JP5521490B2 - Spark plug electrode material - Google Patents

Spark plug electrode material Download PDF

Info

Publication number
JP5521490B2
JP5521490B2 JP2009252132A JP2009252132A JP5521490B2 JP 5521490 B2 JP5521490 B2 JP 5521490B2 JP 2009252132 A JP2009252132 A JP 2009252132A JP 2009252132 A JP2009252132 A JP 2009252132A JP 5521490 B2 JP5521490 B2 JP 5521490B2
Authority
JP
Japan
Prior art keywords
thermal conductivity
oxidation resistance
less
spark plug
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009252132A
Other languages
Japanese (ja)
Other versions
JP2011094220A (en
Inventor
利弘 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2009252132A priority Critical patent/JP5521490B2/en
Publication of JP2011094220A publication Critical patent/JP2011094220A/en
Application granted granted Critical
Publication of JP5521490B2 publication Critical patent/JP5521490B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は内燃機関の点火プラグ用電極材料に関するものである。   The present invention relates to an electrode material for a spark plug of an internal combustion engine.

近年の地球温暖化防止、化石燃料節約などの要求の高まり、それに沿った各種環境規制の動きから、自動車等の排ガス規制が厳しくなってきている。このため、自動車等の内燃機関の燃焼温度が上昇する傾向にあり、自動車等の内燃機関に用いられる点火プラグには、従来以上に耐久性が求められてきている。
従来から点火プラグ用電極材料には耐酸化性、耐火花損耗性、高温強度等が要求されるため種々のNi基合金が広く使用されている。また、最近では、Ni基合金単体の電極を用いた点火プラグ以外に、さらに高温に耐えられるように、Ni基合金からなる電極の放電部分に貴金属を接合し、寿命を改善した点火プラグや、Ni基合金からなる電極母材内に芯材として熱伝導の良好なAgやCuを設けたものも多く使用されてきている。
Due to the increasing demand for prevention of global warming and fossil fuel savings in recent years and the movement of various environmental regulations in line with it, exhaust gas regulations for automobiles and the like have become stricter. For this reason, the combustion temperature of internal combustion engines such as automobiles tends to increase, and ignition plugs used in internal combustion engines such as automobiles have been required to be more durable than before.
Conventionally, various Ni-based alloys have been widely used because electrode materials for spark plugs are required to have oxidation resistance, spark wear resistance, high temperature strength, and the like. Recently, in addition to spark plugs that use Ni-based alloy single electrodes, spark plugs that have improved life by joining noble metals to the discharge portion of electrodes made of Ni-based alloys to withstand higher temperatures, An electrode base material made of a Ni-base alloy and provided with Ag or Cu having a good thermal conductivity as a core material has been often used.

このような種々点火プラグの電極材料に用いられるNi基合金には、例えば、Crを3%程度以下として、耐酸化性と高温強度を高めるための添加元素を含有させるNi基合金の提案がある。
具体的には、低CrのNi基合金において、耐酸化性を補うためにSi、Mn、Al等の元素を1種または2種以上、あるいはYや希土類元素の添加を行う提案が、特開昭63−188033号(特許文献1参照)、特開平2−34734号(特許文献2参照)、特開平2−34735号(特許文献3参照)、特開平4−45239号(特許文献4参照)、特開平9−235637号(特許文献5参照)、特開2006−316344号(特許文献6参照)、特開2007−92139号(特許文献7参照)に提案されている。
As the Ni-based alloy used for the electrode material of such various spark plugs, for example, there is a proposal of a Ni-based alloy containing, for example, Cr of about 3% or less and containing an additive element for enhancing oxidation resistance and high-temperature strength. .
Specifically, a proposal to add one or more elements such as Si, Mn, Al, or the addition of Y or a rare earth element to supplement oxidation resistance in a low Cr Ni-based alloy is disclosed in JP Japanese Patent Laid-Open No. 63-188033 (see Patent Document 1), Japanese Patent Application Laid-Open No. 2-34734 (see Patent Document 2), Japanese Patent Application Laid-Open No. 2-33435 (see Patent Document 3), Japanese Patent Application Laid-Open No. 4-45239 (see Patent Document 4). JP-A-9-235637 (see Patent Document 5), JP-A 2006-316344 (see Patent Document 6), and JP-A 2007-92139 (see Patent Document 7).

特開昭63−18033号公報Japanese Unexamined Patent Publication No. 63-18033 特開平2−34734号公報JP-A-2-34734 特開平2−34735号公報JP-A-2-34735 特開平4−45239号公報JP-A-4-45239 特開平9−235637号公報Japanese Patent Laid-Open No. 9-235637 特開2006−316344公報JP 2006-316344 A 特開2007−92139公報JP 2007-92139 A

上述したCrをある程度低く抑えた材料は、加工性の点から有望な材料である。しかしながら、上述した合金はいずれも耐酸化性に有効なCrを低く抑える替わりに、耐酸化性を補う元素として、Si、Mn、Al、Y、希土類元素、Hf、Reなどを必須添加としているために、Ni中の合金元素の総量が増加する分、熱伝導率や融点が低下する傾向がある。
耐酸化性を補うための合金元素量が多くなると、熱伝導率が低いことによって電極温度が下がりにくくなり、結果的に高温にさらされることになって酸化しやすくなったり、融点低下による溶損が影響する火花損耗を起こし易くなる恐れがあった。また、Y、希土類元素、Hf、Reなどの一部添加元素は非常に高価な希少元素であり、微量添加であっても大きな価格上昇をもたらしたり、安定入手性に不安があったりすることから、将来的な材料の安定供給に心配があった。
最近の内燃機関の高性能化及び燃焼効率向上、燃焼機構の変換等による高負荷化により、点火プラグ用合金に対する環境は更に苛酷になってきており、上述した合金では必ずしも満足できる特性が得られなくなってきた。
本発明の目的は、上記事情に鑑みて、内燃機関の高負荷化、高性能化に対応して、高価な希少元素を添加することなく、耐酸化性、耐火花損耗性に優れ、製造性も優れた特性を有する点火プラグ用電極材料を提供することである。
The above-described material that suppresses Cr to some extent is a promising material in terms of workability. However, all of the above-described alloys have essential additions of Si, Mn, Al, Y, rare earth elements, Hf, Re, etc. as elements to supplement oxidation resistance instead of keeping Cr effective for oxidation resistance low. In addition, thermal conductivity and melting point tend to decrease as the total amount of alloy elements in Ni increases.
When the amount of alloying elements to supplement oxidation resistance increases, the electrode temperature is less likely to decrease due to low thermal conductivity, resulting in exposure to high temperatures that are likely to oxidize, or melting damage due to a decrease in melting point There is a risk that spark wear that is affected is likely to occur. In addition, some added elements such as Y, rare earth elements, Hf, and Re are very expensive rare elements, and even if added in a small amount, they cause a large increase in price, and there is concern about stable availability. There was concern about the stable supply of materials in the future.
Due to recent high-performance internal combustion engines, higher combustion efficiency, and higher loads due to changes in the combustion mechanism, the environment for spark plug alloys has become more severe, and the above-mentioned alloys do not always have satisfactory characteristics. It ’s gone.
In view of the above circumstances, the object of the present invention is excellent in oxidation resistance, spark wear resistance and manufacturability without adding expensive rare elements in response to higher loads and higher performance of internal combustion engines. It is another object of the present invention to provide a spark plug electrode material having excellent characteristics.

本発明者は点火プラグ用電極材料を検討したところ、点火プラグ用合金の耐酸化性向上させるには熱伝導率を高くすることが必要であり、かつ耐火花損耗性を向上させるには融点を高くすることが有効であるが、これらの2つの必要特性を同時に解決するには、Siを少量添加すること、Mn、Alを低下させること、さらに必要に応じてTiを少量添加することが有効であることを新たに見出し本発明に到達した。   The present inventor has examined an electrode material for a spark plug, and it is necessary to increase the thermal conductivity in order to improve the oxidation resistance of the spark plug alloy, and in order to improve the spark wear resistance, the melting point must be reduced. It is effective to make it high, but in order to solve these two necessary characteristics at the same time, it is effective to add a small amount of Si, to lower Mn and Al, and to add a small amount of Ti as necessary. The present invention has been newly found out.

すなわち本発明は、質量%でC:0.05%以下(0を含む)、Si:0.5〜1.5%、Mn:0.15%以下(0を含む)、Cr:0.3%以下(0を含む)、Al:0.3%以下(0を含む)、Ti:0.5%以下(0を含む)、Mn+Cr:0.3%以下、残部はNi及び不純物からり、室温での熱伝導率は40W/(m・K)以上、融点は1400℃以上の点火プラグ用電極材料である That is, in the present invention, by mass, C: 0.05% or less (including 0), Si: 0.5 to 1.5%, Mn: 0.15% or less (including 0), Cr: 0.3 % Or less (including 0), Al: 0.3% or less (including 0), Ti: 0.5% or less (including 0), Mn + Cr: 0.3% or less, the balance is made of Ni and impurities, It is a spark plug electrode material having a thermal conductivity at room temperature of 40 W / (m · K) or more and a melting point of 1400 ° C. or more .

本発明によれば、熱伝導率に優れ、耐酸化性が良好であり、かつ耐火花損耗性が良好で、加工しやすい点火プラグ用電極材料を提供でき、コストを抑えてエンジンの高性能化に対応できるため工業上極めて有効である。   According to the present invention, it is possible to provide an electrode material for a spark plug that has excellent thermal conductivity, good oxidation resistance, and good spark wear resistance, and is easy to process. Therefore, it is extremely effective industrially.

上述したように、本発明の重要な特徴は、Mn、Cr、Alを低く抑え、Siを少量必須添加した上で、必要に応じて少量のTiを添加することで熱伝導率の低下防止、融点の低下防止を図ったことにある。
本発明者の検討によれば、熱伝導率を高くすることにより、点火プラグとしての使用時に材料温度を低くでき、結果として耐酸化性を向上できる。また、融点低下を防止することにより、点火プラグとしての使用時に火花損耗を起こし難くすることができる。
As described above, the important features of the present invention are that Mn, Cr, Al are kept low, a small amount of Si is essential, and a small amount of Ti is added as necessary to prevent a decrease in thermal conductivity. This is to prevent the melting point from decreasing.
According to the inventor's study, by increasing the thermal conductivity, the material temperature can be lowered during use as a spark plug, and as a result, the oxidation resistance can be improved. Further, by preventing the melting point from being lowered, it is possible to make it difficult to cause spark wear during use as a spark plug.

以下に本発明で規定した各元素の限定理由を説明する。
Cは、加工性を良好にするには低い方が良く、0.05%を超えると焼鈍後の硬さが上昇し、冷間加工性が低下するため0.05%以下に限定する。C0%(無添加レベル以下)であっても差し支えない。
Siは、耐酸化性向上に非常に有効な元素である一方、熱伝導率、融点を低下させる元素であるため、良好な耐酸化性を得るために、熱伝導率、融点を大きく低下させない範囲で積極的に添加する。0.5%より少ないと耐酸化性の向上効果が少なく、一方、1.5%を超えて添加すると融点、熱伝導率の低下が大きくなることから、Siは0.5〜1.5%とした
The reason for limitation of each element prescribed | regulated by this invention below is demonstrated.
C is preferably low in order to improve the workability, and if it exceeds 0.05 %, the hardness after annealing increases and the cold workability decreases, so it is limited to 0.05 % or less. C may be 0% (below the additive-free level).
Si is an element that is very effective in improving oxidation resistance, while it is an element that lowers thermal conductivity and melting point. Therefore, in order to obtain good oxidation resistance, the range in which thermal conductivity and melting point are not greatly reduced. Add it positively. If the amount is less than 0.5 %, the effect of improving the oxidation resistance is small. On the other hand, if the amount exceeds 1.5 %, the melting point and the thermal conductivity are greatly reduced. Therefore, Si is 0.5 to 1.5 %. It was .

Mnも、耐酸化性を向上させる元素である一方、熱伝導率、融点を低下させる元素であるが、本発明のように、Siをある程度必須で含有する場合には、高い熱伝導率と融点を確保するためにMnは低く抑える必要がある。0.15%を超えて添加すると融点の低下が大きくなることから、Mnは0.15%以下とした。Mnは0%(無添加レベル以下)であっても差し支えない。Mnによって耐酸化性の向上効果を得る場合の好ましい下限は0.02%である。
Crは、耐酸化性を高める元素である一方、熱伝導率を低下させるとともに加工性を劣化させるので、本発明のように、Siをある程度必須で含有する場合には、高い熱伝導率を確保するためにはCrは低く抑える必要がある。0.3%を超えて添加すると熱伝導率の低下が大きくなることから、Crは0.3%以下とした。Crの望ましい範囲は0.25%以下であり、0%(無添加レベル以下)であっても差し支えない。Crによって耐酸化性の向上効果を得る場合の好ましい下限は0.02%である。
なお、前述のMnとCrの総量が0.3%を超えると、高い熱伝導率が確保できなくなるため、MnとCrの総量は0.3%以下とする。
Mn is an element that improves oxidation resistance, while it is an element that lowers the thermal conductivity and melting point. However, when Si is contained to some extent as in the present invention, it has a high thermal conductivity and melting point. In order to ensure this, Mn must be kept low. If the addition exceeds 0.15 %, the melting point is greatly lowered. Therefore, Mn is set to 0.15 % or less . Mn may be 0 % (below the additive-free level). A preferable lower limit in the case where the effect of improving the oxidation resistance is obtained by Mn is 0.02%.
While Cr is an element that increases oxidation resistance, it lowers thermal conductivity and degrades workability. Therefore, when Si is contained to some extent as in the present invention, high thermal conductivity is ensured. In order to achieve this, it is necessary to keep Cr low. If added over 0.3%, the decrease in thermal conductivity increases, so Cr was made 0.3% or less. The desirable range of Cr is 0.25% or less, and may be 0% (below the additive-free level). A preferable lower limit in the case of obtaining an effect of improving oxidation resistance by Cr is 0.02%.
Note that if the total amount of Mn and Cr exceeds 0.3%, high thermal conductivity cannot be secured, so the total amount of Mn and Cr is set to 0.3% or less.

Alは、耐酸化性を高める元素である一方、熱伝導率を大きく低下させる元素であるため、本発明のように、Siをある程度必須で含有する場合には、Alは低く抑える必要がある。Alは0.3%を超えて添加すると熱伝導率が大きく低下することから、Alは0.3%以下とした。好ましくは、0.1%以下がよく、0%(無添加レベル以下)であっても差し支えない。Alによって耐酸化性の向上効果を得る場合の好ましい下限は0.01%である。
Tiは、粒界強化元素として高温での強度、延性、耐粒界酸化性を高めるために有効な元素であり、必要に応じて添加する。Tiは0.5%を超えて添加すると、融点及び室温での熱伝導率の低下が起こり、耐火花消耗性が低下するおそれがあることから、Tiは0.5%以下とした。好ましいTiの上限は0.2%以下である。なお、Tiの効果を確実に得るための好ましい下限は、0.01%を超える範囲である。
Al is an element that enhances oxidation resistance, but is an element that greatly reduces thermal conductivity. Therefore, when Si is contained to some extent as in the present invention, Al must be kept low. If Al is added in excess of 0.3%, the thermal conductivity is greatly reduced, so Al was made 0.3% or less. Preferably, it is 0.1% or less, and it may be 0% (no additive level or less). A preferable lower limit in the case where the effect of improving the oxidation resistance is obtained by Al is 0.01%.
Ti is an element effective as a grain boundary strengthening element to increase the strength, ductility, and grain boundary oxidation resistance at high temperatures, and is added as necessary. If Ti is added in excess of 0.5 %, the melting point and the thermal conductivity at room temperature will decrease, and the spark wear resistance may be reduced, so Ti was made 0.5 % or less. A preferable upper limit of Ti is 0 . 2% or less. In addition, the preferable minimum for obtaining the effect of Ti reliably is a range exceeding 0.01%.

本発明では、上述した元素以外はNi及び不純物として規定した。不純物として、残留する可能性のある主な元素は、P、S、N、O等である。これらはできるだけ低い方が望ましいが、P≦0.03%、S≦0.03%、N≦0.05%、O≦0.01%であれば点火プラグ電極用材料の基本特性に特に大きな影響を及ぼさないと考えられるので、この範囲であれば許容できる。
また、本発明のようなNi基合金の場合、溶解原料によっては、Feが混入する場合がある。Feの混入については、1.0%程度であれば許容できる。
なお、本発明の点火プラグ用電極材料の高温での強度、延性、耐粒界酸化性を高め耐場合、粒界強化元素として必要に応じて、B:0.015%以下、Nb:1.0%以下、Zr:0.20%以下の範囲で1種または2種以上を添加するのが有効である。
また、Ca及びMgは脱酸、脱硫元素として合金の清浄度を高め、高温での延性を改善することから、必要に応じてCa:0.20%以下、Mg:0.05%以下の範囲で添加するのが有効である。
In the present invention, the elements other than those described above are defined as Ni and impurities. The main elements that may remain as impurities are P, S, N, O, and the like. These are preferably as low as possible, but if P ≦ 0.03%, S ≦ 0.03%, N ≦ 0.05%, O ≦ 0.01%, the basic characteristics of the spark plug electrode material are particularly large. This range is acceptable because it is thought to have no effect.
Further, in the case of the Ni-based alloy as in the present invention, Fe may be mixed depending on the melting raw material. About mixing of Fe, about 1.0% is acceptable.
When the electrode material for a spark plug of the present invention has high strength, ductility, and intergranular oxidation resistance at high temperatures and is resistant, B: 0.015% or less, Nb: 1. It is effective to add one or more elements in the range of 0% or less and Zr: 0.20% or less.
Further, Ca and Mg are deoxidation and desulfurization elements, which increase the cleanliness of the alloy and improve the ductility at high temperature. Therefore, the range of Ca: 0.20% or less and Mg: 0.05% or less as required. It is effective to add in.

次に、本発明で規定した熱伝導率及び溶融開始温度について説明する。
熱伝導率は、加熱した点火プラグ電極の降温に影響し、先端部分が到達する温度を左右する重要な特性の一つであり、高い方が望ましい。
熱伝導率は合金元素の増加につれて低下する傾向があるので、熱伝導率を高く維持するためには合金元素の添加量を抑制する必要がある。一方、耐酸化性を向上させるのは、耐酸化性向上効果のある合金元素を多く添加することが望ましい。
したがって、良好な耐酸化性を確保しつつ、高い熱伝導率を維持するには、本発明の成分範囲の規定のとおり、合金元素の総量を抑制する中で耐酸化性に効果のある元素を適切に選択すること、熱伝導率を低下させにくい合金元素を選択することが必要である。
熱伝導率を高くすることで、点火プラグ電極の温度が下がるので、酸化に対しても有利となる。上記の合金成分の規定範囲内で、効果的な合金元素の選択により、熱伝導率は、点火プラグ電極の温度を低くすることに効果のある40W/(m・K)以上に調整することができる。さらに適切な合金元素の選択により、45W/(m・K)以上に調整することが必要である
Next, the thermal conductivity and melting start temperature defined in the present invention will be described.
The thermal conductivity is one of the important characteristics that influence the temperature drop of the heated spark plug electrode and influence the temperature reached by the tip portion, and is preferably higher.
Since thermal conductivity tends to decrease as the number of alloy elements increases, it is necessary to suppress the amount of alloy elements added in order to maintain high thermal conductivity. On the other hand, in order to improve the oxidation resistance, it is desirable to add a lot of alloy elements having an effect of improving the oxidation resistance.
Therefore, in order to maintain high thermal conductivity while ensuring good oxidation resistance, elements that are effective in oxidation resistance while suppressing the total amount of alloy elements as specified in the component range of the present invention. It is necessary to select appropriately and to select an alloy element that does not easily lower the thermal conductivity.
By increasing the thermal conductivity, the temperature of the spark plug electrode is lowered, which is advantageous for oxidation. The thermal conductivity can be adjusted to 40 W / (m · K) or more, which is effective for lowering the temperature of the spark plug electrode, by selecting an effective alloy element within the prescribed range of the alloy components. it can. Furthermore, it is necessary to adjust to 45 W / (m · K) or more by selecting an appropriate alloy element.

融点は、点火プラグ電極の耐火花損耗性に影響する重要な特性の一つであり、高い方が望ましい。融点は合金元素の増加につれて低下する傾向があるので、融点を高く維持するためには合金元素の添加量を抑制する必要がある。一方、耐酸化性を向上させるのは、耐酸化性向上効果のある合金元素を多く添加することが望ましい。
したがって、良好な耐酸化性を確保しつつ、高い融点を維持するには、本発明の成分範囲の規定のとおり、合金元素の総量を抑制する中で耐酸化性に効果のある元素を適切に選択すること、融点を低下させにくい合金元素を選択することが必要である。
上記の合金成分の規定範囲内で、効果的な合金元素の選択により、融点は、点火プラグ電極の耐火花損耗性を向上させることに効果のある1400℃以上に調整することができる。
The melting point is one of important characteristics affecting the spark wear resistance of the spark plug electrode, and a higher one is desirable. Since the melting point tends to decrease as the number of alloy elements increases, it is necessary to suppress the amount of alloy element added in order to maintain the melting point high. On the other hand, in order to improve the oxidation resistance, it is desirable to add a lot of alloy elements having an effect of improving the oxidation resistance.
Therefore, in order to maintain a high melting point while ensuring good oxidation resistance, the elements having an effect on oxidation resistance can be appropriately selected while suppressing the total amount of alloy elements as defined in the component range of the present invention. It is necessary to select an alloy element that does not easily lower the melting point.
The melting point can be adjusted to 1400 ° C. or more, which is effective in improving the spark wear resistance of the spark plug electrode, by selecting an effective alloy element within the specified range of the alloy components.

以下の実施例で本発明を更に詳しく説明する。
真空溶解で10kg鋼塊を作製し、均質化熱処理後、熱間加工を行い、熱間加工性を確認するとともに、30mm角の棒材を作製した。また、一部、冷間加工を行い、加工性を確認した。化学組成を表1に示す。
試料No.1〜2は本発明で規定する組成を有する合金、試料No.21〜23は比較合金である。これらの合金に、さらに800℃で1hの焼鈍を行った後、以下に示す各試験の試料とした。
表2に得られた試料の焼鈍後の硬さ、熱伝導率、融点、耐酸化試験後の増量、スケール剥離量を測定した結果を示す。なお、耐酸化試験は試料を800、900、1000℃の大気中にそれぞれ100hr暴露して行った。また、熱伝導率は25℃及び900℃における値を示したものである。
The following examples further illustrate the present invention.
A 10 kg steel ingot was produced by vacuum melting, and after homogenization heat treatment, hot working was performed to confirm hot workability, and a 30 mm square bar was produced. Moreover, a part was cold-worked and workability was confirmed. The chemical composition is shown in Table 1.
Sample No. 1-2 are alloys having the composition specified in the present invention, Sample No. 21-23 are comparative alloys. These alloys were further annealed at 800 ° C. for 1 h and then used as samples for the following tests.
Table 2 shows the results of measuring the hardness, thermal conductivity, melting point, increase after oxidation resistance test, and amount of scale peeling after annealing of the samples obtained. In addition, the oxidation resistance test was performed by exposing the sample to air at 800, 900, and 1000 ° C. for 100 hours. Moreover, thermal conductivity shows the value in 25 degreeC and 900 degreeC.

Figure 0005521490
Figure 0005521490

Figure 0005521490
Figure 0005521490

本発明合金である試料No.1〜2は何れも25℃での熱伝導率が高く、40W/(m・K)以上の値を示しており、かつ融点も1400℃以上の高い値を維持していることから、点火プラグ電極としたときに、優れた耐火花損耗性が期待できる。また、硬さも低く、良好な冷間加工性を有しており、生産性も良好である。また、酸化増量も安定して低く、剥離スケールの発生も見られないことから、良好な耐酸化性を示している。
一方、Yおよび/またはHfを含む比較例No.21、22は本発明合金に比べて酸化増量が多く、比較例No.22では1000℃では酸化スケールの剥離も起こっており、酸化が起こりやすいと考えられる。
また、Si、Mn、Crが多い比較例No.23は、本発明合金に比べて熱伝導率、融点が低く、酸化増量が非常に多く、900℃以上では剥離スケールの発生が多く、耐酸化性が本発明合金に比べて非常に悪い。
Sample No. which is an alloy of the present invention. 1 and 2 both have high thermal conductivity at 25 ° C., show values of 40 W / (m · K) or higher, and maintain a high melting point of 1400 ° C. or higher. When used as an electrode, excellent spark wear resistance can be expected. Moreover, the hardness is low, it has good cold workability, and the productivity is also good. In addition, the oxidation increase is stable and low, and the occurrence of exfoliation scale is not observed, which indicates good oxidation resistance.
On the other hand, Comparative Example No. containing Y and / or Hf. Nos. 21 and 22 have a larger oxidation gain than the alloys of the present invention. In No. 22, oxide scale peeling occurred at 1000 ° C., and oxidation is considered to occur easily.
Further, Comparative Example No. having a large amount of Si, Mn, and Cr. No. 23 has a lower thermal conductivity and melting point than the alloy of the present invention, has a very large increase in oxidation, has a large amount of peeling scale at 900 ° C. or higher, and has a very poor oxidation resistance compared to the alloy of the present invention.

本発明は点火プラグ用電極材料に必要な高い熱伝導率、融点、良好な耐酸化性、加工性等の特性に優れているため、良好な耐酸化性、耐火花損耗性が必要とされる内燃機関の点火プラグ用電極に適用できる。   Since the present invention is excellent in characteristics such as high thermal conductivity, melting point, good oxidation resistance and workability required for the electrode material for spark plugs, good oxidation resistance and spark wear resistance are required. It can be applied to an electrode for a spark plug of an internal combustion engine.

Claims (1)

質量%でC:0.05%以下(0を含む)、Si:0.5〜1.5%、Mn:0.15%以下(0を含む)、Cr:0.3%以下(0を含む)、Al:0.3%以下(0を含む)、Ti:0.5%以下(0を含む)、Mn+Cr:0.3%以下、残部はNi及び不純物からなり、室温での熱伝導率が40W/(m・K)以上、融点が1400℃以上であることを特徴とする点火プラグ用電極材料。 C: 0.05% or less (including 0), Si: 0.5 to 1.5%, Mn: 0.15% or less (including 0), Cr: 0.3% or less (0 ), Al: 0.3% or less (including 0), Ti: 0.5% or less (including 0), Mn + Cr: 0.3% or less, the balance being made of Ni and impurities, thermal conduction at room temperature A spark plug electrode material having a rate of 40 W / (m · K) or more and a melting point of 1400 ° C. or more .
JP2009252132A 2009-11-02 2009-11-02 Spark plug electrode material Active JP5521490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009252132A JP5521490B2 (en) 2009-11-02 2009-11-02 Spark plug electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009252132A JP5521490B2 (en) 2009-11-02 2009-11-02 Spark plug electrode material

Publications (2)

Publication Number Publication Date
JP2011094220A JP2011094220A (en) 2011-05-12
JP5521490B2 true JP5521490B2 (en) 2014-06-11

Family

ID=44111451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009252132A Active JP5521490B2 (en) 2009-11-02 2009-11-02 Spark plug electrode material

Country Status (1)

Country Link
JP (1) JP5521490B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010024488B4 (en) * 2010-06-21 2012-04-26 Thyssenkrupp Vdm Gmbh Nickel-based alloy
JP7258791B2 (en) * 2020-02-05 2023-04-17 日本特殊陶業株式会社 Spark plug

Also Published As

Publication number Publication date
JP2011094220A (en) 2011-05-12

Similar Documents

Publication Publication Date Title
JP4706441B2 (en) Spark plug electrode material
US9932656B2 (en) Nickel-based alloy with silicon, aluminum, and chromium
JP4699867B2 (en) Spark plug electrode material
JP4277113B2 (en) Ni-base alloy for heat-resistant springs
JP5697484B2 (en) Spark plug electrode material
JP5582532B2 (en) Co-based alloy
JP5201334B2 (en) Co-based alloy
RU2518814C1 (en) Nickel-based alloy
JP2006225756A (en) Heat resistant alloy for exhaust valve enduring use at 900°c and exhaust valve using the alloy
JP2018104816A (en) HEAT-RESISTANT Ir ALLOY
JP2004277860A (en) Heat-resistant alloy for high-strength exhaust valve excellent in overaging resistance
JP4972972B2 (en) Ni-based alloy
JP4735963B2 (en) Spark plug electrode material
JP5521490B2 (en) Spark plug electrode material
JP2016151065A (en) Nickel-based alloy and method for producing the same
JP2009041103A (en) Austenitic stainless steel for component of exhaust gas re-circulation system, and manufacturing method therefor
JP5880836B2 (en) Precipitation strengthened heat resistant steel and processing method thereof
WO2018117135A1 (en) Heat-resistant ir alloy
JP2007277628A (en) Austenitic stainless steel
JP5544221B2 (en) Ni-based alloy
JP6337514B2 (en) Precipitation hardening type Fe-Ni alloy and manufacturing method thereof
JP2014034694A (en) Austenitic stainless steel for diesel engine egr cooler and egr cooler for diesel engine
EP3252180B1 (en) Ni-based alloy having excellent high-temperature creep characteristics, and gas turbine member using same
JPH10251787A (en) Electrode material for spark plug, excellent in thermal conductivity
WO2019182024A1 (en) Ni-BASED ALLOY AND HEAT-RESISTANT SHEET MATERIAL OBTAINED USING SAME

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140324

R150 Certificate of patent or registration of utility model

Ref document number: 5521490

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350