cerium (III) nitrate aqueous solution and a mixed solution of toluene and oleic acid is the lower phase of the cerium (III) nitrate aqueous solution having a large specific gravity and the upper phase is a mixed solution of toluene and oleic acid having a small specific gravity. Separated into two phases. 0.15 mL of t-butylamine (basic organic compound) was added dropwise to the upper phase of the raw material solution separated into two phases. The sealed autoclave was then heated at 180 ° C. for 36 hours and then cooled to room temperature.

(2)酸化セリウムナノ結晶(金属酸化物ナノ結晶)の配列膜の作製及びその配列膜被覆基板の製造
次いで、上澄み溶液を遠心分離(5500rpm、60分間)して、固体不純物を除去した。その上澄み液を濾紙上に配置したTEMグリッド(基板)上に滴下して、グリッド上に酸化セリウムナノ結晶の配列膜を作製した。上澄み液中の溶媒は直ちに濾紙に吸収されて除去された。TEMグリッドはカーボンで被覆した銅(メッシュをコロジオン膜で支持した構造)からなる。
(2) Preparation of array film of cerium oxide nanocrystal (metal oxide nanocrystal) and manufacture of array film-coated substrate Next, the supernatant solution was centrifuged (5500 rpm, 60 minutes) to remove solid impurities. The supernatant was dropped onto a TEM grid (substrate) placed on a filter paper to produce an array film of cerium oxide nanocrystals on the grid. The solvent in the supernatant was immediately absorbed by the filter paper and removed. The TEM grid is made of carbon coated with carbon (a structure in which a mesh is supported by a collodion film).

(3)酸化セリウムナノ結晶(金属酸化物ナノ結晶)配列膜被覆基板の透過型電子顕微鏡(TEM)による測定
酸化セリウムナノ結晶の形態及びその配列について、透過型電子顕微鏡を用いて解析した。
図3(a)及び(b)は、実施例1における2種類の領域の200nm×200nmの範囲のTEM像、電子回折スポット像(右下)、及びTEM像の2次元パターンのFFT像(右上)を示す。
図3(a)では、TEM像の酸化セリウムナノ結晶は略正方形又は略長方形を示している。略正方形の像は上述の通り、立方形状の酸化セリウムナノ結晶が(200)面を基板に平行にして配置していることを示しており、他方、略長方形の像は、立方形状の酸化セリウムナノ結晶が(220)面を基板に平行にして配置していることを示している。このTEM像の観察結果は電子回折スポット像にそれぞれ、(200)面及びそれと等価な面のスポット、(220)面及びそれと等価な面のスポットが現れていることで確認することができる。また、目視では立方形状の頂点が面取りされた(111)面に対応する明確なスポット(すなわち、多面形状の酸化セリウムナノ結晶に対応するスポット)は現れていなかった。
また、TEM像から酸化セリウムナノ結晶が略四方格子状に配列していることがわかるが、このことはFFT像が4回対称パターンを示していることで確認することができる。
また、この観察領域での酸化セリウムナノ結晶のサイズは、80%以上が6.3±1.0nmの範囲内であった。
図3(b)においても、TEM像の酸化セリウムナノ結晶は略正方形又は略長方形を示している。
また、TEM像から酸化セリウムナノ結晶が略六方格子状に配列していることがわかるが、このことはFFT像が6回対称パターンを示していることで確認することができる。
また、この観察領域での酸化セリウムナノ結晶のサイズは、80%以上が5.8±1.0nmの範囲内であった。
他の2000個の領域を観察した結果、実施例1の酸化セリウムナノ結晶配列膜被覆基板の配列膜は、立方形状の酸化セリウムナノ結晶が四方格子状に配列した領域と六方格子状に配列した領域とからなり、四方格子状に配列した領域と六方格子状に配列した領域の比は1:2であった。
(3) Measurement of cerium oxide nanocrystal (metal oxide nanocrystal) array film-coated substrate by transmission electron microscope (TEM) The morphology and arrangement of cerium oxide nanocrystals were analyzed using a transmission electron microscope.
FIGS. 3A and 3B are a TEM image of 200 nm × 200 nm of the two types of regions in Example 1, an electron diffraction spot image (lower right), and an FFT image of a two-dimensional pattern of the TEM image (upper right). ).
In Fig.3 (a), the cerium oxide nanocrystal of the TEM image has shown the substantially square or the substantially rectangular shape. As described above, the substantially square image indicates that the cubic cerium oxide nanocrystals are arranged with the (200) plane parallel to the substrate, while the substantially rectangular image indicates the cubic cerium oxide nanocrystals. Indicates that the (220) plane is arranged parallel to the substrate. The observation result of this TEM image can be confirmed by the fact that the spot of the (200) plane and its equivalent plane, and the spot of the (220) plane and its equivalent plane appear in the electron diffraction spot image, respectively. In addition, a clear spot corresponding to the (111) plane with chamfered vertices of the cubic shape (that is, a spot corresponding to the polyhedral cerium oxide nanocrystal) did not appear visually.
Further, it can be seen from the TEM image that the cerium oxide nanocrystals are arranged in a substantially tetragonal lattice shape, which can be confirmed by the fact that the FFT image shows a 4-fold symmetrical pattern.
Further, 80% or more of the size of the cerium oxide nanocrystal in this observation region was in the range of 6.3 ± 1.0 nm.
Also in FIG.3 (b), the cerium oxide nanocrystal of the TEM image has shown the substantially square or the substantially rectangular shape.
Further, it can be seen from the TEM image that the cerium oxide nanocrystals are arranged in a substantially hexagonal lattice shape, which can be confirmed by the fact that the FFT image shows a 6-fold symmetry pattern.
Further, 80% or more of the size of the cerium oxide nanocrystal in this observation region was in the range of 5.8 ± 1.0 nm.
As a result of observing the other 2000 regions, the array film of the cerium oxide nanocrystal array film-coated substrate of Example 1 has a region in which cubic cerium oxide nanocrystals are arrayed in a tetragonal lattice and a region in which hexagonal lattices are arrayed. The ratio of the region arranged in a tetragonal lattice to the region arranged in a hexagonal lattice was 1: 2.

[実施例2]
実施例2は、合成温度を200℃にした以外は実施例1と同じ条件で作製した。
図4(a)は、実施例2の200nm×200nmの範囲のTEM像、電子回折スポット像(右下)、及びTEM像の2次元パターンのFFT像(右上)を示す。
図4(a)では、電子回折スポット像に、(200)面及びそれと等価な面のスポット、(220)面及びそれと等価な面のスポットが現れている。また、(111)面に対応するスポットは現れていなかった。
また、FFT像が4回対称パターンを示している。これは、TEM像からもわかるが、立方形状の酸化セリウムナノ結晶が四方格子状に配列している領域を示すものである。
実施例2の他の領域において六方格子状に配列している領域もあった。
従って、実施例2の酸化セリウムナノ結晶配列膜被覆基板の配列膜は、立方形状の酸化セリウムナノ結晶が四方格子状に配列した領域と六方格子状に配列した領域とからなることがわかった。
[Example 2]
Example 2 was produced under the same conditions as Example 1 except that the synthesis temperature was 200 ° C.
FIG. 4A shows a TEM image, an electron diffraction spot image (lower right) in the range of 200 nm × 200 nm of Example 2, and an FFT image (upper right) of a two-dimensional pattern of the TEM image.
In FIG. 4A, spots on the (200) plane and its equivalent surface, and (220) plane and its equivalent surface appear in the electron diffraction spot image. Moreover, the spot corresponding to (111) plane did not appear.
In addition, the FFT image shows a 4-fold symmetrical pattern. As can be seen from the TEM image, this indicates a region where cubic cerium oxide nanocrystals are arranged in a tetragonal lattice.
In other regions of Example 2, there were regions arranged in a hexagonal lattice pattern.
Therefore, it was found that the alignment film of the cerium oxide nanocrystal alignment film-coated substrate of Example 2 was composed of a region in which cubic cerium oxide nanocrystals were arranged in a tetragonal lattice and a region in which a hexagonal lattice was arranged.

[実施例3]
実施例3は、合成温度を220℃にした以外は実施例1と同じ条件で作製した。
図4(b)は、実施例の200nm×200nmの範囲のTEM像、電子回折スポット像(右下)、及びTEM像の2次元パターンのFFT像(右上)を示す。
図4(b)では、電子回折スポット像に、(200)面及びそれと等価な面のスポット、(220)面及びそれと等価な面のスポットが現れている。また、(111)面に対応するスポットは現れていなかった。
また、FFT像が4回対称パターンを示している。これは、TEM像からもわかるが、立方形状の酸化セリウムナノ結晶が四方格子状に配列している領域を示すものである。
実施例3の他の領域において六方格子状に配列している領域もあった。
従って、実施例3の酸化セリウムナノ結晶配列膜被覆基板の配列膜は、立方形状の酸化セリウムナノ結晶が四方格子状に配列した領域と六方格子状に配列した領域とからなることがわかった。
[Example 3]
Example 3 was produced under the same conditions as Example 1 except that the synthesis temperature was 220 ° C.
FIG. 4B shows a TEM image, an electron diffraction spot image (lower right) in the range of 200 nm × 200 nm of Example 3 , and an FFT image (upper right) of a two-dimensional pattern of the TEM image.
In FIG. 4B, spots on the (200) plane and its equivalent surface and (220) plane and its equivalent surface appear in the electron diffraction spot image. Moreover, the spot corresponding to (111) plane did not appear.
In addition, the FFT image shows a 4-fold symmetrical pattern. As can be seen from the TEM image, this indicates a region where cubic cerium oxide nanocrystals are arranged in a tetragonal lattice.
In other regions of Example 3, some regions were arranged in a hexagonal lattice pattern.
Therefore, it was found that the array film of the substrate coated with the cerium oxide nanocrystal array film of Example 3 was composed of a region in which cubic cerium oxide nanocrystals were arrayed in a tetragonal lattice and a region in which hexagonal lattices were arrayed.

[比較例1]
比較例1は、合成温度を160℃にした以外は実施例1と同じ条件で作製した。
図4(c)は、比較例1の200nm×200nmの範囲のTEM像、電子回折スポッ
ト像(右下)、及びTEM像の2次元パターンのFFT像(右上)を示す。
図4(c)では、(111)面に対応するスポットが現れている。
また、FFT像が6回対称パターンを示している。
比較例1の酸化セリウムナノ結晶配列膜被覆基板の配列膜においては、多面形状の酸化
セリウムナノ結晶からなる領域が存在していた。
[Comparative Example 1]
Comparative Example 1 was produced under the same conditions as Example 1 except that the synthesis temperature was 160 ° C.
4C shows a TEM image, an electron diffraction spot image (lower right) in the range of 200 nm × 200 nm of Comparative Example 1 , and an FFT image (upper right) of a two-dimensional pattern of the TEM image.
In FIG. 4C, spots corresponding to the (111) plane appear.
Further, the FFT image shows a 6-fold symmetry pattern.
In the array film of the cerium oxide nanocrystal array film-coated substrate of Comparative Example 1, there was a region composed of polyhedral cerium oxide nanocrystals.

図5に、OLA/Ceを10:1にした以外は実施例1と同じ条件で作製した、本発明の実施例4〜6と比較例2のTEM像、電子回折スポット像、及びTEM像の2次元パターンのFFT像を示す。   FIG. 5 shows the TEM images, electron diffraction spot images, and TEM images of Examples 4 to 6 and Comparative Example 2 of the present invention that were produced under the same conditions as Example 1 except that OLA / Ce was set to 10: 1. 2 shows an FFT image of a two-dimensional pattern.

[実施例4]
実施例4は、OLA/Ceを10:1にした以外は実施例1と同じ条件で作製した。
図5(a)は、実施例の200nm×200nmの範囲のTEM像、電子回折スポット像(右下)、及びTEM像の2次元パターンのFFT像(右上)を示す。
図5(a)では、電子回折スポット像に、(200)面及びそれと等価な面のスポット、(220)面及びそれと等価な面のスポットが現れている。また、(111)面に対応するスポットは現れていなかった。
また、FFT像が4回対称パターンを示している。
実施例4の酸化セリウムナノ結晶配列膜被覆基板の配列膜において、立方形状の酸化セリウムナノ結晶が四方格子状に配列していることがわかった。
実施例4の他の領域において六方格子状に配列している領域もあった。
従って、実施例4の酸化セリウムナノ結晶配列膜被覆基板の配列膜は、立方形状の酸化セリウムナノ結晶が四方格子状に配列した領域と六方格子状に配列した領域とからなることがわかった。
[Example 4]
Example 4 was produced under the same conditions as in Example 1 except that OLA / Ce was 10: 1.
FIG. 5A shows a TEM image, an electron diffraction spot image (lower right) in the range of 200 nm × 200 nm of Example 4 , and an FFT image (upper right) of a two-dimensional pattern of the TEM image.
In FIG. 5A, spots on the (200) plane and its equivalent surface, and (220) plane and its equivalent surface appear in the electron diffraction spot image. Moreover, the spot corresponding to (111) plane did not appear.
In addition, the FFT image shows a 4-fold symmetrical pattern.
In the array film of the cerium oxide nanocrystal array film-coated substrate of Example 4, it was found that cubic cerium oxide nanocrystals were arrayed in a tetragonal lattice.
In other regions of Example 4, some regions were arranged in a hexagonal lattice pattern.
Therefore, it was found that the array film of the substrate coated with the cerium oxide nanocrystal array film of Example 4 was composed of a region in which cubic cerium oxide nanocrystals were arranged in a tetragonal lattice and a region in which a hexagonal lattice was arranged.

[実施例5]
実施例5は、合成温度を200℃にした以外は実施例4と同じ条件で作製した。
図5(b)は、実施例の200nm×200nmの範囲のTEM像、電子回折スポット像(右下)、及びTEM像の2次元パターンのFFT像(右上)を示す。
図5(b)では、電子回折スポット像に、(200)面及びそれと等価な面のスポット、(220)面及びそれと等価な面のスポットが現れている。また、(111)面に対応するスポットは現れていなかった。
また、FFT像が6回対称パターンを示している。
実施例5の酸化セリウムナノ結晶配列膜被覆基板の配列膜において、立方形状の酸化セリウムナノ結晶が六方格子状に配列していることがわかった。
実施例5の他の領域において四方格子状に配列している領域もあった。
従って、実施例5の酸化セリウムナノ結晶配列膜被覆基板の配列膜は、立方形状の酸化セリウムナノ結晶が四方格子状に配列した領域と六方格子状に配列した領域とからなることがわかった。
[Example 5]
Example 5 was produced under the same conditions as Example 4 except that the synthesis temperature was 200 ° C.
FIG. 5B shows a TEM image, an electron diffraction spot image (lower right) of Example 5 in the range of 200 nm × 200 nm, and an FFT image (upper right) of a two-dimensional pattern of the TEM image.
In FIG. 5B, spots on the (200) plane and its equivalent surface, and (220) plane and its equivalent surface appear in the electron diffraction spot image. Moreover, the spot corresponding to (111) plane did not appear.
Further, the FFT image shows a 6-fold symmetry pattern.
It was found that the cubic cerium oxide nanocrystals were arranged in a hexagonal lattice pattern in the alignment film of the substrate coated with the cerium oxide nanocrystal alignment film of Example 5.
In other regions of Example 5, there were also regions arranged in a tetragonal lattice pattern.
Therefore, it was found that the array film of the substrate coated with the cerium oxide nanocrystal array film of Example 5 was composed of a region where cubic cerium oxide nanocrystals were arrayed in a tetragonal lattice and a region where hexagonal lattices were arrayed.

[実施例6]
実施例6は、合成温度を220℃にした以外は実施例4と同じ条件で作製した。
図5(c)は、実施例の200nm×200nmの範囲のTEM像、電子回折スポット像(右下)、及びTEM像の2次元パターンのFFT像(右上)を示す。
図5(c)では、電子回折スポット像に、(200)面及びそれと等価な面のスポット、(220)面及びそれと等価な面のスポットが現れている。また、(111)面に対応するスポットは現れていなかった。
また、FFT像が6回対称パターンを示している。
実施例6の酸化セリウムナノ結晶配列膜被覆基板の配列膜において、立方形状の酸化セリウムナノ結晶が六方格子状に配列していることがわかった。
実施例6の他の領域において四方格子状に配列している領域もあった。
従って、実施例6の酸化セリウムナノ結晶配列膜被覆基板の配列膜は、立方形状の酸化セリウムナノ結晶が四方格子状に配列した領域と六方格子状に配列した領域とからなることがわかった。
[Example 6]
Example 6 was produced under the same conditions as Example 4 except that the synthesis temperature was 220 ° C.
FIG.5 (c) shows the TEM image of the range of 200 nm x 200 nm of Example 6 , an electron diffraction spot image (lower right), and the FFT image (upper right) of the two-dimensional pattern of a TEM image.
In FIG.5 (c), the spot of (200) plane and its equivalent surface, and the spot of (220) plane and its equivalent surface appear in the electron diffraction spot image. Moreover, the spot corresponding to (111) plane did not appear.
Further, the FFT image shows a 6-fold symmetry pattern.
In the array film of the cerium oxide nanocrystal array film-coated substrate of Example 6, it was found that cubic cerium oxide nanocrystals were arrayed in a hexagonal lattice pattern.
In other regions of Example 6, there were regions arranged in a tetragonal lattice pattern.
Therefore, it was found that the array film of the cerium oxide nanocrystal array film-coated substrate of Example 6 was composed of a region in which cubic cerium oxide nanocrystals were arrayed in a tetragonal lattice and a region in which hexagonal lattices were arrayed.

比較例2は、合成温度を160℃にした以外は実施例4と同じ条件で作製した。
図5(d)は、比較例2の200nm×200nmの範囲のTEM像、電子回折スポット像(右下)、及びTEM像の2次元パターンのFFT像(右上)を示す。
図5(d)では、(111)面に対応するスポットが現れている。
また、FFT像が4回対称パターンを示している。
比較例2の酸化セリウムナノ結晶配列膜被覆基板の配列膜においては、多面形状の酸化セリウムナノ結晶からなる領域が存在していた。
Comparative Example 2 was produced under the same conditions as Example 4 except that the synthesis temperature was 160 ° C.
FIG. 5D shows a TEM image in a range of 200 nm × 200 nm, an electron diffraction spot image (lower right), and a two-dimensional pattern FFT image (upper right) of Comparative Example 2.
In FIG. 5D, spots corresponding to the (111) plane appear.
In addition, the FFT image shows a 4-fold symmetrical pattern.
In the array film of the cerium oxide nanocrystal array film-coated substrate of Comparative Example 2, there was a region composed of polyhedral cerium oxide nanocrystals.

[実施例7]
図6(a)及び(b)は、実施例7における2種類の領域のTEM像、電子回折スポット像、及びTEM像の2次元パターンのFFT像を示す。
実施例7は、合成時間を48時間にした以外は実施例3と同じ条件で作製した。
図6(a)は、実施例7の200nm×200nmの範囲のTEM像、電子回折スポット像(右下)、及びTEM像の2次元パターンのFFT像(右上)を示す。
図6(a)では、電子回折スポット像に、(200)面及びそれと等価な面のスポット、(220)面及びそれと等価な面のスポットが現れている。また、(111)面に対応するスポットは現れていなかった。
また、FFT像が4回対称パターンを示している。
図6(b)では、TEM像の酸化セリウムナノ結晶は略正方形又は略長方形を示しており、多角形状のものはない。
また、FFT像が6回対称パターンを示している。
従って、実施例7の酸化セリウムナノ結晶配列膜被覆基板の配列膜は、立方形状の酸化セリウムナノ結晶が四方格子状に配列した領域と六方格子状に配列した領域とからなることがわかった。
[Example 7]
6A and 6B show TEM images, electron diffraction spot images, and FFT images of a two-dimensional pattern of TEM images of two types of regions in Example 7. FIG.
Example 7 was produced under the same conditions as Example 3 except that the synthesis time was 48 hours.
FIG. 6A shows a TEM image, an electron diffraction spot image (lower right) of Example 7 in the range of 200 nm × 200 nm, and an FFT image (upper right) of a two-dimensional pattern of the TEM image.
In FIG. 6A, the spot of the (200) plane and its equivalent surface and the spot of the (220) plane and its equivalent appear in the electron diffraction spot image. Moreover, the spot corresponding to (111) plane did not appear.
In addition, the FFT image shows a 4-fold symmetrical pattern.
In FIG.6 (b), the cerium oxide nanocrystal of the TEM image has shown the substantially square or the substantially rectangular shape, and there is no polygonal thing.
Further, the FFT image shows a 6-fold symmetry pattern.
Therefore, it was found that the array film of the substrate coated with the cerium oxide nanocrystal array film of Example 7 was composed of a region in which cubic cerium oxide nanocrystals were arrayed in a tetragonal lattice and a region in which hexagonal lattices were arrayed.

[実施例8]
図7(a)及び(b)は、実施例8における2種類の領域のTEM像、電子回折スポット像、及びTEM像の2次元パターンのFFT像を示す。
実施例8は、合成時間を48時間にした以外は実施例6と同じ条件で作製した。
図7(a)では、TEM像の酸化セリウムナノ結晶は略正方形又は略長方形を示しており、多角形状のものはない。
また、FFT像が4回対称パターンを示している。
図7(b)は、電子回折スポット像に、(200)面及びそれと等価な面のスポット、(220)面及びそれと等価な面のスポットが現れている。また、(111)面に対応するスポットは現れていなかった。
また、FFT像が6回対称パターンを示している。
従って、実施例8の酸化セリウムナノ結晶配列膜被覆基板の配列膜は、立方形状の酸化セリウムナノ結晶が四方格子状に配列した領域と六方格子状に配列した領域とからなることがわかった。
[Example 8]
FIGS. 7A and 7B show TEM images, electron diffraction spot images, and two-dimensional pattern FFT images of two types of regions in Example 8. FIG.
Example 8 was produced under the same conditions as Example 6 except that the synthesis time was 48 hours.
In Fig.7 (a), the cerium oxide nanocrystal of the TEM image has shown the substantially square or the substantially rectangular shape, and there is no polygonal thing.
In addition, the FFT image shows a 4-fold symmetrical pattern.
In FIG. 7B, the spot of the (200) plane and its equivalent surface, and the spot of the (220) plane and its equivalent surface appear in the electron diffraction spot image. Moreover, the spot corresponding to (111) plane did not appear.
Further, the FFT image shows a 6-fold symmetry pattern.
Therefore, it was found that the array film of the substrate coated with the cerium oxide nanocrystal array film of Example 8 was composed of a region in which cubic cerium oxide nanocrystals were arrayed in a tetragonal lattice and a region in which hexagonal lattices were arrayed.

[比較例3]
図8(a)に、OLA/Ceを4:1にし、合成時間を24時間にした以外は実施例1と同じ条件で作製した比較例3のTEM像を示す。
TEM像からわかるように、酸化セリウムナノ結晶のサイズのばらつきが大きく、その形状も立方形状のものがある領域が一部にあるが、立方形状の酸化セリウムナノ結晶が四方格子状に配列した領域と六方格子状に配列した領域とからなる膜を形成していなかった。
[Comparative Example 3]
FIG. 8 (a) shows a TEM image of Comparative Example 3 produced under the same conditions as in Example 1 except that OLA / Ce was 4: 1 and the synthesis time was 24 hours.
As can be seen from the TEM image, the cerium oxide nanocrystals vary greatly in size, and some of them have a cubic shape, but the cubic cerium oxide nanocrystals are arranged in a tetragonal lattice and a hexagonal shape. A film composed of regions arranged in a lattice pattern was not formed.

[比較例4]
図8(b)に、OLA/Ceを6:1にし、合成時間を24時間にした以外は実施例1と同じ条件で作製した比較例4のTEM像を示す。
TEM像からわかるように、酸化セリウムナノ結晶のサイズのばらつきは比較例3ほどではないが、実施例よりも酸化セリウムナノ結晶のサイズが大きく、膜中に、酸化セリウムナノ結晶が存在していない領域もあり、立方形状の酸化セリウムナノ結晶が四方格子状に配列した領域と六方格子状に配列した領域とからなる膜を形成していなかった。
[Comparative Example 4]
FIG. 8B shows a TEM image of Comparative Example 4 manufactured under the same conditions as in Example 1 except that OLA / Ce was 6: 1 and the synthesis time was 24 hours.
As can be seen from the TEM image, the size variation of the cerium oxide nanocrystals is not as large as that of Comparative Example 3, but the size of the cerium oxide nanocrystals is larger than that of the example, and there is a region where the cerium oxide nanocrystals are not present in the film. A film composed of a region in which cubic cerium oxide nanocrystals are arranged in a tetragonal lattice and a region in which the cubic cerium oxide nanocrystals are arranged in a hexagonal lattice was not formed.

[比較例5]
図8(c)に、OLA/Ceを8:1にし、合成時間を24時間にした以外は実施例1と同じ条件で作製した比較例5の300nm×300nmの範囲のTEM像、電子回折スポット像(右下)、及びTEM像の2次元パターンのFFT像(右上)を示す。
図8(c)では、(111)面に対応するスポットが現れている。
また、FFT像が4回対称パターンを示している。
比較例5の酸化セリウムナノ結晶配列膜被覆基板の配列膜においては、多面形状の酸化セリウムナノ結晶からなる領域が存在していた。
[Comparative Example 5]
FIG. 8C shows a TEM image and an electron diffraction spot in the range of 300 nm × 300 nm of Comparative Example 5 manufactured under the same conditions as in Example 1 except that OLA / Ce is 8: 1 and the synthesis time is 24 hours. An image (lower right) and an FFT image (upper right) of a two-dimensional pattern of a TEM image are shown.
In FIG. 8C, spots corresponding to the (111) plane appear.
In addition, the FFT image shows a 4-fold symmetrical pattern.
In the array film of the cerium oxide nanocrystal array film-coated substrate of Comparative Example 5, there was a region composed of polyhedral cerium oxide nanocrystals.

[比較例6]
図9に、OLA/Ceを8:1にし、合成時間を72時間にした以外は実施例1と同じ条件で作製した、200nm×200nmの範囲のTEM像、及び電子回折スポット像を示す。
図9では、TEM像から、膜中に酸化セリウムナノ結晶が存在していない領域が多数あり、(111)面に対応するスポットが現れている。
比較例6の酸化セリウムナノ結晶配列膜被覆基板の配列膜においては、多面形状の酸化セリウムナノ結晶からなる領域が存在していた。
[Comparative Example 6]
FIG. 9 shows a TEM image and an electron diffraction spot image in the range of 200 nm × 200 nm produced under the same conditions as in Example 1 except that the OLA / Ce was 8: 1 and the synthesis time was 72 hours.
In FIG. 9, from the TEM image, there are many regions in which no cerium oxide nanocrystals exist in the film, and spots corresponding to the (111) plane appear.
In the array film of the cerium oxide nanocrystal array film-coated substrate of Comparative Example 6, there was a region composed of polyhedral cerium oxide nanocrystals.

本発明に係る金属酸化物ナノ結晶、金属酸化物ナノ結晶配列膜、金属酸化物ナノ結晶配列膜被覆基板は、触媒、燃料電池、センサー、薄膜キャパシタ等に利用することができる。   The metal oxide nanocrystal, metal oxide nanocrystal array film, and metal oxide nanocrystal array film-coated substrate according to the present invention can be used for catalysts, fuel cells, sensors, thin film capacitors, and the like.

Claims (12)

セリウム塩の水溶液の上部に、前記水溶液よりも比重の小さい非極性有機溶媒及び有機界面活性剤の混合溶液を加えて二相に分離した二液界面を有する原料溶液を作製し、前記二相に分離した原料溶液の上相に二液界面を維持した状態で塩基性有機化合物を添加し、その溶液を加熱して合成することを特徴とする金属酸化物ナノ結晶の製造方法。 On top of the aqueous solution of cerium salt, it was added a mixed solution of small specific gravity non-polar organic solvent and an organic surfactant than the aqueous solution to prepare a raw material solution having a two-liquid interface separation of the two phases, the two phases A method for producing a metal oxide nanocrystal , comprising adding a basic organic compound to an upper phase of a separated raw material solution while maintaining a two-liquid interface, and heating the solution to synthesize the solution. 前記非極性有機溶媒がトルエン及びヘキサンの群から選択され、前記有機界面活性剤がオレイン酸、カルボン酸、ポリエチレンイミン(PEI)、ヘキサデシルトリメチルアンモニウムブロマイド(HTAB)、及びポリエチレンソルビタントリオレアーテ(Tween−85)の群から選択され、前記塩基性有機化合物がアミン類の群から選択されたことを特徴とする請求項に記載の金属酸化物ナノ結晶の製造方法。 The nonpolar organic solvent is selected from the group of toluene and hexane, and the organic surfactant is oleic acid, carboxylic acid, polyethyleneimine (PEI), hexadecyltrimethylammonium bromide (HTAB), and polyethylene sorbitan trioleate (Tween- is selected from the group of 85), the manufacturing method of the metal oxide nano-crystal according to claim 1, wherein the basic organic compound is characterized in that it is selected from the group of amines. 前記セリウム塩が硝酸セリウムであり、前記非極性有機溶媒がトルエンであり、前記有機界面活性剤がオレイン酸であり、前記塩基性有機化合物がt-ブチルアミンであることを特徴とする請求項に記載の金属酸化物ナノ結晶の製造方法。 The cerium salt is cerium nitrate, the non-polar organic solvent is toluene, the an organic surfactant oleic acid, to claim 2, wherein the basic organic compound is t- butylamine The manufacturing method of metal oxide nanocrystal of description. 前記合成を、前記オレイン酸の濃度:前記セリウムの濃度=7:1〜12:1とし、前記合成の温度を180〜220℃とし、前記合成の時間を30〜60時間として行うことを特徴とする請求項に記載の金属酸化物ナノ結晶の製造方法。 The synthesis is performed by setting the oleic acid concentration: the cerium concentration = 7: 1 to 12: 1, the synthesis temperature at 180 to 220 ° C., and the synthesis time at 30 to 60 hours. The manufacturing method of the metal oxide nanocrystal of Claim 3 . 請求項1〜のいずれか一項に記載の金属酸化物ナノ結晶の製造方法によって製造された金属酸化物ナノ結晶を含む前記上相を、基板上に滴下する工程と、
滴下した前記上相の溶媒を吸収して除去する工程と、
を備えたことを特徴とする金属酸化物ナノ結晶配列膜の作製方法。
Dropping the upper phase containing the metal oxide nanocrystals produced by the method for producing metal oxide nanocrystals according to any one of claims 1 to 4 onto a substrate;
Absorbing and removing the solvent of the dropped upper phase;
A method for producing a metal oxide nanocrystal array film, comprising:
前記溶媒の除去を、吸湿部材を用いて行うことを特徴とする請求項に記載の金属酸化物ナノ結晶配列膜の作製方法。 6. The method for producing a metal oxide nanocrystal array film according to claim 5 , wherein the removal of the solvent is performed using a hygroscopic member. 前記吸湿部材が濾紙であることを特徴とする請求項に記載の金属酸化物ナノ結晶配列膜の作製方法。 The method for producing a metal oxide nanocrystal array film according to claim 6 , wherein the moisture absorbing member is a filter paper. 基板と、
請求項のいずれか一項に記載の金属酸化物ナノ結晶配列膜の作製方法によって前記基板上に作製された金属酸化物ナノ結晶配列膜と、を備えたことを特徴とする金属酸化物ナノ結晶配列膜被覆基板の製造方法。
A substrate,
A metal oxide nanocrystal array film produced on the substrate by the method for producing a metal oxide nanocrystal array film according to any one of claims 5 to 7. For producing a substrate coated with a nanocrystal array film.
前記基板が、FTO、ITO、ガラス、シリコン、金属、セラミックス、ポリマー、紙、ゴム、及び、低耐熱性基材の群から選択されたことを特徴とする請求項に記載の金属酸化物ナノ結晶配列膜被覆基板の製造方法。 9. The metal oxide nano according to claim 8 , wherein the substrate is selected from the group of FTO, ITO, glass, silicon, metal, ceramics, polymer, paper, rubber, and a low heat-resistant substrate. A method for producing a crystal-arrayed film-coated substrate. 基板と、
該基板上に、立方形状の金属酸化物ナノ結晶が四方格子状に配列した領域と六方格子状に配列した領域とからなる金属酸化物ナノ結晶膜と、を備えたことを特徴とする金属酸化物ナノ結晶配列膜被覆基板。
A substrate,
A metal oxide comprising a metal oxide nanocrystal film comprising a region in which cubic metal oxide nanocrystals are arranged in a tetragonal lattice and a region in which hexagonal lattices are arranged on the substrate. Nanocrystal array film coated substrate.
前記金属酸化物ナノ結晶が酸化セリウムナノ結晶であり、前記四方格子状に配列した領域と前記六方格子状に配列した領域の比が3:1〜1:3であることを特徴とする請求項1に記載の金属酸化物ナノ結晶配列膜被覆基板。 The metal oxide nanocrystal is a cerium oxide nanocrystal, and a ratio of the region arranged in the tetragonal lattice to the region arranged in the hexagonal lattice is 3: 1 to 1: 3. metal oxide nanocrystals SEQ film coated substrate according to zero. 前記基板が、FTO、ITO、ガラス、シリコン、金属、セラミックス、ポリマー、紙、ゴム、及び、低耐熱性基材の群から選択されたことを特徴とする請求項1又は1のいずれかに記載の金属酸化物ナノ結晶配列膜被覆基板。 Wherein the substrate, FTO, ITO, glass, silicon, metals, ceramics, polymers, paper, rubber, and any one of claims 1 0 or 1 1, characterized in that it is selected from the group of low-heat-resistant substrate A metal oxide nanocrystal array film-coated substrate as described in 1 above.
JP2010002843A 2010-01-08 2010-01-08 Metal oxide nanocrystal manufacturing method, metal oxide nanocrystal array film manufacturing method, metal oxide nanocrystal array film-coated substrate, and manufacturing method thereof Active JP5532305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010002843A JP5532305B2 (en) 2010-01-08 2010-01-08 Metal oxide nanocrystal manufacturing method, metal oxide nanocrystal array film manufacturing method, metal oxide nanocrystal array film-coated substrate, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010002843A JP5532305B2 (en) 2010-01-08 2010-01-08 Metal oxide nanocrystal manufacturing method, metal oxide nanocrystal array film manufacturing method, metal oxide nanocrystal array film-coated substrate, and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011140426A JP2011140426A (en) 2011-07-21
JP5532305B2 true JP5532305B2 (en) 2014-06-25

Family

ID=44456570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010002843A Active JP5532305B2 (en) 2010-01-08 2010-01-08 Metal oxide nanocrystal manufacturing method, metal oxide nanocrystal array film manufacturing method, metal oxide nanocrystal array film-coated substrate, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5532305B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013060358A (en) * 2011-08-22 2013-04-04 Tohoku Univ Method of continuously synthesizing organically-modified metal oxide nanoparticles through flow synthesis
WO2013115213A1 (en) * 2012-01-31 2013-08-08 国立大学法人大阪大学 Titanium oxide mesocrystal
KR20220150439A (en) 2012-11-08 2022-11-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
WO2014119117A1 (en) * 2013-01-31 2014-08-07 国立大学法人大阪大学 Metal oxide mesocrystal, and method for producing same
WO2016015771A1 (en) * 2014-07-31 2016-02-04 Bic-Violex Sa Razor blade coating

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09255331A (en) * 1996-03-27 1997-09-30 Kinya Adachi Production of monodispersed hyperfine particles of oxide of rare earth element by inverse micelle method
JP2003073126A (en) * 2001-09-03 2003-03-12 Mitsubishi Chemicals Corp Method for producing semiconductive nano-particle
JP2006015259A (en) * 2004-07-01 2006-01-19 Hitachi Chem Co Ltd Manufacturing method for inorganic nano-particles, inorganic nano-particles, manufacturing method for nano-composite material and nano-composite material
JP4336856B2 (en) * 2006-04-10 2009-09-30 株式会社 東北テクノアーチ Organic modified fine particles

Also Published As

Publication number Publication date
JP2011140426A (en) 2011-07-21

Similar Documents

Publication Publication Date Title
Guo et al. Synthesis and application of several sol–gel-derived materials via sol–gel process combining with other technologies: a review
Rørvik et al. One‐dimensional nanostructures of ferroelectric perovskites
Yoshimura et al. Hydrothermal processing of materials: past, present and future
Mao et al. Synthesis of classes of ternary metal oxide nanostructures
KR100936281B1 (en) Fabrication method of zno nano-particle and fabrication method of zno nano-fluid using thereof
JP5532305B2 (en) Metal oxide nanocrystal manufacturing method, metal oxide nanocrystal array film manufacturing method, metal oxide nanocrystal array film-coated substrate, and manufacturing method thereof
US8110173B2 (en) Fabrication of NIO nanoparticles and chip-like nanoflakes by solvothermal technique
Hu et al. Mesocrystalline nanocomposites of TiO2 polymorphs: Topochemical mesocrystal conversion, characterization, and photocatalytic response
Davarpanah et al. Synthesis of copper (II) oxide (CuO) nanoparticles and its application as gas sensor
Truong et al. Controlled synthesis of titania using water-soluble titanium complexes: A review
Kharisov et al. Nanostructures with animal-like shapes
Ye et al. Controllable synthesis and photoluminescence of single-crystalline BaHfO3 hollow micro-and nanospheres
Chen et al. Morphology control of MnWO 4 nanocrystals by a solvothermal route
Yang et al. Monodispersed colloidal zinc oxide nanospheres with various size scales: synthesis, formation mechanism, and enhanced photocatalytic activity
JP2007290887A (en) Bismuth titanate-based nanoparticle, piezoelectric ceramic using the same, and methods for producing them
Chandradass et al. Synthesis and characterization of zirconia-and silica-doped zirconia nanopowders by oxalate processing
Liu et al. Large-scale fabrication of H2 (H2O) Nb2O6 and Nb2O5 hollow microspheres
Xiao et al. Plum-like and octahedral Co 3 O 4 single crystals on and around carbon nanotubes: Large scale synthesis and formation mechanism
Hector et al. Chemical synthesis of β-Ga2O3 microrods on silicon and its dependence on the gallium nitrate concentration
Karthick et al. Synthesis of nano-bound microsphere Co 3 O 4 by simple polymer-assisted sol–gel technique
Shi et al. Zn (II)-PEG 300 globules as soft template for the synthesis of hexagonal ZnO micronuts by the hydrothermal reaction method
Hou et al. Solvothermal synthesis of single-crystalline BaTiO3 nanocubes in a mixed solution
Thesing et al. Peering into the formation of template-free hierarchical flowerlike nanostructures of SrTiO3
JP2007153736A (en) Method for producing stabilized zirconia fiber and stabilized zirconia fiber
KR101438121B1 (en) Method of manufacturing barium titanate nanowire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131101

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131114

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20131114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140214

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140409

R150 Certificate of patent or registration of utility model

Ref document number: 5532305

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250