JP5526080B2 - Molding method of green compact - Google Patents

Molding method of green compact Download PDF

Info

Publication number
JP5526080B2
JP5526080B2 JP2011141345A JP2011141345A JP5526080B2 JP 5526080 B2 JP5526080 B2 JP 5526080B2 JP 2011141345 A JP2011141345 A JP 2011141345A JP 2011141345 A JP2011141345 A JP 2011141345A JP 5526080 B2 JP5526080 B2 JP 5526080B2
Authority
JP
Japan
Prior art keywords
green compact
forming
claw
claw portion
core rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011141345A
Other languages
Japanese (ja)
Other versions
JP2013009543A (en
Inventor
尊雄 今川
憲一 相馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2011141345A priority Critical patent/JP5526080B2/en
Publication of JP2013009543A publication Critical patent/JP2013009543A/en
Application granted granted Critical
Publication of JP5526080B2 publication Critical patent/JP5526080B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)

Description

本発明は、主に鉄粉の成形法に関する。   The present invention mainly relates to a method for forming iron powder.

モータ磁心材料として、切断,曲げ加工の必要な電磁鋼板と異なり、最終製品形態を作成時に成形できる圧粉磁心が注目されている。圧粉磁心は、鉄を主成分とする鉄粉を圧縮型にて最終製品に近い形に成形し、必要に応じ熱処理により固化して磁心とする。圧粉磁心は電磁鋼板より任意の形状を成形できる利点がある。これは特に小型・高効率モータを実現するため、狭い空間にコイル,磁心を収納する技術として圧粉成形が適していることを示す。   As a magnetic core material, unlike magnetic steel sheets that require cutting and bending, powder magnetic cores that can be molded at the time of creating the final product form have attracted attention. In the dust core, iron powder containing iron as a main component is formed into a shape close to the final product with a compression mold, and solidified by heat treatment as necessary to form a magnetic core. The dust core has an advantage that an arbitrary shape can be formed from the magnetic steel sheet. This indicates that compacting is suitable as a technology for storing a coil and a magnetic core in a narrow space in order to realize a small and highly efficient motor.

特許文献1は圧粉磁心適用モータの例である。このモータは上下1対の圧粉磁心コアと中間にコイル導線をアルファ巻きするのみで1相分を形成でき、3層積み上げることで構造が単純で、安価に作製できる。   Patent Document 1 is an example of a dust core applied motor. This motor can form a single phase by simply alpha winding a coil lead wire between a pair of upper and lower powder magnetic cores, and can be manufactured at a low cost by stacking three layers.

ところが、励磁効率を上げるためコイル導線占積率を高める必要から、圧粉磁心コアのツメ部は薄く長く成形し、コイル導線収納部を最大化する必要がある。これはツメ部のアスペクト比(長さ/厚さ)を大きく成形しなければならないことになり、圧粉成形には困難が生じる。具体的にはツメ部を成形する狭い圧縮型に高密度に鉄粉を圧入する必要があり、成形法に工夫を要する。   However, since it is necessary to increase the coil conductor space factor in order to increase the excitation efficiency, it is necessary to form the claw portion of the dust core core thinly and long to maximize the coil conductor housing portion. This means that the aspect ratio (length / thickness) of the claw portion has to be molded, which makes it difficult for compacting. Specifically, it is necessary to press-fit iron powder at a high density into a narrow compression mold for forming the claw portion, and the forming method needs to be devised.

特開2008−29113号公報JP 2008-29113 A

社団法人粉末冶金技術協会編 「金属粉の成形」 日刊工業新聞社 1964年“Metal powder molding” edited by Nihon Kogyo Shimbun 1964

長さ、厚さの比(アスペクト比)が4以上のツメ部を有する圧粉成形体を作成する。   A green compact having a claw portion having a length / thickness ratio (aspect ratio) of 4 or more is prepared.

上記課題を解決するために、ツメ部を成形する型をツメ底部と側壁に分割する。ツメ底部と2側壁のうち片方とツメ底部は一体でよい。ツメ底部は成形完了位置から鉄粉みかけ密度と所定密度との差を考慮してオフセットし、充填量を調整する。鉄粉を充填し、成形する。この際ツメ底部と独立させた側壁をツメ底部成形方向と反対方向に動作させ、せん断動作させる。これにより、ツメ部成形を先に行う。ツメ部成形後、通常動作でフランジ成形を行い、高アスペクト比のツメを有したコアを成形する。   In order to solve the above problems, a mold for forming the claw portion is divided into a claw bottom portion and a side wall. One of the claw bottom and the two side walls and the claw bottom may be integrated. The claw bottom is offset from the molding completion position in consideration of the difference between the iron dust density and the predetermined density, and the filling amount is adjusted. Fill with iron powder and mold. At this time, the side wall independent of the claw bottom is moved in the direction opposite to the claw bottom molding direction to cause a shearing operation. Thereby, claw part shaping | molding is performed previously. After forming the claw, flanges are formed by a normal operation to form a core having a high aspect ratio claw.

本発明により、高アスペクト比のツメ部が成形でき、コイル導線占積率の高い高トルク圧粉モータが提供できる。   According to the present invention, a claw portion having a high aspect ratio can be formed, and a high torque dusting motor having a high coil conductor space factor can be provided.

圧粉モータ固定子構成。Compaction motor stator configuration. 実施例と比較例の相違点の説明。Explanation of differences between the embodiment and the comparative example. 比較例によるプレス動作説明。Explanation of press operation according to comparative example. 実施例によるプレス動作説明。The press operation | movement description by an Example. 手法の違いによる成形体鉄粉形状の差。Differences in shaped iron powder shape due to different methods.

以下、実施例を図面を用いて説明する。   Hereinafter, examples will be described with reference to the drawings.

図1は圧粉モータ固定子構成を示す。コア101は、ステータを構成するフランジ部102と、コイル導線103を収納しロータと対抗するギャップ面を形成するツメ部104とからなる。ギャップ部を長くすることはモータ軸長を長くすることであり、モータトルク増加に寄与する。一方、ツメ部104を薄くすることはコイル導線103の体積を増加でき、駆動電流を増加させてモータの駆動力を増加させることができる。このいずれもツメ部104を薄く、長くする方向(アスペクト比が高い)となる。   FIG. 1 shows a dust motor stator configuration. The core 101 includes a flange portion 102 that constitutes a stator, and a claw portion 104 that houses a coil conductor 103 and forms a gap surface facing the rotor. Increasing the gap portion increases the motor shaft length, which contributes to an increase in motor torque. On the other hand, reducing the thickness of the claw 104 can increase the volume of the coil conductor 103 and increase the driving current of the motor by increasing the driving current. In either case, the claw portion 104 becomes thinner and longer (the aspect ratio is high).

アスペクト比の高いツメ部成形には、例えば非特許文献1の図3.14(116ページ)に示されるように圧縮型を分割し、多段のプレスロッドを用い、フランジ部,ツメ部を個別に形成する方法が示されている。鉄粉は圧縮によりみかけ体積が50%程度収縮する。このため、ツメ部成形パンチは所定成形位置からより体積収縮分下部へオフセットして鉄粉充填し、成形する(充填量調整)。   For forming a claw part with a high aspect ratio, for example, as shown in FIG. 3.14 (page 116) of Non-Patent Document 1, the compression die is divided and a multistage press rod is used, and the flange part and claw part are individually provided. The method of forming is shown. Iron powder shrinks about 50% in apparent volume due to compression. For this reason, the claw part forming punch is offset from the predetermined forming position to the lower part of the volume shrinkage, filled with iron powder, and then formed (filling amount adjustment).

パンチが分割できない場合、充填させたい部位の鉄粉を盛り上げ、一回のプレスでツメ部の先端まで充填されるよう工夫している例がある。鉄粉の圧縮性が高く、高圧とすれば変形に制限のない場合はこのような構成で支障はない。しかし鉄粉は互いに融着しやすく、また型側壁とも融着しやすい。これを防ぐため、鉄粉にステアリン酸亜鉛など金属石鹸と総称される潤滑剤を混入させ、鉄粉どうし、型側壁との融着を防いでいる。ツメのアスペクト比が2〜3程度以下であれば充填量調整で支障なく成形できた。しかしさらに高アスペクト比ではこのような単純な構成ではツメ部密度が十分上げられない問題が生じた。   There is an example in which when the punch cannot be divided, the iron powder of the part to be filled is raised and filled up to the tip of the claw part by one press. If the iron powder is highly compressible and has a high pressure, there is no problem with such a configuration if there is no restriction on deformation. However, iron powders are easily fused to each other and to the mold side walls. In order to prevent this, a lubricant collectively called metal soap such as zinc stearate is mixed in the iron powder to prevent the iron powder from fusing with the mold side walls. When the aspect ratio of the claw was about 2 to 3 or less, it could be formed without any trouble by adjusting the filling amount. However, at a higher aspect ratio, such a simple configuration has a problem that the density of the claw portion cannot be sufficiently increased.

本実施例では、モータコアロッド圧縮成型法を説明する。   In this embodiment, a motor core rod compression molding method will be described.

図2は比較例と本実施例のモータコアロッド圧縮型の、ツメ部成形断面の違いを示す。   FIG. 2 shows the difference in the claw section molding cross section between the comparative example and the motor core rod compression type of the present embodiment.

ダイ201,コアロッド202の間に上パンチ203,下パンチ204と、ツメ部104を成形するリブ205が組み合わされる。上パンチ203は上方向から粉末を圧縮し、下パンチ204は下方向から粉末を圧縮する。ダイ201,コアロッド202,上パンチ203,下パンチ204と、リブ205で囲まれる領域をダイキャビティという。   Between the die 201 and the core rod 202, an upper punch 203, a lower punch 204, and a rib 205 for forming the claw 104 are combined. The upper punch 203 compresses the powder from above, and the lower punch 204 compresses the powder from below. A region surrounded by the die 201, the core rod 202, the upper punch 203, the lower punch 204, and the rib 205 is referred to as a die cavity.

比較例と本実施例の大きな違いは、比較例ではプレス時のコアロッド202とリブ205の動作方向が同じであり、本実施例ではプレス時のコアロッド202とリブ205の動作方向が異なり、せん断動作している点である。なお、各図における矢印は各部が移動する方向を示す。   The major difference between the comparative example and the present example is that the operating direction of the core rod 202 and the rib 205 at the time of pressing is the same in the comparative example, and the operating direction of the core rod 202 and the rib 205 at the time of pressing is different in the present example. This is the point. In addition, the arrow in each figure shows the direction to which each part moves.

図3を用いて、比較例でのツメ部104のプレス成形法の詳細を説明する。ダイ201,コアロッド202の間に上パンチ203,下パンチ204と、ツメ部104を成形するリブ205が組み合わされる。上パンチは上方向から粉末を圧縮し、下パンチは下方向から粉末を圧縮する。充填時、リブ205,コアロッド202をオフセットさせ、ツメ部104の成形部分に鉄粉を多く充填する。上パンチ203をセットし、上パンチ203とリブ205,コアロッド202の間にプレス動作を行い、ツメ部104を形成する。   The details of the press forming method of the claw portion 104 in the comparative example will be described with reference to FIG. Between the die 201 and the core rod 202, an upper punch 203, a lower punch 204, and a rib 205 for forming the claw 104 are combined. The upper punch compresses the powder from above, and the lower punch compresses the powder from below. At the time of filling, the rib 205 and the core rod 202 are offset, and the molded portion of the claw portion 104 is filled with a large amount of iron powder. The upper punch 203 is set, and a press operation is performed between the upper punch 203, the rib 205, and the core rod 202 to form the claw portion 104.

そのままプレス動作を継続し、下パンチ204,リブ205,コアロッド202が一体となって上パンチ203との間でフランジ部102を成形する。このようにツメ部104を先に成形するのはツメ部104全体に粉体供給される前にツメ部104の根元が固まるのを防ぐためである。従来、この手法では、ツメ部104の成形時に図示する部分で密度が上がり型と固着しリブ205,コアロッド202,未成形粉体が一体で移動するため、所定位置までリブ205が移動してもツメ部104の先端の密度が上がらない難点があったが、本実施例ではそれを解決する。なお、フランジ部102は、成形体の下面において比較的平坦な形状となるので、平坦部ともいう。   The pressing operation is continued as it is, and the lower punch 204, the rib 205, and the core rod 202 are integrated to form the flange portion 102 with the upper punch 203. The reason for forming the claw part 104 first is to prevent the root of the claw part 104 from solidifying before the powder is supplied to the whole claw part 104. Conventionally, in this method, when the claw portion 104 is molded, the density is increased at the portion shown in the figure, and the rib 205, the core rod 202, and the unmolded powder are moved together as a result. There is a difficulty that the density of the tip of the claw portion 104 does not increase, but this embodiment solves this. In addition, since the flange part 102 becomes a comparatively flat shape in the lower surface of a molded object, it is also called a flat part.

図4は、本実施例のツメ部104のプレス成形法の例である。充填時、リブ205のみオフセットさせる。さらにコアロッド202より低い位置となる上パンチ203をセットし、初めにコアロッド202とリブ205との間で加圧してプレスを行い、ツメ部104を成形する。フランジ成形面を中立面とし、この中立面に対しリブ205とコアロッド202が逆方向動作し、せん断動作となる。この場合、ツメ部104の根元密度が上昇してもコアロッド202により粉体はツメ部104の先端へ引きずられ、充填されるのでツメ部104の全体が均一密度となる。リブ205,下パンチ204の下面がそろえばツメ部104は所定形状となり、その後上パンチ203との間でフランジ部102を成形する。   FIG. 4 is an example of a press molding method of the claw portion 104 of this embodiment. When filling, only the rib 205 is offset. Further, the upper punch 203 at a position lower than the core rod 202 is set, and first, pressing is performed between the core rod 202 and the rib 205 to perform pressing, thereby forming the claw portion 104. The flange forming surface is a neutral surface, and the rib 205 and the core rod 202 are operated in reverse directions with respect to this neutral surface, resulting in a shearing operation. In this case, even if the root density of the claw portion 104 increases, the powder is dragged and filled by the core rod 202 to the tip of the claw portion 104, so that the whole claw portion 104 has a uniform density. When the lower surfaces of the rib 205 and the lower punch 204 are aligned, the claw portion 104 has a predetermined shape, and then the flange portion 102 is formed between the rib 205 and the upper punch 203.

図5にこのようにして形成されたツメ部104の断面を示す。図5では、比較例でのプレス成形法によるツメ部104の先端a、比較例でのプレス成形法によるツメ部104の根元b、本実施例でのプレス成形法によるツメ部104の先端c、本実施例でのプレス成形法によるツメ部104の根元dを示す。   FIG. 5 shows a cross section of the claw portion 104 formed in this way. In FIG. 5, the tip a of the claw portion 104 by the press molding method in the comparative example, the root b of the claw portion 104 by the press molding method in the comparative example, the tip c of the claw portion 104 by the press molding method in the present embodiment, The root d of the claw part 104 by the press molding method in a present Example is shown.

平均粒径200μmの純鉄粉に絶縁コートしたものにステアリン酸亜鉛をベースとした潤滑剤を0.4wt%混合したものを、フランジ外形40mm内径32mmフランジ厚2mmとし、ツメ部の高さ10mm,ツメ部の先端厚1mm,根元厚2mmに(アスペクト比10)成形した。全圧力は40トン、フランジ部での面圧は8.8トン/cm2である。成形後200〜400℃の範囲で熱処理した。試料はツメ断面部を埋め込み研磨し、SEM観察したものである。SEM観察すると断面部のみの鉄粉形状が観察できるので、光学顕微鏡より正しい密度が算定できる。また本試料は隙間が多くアルキメデス法による密度測定法は使用できない。 A mixture of pure iron powder with an average particle size of 200 μm and insulating coating mixed with 0.4 wt% of zinc stearate-based lubricant, flange outer diameter 40 mm inner diameter 32 mm flange thickness 2 mm, claw height 10 mm, The claw part was formed to have a tip thickness of 1 mm and a root thickness of 2 mm (aspect ratio 10). The total pressure is 40 tons, and the surface pressure at the flange is 8.8 tons / cm 2 . It heat-processed in 200-400 degreeC after shaping | molding. The sample is obtained by embedding and polishing a claw cross-section and observing it with an SEM. When SEM observation is performed, the iron powder shape of only the cross section can be observed, so that the correct density can be calculated from the optical microscope. In addition, this sample has many gaps, and the density measurement method by Archimedes method cannot be used.

比較例でのプレス成形法によるツメ部104の先端aは78.8%の充填率であり、本実施例でのプレス成形法によるツメ部104の先端cは95.2%の充填率であり、ツメ部104の先端で特に密度が向上していることが分かる。   The tip a of the claw portion 104 by the press molding method in the comparative example has a filling rate of 78.8%, and the tip c of the claw portion 104 by the press molding method in the present embodiment has a filling rate of 95.2%. It can be seen that the density is particularly improved at the tip of the claw portion 104.

また、比較例でのプレス成形法によるツメ部104の根元bは86.5%の充填率であるのに対し、本実施例でのプレス成形法によるツメ部104の根元dは98.3%の充填率であり、こちらも本実施例により向上したことが分かる。なお、根元と先端の密度差は比較例でのプレス成形法で7.7%、本実施例でのプレス成形法で3.1%である。   Further, the root b of the claw portion 104 by the press molding method in the comparative example has a filling rate of 86.5%, whereas the root d of the claw portion 104 by the press molding method in this embodiment is 98.3%. It can be seen that this is also improved by this example. The density difference between the root and the tip is 7.7% in the press forming method in the comparative example and 3.1% in the press forming method in the present example.

さらに比較例でのプレス成形法によるツメ部104の根元には鉄粉が集合して固まった組織が見られ、これが傾いていることから圧縮中の鉄粉の突っ張りが成形に支障となっていることがわかる。これに対し、本実施例では鉄粉粒が壁面に垂直に整列しており、成形法の差を示している。   Furthermore, a structure in which iron powder is gathered and hardened is seen at the base of the claw portion 104 by the press molding method in the comparative example, and since this is inclined, the tension of the iron powder during compression hinders molding. I understand that. On the other hand, in this embodiment, the iron powder particles are aligned perpendicularly to the wall surface, indicating a difference in molding method.

ところで、別の高密度成形実施法として、40mm径,厚さ12mm以上の塊で鉄粉成形し、その後放電加工してツメ部104の先端まで高密度化する手法も考えられる。この方法は高価であるが実施は可能である。この方法と本実施例の違いは、ツメ部104の根元に型に沿って変形した鉄粉粒が存在することで判定できる。   By the way, as another high-density forming method, a method of forming iron powder with a lump having a diameter of 40 mm and a thickness of 12 mm or more and then performing electric discharge machining to increase the density to the tip of the claw portion 104 can be considered. This method is expensive but can be implemented. The difference between this method and the present embodiment can be determined by the presence of iron powder grains deformed along the mold at the base of the claw portion 104.

フランジ外形40mm内径32mmフランジ厚2mmとし、ツメ高さ4mm,ツメ先端部厚2mm,根元厚3mmのコアロッドを形成した(アスペクト比2)。この場合、比較例でのプレス成形法と本実施例でのプレス成形法とで、ツメ部104の先端と根元の密度差はいずれも2%以下であった。   A core rod having a flange outer diameter of 40 mm, an inner diameter of 32 mm, a flange thickness of 2 mm, a claw height of 4 mm, a claw tip thickness of 2 mm, and a root thickness of 3 mm was formed (aspect ratio 2). In this case, the density difference between the tip and the root of the claw portion 104 was 2% or less between the press molding method in the comparative example and the press molding method in the present example.

フランジ外形40mm内径32mmフランジ厚2mmとし、ツメ高さ12mm,ツメ先端部厚1mm,根元厚2mmのコアロッドを形成した(アスペクト比12)。この場合、比較例でのプレス成形法では先端密度差が10.2%で、もろく、形成不可であった。本実施例でのプレス成形法によれば、ツメ部104の先端と根元の密度差は4.2%で成形は可能であった。   A core rod having a flange outer diameter of 40 mm, an inner diameter of 32 mm, a flange thickness of 2 mm, a claw height of 12 mm, a claw tip thickness of 1 mm, and a root thickness of 2 mm was formed (aspect ratio: 12). In this case, in the press molding method in the comparative example, the tip density difference was 10.2%, which was brittle and could not be formed. According to the press molding method in this example, molding was possible with a density difference of 4.2% between the tip and the base of the claw portion 104.

フランジ外形40mm内径32mmフランジ厚2mmとし、ツメ高さ4mm,ツメ先端部厚1mm,根元厚2mmのコアロッドを形成した(アスペクト比4)。この場合、比較例でのプレス成形法によるツメ部104の先端と根元の密度差が6.5%で、本実施例でのプレス成形法によるツメ部104の先端と根元の密度差は4.6%であった。   A core rod having a flange outer diameter of 40 mm, an inner diameter of 32 mm, a flange thickness of 2 mm, a claw height of 4 mm, a claw tip thickness of 1 mm, and a root thickness of 2 mm was formed (aspect ratio 4). In this case, the density difference between the tip and the root of the claw portion 104 by the press molding method in the comparative example is 6.5%, and the density difference between the tip and the root of the claw portion 104 by the press molding method in this embodiment is 4. It was 6%.

101 コア
102 フランジ部
103 コイル導線
104 ツメ部
201 ダイ
202 コアロッド
203 上パンチ
204 下パンチ
205 リブ
101 Core 102 Flange part 103 Coil conductor 104 Claw part 201 Die 202 Core rod 203 Upper punch 204 Lower punch 205 Rib

Claims (5)

圧粉体の一方の側面を成形するダイと、圧粉体の他方の側面を成形するコアロッドと、圧粉体の上端面を成形する上パンチと、圧粉体の下端面を成形する下パンチ及びリブとで形成されるダイキャビティ内に粉末を充填し、前記粉末を圧縮して下端面に平坦部とツメ部のある圧粉体を成形する成形方法であって、
前記下パンチは、前記ダイと隣接して設けられ、
前記リブは、前記コアロッドと隣接して設けられ、
前記リブと、前記コアロッドとを前記粉末に対し逆方向に動作させる第1工程と、
前記第1工程の後に、前記下パンチ及びリブと、前記コアロッドとを前記粉末に対し同方向に動作させる第2工程とを有する圧粉体の成形方法。
A die for forming one side of the green compact, a core rod for forming the other side of the green compact, an upper punch for forming the upper end of the green compact, and a lower punch for forming the lower end of the green compact And a die cavity formed with ribs and filled with powder, and the powder is compressed to form a green compact having a flat part and a claw part on the lower end surface,
The lower punch is provided adjacent to the die,
The rib is provided adjacent to the core rod;
A first step of operating the rib and the core rod in opposite directions with respect to the powder;
A compact forming method comprising a second step of operating the lower punch and the rib and the core rod in the same direction with respect to the powder after the first step.
請求項1に記載の圧粉体の形成方法において、
前記第1工程により、前記圧粉体にツメ部を形成することを特徴とする圧粉体の成形方法。
The method for forming a green compact according to claim 1,
A method for forming a green compact, wherein a claw portion is formed in the green compact in the first step.
請求項1または2に記載の圧粉体の形成方法において、
前記第2工程により、前記圧粉体に平坦部を形成することを特徴とする圧粉体の成形方法。
The method for forming a green compact according to claim 1 or 2,
A method for forming a green compact, wherein a flat portion is formed on the green compact in the second step.
請求項1乃至3のいずれかに記載の圧粉体の形成方法において、
前記ツメ部のアスペクト比は4以上であることを特徴とする圧粉体の成形方法。
In the formation method of the green compact in any one of Claim 1 thru | or 3,
A method for forming a green compact, wherein the claw portion has an aspect ratio of 4 or more.
請求項1乃至4のいずれかに記載の圧粉体の形成方法において、
前記ツメ部の先端と根元の密度差は5%以下であることを特徴とする圧粉体の成形方法。
In the formation method of the green compact in any one of Claims 1 thru | or 4,
The green compact molding method, wherein the density difference between the tip and the base of the claw is 5% or less.
JP2011141345A 2011-06-27 2011-06-27 Molding method of green compact Expired - Fee Related JP5526080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011141345A JP5526080B2 (en) 2011-06-27 2011-06-27 Molding method of green compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011141345A JP5526080B2 (en) 2011-06-27 2011-06-27 Molding method of green compact

Publications (2)

Publication Number Publication Date
JP2013009543A JP2013009543A (en) 2013-01-10
JP5526080B2 true JP5526080B2 (en) 2014-06-18

Family

ID=47676393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011141345A Expired - Fee Related JP5526080B2 (en) 2011-06-27 2011-06-27 Molding method of green compact

Country Status (1)

Country Link
JP (1) JP5526080B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6545480B2 (en) * 2014-11-26 2019-07-17 三星電子株式会社Samsung Electronics Co.,Ltd. Claw pole type motor, manufacturing method of claw pole type motor
CN105720781A (en) * 2014-12-02 2016-06-29 上海鸣志电器股份有限公司 PM stepper motor stator and manufacturing method thereof
CN110546856B (en) 2016-08-03 2022-02-01 智能电机解决方案私人有限公司 Electric machine

Also Published As

Publication number Publication date
JP2013009543A (en) 2013-01-10

Similar Documents

Publication Publication Date Title
JP5415821B2 (en) Substantially cylindrical powder molded body and powder molding die apparatus
JP2011029605A (en) Soft magnetic material, shaped body, compressed powder magnetic core, electromagnetic component, method of manufacturing soft magnetic material, and method of manufacturing compressed powder magnetic core
US8647091B2 (en) Stator compacted in one piece
KR20140041612A (en) Compact
JP5526080B2 (en) Molding method of green compact
JP6368188B2 (en) Manufacturing method of dust core
JP7127270B2 (en) Shaft integrated bond magnet
CN110476218B (en) Electrical coil, method for producing same and electromagnet or electric machine comprising at least one such coil
JP2011109004A (en) Method of manufacturing magnetic anisotropic magnet
JP2007074851A (en) Core and manufacturing method of core
JP2009254109A (en) Stator and method of manufacturing the sator
JP6346521B2 (en) Powder core and coil parts
JP2001252793A (en) Green compact forming method
JP4982439B2 (en) Compacted body
JP5242490B2 (en) Production method of ground coil for magnetic levitation railway
JP5979583B2 (en) Molding method of powder magnetic core for split magnetic core
JP2011073028A (en) Punch die for powder compacting, powder compacting equipment equipped with the same, and powder compacting method
JP2022019830A (en) Core piece, stator core, stator, and rotary electric machine
JP6871496B2 (en) Manufacturing method of sintered body
US20160055968A1 (en) Method of production rare-earth magnet
JP5311397B2 (en) Dust core for motor and manufacturing method thereof
JP7405305B2 (en) Magnetic wedge, rotating electrical machine, and method for manufacturing magnetic wedge
JP5256172B2 (en) Soft magnetic flakes for magnetic cores and magnetic cores for electromagnetic parts
WO2024111450A1 (en) Green compact production method, stator core production method, and axial gap motor production method
JP2009072018A (en) Stator and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140414

R150 Certificate of patent or registration of utility model

Ref document number: 5526080

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees