JP5521325B2 - Light emitting device and manufacturing method thereof - Google Patents

Light emitting device and manufacturing method thereof Download PDF

Info

Publication number
JP5521325B2
JP5521325B2 JP2008335579A JP2008335579A JP5521325B2 JP 5521325 B2 JP5521325 B2 JP 5521325B2 JP 2008335579 A JP2008335579 A JP 2008335579A JP 2008335579 A JP2008335579 A JP 2008335579A JP 5521325 B2 JP5521325 B2 JP 5521325B2
Authority
JP
Japan
Prior art keywords
light
light emitting
covering member
emitting device
sealing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008335579A
Other languages
Japanese (ja)
Other versions
JP2010157638A (en
Inventor
俊介 湊
将嗣 市川
雅彦 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2008335579A priority Critical patent/JP5521325B2/en
Publication of JP2010157638A publication Critical patent/JP2010157638A/en
Application granted granted Critical
Publication of JP5521325B2 publication Critical patent/JP5521325B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/921Connecting a surface with connectors of different types
    • H01L2224/9212Sequential connecting processes
    • H01L2224/92122Sequential connecting processes the first connecting process involving a bump connector
    • H01L2224/92125Sequential connecting processes the first connecting process involving a bump connector the second connecting process involving a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0025Processes relating to coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Description

本発明は、配光特性に優れた発光装置及びその製造方法に関する。   The present invention relates to a light emitting device excellent in light distribution characteristics and a method for manufacturing the same.

従来、光源と、この光源からの出射光に励起されて光源の発光色と異なる色相の光を放出可能な波長変換部材とを組み合わせることで、光の混色の原理により多様な発光色の発光装置が開発されている。また、光源として発光ダイオード(Light Emitting Diode:LED)やレーザーダイオード(Laser Diode:LD)等の半導体発光素子を利用した発光装置は、低消費電力で長寿命であるため蛍光灯に代用可能な次世代照明として注目を集めており、さらなる出力の向上や配光における均一な発光色及び輝度が要求されている。   Conventionally, by combining a light source and a wavelength conversion member that is excited by light emitted from the light source and can emit light having a hue different from the light emission color of the light source, a light emitting device having various emission colors based on the principle of light color mixing Has been developed. In addition, a light-emitting device using a semiconductor light-emitting element such as a light emitting diode (LED) or a laser diode (LD) as a light source has low power consumption and a long life, so that it can be substituted for a fluorescent lamp. It has attracted attention as generational illumination, and further improvements in output and uniform emission color and brightness in light distribution are required.

例えば特許文献1には、色ムラのない白色光を放出する発光装置及びその製造方法が開示されている。この発光装置500の断面図を図10に示す。発光装置500は、リードフレームの凹部503内に、透光性の基板508上に半導体発光層を設けた発光素子501が、基板側が上面となるようにフリップチップ方式に設置され、基板508上には、保持板に蛍光体層が塗付された波長変換材部材507が密接して設けられている。また、凹部503内の発光素子501の周囲には、無機系バインダーに蛍光体505が配合された塗付液が充填されて蛍光体層502が設けられている。   For example, Patent Document 1 discloses a light emitting device that emits white light without color unevenness and a method for manufacturing the same. A cross-sectional view of the light emitting device 500 is shown in FIG. In the light emitting device 500, a light emitting element 501 in which a semiconductor light emitting layer is provided on a light transmitting substrate 508 is installed in a flip chip manner in a concave portion 503 of a lead frame so that the substrate side is an upper surface. The wavelength conversion material member 507 in which the phosphor layer is applied to the holding plate is closely provided. In addition, a phosphor layer 502 is provided around the light emitting element 501 in the recess 503 by being filled with a coating liquid in which a phosphor 505 is blended with an inorganic binder.

上記の構造であれば、均一な厚みに制御された波長変換部材507が容易に得られ、蛍光体の分布が均一化されて色ムラが生じ難い。また、発光素子501の端面に蛍光体505を配置させることで、発光素子501の端面から漏れる光をも確実に波長変換できるため、その分明るい発光装置とできる。   If it is said structure, the wavelength conversion member 507 controlled by uniform thickness will be obtained easily, the distribution of a fluorescent substance will be equalize | homogenized, and it will be hard to produce color unevenness. In addition, by arranging the phosphor 505 on the end face of the light emitting element 501, the light leaking from the end face of the light emitting element 501 can be wavelength-converted with certainty, so that a brighter light emitting device can be obtained.

さらに、発光装置を一次光源とし、これに反射鏡やレンズ等の光学系を介して、一次光を所望の光放出方向に矯正させつつ集光することにより、配光が調節された二次光を得る手段が開示されている(例えば非特許文献1)。
特開2003−101074号公報 特開2002−305328号公報 大山宜茂監修「自動車用半導体の開発技術と展望」109頁〜118頁 シーエムシー出版 2007年
Furthermore, the secondary light whose light distribution has been adjusted by using the light emitting device as a primary light source and condensing the primary light in a desired light emission direction through an optical system such as a reflecting mirror or a lens. Is disclosed (for example, Non-Patent Document 1).
JP 2003-101074 A JP 2002-305328 A Supervised by Shigeo Oyama, “Development Technology and Prospects for Automotive Semiconductors”, pages 109-118, CMC Publishing 2007

しかしながら、特に車のヘッドライトやプロジェクターなどの投光器あるいは投光照明など、一次光源からの一次光を調整し最終利用形態の光源として利用する場合、最終光源は一次光の配光特性に大きく依存する。つまり一次光源の配光に色ムラ、輝度ムラなど負の要因がある場合、光学系によりその光特性が強調されて、光のにじみ、ピンぼけを誘引する虞があった。   However, especially when the primary light from the primary light source is adjusted and used as the light source of the final use form, such as a projector or a floodlight of a car headlight or projector, the final light source greatly depends on the light distribution characteristics of the primary light. . That is, when there is a negative factor such as color unevenness or luminance unevenness in the light distribution of the primary light source, the optical characteristics are emphasized by the optical system, and there is a possibility of causing blurring of light and defocusing.

光学系に光遮断部材を併設して戻り光や迷光を遮断することで、最終的にエッジの効いた見切りの良い光を放出できるが、この形態では該遮断による光損失を免れない。つまり、光出力を高めることと見切りを向上させることとは、達成手段が相反するものであって、これまで双方の要求を両立させことは困難であった。一方、LEDディスプレイ用のSMD型のLEDでは、発光窓の周囲にあるパッケージ基材表面を黒色として、コントラストを高めたものが存在する。しかしながら、従来のSMD型では出力が不十分であり、基材から光が漏れ出し、これを黒色表面で吸収することによる光損失、またそれによる窓部周縁の黒色の変化により、見切りが悪化するという問題もあった。   By combining a light blocking member in the optical system and blocking the return light and stray light, it is possible to emit light with an edge that is finally effective. However, in this embodiment, light loss due to the blocking is unavoidable. That is, increasing the light output and improving the parting-off are conflicting achievement means, and it has been difficult to satisfy both requirements so far. On the other hand, in the SMD type LED for LED display, there is one in which the surface of the package base material around the light emitting window is black and the contrast is increased. However, in the conventional SMD type, the output is insufficient, the light leaks from the base material, the light loss due to absorption of this on the black surface, and the black color change at the periphery of the window portion thereby worsens the parting. There was also a problem.

このような状況に鑑み、本発明者らは鋭意検討を重ねた結果、発光素子を被覆する被覆部材を特定の配置形態とすることで、一次光源において発光領域と非発光領域とのコントラストを高められること、そしてこれを満足しつつ光損失を有効に低減して高輝度な光を安定して放出できることを新規に見出した。すなわち本発明の主な目的は、見切りの良い光を安定して放出でき、二次利用性の高い発光装置及びその製造方法を提供することにある。   In view of such a situation, as a result of intensive investigations, the present inventors have increased the contrast between the light-emitting region and the non-light-emitting region in the primary light source by setting the covering member that covers the light-emitting element to a specific arrangement form. It has been newly found that high brightness light can be stably emitted by effectively reducing light loss while satisfying this. That is, a main object of the present invention is to provide a light-emitting device that can stably emit a good-off light and has high secondary utilization, and a manufacturing method thereof.

上記の目的を達成するために、本発明の第1の発光装置は、発光素子と、発光面と発光面から連続する側面とを有し、発光素子から出射される光が入射される光透過部材と、光透過部材の側面を被覆して発光素子を包囲する光反射性の第1の被覆部材と、第1の被覆部材を被覆して、発光面と共に発光面側の表出面を構成し、可視光に対して第1の被覆部材より吸収係数が大きい第2の被覆部材とを備え、光観測方向からの平面視において、前記第1の被覆部材が、前記第2の被覆部材及び前記光透過部材の発光面との間に配置されてなる。
また、前記第1の被覆部材及び前記第2の被覆部材の表出面を、前記光透過部材の発光面と略同一面上に位置させてもよい。あるいは、前記第2の被覆部材の表出面を、前記光透過部材の発光面より低い位置に形成してもよい。
In order to achieve the above object, a first light-emitting device of the present invention has a light-emitting element, a light-emitting surface, and a side surface continuous from the light-emitting surface, and light transmission through which light emitted from the light-emitting element is incident. A light-reflective first covering member covering the light-emitting element by covering the member, the side surface of the light-transmitting member, and the first covering member; The second covering member having a larger absorption coefficient than the first covering member with respect to visible light, and the first covering member in the plan view from the light observation direction includes the second covering member and the second covering member. ing disposed between the light emitting surface of the light transmitting member.
Further, the exposed surfaces of the first covering member and the second covering member may be positioned substantially on the same plane as the light emitting surface of the light transmitting member. Alternatively, the exposed surface of the second covering member may be formed at a position lower than the light emitting surface of the light transmitting member.

また本発明の第2の発光装置によれば、発光面から外部に放出される光が白色光であって、第2の被覆部材を黒色体とすることができる。   According to the second light emitting device of the present invention, the light emitted from the light emitting surface to the outside is white light, and the second covering member can be a black body.

さらに本発明の第3の発光装置によれば、第1の被覆部材が、光透過部材の側方より発光素子の側方において肉厚が大きく、第2の被覆部材は、発光素子の側方より光透過部材の側方において肉厚を大きくすることができる。   Furthermore, according to the third light emitting device of the present invention, the first covering member is thicker on the side of the light emitting element than on the side of the light transmitting member, and the second covering member is on the side of the light emitting element. Further, the wall thickness can be increased on the side of the light transmitting member.

さらにまた本発明の第4の発光装置によれば、発光装置が、発光素子及び光透過部材を包囲する枠体を備え、少なくとも第1の被覆部材は枠体内に充填されており、第2の被覆部材は、第1の被覆部材及び枠体を被覆して、発光面と共に発光面側の表出面を構成することができる。   Furthermore, according to the fourth light emitting device of the present invention, the light emitting device includes a frame body that surrounds the light emitting element and the light transmission member, and at least the first covering member is filled in the frame body. The covering member can cover the first covering member and the frame body to form the light emitting surface side exposed surface together with the light emitting surface.

さらにまた本発明の第5の発光装置によれば、第2の被覆部材を、第1の被覆部材に接合させることができる。   Furthermore, according to the fifth light emitting device of the present invention, the second covering member can be joined to the first covering member.

さらにまた本発明の第6の発光装置によれば、第1の被覆部材と第2の被覆部材との間に、金属部材を介在させることができる。   Furthermore, according to the sixth light emitting device of the present invention, the metal member can be interposed between the first covering member and the second covering member.

さらにまた本発明の第7の発光装置によれば、第1及び第2の被覆部材が樹脂成形体であって、第1の被覆部材は、光反射性材料を含有するシリコーン樹脂を基材とし、第2の被覆部材は、顔料により着色された、エポキシ樹脂又はシリコーン樹脂を基材とすることができる。   Furthermore, according to the seventh light emitting device of the present invention, the first and second covering members are resin molded bodies, and the first covering member is made of a silicone resin containing a light reflective material as a base material. The second covering member can be based on an epoxy resin or a silicone resin colored with a pigment.

さらにまた本発明の第8の発光装置によれば、光透過部材が、発光素子より出射される光の少なくとも一部を波長変換可能な蛍光体を含有し、第2の被覆部材は、第1の被覆部材より熱伝導率を高くすることができる。   Furthermore, according to the eighth light emitting device of the present invention, the light transmitting member contains a phosphor capable of converting the wavelength of at least part of the light emitted from the light emitting element, and the second covering member includes the first covering member. The thermal conductivity can be made higher than that of the covering member.

さらにまた本発明の第9の発光装置の製造方法によれば、発光素子と、発光面と発光面から連続する側面とを有し、発光素子から出射される光が入射される光透過部材と、を有する発光装置の製造方法であって、発光素子を配線基板上に実装する工程と、発光素子の上方に光透過部材を配置する工程と、光透過部材の側面を被覆して発光素子を包囲する光反射性の第1の被覆部材を形成する工程と、第1の被覆部材を被覆して、発光面と共に発光面側の表出面を構成し、可視光に対して第1の被覆部材より吸収係数が大きい第2の被覆部材を、光観測方向からの平面視において、前記第1の被覆部材が該第2の被覆部材及び前記光透過部材の発光面との間に配置されるよう形成する工程とを含むことができる。
Furthermore, according to the ninth light emitting device manufacturing method of the present invention, a light emitting element, a light transmitting member having a light emitting surface and a side surface continuous from the light emitting surface, into which light emitted from the light emitting element is incident, A method of manufacturing a light emitting device comprising: a step of mounting a light emitting element on a wiring substrate; a step of disposing a light transmitting member above the light emitting element; and covering the side surface of the light transmitting member to form the light emitting element. Forming a surrounding light-reflective first covering member; covering the first covering member; forming a light-emitting surface-side exposed surface together with the light-emitting surface; and the first covering member for visible light The second covering member having a larger absorption coefficient is arranged between the second covering member and the light emitting surface of the light transmitting member in plan view from the light observation direction. Forming.

本発明の発光装置によれば、第1の被覆部材により輝度を向上させつつ、戻り光などの迷光成分は第2の被覆部材でもって吸収できるため、コントラストの高い鮮鋭な放出光を得られる。ひいては放出光の光学的な制御が容易となって、各発光装置を単位光源とする2次利用性が高まる。特に、本発明の発光装置と光学系とを組み合わせた照明装置では、光のにじみが低減されて、鮮明でありながら高輝度な光源を実現できる。   According to the light emitting device of the present invention, the stray light component such as return light can be absorbed by the second covering member while improving the luminance by the first covering member, so that sharp emitted light with high contrast can be obtained. As a result, the optical control of the emitted light becomes easy, and the secondary usability using each light emitting device as a unit light source is enhanced. In particular, in an illuminating device in which the light emitting device of the present invention is combined with an optical system, light blurring is reduced, and a light source having high brightness while being clear can be realized.

また本発明の発光装置の製造方法によれば、樹脂成形などにより、光反射性の第1の被覆部材と光吸収性の第2の被覆部材とを容易に所望の配置形態とすることができ、高コントラストかつ高輝度の発光装置を生産性良く得ることができる。   Further, according to the method for manufacturing a light emitting device of the present invention, the light reflective first covering member and the light absorbing second covering member can be easily formed in a desired arrangement form by resin molding or the like. A light-emitting device with high contrast and high brightness can be obtained with high productivity.

以下、本発明の実施の形態を図面に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための、発光装置及びその製造方法を例示するものであって、本発明は発光装置及びその製造方法を以下のものに特定しない。特に実施の形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。また本明細書で「径」は直径を意味するが、「径」で定義したものであっても、円形に限らず、幅、長さを意味する場合もある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiment described below exemplifies the light emitting device and the manufacturing method thereof for embodying the technical idea of the present invention, and the present invention provides the light emitting device and the manufacturing method thereof as follows. Not specified. In particular, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in the embodiments are not intended to limit the scope of the present invention unless otherwise specified, and are merely explanations. It is just an example. Further, in this specification, “diameter” means a diameter, but even if it is defined by “diameter”, it may mean not only a circle but also a width and a length.

なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。また、一部の実施例、実施形態において説明された内容は、他の実施例、実施形態等に利用可能なものもある。また、本明細書において、層上などでいう「上」とは、必ずしも上面に接触して形成される場合に限られず、離間して上方に形成される場合も含んでおり、層と層の間に介在層が存在する場合も包含する意味で使用する。尚、本明細書において、被覆部材を封止部材として記載している場合もある。   Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. Furthermore, in the following description, the same name and symbol indicate the same or the same members, and detailed description thereof will be omitted as appropriate. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing. In addition, the contents described in some examples and embodiments may be used in other examples and embodiments. Further, in this specification, the term “upper” on the layer or the like is not necessarily limited to the case where the upper surface is formed in contact with the upper surface, but includes the case where the upper surface is formed apart from the upper surface. It is used to include the case where there is an intervening layer between them. In the present specification, the covering member may be described as a sealing member.

(実施の形態1)
図1は本発明の実施の形態1に係る発光装置100の概略図であり、図1(a)は発光装置100の断面図を、また図1(b)は発光装置100の光観測方向からの平面図をそれぞれ示す。発光装置100は、発光素子10と、この発光素子10より出射される光が入射される光透過部材15と、光透過部材15の少なくとも一部を被覆する被覆部材26とから主に構成される。図1の発光装置100では、発光素子10の一方の主面側を配線基板9上に実装して導通可能とし、さらにこの一方の主面側と対向する他方の主面側が光透過部材15と光学的に接続されている。そして光透過部材15は、発光素子10より出射される光を受光する受光面15bと、受光した光及び/又はその波長変換光を放出する発光面15aと、さらに発光面15aから連続する側面15cを有する。また図1の例では、光透過部材15が板状であって、発光素子10と近接して対向する一方の主面を受光面15bとし、この受光面15bと対向して発光装置100の表出面を構成する他方の主面を発光面15aとする。そして発光面15aと略直交して光透過部材15の厚みを構成する両端面を側面15cと呼称する。
(Embodiment 1)
1A and 1B are schematic views of a light emitting device 100 according to Embodiment 1 of the present invention. FIG. 1A is a sectional view of the light emitting device 100, and FIG. Each of the plan views is shown. The light emitting device 100 mainly includes a light emitting element 10, a light transmitting member 15 to which light emitted from the light emitting element 10 is incident, and a covering member 26 that covers at least a part of the light transmitting member 15. . In the light emitting device 100 of FIG. 1, one main surface side of the light emitting element 10 is mounted on the wiring substrate 9 to be conductive, and the other main surface side opposite to the one main surface side is the light transmitting member 15. Optically connected. The light transmitting member 15 includes a light receiving surface 15b that receives light emitted from the light emitting element 10, a light emitting surface 15a that emits the received light and / or wavelength-converted light thereof, and a side surface 15c continuous from the light emitting surface 15a. Have In the example of FIG. 1, the light transmitting member 15 is plate-shaped, and one main surface facing the light emitting element 10 in the vicinity is the light receiving surface 15 b, and the surface of the light emitting device 100 is opposed to the light receiving surface 15 b. The other main surface constituting the exit surface is a light emitting surface 15a. Then, both end surfaces constituting the thickness of the light transmission member 15 substantially orthogonal to the light emitting surface 15a are referred to as side surfaces 15c.

被覆部材26は、第1の封止部材26aと第2の封止部材26bを備え、光透過部材15の発光面15aと受光面15bの少なくとも一部を露出させた状態で、側面15cを被覆する。第1の封止部材26aは、光を反射可能な光反射性材料2を含有しており、かつ発光素子10を包囲する姿勢に配置される。そして光を吸収する光吸収性材料29を含有する第2の封止部材26bが、さらに第1の封止部材26aの外方に配置され、図1(a)の例では第1の封止部材26aの外面と界面を形成している。この第2の封止部材26bは、光観測方向からの平面視において、光透過部材15の発光面15aの周囲を被覆しており、この被覆領域が発光装置100の表出面の少なくとも一部を構成する。   The covering member 26 includes a first sealing member 26a and a second sealing member 26b, and covers the side surface 15c with at least a part of the light emitting surface 15a and the light receiving surface 15b of the light transmitting member 15 exposed. To do. The first sealing member 26 a contains the light reflective material 2 capable of reflecting light, and is disposed in a posture surrounding the light emitting element 10. A second sealing member 26b containing a light-absorbing material 29 that absorbs light is further disposed outside the first sealing member 26a. In the example of FIG. It forms an interface with the outer surface of the member 26a. The second sealing member 26 b covers the periphery of the light emitting surface 15 a of the light transmitting member 15 in a plan view from the light observation direction, and this covered region covers at least a part of the exposed surface of the light emitting device 100. Configure.

また第1の封止部材26aは、図1(a)に示すように光透過部材15の発光面15aにおける発光領域及び受光面15bにおける受光領域を非被覆領域として、側面15cを被覆する。具体的に、外部へ光を放出する発光面15aの略全域と、受光面15bにおける発光素子10の対向領域とを非被覆領域として、発光面15aを外部に露出させている。また、光透過部材15の側面15cを被覆した領域における被覆部材26の表出面が、発光面15aと略同一面となる姿勢に配置されている。ただし、本明細書でいう「略同一面」とは、上述した機能上で実質的に同一面であれば良く、例えばその同一面の発光装置の光透過部材、発光素子の寸法に比して±10%程度とすることができる。また、これに限らず、光透過部材の発光面とそれを包囲する被覆部材の外表面の同一面、などについても同様に適用できる。   Further, as shown in FIG. 1A, the first sealing member 26a covers the side surface 15c with the light emitting region on the light emitting surface 15a and the light receiving region on the light receiving surface 15b of the light transmitting member 15 as uncovered regions. Specifically, the light emitting surface 15a is exposed to the outside with the substantially entire area of the light emitting surface 15a that emits light to the outside and the region facing the light emitting element 10 on the light receiving surface 15b as an uncovered region. Further, the exposed surface of the covering member 26 in the region covering the side surface 15c of the light transmitting member 15 is arranged in a posture that is substantially flush with the light emitting surface 15a. However, “substantially the same surface” in the present specification may be substantially the same surface in terms of the functions described above. For example, compared to the dimensions of the light transmitting member and the light emitting element of the light emitting device on the same surface. It can be about ± 10%. Further, the present invention is not limited to this, and the present invention can be similarly applied to the light emitting surface of the light transmitting member and the same surface of the outer surface of the covering member surrounding the light emitting surface.

上記構造より、発光素子10から出射された光は、光透過部材15に進行した後、発光面15aを発光装置100の窓部とし、この窓部15aより外方へと放出される。窓部15aは、光透過部材15を包囲する被覆部材26に対して出射方向の前面に設けられて、すなわち被覆部材26を発光面15aに対して略同一面とする。あるいは図2の発光装置200に示すように、光透過部材15の発光面15aを、第2の封止部材26bの表出面よりも外方に突出させ、すなわち被覆部材26を発光面15aから受光面15b側に後退した外表面として、光透過部材15の発光面15aからの主発光を被覆部材26により遮られない形態としてもよい。さらに詳しくは第2の封止部材26bを発光面15aよりも後退させることで、光吸収性材料29によって主要な光出力が損出されることを回避できる。この結果、相対的に全体の出力を向上させつつ、戻り光などの迷光は制限されたコントラストの高い発光装置へと利用でき好ましい。   With the above structure, the light emitted from the light emitting element 10 travels to the light transmitting member 15, and then the light emitting surface 15a serves as a window portion of the light emitting device 100, and is emitted outward from the window portion 15a. The window portion 15a is provided on the front surface in the emission direction with respect to the covering member 26 surrounding the light transmitting member 15, that is, the covering member 26 is substantially flush with the light emitting surface 15a. Alternatively, as shown in the light emitting device 200 of FIG. 2, the light emitting surface 15a of the light transmitting member 15 protrudes outward from the exposed surface of the second sealing member 26b, that is, the covering member 26 is received from the light emitting surface 15a. As the outer surface that has receded to the surface 15b side, the main light emission from the light emitting surface 15a of the light transmitting member 15 may not be blocked by the covering member 26. More specifically, the main light output can be prevented from being lost by the light absorbing material 29 by retracting the second sealing member 26b from the light emitting surface 15a. As a result, it is preferable that stray light such as return light can be used for a light-emitting device with limited contrast and relatively improved overall output.

また光透過部材15は、発光素子10より出射される光の少なくとも一部を波長変換可能な波長変換材料12を含有する。これにより発光素子10からの出射される一次光は、その一部を波長変換材料12でもって波長変換された二次光と加色混合されて、所望の波長の光を放出可能な発光装置とできる。また上述のように、発光面15aを発光装置100における発光の窓部としており、言い換えると、光の分布領域を示す配光曲線は、発光面である窓部の形状や大きさに実質的に依存する。例えば図1に示すように光観測方向からの平面視において、光透過部材15が発光素子10を内包する形態、つまり光透過部材15の径を発光素子10の径より大きくすれば、配光を広くできる。すなわち発光素子に比して発光面15aを大きくすることで、発光装置からの光束量を高められる。あるいは発光素子10上に光透過部材15の側面15cが位置するように、発光素子10の外郭よりも光透過部材15の径を小さくしてもよい。つまり発光素子10に比して発光面15aを小さくして発光領域を絞ることで、より一層、混色の割合を略一定とできるため、さらに色ムラの低減された放出光とできる。また、発光領域を縮小することで相対的な輝度を高められる。あるいは光透過部材15と発光素子10の外径を略同一とし、光透過部材の側面15cと発光素子10の側面である端面33とが略一直線上に揃うように位置決めしてもよい。これにより光束と輝度、配色性における双方のバランスがとれた光を放出できる。   Further, the light transmission member 15 contains a wavelength conversion material 12 capable of converting the wavelength of at least part of the light emitted from the light emitting element 10. As a result, a part of the primary light emitted from the light emitting element 10 is additively mixed with the secondary light wavelength-converted by the wavelength conversion material 12, and a light emitting device capable of emitting light of a desired wavelength it can. In addition, as described above, the light emitting surface 15a is used as a light emission window portion in the light emitting device 100. In other words, the light distribution curve indicating the light distribution region substantially corresponds to the shape and size of the window portion that is the light emitting surface. Dependent. For example, as shown in FIG. 1, when the light transmitting member 15 includes the light emitting element 10 in a plan view from the light observation direction, that is, if the diameter of the light transmitting member 15 is larger than the diameter of the light emitting element 10, Can be wide. That is, the amount of light from the light emitting device can be increased by increasing the light emitting surface 15a as compared with the light emitting element. Alternatively, the diameter of the light transmissive member 15 may be made smaller than the outline of the light emitting element 10 so that the side surface 15 c of the light transmissive member 15 is positioned on the light emitting element 10. That is, the light emitting surface 15a is made smaller than that of the light emitting element 10 and the light emitting region is narrowed down, so that the color mixture ratio can be made substantially constant, so that the emitted light can be further reduced in color unevenness. Further, the relative luminance can be increased by reducing the light emitting area. Alternatively, the light transmitting member 15 and the light emitting element 10 may have substantially the same outer diameter, and may be positioned so that the side surface 15c of the light transmitting member and the end surface 33 that is the side surface of the light emitting element 10 are substantially aligned. As a result, it is possible to emit light in which both the luminous flux, the luminance, and the color arrangement are balanced.

以下、本発明における発光装置100の各部材及び構造について説明する。   Hereinafter, each member and structure of the light emitting device 100 according to the present invention will be described.

(発光素子)
発光素子10は公知のもの、具体的には半導体発光素子を利用でき、特にGaN系半導体であれば、蛍光物質を効率良く励起できる短波長の可視光や紫外光が発光可能であるため好ましい。具体的な発光ピーク波長は240nm以上560nm以下、好ましくは380nm以上420nm以下、若しくは450nm以上470nm以下である。なお、このほか、ZnSe系、InGaAs系、AlInGaP系半導体の発光素子でもよい。
(Light emitting element)
As the light-emitting element 10, a known element, specifically, a semiconductor light-emitting element can be used. In particular, a GaN-based semiconductor is preferable because it can emit visible light or ultraviolet light having a short wavelength that can excite a fluorescent substance efficiently. A specific emission peak wavelength is 240 nm to 560 nm, preferably 380 nm to 420 nm, or 450 nm to 470 nm. In addition, a light emitting element of ZnSe, InGaAs, or AlInGaP semiconductor may be used.

(発光素子構造)
半導体層による発光素子構造は、少なくとも第1導電型(n型)層と第2導電型(p型)層とにより構成される。更に、その両導電型層の間に活性層を有する構造が出力、効率上好ましいがこれに限定されない。
また、電極構造は、一方の主面側に第1導電型(負)、第2導電型(正)の両電極が設けられる構造が好ましいが、それに限定されず半導体層の各主面に対向して各々電極が設けられる構造でも良い。なお、正負電極は、必ずしも一対に限定されず、それぞれ複数形成することもできる。さらに、発光素子の実装形態についても公知の技術が採用でき、例えば同一面側に正負電極を有する素子構造では、その電極形成面と対向する成長基板側を主光取出し面とするフリップチップ実装が、発光素子10と光透過部材15とを光学的に安定して接続できるため、色相、輝度などに係る光特性の観点から好ましい。この他、電極形成面側を主光取出し面とする実装、フェイスアップ実装も採用でき、適宜素子構造に合った搭載手段が採用できる。
(Light emitting element structure)
The light emitting element structure by the semiconductor layer is composed of at least a first conductivity type (n-type) layer and a second conductivity type (p-type) layer. Furthermore, a structure having an active layer between the two conductivity type layers is preferable in terms of output and efficiency, but is not limited thereto.
The electrode structure is preferably a structure in which both electrodes of the first conductivity type (negative) and the second conductivity type (positive) are provided on one main surface side, but are not limited thereto and face each main surface of the semiconductor layer. Thus, a structure in which electrodes are provided may be used. The positive and negative electrodes are not necessarily limited to a pair, and a plurality of positive and negative electrodes can be formed. Furthermore, a well-known technique can be adopted for the mounting form of the light emitting element. For example, in an element structure having positive and negative electrodes on the same surface side, flip chip mounting with the growth substrate side facing the electrode forming surface as a main light extraction surface is possible. Since the light emitting element 10 and the light transmitting member 15 can be optically stably connected, it is preferable from the viewpoint of optical characteristics related to hue, luminance, and the like. In addition, mounting with the electrode forming surface side as the main light extraction surface and face-up mounting can be employed, and mounting means suitable for the element structure can be employed as appropriate.

なお、半導体層を結晶成長させるための成長基板は、該成長基板が発光素子構造を構成しない場合には除去しても良い。また、成長基板が除去された半導体層に支持基板、例えば導電性基板又は別の透光性部材や透光性基板を接着した構造とすることもできる。また、半導体層に接続する透光性部材・基板に代えて、光透過部材15を用いることもできる。その他、ガラス、樹脂などの透光性部材により半導体層が接着・被覆されて、支持された構造の素子でも良い。成長基板の除去は、例えば装置又はサブマウントのチップ載置部に保持して、剥離、研磨、若しくはLLO(Laser Lift Off)で実施できる。また、透光性の異種基板であっても、基板除去することで、光取り出し効率、出力を向上させることができ、好ましい。   Note that the growth substrate for crystal growth of the semiconductor layer may be removed when the growth substrate does not constitute a light emitting element structure. Alternatively, a structure in which a supporting substrate, for example, a conductive substrate, another light-transmitting member, or a light-transmitting substrate is bonded to the semiconductor layer from which the growth substrate has been removed may be employed. Moreover, it can replace with the translucent member and board | substrate connected to a semiconductor layer, and the light transmissive member 15 can also be used. In addition, an element having a structure in which a semiconductor layer is bonded and covered with a light-transmitting member such as glass or resin may be used. The removal of the growth substrate can be carried out by peeling, polishing, or LLO (Laser Lift Off) while being held on the chip mounting portion of the apparatus or the submount, for example. Moreover, even if it is a translucent dissimilar board | substrate, light extraction efficiency and an output can be improved by removing a board | substrate, and it is preferable.

(光反射構造)
また、発光素子10は光反射構造を有することができる。具体的には、半導体層の互いに対向する2つの主面の内、光取り出し側と対向する他方の主面を光反射側(図1における下側)とし、この光反射側の半導体層内や電極などに光反射構造を設けることができる。光反射構造の例として、半導体層内に多層膜反射層が設けられた素子構造、あるいは半導体層の上にAg、Al等の光反射性の高い金属膜や誘電体多層膜を有する電極、反射層を設けた構造がある。
(Light reflection structure)
The light emitting element 10 can have a light reflecting structure. Specifically, of the two main surfaces facing each other of the semiconductor layer, the other main surface facing the light extraction side is defined as a light reflecting side (lower side in FIG. 1). A light reflecting structure can be provided on the electrode or the like. Examples of the light reflecting structure include an element structure in which a multilayer reflective layer is provided in a semiconductor layer, or an electrode having a highly light reflective metal film such as Ag or Al or a dielectric multilayer film on the semiconductor layer, reflective There are structures with layers.

(窒化物半導体発光素子)
図1の発光装置100に搭載される発光素子10はLEDチップであり、このLEDチップを配線基板9の一であるサブマウント基板上にフリップチップ実装している。以下にその発光素子10の一例として、窒化物半導体の発光素子を説明する。図3は、発光素子10の概略断面図である。図3の窒化物半導体の発光素子10では、成長基板5であるサファイア基板の上に、第1の窒化物半導体層6であるn型半導体層、活性層8である発光層、第2の窒化物半導体層7であるp型半導体層が順にエピタキシャル成長され、窒化物半導体層11を形成している。そして、発光層8及びp型半導体層7の一部がエッチングにより選択的に除去されて、n型半導体層6の一部が露出され、この露出領域に第1の電極3Aであるn型パッド電極を形成している。またp型半導体層7のほぼ全面にITO等の透光性導電層13、さらにその上の一部に第2の電極3Bであるp型パッド電極が形成されている。さらに、n型パッド電極3A及びp型パッド電極3Bの所定の表面のみを露出し、他の部分は絶縁性の保護膜14で被覆される。なお、n型パッド電極3Aは、n型半導体層6の露出領域に透光性導電層のn型電極を介して形成してもよい。
(Nitride semiconductor light emitting device)
The light emitting element 10 mounted on the light emitting device 100 of FIG. 1 is an LED chip, and this LED chip is flip-chip mounted on a submount substrate which is one of the wiring boards 9. A nitride semiconductor light emitting element will be described below as an example of the light emitting element 10. FIG. 3 is a schematic cross-sectional view of the light-emitting element 10. In the nitride semiconductor light emitting device 10 of FIG. 3, on the sapphire substrate which is the growth substrate 5, the n-type semiconductor layer which is the first nitride semiconductor layer 6, the light emitting layer which is the active layer 8, and the second nitride. A p-type semiconductor layer which is the physical semiconductor layer 7 is epitaxially grown in order to form a nitride semiconductor layer 11. Then, a part of the light emitting layer 8 and the p-type semiconductor layer 7 is selectively removed by etching, and a part of the n-type semiconductor layer 6 is exposed, and an n-type pad which is the first electrode 3A is exposed in this exposed region. An electrode is formed. In addition, a light-transmitting conductive layer 13 such as ITO is formed on almost the entire surface of the p-type semiconductor layer 7, and a p-type pad electrode as the second electrode 3 </ b> B is formed on a part of the transparent conductive layer 13. Furthermore, only predetermined surfaces of the n-type pad electrode 3A and the p-type pad electrode 3B are exposed, and other portions are covered with an insulating protective film 14. Note that the n-type pad electrode 3A may be formed in the exposed region of the n-type semiconductor layer 6 via the n-type electrode of the translucent conductive layer.

(成長基板、窒化物半導体)
成長基板5は、半導体層11をエピタキシャル成長させる基板で、窒化物半導体における基板としては、C面、R面、及びA面のいずれかを主面とするサファイアやスピネル(MgAl24)のような絶縁性基板、また炭化珪素(6H、4H、3C)、Si、ZnS、ZnO、GaAs、ダイヤモンド、及び窒化物半導体と格子接合するニオブ酸リチウム、ガリウム酸ネオジウム等の酸化物基板、GaNやAlN等の窒化物半導体基板がある。窒化物半導体としては、一般式がInxAlyGa1-x-yN(0≦x、0≦y、x+y≦1)であって、BやP、Asを混晶してもよい。また、n型半導体層6、p型半導体層7は、単層、多層を特に限定しない。活性層である発光層8は単一(SQW)又は多重量子井戸構造(MQW)とする。窒化物半導体層11の例としては、サファイア基板上に、バッファ層などの窒化物半導体の下地層、例えば低温成長薄膜GaNとGaN層を介して、n型半導体層として、例えばSiドープGaNのn型コンタクト層とGaN/InGaNのn型多層膜層が積層され、続いてInGaN/GaNのMQWの活性層、更にp型半導体層として、例えばMgドープのInGaN/AlGaNのp型多層膜層とMgドープGaNのp型コンタクト層が積層された構造を用いる。
(Growth substrate, nitride semiconductor)
The growth substrate 5 is a substrate on which the semiconductor layer 11 is epitaxially grown. As a substrate in the nitride semiconductor, sapphire or spinel (MgAl 2 O 4 ) whose main surface is any one of the C-plane, R-plane, and A-plane is used. Insulating substrates, silicon carbide (6H, 4H, 3C), Si, ZnS, ZnO, GaAs, diamond, and oxide substrates such as lithium niobate and neodymium gallate that are lattice-bonded to nitride semiconductors, GaN and AlN There are nitride semiconductor substrates such as. As the nitride semiconductor, the general formula In x Al y Ga 1-xy N (0 ≦ x, 0 ≦ y, x + y ≦ 1) A, B and P, may be mixed with As. Further, the n-type semiconductor layer 6 and the p-type semiconductor layer 7 are not particularly limited to a single layer or a multilayer. The light emitting layer 8 which is an active layer has a single (SQW) or multiple quantum well structure (MQW). As an example of the nitride semiconductor layer 11, an n-type semiconductor layer, for example, n of Si-doped GaN is formed on a sapphire substrate via a nitride semiconductor underlayer such as a buffer layer, for example, a low-temperature grown thin film GaN and a GaN layer. Type contact layer and GaN / InGaN n-type multilayer film layer, followed by InGaN / GaN MQW active layer, and p-type semiconductor layer, for example, Mg-doped InGaN / AlGaN p-type multilayer film layer and Mg A structure in which p-type contact layers of doped GaN are stacked is used.

(配線基板)
一方、図1の発光装置100において、上記の発光素子10が実装される基板9は、少なくとも表面が素子の電極と接続される配線を形成したものが利用できる。基板の材料は、例として窒化アルミニウム(AlN)で構成され、単結晶、多結晶、焼結基板、他の材料としてアルミナ等のセラミック、ガラス、Si等の半金属あるいは金属基板、またそれらの表面にAlN薄膜層が形成された基板等、積層体、複合体が使用できる。金属基板、金属性基板、セラミック基板は放熱性が高いため、好ましい。素子が載置される基板には、配線を有していない基板でも良く、例えば、電極形成面側を主な発光側とする発光素子において、その基板側を実装して素子の電極を装置の電極にワイヤー接続する形態でも良く、載置部の基材、リード電極を備えた発光装置でも良い。また、その基板と被覆部材の形態としては、図示する発光装置のように、被覆部材が基板の上に設けられる形態の他、基板の側面を覆う形態でも良い。また配線基板は、光を光取り出し方向へと有効に反射できるように、少なくともその表面が高反射性材料で構成されることが好ましい。
(Wiring board)
On the other hand, in the light emitting device 100 of FIG. 1, as the substrate 9 on which the light emitting element 10 is mounted, a substrate on which at least the surface is connected to the electrode of the element can be used. The material of the substrate is made of aluminum nitride (AlN) as an example, single crystal, polycrystalline, sintered substrate, ceramics such as alumina as other materials, glass, metal or metal substrate such as Si, and their surfaces A laminate or a composite such as a substrate on which an AlN thin film layer is formed can be used. A metal substrate, a metallic substrate, and a ceramic substrate are preferable because of high heat dissipation. The substrate on which the element is placed may be a substrate having no wiring. For example, in a light emitting element whose main light emitting side is the electrode formation surface side, the substrate side is mounted and the electrode of the element is attached to the device. It may be in the form of wire connection to the electrode, or a light emitting device provided with a base material for the mounting portion and a lead electrode. Further, as the form of the substrate and the covering member, a form in which the covering member is provided on the substrate as well as the side surface of the substrate may be used as in the illustrated light emitting device. Further, it is preferable that at least the surface of the wiring board is made of a highly reflective material so that light can be effectively reflected in the light extraction direction.

(光透過部材)
また図1の発光装置100は、発光素子10からの光が入射される光透過部材15を備える。光透過部材15は通過する光の少なくとも一部を波長変換可能な波長変換材料12を有することが好ましい。それにより、光源からの一次光が光透過部材15を通過する際に、波長変換材料12としての蛍光体を励起することで、光源の波長とは異なった波長を持つ二次光が得られ、この結果、波長変換されない一次光との混色により、所望の色相を有する出射光を実現できる。その他、一次光を透過するだけの形態、一次光で励起された二次光もしくはその副次的な光を透過し、一次光をほとんど透過しない形態があり、前者はLED光の単色、後者は紫外線発光LEDの変換光(単色、混色光)、を発光する発光装置とできる。
(Light transmission member)
Further, the light emitting device 100 of FIG. 1 includes a light transmission member 15 into which light from the light emitting element 10 is incident. The light transmitting member 15 preferably has a wavelength conversion material 12 capable of converting the wavelength of at least part of the light passing therethrough. Thereby, when the primary light from the light source passes through the light transmitting member 15, the secondary light having a wavelength different from the wavelength of the light source is obtained by exciting the phosphor as the wavelength conversion material 12. As a result, outgoing light having a desired hue can be realized by color mixing with primary light that is not wavelength-converted. In addition, there is a form that only transmits primary light, a form that transmits secondary light or its secondary light excited by primary light, and hardly transmits primary light. The former is a single color of LED light, the latter is It can be set as the light-emitting device which light-emits the conversion light (monochromatic, mixed color light) of ultraviolet light emission LED.

また、図1の光透過部材15は、発光面15aからの平面視において発光素子10を内包するように構成される。言い換えると、図1に示すように、光透過部材15の側面15cが、発光素子10の側面を構成する端面33よりも外方に突出している。これにより、光学的に接続された発光素子10からの出射光を、発光素子10の上面より幅広な受光面15bでもって直接的に受光できるため光束の損失が少ない。なお、光透過部材15の側面15cの発光素子10の側面に対する突出量は、発光素子の寸法に比して、例えば3%以上30%以下であり、具体的には5%以上15%以下である。例として、実施例1の発光装置においては透光性部材15の終端に約50μmの幅で突出している。   Further, the light transmitting member 15 in FIG. 1 is configured to include the light emitting element 10 in a plan view from the light emitting surface 15a. In other words, as shown in FIG. 1, the side surface 15 c of the light transmitting member 15 protrudes outward from the end surface 33 constituting the side surface of the light emitting element 10. As a result, light emitted from the optically connected light emitting element 10 can be directly received by the light receiving surface 15b wider than the upper surface of the light emitting element 10, so that there is little loss of light flux. The protrusion amount of the side surface 15c of the light transmitting member 15 with respect to the side surface of the light emitting element 10 is, for example, 3% or more and 30% or less, specifically 5% or more and 15% or less as compared with the dimension of the light emitting element. is there. As an example, in the light-emitting device of Example 1, the light-transmitting member 15 protrudes to the end with a width of about 50 μm.

ここで、光透過部材15の母材となる透光性部材としては、下記被覆部材と同様な材料を用いることができ、例えば樹脂、ガラス、無機物を用いることができ、また、下記波長変換材料の成形体、結晶体などでも良い。また、発光面、受光面は光透過部材が板状である場合には、両面とも略平坦な面であること、更には対向する両面が互いに平行であることが好ましく、これにより、受光から発光へ好適に光が進行する。一方で、それに限らず、発光面、受光面は平坦な面に限らず、全体、一部に曲面を有する形態の他、凹凸面などの面状の形態、さらには面状の形態に限らず種々の形状若しくは形態、例えば集光、分散するための形状、例えばレンズ状、などのような光学的な形状、とすることもでき、またそれを光透過部材上に結合した構造とすることもできる。なお、光透過部材15は、発光素子10の構成部材の一部であってもよい。   Here, as the translucent member serving as a base material of the light transmissive member 15, the same material as the following covering member can be used, for example, resin, glass, inorganic material can be used, and the following wavelength conversion material A molded body, a crystalline body, or the like may be used. Further, when the light transmitting member has a plate shape, the light emitting surface and the light receiving surface are preferably both substantially flat surfaces, and moreover, both opposing surfaces are preferably parallel to each other. The light travels favorably. On the other hand, the light-emitting surface and the light-receiving surface are not limited to flat surfaces, but are not limited to flat surfaces, and are not limited to planar shapes such as uneven surfaces, or even planar shapes. Various shapes or forms, for example, a shape for condensing light, a shape for dispersing, for example, an optical shape such as a lens shape, etc., or a structure in which it is combined on a light transmitting member it can. The light transmitting member 15 may be a part of the constituent members of the light emitting element 10.

また、光透過部材の波長変換機能により、発光素子からの可視光とその変換光の混色光を出射する発光装置の他に、例えば発光素子からの紫外光による変換光、若しくは複数の変換光による混色光のように、発光素子の一次光から変換された二次光を出射する発光装置とすることもできる。   In addition to the light emitting device that emits visible light from the light emitting element and a mixed color light of the converted light by the wavelength conversion function of the light transmitting member, for example, converted light by ultraviolet light from the light emitting element or a plurality of converted light A light-emitting device that emits secondary light converted from primary light of a light-emitting element, such as mixed color light, can also be provided.

波長変換機能を備えた光透過部材15は、具体的には光変換部材を備えたガラス板、あるいは蛍光体結晶若しくはその相を有する単結晶体、多結晶体、アモルファス体、セラミック体などが挙げられる。この他、蛍光体結晶粒子と適宜付加される透光性部材との焼結体、凝集体、多孔質体、更にそれらに透光性部材、例えば透光性樹脂を混入、含浸したもの、あるいは蛍光体粒子を含有する透光性部材、例えば透光性樹脂の成形体等から構成される。また、光透過部材15の形状は特に限定されないが、実施の形態1では光透過部材15を板状とした。板状とすることで、面状に構成される発光素子10の出射面との結合効率が良く、光透過部材15の主面とが略平行になるよう容易に位置合わせできる。加えて、光透過部材15の厚みを略一定とすることで、通過する光の波長変換量を略均一として混色の割合を安定させ、発光面15aの部位における色ムラを抑止できる。このため、一の光透過部材15に複数の発光素子10を搭載する場合において、個々の発光素子10の配置に起因する発光面内の輝度や色度の分布にムラが少なく略均一で高輝度の発光を得ることができる。なお、波長変換機能を備えた光透過部材15の厚みは、発光効率や色度調整において、10μm以上500μm以下であることが好ましく、さらには50μm以上300μm以下であることがより好ましい。   Specific examples of the light transmissive member 15 having a wavelength conversion function include a glass plate having a light conversion member, a phosphor crystal or a single crystal having a phase thereof, a polycrystal, an amorphous body, and a ceramic body. It is done. In addition, a sintered body, an aggregate, a porous body of phosphor crystal particles and a translucent member to be added as appropriate, and further, a translucent member such as a translucent resin mixed or impregnated therein, or It is comprised from the translucent member containing fluorescent substance particle, for example, the molded object etc. of translucent resin. Further, the shape of the light transmitting member 15 is not particularly limited, but in the first embodiment, the light transmitting member 15 is plate-shaped. By using the plate shape, the coupling efficiency with the emission surface of the light emitting element 10 configured in a planar shape is good, and the alignment can be easily performed so that the main surface of the light transmission member 15 is substantially parallel. In addition, by making the thickness of the light transmissive member 15 substantially constant, the wavelength conversion amount of light passing therethrough can be made substantially uniform, the color mixing ratio can be stabilized, and color unevenness at the light emitting surface 15a can be suppressed. For this reason, in the case where a plurality of light emitting elements 10 are mounted on one light transmitting member 15, the luminance and chromaticity distribution in the light emitting surface due to the arrangement of the individual light emitting elements 10 are less uneven and substantially uniform and high luminance. Luminescence can be obtained. The thickness of the light transmitting member 15 having a wavelength conversion function is preferably 10 μm or more and 500 μm or less, and more preferably 50 μm or more and 300 μm or less in terms of light emission efficiency and chromaticity adjustment.

また、青色発光素子と好適に組み合わせて白色発光とでき、波長変換材料に用いられる代表的な蛍光体としては、セリウムで付括されたYAG(イットリウム・アルミニウム・ガーネット)の蛍光体及びLAG(ルテチウム・アルミニウム・ガーネット)の蛍光体が挙げられ、特に、高輝度且つ長時間の使用時においては(Re1-xSmx3(Al1-yGay512:Ce(0≦x<1、0≦y≦1、但し、Reは、Y、Gd、La、Luからなる群より選択される少なくとも一種の元素である。)等が好ましい。またYAG、LAG、BAM、BAM:Mn、(Zn、Cd)Zn:Cu、CCA、SCA、SCESN、SESN、CESN、CASBN及びCaAlSiN3:Euからなる群から選択される少なくとも1種を含む蛍光体が使用できる。 Moreover, it can be suitably combined with a blue light emitting element to emit white light, and typical phosphors used for wavelength conversion materials include phosphors of YAG (yttrium, aluminum, garnet) and LAG (lutetium) that are attached to cerium. aluminum garnet) phosphor can be cited, in particular, at the time of high luminance and long-term use (Re 1-x Sm x) 3 (Al 1-y Ga y) 5 O 12: Ce (0 ≦ x <1, 0 ≦ y ≦ 1, where Re is at least one element selected from the group consisting of Y, Gd, La, and Lu). Further, a phosphor containing at least one selected from the group consisting of YAG, LAG, BAM, BAM: Mn, (Zn, Cd) Zn: Cu, CCA, SCA, SCESN, SESN, CESN, CASBN, and CaAlSiN 3 : Eu. Can be used.

発光装置100において、波長変換材料若しくはその機能を備えた光透過部材は、複数備えても良く、例えば、上記光変換部材が2種類以上の蛍光体を混合させたものがある。その他に、変換波長が互いに異なる波長変換材料を複数有する光透過部材、あるいは変換波長が互いに異なる波長変換材料を含有する光透過部材の積層体などでもよい。更に、一の波長変換材料若しくはその機能を備えた光透過部材と、それとは別に光変換部材を有する光変換部を、発光装置の光を取り出す窓部上、あるいはそこから光源までの装置内における光路上、例えば光透過部材と発光素子との間、その結合部材中、発光素子と被覆部材との間などに設けることもできる。   In the light emitting device 100, a plurality of light transmissive members having a wavelength conversion material or a function thereof may be provided. For example, the light conversion member may be a mixture of two or more kinds of phosphors. In addition, a light transmissive member having a plurality of wavelength conversion materials having different conversion wavelengths, or a laminate of light transmissive members containing wavelength conversion materials having different conversion wavelengths may be used. Further, a light transmission member having one wavelength conversion material or its function and a light conversion unit having a light conversion member separately from the light conversion device may be provided on the window for extracting light from the light emitting device or in the device from the light source to the light source. It can also be provided on the optical path, for example, between the light transmitting member and the light emitting element, in the coupling member, between the light emitting element and the covering member, and the like.

黄〜赤色発光を有する窒化物蛍光体等を用いて赤味成分を増し、平均演色評価数Raの高い照明や電球色LED等を実現することもできる。具体的には、発光素子の発光波長に合わせてCIEの色度図上の色度点の異なる蛍光体の量を調整し含有させることでその蛍光体間と発光素子で結ばれる色度図上の任意の点を発光させることができる。その他に、近紫外〜可視光を黄色〜赤色域に変換する窒化物蛍光体、酸窒化物蛍光体、珪酸塩蛍光体、L2SiO4:Eu(Lはアルカリ土類金属)、特に(SrxMae1-x2SiO4:Eu(MaeはCa、Baなどのアルカリ土類金属)などが挙げられる。窒化物系蛍光体、オキシナイトライド(酸窒化物)蛍光体としては、Sr−Ca−Si−N:Eu、Ca−Si−N:Eu、Sr−Si−N:Eu、Sr−Ca−Si−O−N:Eu、Ca−Si−O−N:Eu、Sr−Si−O−N:Euなどがあり、アルカリ土類窒化ケイ素蛍光体としては、一般式LSi222:Eu、一般式LxSiy(2/3x+4/3y):Eu若しくはLxSiyz(2/3x+4/3y-2/3z):Eu(Lは、Sr、Ca、SrとCaのいずれか)で表される。 It is also possible to increase the reddish component using a nitride phosphor having yellow to red light emission, and to realize illumination with high average color rendering index Ra, light bulb color LED, and the like. Specifically, by adjusting the amount of phosphors having different chromaticity points on the CIE chromaticity diagram according to the light emission wavelength of the light emitting device, the phosphors are connected with each other on the chromaticity diagram. Any point can be made to emit light. In addition, a nitride phosphor, oxynitride phosphor, silicate phosphor, L 2 SiO 4 : Eu (L is an alkaline earth metal) that converts near-ultraviolet to visible light into a yellow to red region, particularly (Sr x Mae 1-x ) 2 SiO 4 : Eu (Mae is an alkaline earth metal such as Ca or Ba). Examples of nitride phosphors and oxynitride (oxynitride) phosphors include Sr—Ca—Si—N: Eu, Ca—Si—N: Eu, Sr—Si—N: Eu, and Sr—Ca—Si. —O—N: Eu, Ca—Si—O—N: Eu, Sr—Si—O—N: Eu, and the like. As the alkaline earth silicon nitride phosphor, the general formula LSi 2 O 2 N 2 : Eu , general formula L x Si y N (2 / 3x + 4 / 3y): Eu or L x Si y O z N ( 2 / 3x + 4 / 3y-2 / 3z): Eu (L is, Sr, Ca, One of Sr and Ca).

また、発光装置において、一の光透過部材15に対応する発光素子10の搭載個数は特に限定されない。一の光透過部材15を通過する光を発光可能な発光素子10を複数とすれば、受光面15bへ進行する総光束量を多くできるため、ひいては発光面15aからの放出光の輝度を高められて好ましい。図に示すように、一列に複数の素子を配置した構造や、等間隔に格子位置に配置した構造などが挙げられる。   In the light emitting device, the number of the light emitting elements 10 corresponding to one light transmitting member 15 is not particularly limited. If a plurality of light emitting elements 10 capable of emitting light that passes through one light transmitting member 15 are used, the total amount of light beams traveling to the light receiving surface 15b can be increased, so that the brightness of light emitted from the light emitting surface 15a can be increased. It is preferable. As shown in the figure, there are a structure in which a plurality of elements are arranged in a row, a structure in which lattice elements are arranged at equal intervals, and the like.

(被覆部材・封止部材)
被覆部材26は、図1に示すように、光透過部材15の一部を被覆し、具体的には少なくとも光透過部材15の側面15cを被覆する。被覆部材26の基材となる樹脂の材料は透光性であれば特に限定されず、シリコーン樹脂組成物、変性シリコーン樹脂組成物等を使用することが好ましいが、エポキシ樹脂組成物、変性エポキシ樹脂組成物、アクリル樹脂組成物等の透光性を有する絶縁樹脂組成物を用いることができる。また、これらの樹脂を少なくとも一種以上含むハイブリッド樹脂等、耐候性に優れた封止部材も利用できる。さらに、ガラス、シリカゲル等の耐光性に優れた無機物を用いることもできる。さらにまた、封止部材の発光面側を所望の形状にすることによってレンズ効果を持たせることができ、発光素子チップからの発光を集束させることができる。また、発光素子側に配置される第1の封止部材は、発光素子、波長変換部材の発熱、発光があるため、耐光性、耐熱性に優れた材料を用い、一方、その外側を被覆する第2の被覆部材はその影響が小さいため、その他の機能、上記見切り性の向上、耐候性、熱伝導性に優れた材料、すなわち互いに異なる材料(基材)をそれぞれ選択して、機能分離させることもできる。
(Coating member / sealing member)
As shown in FIG. 1, the covering member 26 covers a part of the light transmitting member 15, and specifically covers at least the side surface 15 c of the light transmitting member 15. The material of the resin used as the base material of the covering member 26 is not particularly limited as long as it is translucent, and it is preferable to use a silicone resin composition, a modified silicone resin composition, or the like. An insulating resin composition having translucency such as a composition and an acrylic resin composition can be used. Moreover, sealing members excellent in weather resistance, such as hybrid resins containing at least one of these resins, can also be used. Furthermore, inorganic materials having excellent light resistance such as glass and silica gel can be used. Furthermore, a lens effect can be provided by making the light emitting surface side of the sealing member have a desired shape, and light emitted from the light emitting element chip can be focused. In addition, the first sealing member disposed on the light emitting element side generates heat and emits light from the light emitting element and the wavelength conversion member. Therefore, a material excellent in light resistance and heat resistance is used, and the outside is covered. Since the influence of the second covering member is small, other materials, the above-described improvement in parting ability, weather resistance, and heat conductivity, that is, different materials (base materials) are selected and separated from each other. You can also

さらに被覆部材26は、耐熱性の高い樹脂成形体とすることが好ましい。これは発光素子10や光透過部材15が光子エネルギーの伝播経路に相当するため発熱する虞があるからである。したがってこれらの発熱体に近接する第1の封止部材26aは、特に耐光性及び耐熱性の高い樹脂を採用することが好ましい。実施の形態1では、被覆部材26を構成する第1の封止部材26aにおいて、その基材となる樹脂をシリコーン樹脂とする。シリコーン樹脂は耐熱性、撥水性、電気絶縁性に優れる他、経年劣化しにくい利点を備える。さらに第1の封止部材26aは、基材の樹脂中に、光吸収の少ない光反射性材料2が少なくとも1種類含有される。光反射性材料2を含有することで第1の封止部材26aの光反射率を高め、樹脂を透過して隣接する部材への光の漏れを抑制し、すなわち所望とする方向への光誘導を可能とする。また上記の効果を有効に実現するために、基材となる樹脂、すなわち実施の形態1においてはシリコーン樹脂中に、光吸収の少ない光反射性材料2が少なくとも1種類含有される。また光反射性材料2を含有することで、第1の封止部材26aの反射率が高まり、さらに好適には透光性の粒子による反射機能をもたせて、光吸収、損失を低くした被覆部材とできる。すなわち発光素子10であるLEDチップからの出射光は、LEDチップの周囲近傍に被覆された第1の封止部材26aでもって反射されて、LEDチップ側あるいは光透過部材15側へと導光される。このように、第1の封止部材と組み合わせて第2の封止部材を用いた構造とすることで、装置の基材の発光側表面を黒色に着色する従来の場合に比して、光の反射効率、高出力、高輝度とできる。   Furthermore, the covering member 26 is preferably a resin molded body having high heat resistance. This is because the light emitting element 10 and the light transmitting member 15 correspond to the propagation path of the photon energy and may generate heat. Therefore, it is preferable that the first sealing member 26a adjacent to these heating elements employs a resin having particularly high light resistance and heat resistance. In the first embodiment, in the first sealing member 26a constituting the covering member 26, the resin serving as the base material is a silicone resin. Silicone resins are excellent in heat resistance, water repellency, and electrical insulation, and have the advantage of being resistant to deterioration over time. Further, the first sealing member 26a contains at least one kind of light-reflective material 2 with little light absorption in the resin of the base material. Inclusion of the light reflective material 2 increases the light reflectance of the first sealing member 26a, suppresses light leakage to the adjacent member through the resin, that is, light induction in a desired direction. Is possible. In order to effectively realize the above effect, at least one light reflecting material 2 with little light absorption is contained in the resin serving as the base material, that is, in the first embodiment, the silicone resin. Further, by including the light reflective material 2, the reflectance of the first sealing member 26a is increased, and more preferably, the coating member has a reflection function by translucent particles, and reduces light absorption and loss. And can. That is, the emitted light from the LED chip that is the light emitting element 10 is reflected by the first sealing member 26a coated in the vicinity of the periphery of the LED chip and guided to the LED chip side or the light transmitting member 15 side. The Thus, by using a structure using the second sealing member in combination with the first sealing member, the light emission side surface of the base material of the device is light compared to the conventional case of coloring black. Reflective efficiency, high output and high brightness.

上記、被覆部材26を構成する第1の封止部材26aにおいて、含有される光反射性材料2は、Ti、Zr、Nb、Al、Siからなる群から選択される1種の酸化物、若しくはAlN、MgFの少なくとも1種であり、具体的にはTiO2、ZrO2、Nb25、Al23、MgF、AlN、SiO2よりなる群から選択される少なくとも1種とする。第1の封止部材26a中、特に透光性樹脂中に含有される光反射性材料2、特にその透光性の粒子としては、Ti、Zr、Nb、Alからなる群から選択される1種の酸化物であることで、材料の透光性及び反射性、基材との屈折率差を高められ好ましい。また、第2の封止部材も同様に光反射性材料を有して反射機能を補強しても良く、この場合、第1の封止部材より光反射性材料の密度を低くするか、反射率を低くする。また被覆部材は、上記光反射性材料2による成形体でもって構成することもでき、具体的には上記粒子を凝集した凝集体、焼結体、などの多孔質材料とすることもでき、その他に、ゾル・ゲル法による成形体でも良い。このような多孔質体の被覆部材では、上記光反射性材料2と多孔質内の空気との屈折率差を大きくできるため、光反射性を高められ、耐光性、耐熱性に優れ好ましい。また、両者の被覆部材の特性を考慮して、両者の複合的な成形体とした被覆部材を形成することもでき、例えば、所望形状に成形した被覆部材に外表面側から樹脂を含浸させた成形体とすることもできる。このように、被覆部材、封止部材若しくは、それによる包囲体は、必ずしも完全な封止、気密封止でなくとも、内部領域と外部とが連通されたり、気体透過性であったりしても良く、少なくとも光が漏れ出さない形態、特に出射方向に漏れ出さない形態であれば良い。このような構造は、第1、2の被覆部材で構成されても良く、発光素子側の第1の被覆部材だけで構成されても良い。 In the first sealing member 26a constituting the covering member 26, the contained light reflecting material 2 is one oxide selected from the group consisting of Ti, Zr, Nb, Al, Si, or AlN, at least one of MgF, specifically a TiO 2, ZrO 2, Nb 2 O 5, Al 2 O 3, MgF, AlN, at least one selected from the group consisting of SiO 2. The light-reflective material 2 contained in the first sealing member 26a, particularly in the translucent resin, in particular, the translucent particles are selected from the group consisting of Ti, Zr, Nb, and Al. It is preferable to be a seed oxide because the translucency and reflectivity of the material and the refractive index difference from the substrate can be increased. Similarly, the second sealing member may have a light reflective material to reinforce the reflection function. In this case, the density of the light reflective material is made lower than that of the first sealing member or the reflective function is reduced. Reduce the rate. The covering member can also be constituted by a molded body made of the light reflective material 2, specifically, a porous material such as an aggregate obtained by agglomerating the particles or a sintered body. In addition, a molded body by a sol-gel method may be used. Such a porous covering member can increase the refractive index difference between the light-reflecting material 2 and the air in the porous body, so that the light-reflecting property can be improved and the light resistance and heat resistance are excellent. In addition, in consideration of the characteristics of both the covering members, it is also possible to form a covering member that is a composite molded body of both. For example, a covering member molded into a desired shape is impregnated with resin from the outer surface side. It can also be a molded body. As described above, the covering member, the sealing member, or the surrounding body thereof may not be completely sealed or hermetically sealed, but the internal region and the outside may be communicated or may be gas permeable. It is sufficient that the light does not leak at least, particularly a shape that does not leak in the emission direction. Such a structure may be composed of the first and second covering members, or may be composed of only the first covering member on the light emitting element side.

上述した母材中に光反射性材料2を含有する被覆部材では、その含有濃度、密度により光の染み出す深さが異なるため、発光装置形状、大きさに応じて、適宜濃度、密度を調整すると良い。例えば、比較的小さな発光装置の場合には、発光素子、光透過部材を覆う被覆部材の肉厚を小さくする必要があり、すなわちその薄肉の部材でもって光の漏れを抑制するように、高濃度の光反射性材料2を備えることが好ましい。一方で、光反射性材料2を含有する被覆部材の原料の調製、その原料の塗布、成形などの製造過程において、その原料における光反射性材料2の濃度が高くなると、製造上の困難性がある場合には、その濃度を適宜調整することになる。ここでは、母材を備えた被覆部材について説明したが、上記多孔質体についても同様に適用できる。一例として、下記比較例における実験では、その含有濃度を20wt%以上、その肉厚は20μm以上とするのが好適である。この範囲であれば、発光面から高輝度で指向性の高い放出光が得られる。   In the covering member containing the light-reflective material 2 in the base material described above, the depth at which light oozes out varies depending on the concentration and density, so the concentration and density are adjusted appropriately according to the shape and size of the light emitting device. Good. For example, in the case of a relatively small light emitting device, it is necessary to reduce the thickness of the covering member that covers the light emitting element and the light transmitting member, that is, the high concentration so that light leakage is suppressed with the thin member. It is preferable that the light reflecting material 2 is provided. On the other hand, if the concentration of the light-reflective material 2 in the raw material is increased in the manufacturing process such as preparation of the covering member containing the light-reflective material 2, application of the raw material, molding, etc., manufacturing difficulties may occur. In some cases, the concentration is appropriately adjusted. Here, the covering member provided with the base material has been described, but the same can be applied to the porous body. As an example, in the experiment in the following comparative example, it is preferable that the concentration is 20 wt% or more and the thickness is 20 μm or more. Within this range, emitted light with high brightness and high directivity can be obtained from the light emitting surface.

また、第2の封止部材26bは、第1の封止部材26aと同様に、種々の樹脂を主剤とできる。例えばエポキシ樹脂、シリコーン樹脂、フェノール樹脂、ポリイミド樹脂が列挙される。ただ第2の封止部材26bは、強度や耐候性、あるいはガスバリア性に優れた樹脂の成形体とすることが好ましい。これは第2の封止部材26bが発光装置の外形を構成する部材であって外部環境に曝されるからである。実施の形態1では第2の封止部材26bの基材としてエポキシ樹脂を用いる。エポキシ樹脂は、耐水性や耐熱性が良好で、かつ電気絶縁性に優れる。また第1の封止部材26aに対して接着性がよく、成形収縮が少ないため、接着材としてもすぐれた特性を有する。さらに高強度で耐薬品性、防食性にも優れる。したがって第1の封止部材26aの強度が比較的小さい場合であっても、機械的強度の高い第2の封止部材26bがこの第1の封止部材26aの外方を包囲することで、外部の応力から発光素子を保護でき、耐衝撃性を高められる。また、湿度や温度など発光素子に対する外部環境の負の因子を不通として、発光装置の信頼性を高められる。加えて表面の粘着性(タック性)が低いため汚れの付着を防止できる。なお、複数の樹脂材料を一体に形成する場合は、それぞれの熱膨張係数が近い樹脂を選択することが界面剥離の回避の観点からは好ましい。さらに、生産性を高めるために、第1の封止部材26aと第2の封止部材26bの基材を一致させてもよく、本実施の形態1において、第2の封止部材26bの基材も第1の封止部材26aと略同一材料のシリコーン樹脂を用いてもよい。   Moreover, the 2nd sealing member 26b can use various resin as a main ingredient similarly to the 1st sealing member 26a. For example, epoxy resin, silicone resin, phenol resin, and polyimide resin are listed. However, it is preferable that the second sealing member 26b be a resin molded body excellent in strength, weather resistance, or gas barrier properties. This is because the second sealing member 26b is a member constituting the outer shape of the light emitting device and is exposed to the external environment. In the first embodiment, an epoxy resin is used as the base material of the second sealing member 26b. Epoxy resins have good water resistance and heat resistance and are excellent in electrical insulation. Further, since it has good adhesion to the first sealing member 26a and little molding shrinkage, it has excellent characteristics as an adhesive. Furthermore, it has high strength and excellent chemical resistance and corrosion resistance. Therefore, even when the strength of the first sealing member 26a is relatively small, the second sealing member 26b having high mechanical strength surrounds the outside of the first sealing member 26a. The light emitting element can be protected from external stress, and the impact resistance can be improved. Further, the reliability of the light-emitting device can be improved by not passing negative factors of the external environment with respect to the light-emitting element such as humidity and temperature. In addition, the adhesion (dirt) of the surface can be prevented because the surface has low tackiness (tackiness). In the case where a plurality of resin materials are integrally formed, it is preferable from the viewpoint of avoiding interfacial delamination to select resins having similar thermal expansion coefficients. Furthermore, in order to increase productivity, the base materials of the first sealing member 26a and the second sealing member 26b may be matched. In the first embodiment, the base of the second sealing member 26b is used. The material may also be a silicone resin that is substantially the same material as the first sealing member 26a.

さらに、第2の封止部材26bは、樹脂の基材に光を吸収可能な光吸収性材料29を含有して、少なくとも第1の封止部材26aより可視光に対して吸収係数の大きい部材とする。例えば所望の波長の光を吸収可能なように、第2の封止部材26bを顔料などの光吸収性材料29を含有せしめて着色することができる。特に、第2の封止部材26bを黒色に着色した黒色体とすることで、可視光の略全波長域にわたって一様にその大部分を吸収することができるため、戻り光等の迷光を吸収して、外部への再放出を抑止でき好ましい。このため、発光色が白色である発光装置に対しては、特に第2の封止部材26bが黒色体であることが好ましい。また、黒色体であれば汚れが付着した場合でも視認しがたくできる。あるいは外光に対するコントラストを高められる。したがって樹脂基材に含有させる光吸収性材料29としては樹脂の基材を黒色に着色可能な構造体、例えば黒色顔料が好ましい。この黒色の着色体として具体的には炭素の黒鉛型微結晶の集りであるカーボンブラックや炭素の微粉末、カーボンナノチューブ、カーボンファイバー、フラーレン等が列挙できる。また樹脂基材中における光吸収材料29の分散性や沈降性を考慮して他のフィラーを添加してもよい。例えばシリカ(SiO2)を付加させることで粒径を略均等に揃えることができ、また比較的安価であり好適である。 Further, the second sealing member 26b contains a light-absorbing material 29 capable of absorbing light in a resin base material, and has a larger absorption coefficient for visible light than at least the first sealing member 26a. And For example, the second sealing member 26b can be colored by containing a light-absorbing material 29 such as a pigment so that light having a desired wavelength can be absorbed. In particular, by making the second sealing member 26b a black body colored black, most of it can be absorbed uniformly over substantially the entire wavelength range of visible light, so that stray light such as return light is absorbed. Therefore, it is preferable that re-release to the outside can be suppressed. For this reason, it is preferable that the 2nd sealing member 26b is a black body especially with respect to the light-emitting device whose luminescent color is white. Moreover, if it is a black body, even if dirt adheres, it can be hard to visually recognize. Alternatively, the contrast to external light can be increased. Therefore, the light-absorbing material 29 to be contained in the resin base material is preferably a structure capable of coloring the resin base material black, for example, a black pigment. Specific examples of the black colored material include carbon black, carbon fine powder, carbon nanotubes, carbon fibers, fullerene, and the like, which are a collection of carbon graphite-type microcrystals. Further, other fillers may be added in consideration of dispersibility and sedimentation properties of the light absorbing material 29 in the resin base material. For example, the addition of silica (SiO 2 ) makes it possible to make the particle diameters substantially uniform, and is relatively inexpensive and suitable.

また第2の封止部材26bは、熱伝導性材料を付加することが好ましい。これにより発光素子及び波長変換材料を含有する光透過部材などの熱源による発熱を外部へと効率良く拡散することができ、発光装置の信頼性を向上させることができる。熱伝導性材料として、具体的には0.8W/K・m以上の熱伝導率を有するものが好ましい。第2の封止部材26bは発光装置の表出面を構成するため、熱伝導率が上記範囲であれば熱源による発熱を有効に外部へと放出でき、ひいては発光装置のライフ特性が向上する。特に第2の封止部材26bの熱伝導率を、第1の封止部材26aの熱伝導率よりも高くすることが好ましい。これにより上記熱源、特に光透過部材15が波長変換材料(蛍光体)を含有する場合には、その波長変換材料からの発熱を外部側へと誘導しやすくして外部への放熱性を高められる。熱伝導性材料としては例えばAg、Cu等の金属材料や、ダイヤモンド、アルミナ、AlN、ガラス等熱引きの良いセラミックス材料が挙げられ、これらを混合して含有させてもよい。また第2の封止部材26bの光学特性(透光性、光反射性及び光吸収性)は、上記含有する光吸収性材料29に大きく依存するが、主剤の樹脂自体や添加される熱伝導性材料によっても多少変化する。つまり熱伝導性材料の濃度が高くなるほど第2の封止部材26bにおける光学特性への影響が大きくなるため、最終的な第2の封止部材26bによる光吸収性と熱伝導性の両要素を考慮して、含有される材料の比率を決定する。なお、この熱伝導性材料は上記光吸収性材料29がその機能を兼ねてもよい。例えば、黒色の着色体の例として挙げた上記光吸収性材料29は、高熱伝導性の材質でもあるため、熱伝導性材料を別途付与することを省略してもよい。   The second sealing member 26b is preferably added with a heat conductive material. As a result, heat generated by a heat source such as a light-transmitting member containing a light-emitting element and a wavelength conversion material can be efficiently diffused to the outside, and the reliability of the light-emitting device can be improved. Specifically, a heat conductive material having a heat conductivity of 0.8 W / K · m or more is preferable. Since the second sealing member 26b constitutes the exposed surface of the light emitting device, if the thermal conductivity is in the above range, heat generated by the heat source can be effectively released to the outside, and the life characteristics of the light emitting device are improved. In particular, it is preferable to make the thermal conductivity of the second sealing member 26b higher than the thermal conductivity of the first sealing member 26a. As a result, when the heat source, particularly, the light transmitting member 15 contains a wavelength conversion material (phosphor), heat generation from the wavelength conversion material can be easily induced to the outside, and heat dissipation to the outside can be enhanced. . Examples of the heat conductive material include metal materials such as Ag and Cu, and ceramic materials with good heat absorption such as diamond, alumina, AlN, and glass, and these may be mixed and contained. The optical properties (translucency, light reflectivity, and light absorption) of the second sealing member 26b largely depend on the light absorbing material 29 contained therein, but the main resin itself and the added heat conduction. It varies somewhat depending on the material used. In other words, the higher the concentration of the heat conductive material, the greater the influence on the optical characteristics of the second sealing member 26b. Therefore, both the light absorptive and heat conductive elements of the final second sealing member 26b are determined. In consideration, the ratio of the contained material is determined. Note that the light-absorbing material 29 may also serve as the heat conductive material. For example, the light-absorbing material 29 mentioned as an example of a black colored body is also a highly heat-conductive material, and thus it may be omitted to separately apply a heat-conductive material.

(被覆領域)
ところで、発光素子10からの出射光及び/又はその波長変換光は、上述の通り光透過部材15の受光面15bを進行し、光透過部材15内を通過した後、外部へと放出される。したがって、光透過部材15における少なくとも側面15cを、被覆部材26である第1の封止部材26aでもって被覆することにより、以下の作用、効果が得られる。側面15c領域からの光の漏れ出しを回避でき、さらに側面15c側より外方へ放出するのを抑止して、全体の発光色における色ムラや輝度ムラを低減でき、これにより第1の封止部材の外側、発光面を構成する第2の封止部材の見切り機能を高められる。また、側面15c方向へと進行した光を光取り出し方向側へと反射して、さらに外部への発光領域を制限することで、放出される光の指向性と発光面15aにおける輝度を高められ、他方、内側の第1の封止部材の耐光性により、外側の第2の封止部材が高輝度、高光束な光による劣化が抑えられる。さらに、光透過部材から発生する熱を第1の封止部材へ伝導させ、放熱性を高めることができる。光透過部材が波長変換材料を含有する場合には、高輝度、高出力な発光であると波長変換材料の発熱が著しいため、特に有効となる。
(Coating area)
By the way, the emitted light from the light emitting element 10 and / or its wavelength converted light travels on the light receiving surface 15b of the light transmitting member 15 as described above, passes through the light transmitting member 15, and then is emitted to the outside. Therefore, by covering at least the side surface 15c of the light transmitting member 15 with the first sealing member 26a which is the covering member 26, the following actions and effects can be obtained. Leakage of light from the side surface 15c region can be avoided, and further, emission from the side surface 15c side can be suppressed to reduce color unevenness and luminance unevenness in the entire emission color, thereby the first sealing. The parting function of the second sealing member constituting the light emitting surface outside the member can be enhanced. In addition, by reflecting the light traveling in the direction of the side surface 15c toward the light extraction direction side and further limiting the light emitting area to the outside, the directivity of the emitted light and the luminance at the light emitting surface 15a can be increased, On the other hand, due to the light resistance of the inner first sealing member, the outer second sealing member can be prevented from being deteriorated by light having high luminance and high luminous flux. Furthermore, heat generated from the light transmitting member can be conducted to the first sealing member, and heat dissipation can be improved. In the case where the light transmitting member contains a wavelength conversion material, it is particularly effective when the light is emitted with high luminance and high output because the wavelength conversion material generates significant heat.

実施の形態1において、第1の封止部材26aは、光透過部材15における側面15cに加えて、受光面15bの一部をも被覆する。具体的には、図1に示すように、光透過部材15と配線基板9との間に封止部材26を充填させ、発光素子10の周囲を封止部材26により被覆する。つまり光透過部材15の受光面15bにおいて、発光素子10との対向域、すなわち素子との接合領域を除く領域、すなわち素子からの露出領域が封止部材26でもって被覆される。この構成により、光透過部材の受光面において、発光素子10と光透過部材15との光学的な接続領域と、封止部材26の被覆領域とが設けられ、この光学的接続領域に限定してそこから発光素子10の一次光を光透過部材15側へと高効率に導光できる。また、被覆領域の封止部材26でもって、光透過部材の受光面側へと進行した光を光取り出し側へと反射させ、配線基板9での光吸収などによる一次光の光損失を抑制できる。さらに、図示するように、一の光透過部材15に複数の発光素子10が接合され、その素子間についても第1の封止部材26aが充填されることで、受光面15bにおいて隣接する素子接合領域の間に設けられる離間領域を、第1の封止部材26aにより被覆することが好ましい。光透過部材15内において、素子に隣接することで接合領域の直上の発熱、そこに溜まり易い熱を、第1の封止部材により上記離間領域の放熱性を高めて抑えることができる。   In the first embodiment, the first sealing member 26 a covers a part of the light receiving surface 15 b in addition to the side surface 15 c of the light transmitting member 15. Specifically, as illustrated in FIG. 1, a sealing member 26 is filled between the light transmitting member 15 and the wiring substrate 9, and the periphery of the light emitting element 10 is covered with the sealing member 26. That is, on the light receiving surface 15 b of the light transmitting member 15, a region facing the light emitting element 10, that is, a region excluding a bonding region with the element, that is, an exposed region from the element is covered with the sealing member 26. With this configuration, an optical connection region between the light emitting element 10 and the light transmission member 15 and a covering region of the sealing member 26 are provided on the light receiving surface of the light transmission member, and limited to this optical connection region. From there, the primary light of the light emitting element 10 can be guided to the light transmitting member 15 side with high efficiency. In addition, the light that has traveled to the light receiving surface side of the light transmitting member can be reflected to the light extraction side by the sealing member 26 in the covering region, and light loss of primary light due to light absorption in the wiring substrate 9 can be suppressed. . Further, as shown in the drawing, a plurality of light emitting elements 10 are bonded to one light transmitting member 15, and the first sealing member 26a is filled between the elements, so that adjacent element bonding is performed on the light receiving surface 15b. It is preferable to cover the separation region provided between the regions with the first sealing member 26a. In the light transmission member 15, heat generated immediately above the junction region by being adjacent to the element and heat that easily accumulates in the light transmission member 15 can be suppressed by increasing the heat dissipation of the separation region by the first sealing member.

また第2の封止部材26bは、第1の封止部材26aの外方に配置される。さらに具体的に、図1又は図2における第2の封止部材26bでは、第1の封止部材26aと接合されて、第1の封止部材26aの外面に接しながらこれを包囲する。つまり、第1の封止部材26aの外面側の形状が、第2の封止部材26bの内面側の形状に略一致して沿いながら連結され、双方の部材の接合領域で界面を形成しつつ一体に成形される。言い換えると第2の封止部材26bと発光素子10との間に第1の封止部材26aが介在する。そして第1の封止部材26aの成形体における外面の径は、図1(a)に示すように発光素子10及び光透過部材15の積層方向、発光面の光軸方向(図1(a)の上方向)にしたがって縮小する。つまり積層方向と直交する水平方向、発光面に平行な方向(図1(a)の左右方向)において、発光装置全体の外形に占める第1の封止部材26aの割合は上方ほど減少する。したがって配線基板9に接した被覆部材26の最低面では、第1の封止部材26aに対する第2の封止部材26bの割合が小さく、この割合は上方にいくにつれてその割合が増大する。そして発光側における被覆部材26の最表面では、第2の封止部材26bの割合が最も大きく、かつ第2の封止部材26bが外部に露出して発光装置の表出面を構成する。言い換えると、水平方向において、第1の封止部材26aは光透過部材15の側方より発光素子10の側方において肉厚が大きくなっており、他方第2の封止部材26bは発光素子10の側方より光透過部材15の側方において肉厚が大きくなっている。   Further, the second sealing member 26b is disposed outside the first sealing member 26a. More specifically, the second sealing member 26b in FIG. 1 or FIG. 2 is joined to the first sealing member 26a and surrounds it while being in contact with the outer surface of the first sealing member 26a. That is, the shape of the outer surface side of the first sealing member 26a is connected while being substantially aligned with the shape of the inner surface side of the second sealing member 26b, and an interface is formed in the joining region of both members. Molded integrally. In other words, the first sealing member 26 a is interposed between the second sealing member 26 b and the light emitting element 10. And the diameter of the outer surface in the molded object of the 1st sealing member 26a is the lamination direction of the light emitting element 10 and the light transmissive member 15, as shown to Fig.1 (a), and the optical axis direction of a light emission surface (Fig.1 (a)). (Upward direction). That is, in the horizontal direction orthogonal to the stacking direction and the direction parallel to the light emitting surface (the left-right direction in FIG. 1A), the ratio of the first sealing member 26a in the outer shape of the entire light emitting device decreases toward the top. Therefore, the ratio of the second sealing member 26b to the first sealing member 26a is small on the lowest surface of the covering member 26 in contact with the wiring board 9, and this ratio increases as it goes upward. The ratio of the second sealing member 26b is the largest on the outermost surface of the covering member 26 on the light emitting side, and the second sealing member 26b is exposed to the outside to constitute the exposed surface of the light emitting device. In other words, in the horizontal direction, the first sealing member 26a is thicker on the side of the light emitting element 10 than on the side of the light transmitting member 15, while the second sealing member 26b is on the side of the light emitting element 10. The wall thickness is larger on the side of the light transmission member 15 than on the side of.

このように、被覆部材26は、第1の封止部材26aと第2の封止部材26bとの界面の断面形状が、上方にいくにつれて先細りとなるよう、第1の封止部材26aと第2の封止部材26bを独特の形状として一体に成形されてなる。この結果、光吸収性の高い第2の封止部材26bに内包された高反射性の第1の封止部材26aの配置領域を、上方ほど狭小とできる。つまり光放出方向に従って光が進行可能な領域をテーパ形状として、最上の最も幅狭域に配置された光透過部材15に導光されることとなる。したがって発光素子10からの出射光を光透過部材15の受光面15bへと高効率に集光できるため、発光領域における輝度を有効に高められる。これに対して、第1の封止部材26aの幅狭域を第2の封止部材により埋設することで、発光面に占める第2の封止部材26bの割合を高めて、さらには第2の封止部材26bが発光面に近接されることで、見切り機能、また放熱機能を高められ、他方、発光面と対向する底面側、すなわち実装面側では、見切り機能を要さず、実装基板による放熱機能があるため、第2の封止部材の割合を低くできる。また、第1の封止部材の占める割合の高い、幅広域を形成している底面側では、発光素子及び光透過部材を包囲する、さらには保持する第1の封止部材と実装基板との接着強度を高めることができる。   As described above, the covering member 26 has the first sealing member 26a and the first sealing member 26a so that the cross-sectional shape of the interface between the first sealing member 26a and the second sealing member 26b is tapered upward. The two sealing members 26b are integrally formed as a unique shape. As a result, the arrangement region of the highly reflective first sealing member 26a included in the second sealing member 26b having high light absorption can be narrowed toward the top. That is, the region where light can travel according to the light emission direction is tapered, and the light is guided to the light transmitting member 15 disposed in the uppermost narrowest region. Therefore, since the emitted light from the light emitting element 10 can be condensed with high efficiency onto the light receiving surface 15b of the light transmitting member 15, the luminance in the light emitting region can be effectively increased. On the other hand, by embedding the narrow region of the first sealing member 26a with the second sealing member, the ratio of the second sealing member 26b occupying the light emitting surface is increased, and further the second Since the sealing member 26b is close to the light emitting surface, the parting function and the heat radiation function can be enhanced. On the other hand, the parting function is not required on the bottom side facing the light emitting surface, that is, the mounting surface side. Therefore, the ratio of the second sealing member can be reduced. In addition, on the bottom surface side forming a wide wide area where the ratio of the first sealing member is high, the first sealing member that surrounds and holds the light emitting element and the light transmission member and the mounting substrate Adhesive strength can be increased.

さらに発光装置100は、図1(b)に示すように光観測方向からの平面視において、発光面15aの周囲を光吸収性の高い第2の封止部材26bでもって被覆し、かつ第1の封止部材26aに対する第2の封止部材26bの割合を最大として発光装置の表出面を構成する。この構造により、発光装置100からの放出光が戻り光となって発光装置100へと進行した場合、発光面15aを包囲する発光装置の外面でこの戻り光を吸収でき、戻り光が再び外方へと反射することを防止できる。したがって主要な光の分布領域から外れた領域に反射光が進行することを有効に防止し、輝度ムラや色ムラの発生を回避できる。つまり面内で均一な輝度、色相を備える配光を得られる。   Furthermore, as shown in FIG. 1B, the light emitting device 100 covers the periphery of the light emitting surface 15a with a second sealing member 26b having a high light absorption in the plan view from the light observation direction, and the first The exposed surface of the light emitting device is configured by maximizing the ratio of the second sealing member 26b to the sealing member 26a. With this structure, when the emitted light from the light emitting device 100 becomes return light and travels to the light emitting device 100, the return light can be absorbed by the outer surface of the light emitting device surrounding the light emitting surface 15a, and the return light is again outward. It is possible to prevent reflections. Therefore, it is possible to effectively prevent the reflected light from traveling to a region outside the main light distribution region, and avoid occurrence of luminance unevenness and color unevenness. That is, it is possible to obtain a light distribution having uniform brightness and hue within the surface.

上記、被覆部材26における第1の封止部材及び第2の封止部材を独特の配置形態とすることで、全体の光束量の損失を抑制しつつ発光面15aでの集光率を向上できる。また、発光領域と他の領域での輝度差を大きくできるため、実質的に発光領域を発光面15aに限定するとともに放出光の見切りをよくできる。つまり光透過部材15の発光面15aの形状と、この発光面15aからの放出光により構成される配光曲線の形状とを略一致させることができる。言い換えると、発光面15aの形状によって光の分布パターンを制御可能となる。   By making the first sealing member and the second sealing member in the covering member 26 into a unique arrangement form, it is possible to improve the light collection rate on the light emitting surface 15a while suppressing the loss of the total light flux. . In addition, since the luminance difference between the light emitting region and other regions can be increased, the light emitting region can be substantially limited to the light emitting surface 15a and the emission light can be cut off. That is, the shape of the light emitting surface 15a of the light transmitting member 15 and the shape of the light distribution curve formed by the light emitted from the light emitting surface 15a can be made to substantially coincide. In other words, the light distribution pattern can be controlled by the shape of the light emitting surface 15a.

また発光装置は、第1の封止部材26aが少なくとも光透過部材15の側面15cを被包した状態で、第2の封止部材26bでもって発光面15aの周囲の表出面を形成する構造として、封止部材の他の被覆領域については種々の形態が採用できる。例えば図示するように第1の封止部材26aが発光素子10を包囲する配置において、第1の封止部材26aを発光素子10の端面33に被着し発光素子10を被包させることが、上記製造の簡便さからは好ましい。ただ、第1の封止部材26aを発光素子10の端面33の外方に離間して配置させることもでき、具体的に、発光素子10表面において光透過部材と光学的に接続する接続部と、基板との電気的、物理的な接続部と、から露出された露出部が第1の封止部材26aによって被覆されず露出され、さらに複数の発光素子10を備える場合であれば、これら発光素子10の互いの離間領域にも第1の封止部材26aが充填されず空隙が形成される。このように第1の封止部材26aである包囲部材に内部空間を備えた構造であれば、該包囲部材と気体との屈折率差により反射率を高められ、出力、輝度の高い発光装置とすることができる。この時、好適には発光素子との屈折率差を高くするように、上記内部空間が気密封止などで、素子と空気・気体との屈折率差の高い露出部を形成することが好ましい。また、複数の発光素子が一の光透過部材に光学的に接続する場合には、その素子間についても同様に空隙を形成して出力を高めることができる。   The light emitting device has a structure in which the exposed surface around the light emitting surface 15a is formed by the second sealing member 26b in a state where the first sealing member 26a encloses at least the side surface 15c of the light transmitting member 15. Various forms can be adopted for other covering regions of the sealing member. For example, in the arrangement in which the first sealing member 26a surrounds the light emitting element 10 as illustrated, the first sealing member 26a is attached to the end surface 33 of the light emitting element 10 to encapsulate the light emitting element 10. It is preferable from the simplicity of the production. However, the first sealing member 26a can be arranged to be spaced outward from the end face 33 of the light emitting element 10, and specifically, a connection portion that optically connects to the light transmitting member on the surface of the light emitting element 10. If the exposed portions exposed from the electrical and physical connection portions with the substrate are exposed without being covered by the first sealing member 26a and further include a plurality of light emitting elements 10, these light emission The first sealing member 26a is not filled in the space between the elements 10 and a gap is formed. In this way, if the surrounding member that is the first sealing member 26a has the internal space, the reflectance can be increased by the refractive index difference between the surrounding member and the gas, and the light emitting device with high output and brightness can be obtained. can do. At this time, it is preferable to form an exposed portion having a high refractive index difference between the element and air / gas by airtight sealing or the like so that the refractive index difference with the light emitting element is preferably increased. Further, when a plurality of light emitting elements are optically connected to one light transmitting member, a gap can be formed between the elements in the same manner to increase the output.

なお発光装置が枠体を有する形態において、第1の封止部材26aが発光素子10及び光透過部材15側のみならず、枠体の内壁側においても上方ほど先細り、幅狭となる断面形状を有していてもよく、光透過部材15の側面15cと枠体の内壁との間に、第1の封止部材26aが凹部の底を有する形状であってもよい。そして、その凹部内に第2の封止部材26bが充填されている形態であってもよい。第2の封止部材26bはその機能上、戻り光などの迷光を吸収により十分に減衰せしめることができれば、封止部材26の表層を構成する程度の肉厚であってもよい。さらに、上記のように第1の封止部材26aと第2の封止部材26bとは互いに接合されて設けられることが好ましいが、両封止部材の間に空隙や他の部材、例えば後述の光反射層、あるいは両封止部材の密着性を向上させる接着部材等が介在していてもよい。   In the form in which the light emitting device has a frame, the first sealing member 26a has a cross-sectional shape that tapers and becomes narrower toward the upper side not only on the light emitting element 10 and the light transmitting member 15 side but also on the inner wall side of the frame. The first sealing member 26a may have a shape having a bottom of a concave portion between the side surface 15c of the light transmitting member 15 and the inner wall of the frame. And the form with which the 2nd sealing member 26b was filled in the recessed part may be sufficient. The second sealing member 26b may be thick enough to constitute the surface layer of the sealing member 26 as long as the second sealing member 26b can sufficiently attenuate stray light such as return light by absorption. Furthermore, as described above, the first sealing member 26a and the second sealing member 26b are preferably provided to be joined to each other, but a gap or other member, for example, described later, is provided between the two sealing members. An adhesive member or the like for improving the adhesion of the light reflecting layer or both sealing members may be interposed.

(接着材)
発光素子10と光透過部材15との界面には接着材17が介在されており、これにより双方の部材を固着する。この接着材17は、発光素子10からの出射光を光透過部材15側へと有効に導光でき、双方の部材を光学的に連結できる材質が好ましい。その材料としては上記各部材に用いられる樹脂材料が挙げられ、一例としてシリコーン樹脂などの透光性の接着材料を用いる。また、発光素子10と光透過部材15との固着には、熱圧着による結晶接合等も採用できる。
(Adhesive)
An adhesive 17 is interposed at the interface between the light emitting element 10 and the light transmitting member 15, thereby fixing both members. The adhesive 17 is preferably made of a material that can effectively guide the light emitted from the light emitting element 10 toward the light transmitting member 15 and optically connect both members. Examples of the material include resin materials used for the above-described members. As an example, a translucent adhesive material such as a silicone resin is used. Further, for bonding between the light emitting element 10 and the light transmitting member 15, crystal bonding by thermocompression bonding or the like can be employed.

(発光装置の製造方法)
上記の発光素子10を実装基板である配線基板9上にフリップチップ実装し、上記光透過部材、被覆部材を備えて、図1に示される例の発光装置100を得る。その製造方法の一例として、図4を用いて説明する。まず図4(a)に示すように、配線基板9上、又は発光素子10に、フリップチップ実装するパターンに従い、バンプ24を形成する。次にこのバンプ24を介して発光素子10をフリップチップ実装する。この例ではサブマウント基板9上で、一の発光装置に対応する領域に、各々1個のLEDチップを並べて実装しているが、チップの搭載個数は発光面、光透過部材の大きさに応じて適宜変更できる。又はキャビティ構造を有する実装基板を用いて、このキャビティ内に発光素子10を実装する形態でもよい。なお、発光素子10の実装は共晶接合してもよく、これにより配線基板と発光素子との接合面積を大きくして熱引きを促進し、放熱性を高められる。
(Method for manufacturing light emitting device)
The light emitting element 10 is flip-chip mounted on a wiring substrate 9 as a mounting substrate, and the light transmitting device 100 of the example shown in FIG. 1 is obtained by including the light transmitting member and the covering member. An example of the manufacturing method will be described with reference to FIG. First, as shown in FIG. 4A, bumps 24 are formed on the wiring substrate 9 or on the light emitting element 10 in accordance with a flip chip mounting pattern. Next, the light emitting element 10 is flip-chip mounted through the bumps 24. In this example, one LED chip is mounted side by side on the submount substrate 9 in an area corresponding to one light emitting device. The number of chips mounted depends on the size of the light emitting surface and the light transmitting member. Can be changed as appropriate. Or the form which mounts the light emitting element 10 in this cavity using the mounting substrate which has a cavity structure may be sufficient. The light emitting element 10 may be mounted by eutectic bonding, thereby increasing the bonding area between the wiring board and the light emitting element to promote heat dissipation and improve heat dissipation.

次に図4(b)で発光素子10の裏面側(サファイア基板裏面あるいはLLOで基板除去した場合であれば窒化物半導体露出面)に、接着材17であるシリコーン樹脂を塗布して、光透過部材15を積層する。その後シリコーン樹脂17を熱硬化して、発光素子10と光透過部材15とを接着する。   Next, in FIG. 4B, a silicone resin as an adhesive 17 is applied to the back surface side of the light emitting element 10 (the back surface of the sapphire substrate or the nitride semiconductor exposed surface if the substrate is removed by LLO) to transmit light. The members 15 are stacked. Thereafter, the silicone resin 17 is thermally cured to bond the light emitting element 10 and the light transmitting member 15 together.

さらに発光素子10の周囲に所定の大きさ、形状の枠体25を立設させる。例えば枠体25やキャビティの高さを光透過部材15より低くする姿勢としてもよい。この枠体25や実装基板等、パッケージの構成部材(外部との電気的接続部を除く)は黒色であることが好ましい。そして図4(c)に示すように、発光素子10の周囲に立設された枠体25内、又はキャビティ内に、光透過部材15の側面を被覆するよう第1の封止部材26aをポッティングする。滴下された第1の封止部材26aは、表面張力によって発光素子10の壁面側を這い上がり、光透過部材15の側面15cを被覆する。つまり第1の封止部材26aは下方にいくにつれて広がる形状となり、光透過部材15の発光面15aより低い位置に窪んで凹部32を形成する。言い換えると光透過部材15が凸状の窓部となって発光面15aが最高位に配置されており、光透過部材15の周囲に凹部32を備える。   Further, a frame 25 having a predetermined size and shape is erected around the light emitting element 10. For example, the frame 25 and the cavity may have a lower height than the light transmitting member 15. The component members of the package (excluding the electrical connection portion with the outside) such as the frame 25 and the mounting substrate are preferably black. Then, as shown in FIG. 4C, the first sealing member 26a is potted in the frame 25 standing around the light emitting element 10 or in the cavity so as to cover the side surface of the light transmitting member 15. To do. The dropped first sealing member 26 a scoops up the wall surface side of the light emitting element 10 by surface tension and covers the side surface 15 c of the light transmitting member 15. That is, the first sealing member 26 a has a shape that expands downward, and is recessed at a position lower than the light emitting surface 15 a of the light transmitting member 15 to form the recess 32. In other words, the light transmission member 15 is a convex window portion, the light emitting surface 15a is disposed at the highest position, and the light transmission member 15 is provided with a recess 32 around the light transmission surface 15a.

続いて図4(d)で、第1の封止部材26aで形成される凹部32上に第2の封止部材26bを充填する。具体的には凹部32上に第2の封止部材26bをポッティングしてこれを自重でもって平坦化させる。この際、第2の封止部材26bの表面が、光透過部材15の発光面15aに沿うように、すなわち双方の表面が略同一面上に位置するように充填量を調整する。そして第2の封止部材26bを硬化後、所定の位置(例えば図4(d)における一点鎖線部)でもってダイシングを行い、所望の大きさに切り出して図1の発光装置を得る。上記製造方法であれば、第1の封止部材26aと第2の封止部材26bとを容易に接合させて一体に成形することができる。また導光方向に先細りさせた第1の封止部材、発光面の表出面の多くを構成する第2の封止部材による断面形状を歩留まり良く製造でき好ましい。また、ここでは、第1の封止部材、第2の封止部材は、それぞれ塗布後に、硬化、成形処理、例えば真空脱泡、熱硬化処理する方が好ましいが、両方を同時に硬化、成形処理する形態、例えば、第1の封止部材を形成後に、硬化、成形処理の一部を実施して、仮硬化、成形して、第2の封止部材を形成して、本硬化、成形処理する形態としてもよい。各封止部材に適した条件で各々硬化、成形処理が成されれば良く、また、第2の封止部材の硬化、成形処理条件が、第1の封止部材が悪影響を受けないように、その材料を選定して、同一基材、相違する基材とすることができる。   Subsequently, in FIG. 4D, the second sealing member 26b is filled into the recess 32 formed by the first sealing member 26a. Specifically, the second sealing member 26b is potted on the recess 32 and is flattened by its own weight. At this time, the filling amount is adjusted so that the surface of the second sealing member 26b is along the light emitting surface 15a of the light transmitting member 15, that is, both surfaces are positioned on substantially the same surface. Then, after the second sealing member 26b is cured, it is diced at a predetermined position (for example, a one-dot chain line portion in FIG. 4D) and cut into a desired size to obtain the light emitting device of FIG. If it is the said manufacturing method, the 1st sealing member 26a and the 2nd sealing member 26b can be joined easily, and can be shape | molded integrally. In addition, the first sealing member tapered in the light guide direction and the second sealing member constituting most of the exposed surface of the light emitting surface can be preferably manufactured with a high yield. Here, the first sealing member and the second sealing member are preferably cured and molded after application, for example, vacuum defoaming and thermosetting, but both are simultaneously cured and molded. For example, after the first sealing member is formed, a part of the curing and molding process is performed, and temporary curing and molding are performed to form the second sealing member, and the main curing and molding process are performed. It is good also as a form to do. It is only necessary that the curing and molding process be performed under conditions suitable for each sealing member, and the curing and molding process conditions of the second sealing member are such that the first sealing member is not adversely affected. The material can be selected to be the same base material or different base materials.

ただ、発光素子10の周囲を被覆する第1の封止部材26aや第2の封止部材26bの配置方法は上記に限定されない。また、発光素子は発光装置の所定の載置部に直接実装される形態、すなわちサブマウントを備えなくても良い。さらに、上記個々に切り出された発光装置にレンズ等を接着、封止することもできる。   However, the arrangement method of the first sealing member 26a and the second sealing member 26b covering the periphery of the light emitting element 10 is not limited to the above. Further, the light emitting element may not be provided with a form that is directly mounted on a predetermined mounting portion of the light emitting device, that is, a submount. Furthermore, a lens or the like can be bonded and sealed to the light emitting devices cut out individually.

(実施の形態2)
上記、実施の形態1ではダイシングの際に枠体25を排除する位置で切り出しを行う。つまり発光装置100の最終形態では枠体25を含有しない。ただ、ダイシングの位置決めはこれに限定されず、枠体25を発光装置側に残す形態として発光装置のチップ化を行うこともできる。このように枠体を有する発光装置300を実施の形態2とし、図5(a)に発光装置300の断面図を、さらに図5(b)に発光装置300における光観測方向からの平面図をそれぞれ示す。実施の形態2の発光装置300は、枠体25を備える点で実施の形態1の発光装置100と相違するが、他の構造については同一である。したがって同一の部材については同一の符号を付して詳細な説明については省略する。
(Embodiment 2)
In the first embodiment, the cutting is performed at a position where the frame body 25 is excluded during dicing. That is, the frame 25 is not included in the final form of the light emitting device 100. However, the positioning of the dicing is not limited to this, and the light emitting device can be chipped as a form in which the frame 25 is left on the light emitting device side. A light-emitting device 300 having a frame body in this manner is referred to as Embodiment Mode 2. FIG. 5A is a cross-sectional view of the light-emitting device 300, and FIG. 5B is a plan view of the light-emitting device 300 from the light observation direction. Each is shown. The light emitting device 300 of the second embodiment is different from the light emitting device 100 of the first embodiment in that the frame body 25 is provided, but the other structures are the same. Therefore, the same reference numerals are assigned to the same members, and detailed descriptions thereof are omitted.

図5の発光装置300は、発光面15aの周囲を第2の封止部材26bでもって被覆し、さらに第2の封止部材26bは枠体25によって包囲されている。つまり枠体25は発光装置300の外郭を構成する。これにより発光装置300の機械的強度を高めることができる。また枠体25は第2の封止部材26bと同様に光吸収部材、特に黒色体により形成されることが、上記の通り、発光面15aの光特性の観点から好ましい。つまり戻り光や外来光などの迷光を吸収して、面内で均一な輝度、色度の配光を得ることができる。   The light emitting device 300 of FIG. 5 covers the periphery of the light emitting surface 15a with the second sealing member 26b, and the second sealing member 26b is surrounded by the frame body 25. That is, the frame 25 constitutes the outline of the light emitting device 300. Thereby, the mechanical strength of the light emitting device 300 can be increased. Further, as described above, the frame 25 is preferably formed of a light absorbing member, particularly a black body, like the second sealing member 26b, from the viewpoint of the light characteristics of the light emitting surface 15a. In other words, stray light such as return light and extraneous light can be absorbed to obtain a light distribution with uniform brightness and chromaticity within the surface.

また枠体25の付設により、枠体25で包囲したハウジング内に第1の封止部材26a及び第2の封止部材26bを格納して、それぞれの部材を強固に固定することができる。特に、第1の封止部材26aと第2の封止部材26bの主剤である樹脂が相違する場合、樹脂の硬化不良や、各部材の熱膨張係数の差により界面での剥離等によって、浮き上がりや膨張など部材が変位する虞があるが、被覆部材の周囲に枠体25を包囲して立設させることで、この枠体25が各部材を抑留して封止部材を定位置に固定できる。したがって枠体25の高さ方向において、第1の封止部材26aと第2の封止部材26bの双方を枠体25の内壁に接合する形態とすれば、部材の固着性を一層高めることができ好ましい。   Further, by attaching the frame body 25, the first sealing member 26 a and the second sealing member 26 b can be stored in the housing surrounded by the frame body 25, and the respective members can be firmly fixed. In particular, when the resin that is the main component of the first sealing member 26a and the second sealing member 26b is different, the resin may float due to poor curing of the resin or due to peeling at the interface due to differences in the thermal expansion coefficient of each member. There is a risk that the member may be displaced, such as expansion or expansion, but by surrounding the frame body 25 around the covering member and standing, the frame body 25 can restrain each member and fix the sealing member in place. . Therefore, if both the first sealing member 26a and the second sealing member 26b are joined to the inner wall of the frame 25 in the height direction of the frame 25, the adhesion of the members can be further improved. This is preferable.

さらに枠体25の設置により、発光装置300の全体の外径を維持したまま、枠体25の構成分だけ第2の封止部材26bの設置領域を低減させることができ、コスト削減を図れる。また、枠体25が発光装置300の外郭を構成するため、封止部材26の硬度など強度的要素に対する依存性を低減して、構成材料の選択の幅を広げられる。例えば第2の封止部材26bの主剤をシリコーン樹脂として耐光性や耐熱性を向上してもよい。さらに枠体25は、光観測方向からの平面視において被覆部材26と同一面上に、あるいは光透過部材15よりも低い姿勢になるように配置される。言い換えると発光面15aの周囲には光放出方向に突出した部材を設けずして、発光装置の積層方向(図1(b)の上方向)における最上部に発光面15aを配置する。これにより発光面15aより出射される主要な光が、隣接する部材に遮光されて吸収されることを回避でき、つまり光損失を抑制でき好ましい。   Furthermore, by installing the frame body 25, the installation area of the second sealing member 26b can be reduced by the amount of the structure of the frame body 25 while maintaining the entire outer diameter of the light emitting device 300, and the cost can be reduced. In addition, since the frame 25 constitutes the outline of the light emitting device 300, the dependence on strength elements such as the hardness of the sealing member 26 is reduced, and the range of selection of the constituent material can be widened. For example, the main component of the second sealing member 26b may be a silicone resin to improve light resistance and heat resistance. Further, the frame body 25 is arranged on the same plane as the covering member 26 or in a lower posture than the light transmitting member 15 in a plan view from the light observation direction. In other words, the light emitting surface 15a is arranged at the uppermost part in the stacking direction of the light emitting device (upward direction in FIG. 1B) without providing a member protruding in the light emitting direction around the light emitting surface 15a. Thereby, it is possible to avoid that main light emitted from the light emitting surface 15a is shielded and absorbed by the adjacent member, that is, it is possible to suppress light loss.

(実施の形態3)
また発光装置は、発光面や電気的な接続領域を除いて、外部に露出する表出面を光吸収部材で構成することが好ましい。これにより上記、面内で均一な輝度、色度を有する発光を得られる。図1の例では発光装置の積層方向において露出した端面27が、光吸収性の高い第2の封止部材26bによって構成される。したがって光観測方向からの平面視における発光装置の外径は、第2の封止部材26bの外径に依存する。この第2の封止部材26bの外径は特に限定されないが、該外径を大きくすることで発光面15aの周囲が光吸収性の高い領域で広範囲に被覆されることとなり、散乱して光軸より大きくずれた戻り光を広範囲に吸収できる。ここでは発光装置の外形を構成する第2の封止部材26bの端面を、配線基板9よりも外方に配置した発光装置400を実施の形態3として、図6にその概略図を示す。
(Embodiment 3)
In the light emitting device, it is preferable that the exposed surface exposed to the outside is formed of a light absorbing member except for the light emitting surface and the electrical connection region. As a result, light emission having uniform brightness and chromaticity within the surface can be obtained. In the example of FIG. 1, the end face 27 exposed in the stacking direction of the light emitting device is configured by the second sealing member 26 b having high light absorption. Therefore, the outer diameter of the light emitting device in plan view from the light observation direction depends on the outer diameter of the second sealing member 26b. The outer diameter of the second sealing member 26b is not particularly limited, but by increasing the outer diameter, the periphery of the light emitting surface 15a is covered over a wide area in a region having high light absorption, and the scattered light is scattered. The return light greatly deviated from the axis can be absorbed in a wide range. Here, the light emitting device 400 in which the end face of the second sealing member 26b constituting the outer shape of the light emitting device is disposed outward from the wiring substrate 9 is shown as a third embodiment in FIG.

図6(a)は発光装置400の断面図であって、また図6(b)は光観測方向からの平面図を示す。発光装置400は、図1の発光装置100と比較して第2の封止部材の配置形状の点で相違しており、その他の構造は同様である。したがって同一の部材には同一の符号を付して詳細な説明を省略する。   6A is a cross-sectional view of the light emitting device 400, and FIG. 6B is a plan view from the light observation direction. The light emitting device 400 is different from the light emitting device 100 of FIG. 1 in the arrangement shape of the second sealing member, and the other structures are the same. Therefore, the same reference numerals are assigned to the same members, and detailed description thereof is omitted.

第2の封止部材36bは、図6に示すように積層方向(図6(a)の上方向)にいくにつれて径を大きくした状態で、第1の封止部材26aと接合して一体に成形される。そして光観測方向からの平面視において、発光面15aの周囲を被覆する構造については実施の形態1と同様である。つまり第1の封止部材26aを介して発光面15aの周囲を第2の封止部材26bでもって被覆し、かつ第2の封止部材26bが表出面を構成する。また、第2の封止部材36bは積層方向において、配線基板9の厚みを構成する端面28から第1の封止部材26aの外面から連続して被覆する。つまり第2の封止部材26bが配線基板9を被包して発光装置400の端面を構成する。
さらに、本実施形態3においても、枠体25を有する形態であってもよい。そして、その枠体を第2の封止部材により被覆することで、発光装置の機械的強度をさらに高めることができる。また、枠体の外部に配線基板9の表面が露出されている場合には、枠体から配線基板9の露出面に延伸かつ連続して被覆してもよく、さらに配線基板9の端面(側面)28も被覆してもよい。なお、本実施の形態3において、枠体を設ける場合には、枠体の高さは発光面15aより低く、すなわち光出射方向で発光面より後退して設けられていることが好ましい。なぜなら、上記のように第2の封止部材36bの表出面を発光面15aよりも低く形成することができ、構成部材による遮光、光損失を抑制できるからである。このように、第1の封止部材の表出面を発光面と略同一面として、そこに第2の封止部材を設ける構造とした場合には、又は第2の封止部材の表出面が発光面より前方に突出する場合には、発光面からの発光を阻害するが、本発明はそれを回避でき好ましい。
As shown in FIG. 6, the second sealing member 36 b is joined to the first sealing member 26 a integrally with the diameter increasing in the stacking direction (upward in FIG. 6A). Molded. The structure covering the periphery of the light emitting surface 15a in plan view from the light observation direction is the same as that of the first embodiment. That is, the periphery of the light emitting surface 15a is covered with the second sealing member 26b via the first sealing member 26a, and the second sealing member 26b constitutes an exposed surface. Further, the second sealing member 36b continuously covers from the end surface 28 constituting the thickness of the wiring board 9 from the outer surface of the first sealing member 26a in the stacking direction. That is, the second sealing member 26 b encapsulates the wiring substrate 9 and constitutes the end face of the light emitting device 400.
Furthermore, in the third embodiment, the frame 25 may be included. Then, the mechanical strength of the light emitting device can be further increased by covering the frame with the second sealing member. Further, when the surface of the wiring board 9 is exposed outside the frame body, it may be extended and continuously covered from the frame body to the exposed surface of the wiring board 9, and the end face (side surface) of the wiring board 9 may be further covered. ) 28 may also be coated. In the third embodiment, when the frame is provided, the height of the frame is preferably lower than the light emitting surface 15a, that is, provided so as to recede from the light emitting surface in the light emitting direction. This is because, as described above, the exposed surface of the second sealing member 36b can be formed lower than the light emitting surface 15a, and light shielding and light loss by the constituent members can be suppressed. In this way, when the exposed surface of the first sealing member is substantially the same surface as the light emitting surface and the second sealing member is provided there, or the exposed surface of the second sealing member is When protruding forward from the light emitting surface, the light emission from the light emitting surface is inhibited, but the present invention is preferable because it can be avoided.

第2の封止部材26bを上記構成とすることで、第2の封止部材26bと配線基板9との接触領域を増やすことができ、双方を強固に連結できる。さらに第1の封止部材26aを第2の封止部材26bと配線基板9とで挟着できるため、被覆部材26と配線基板9とを安定して密着できる。この結果、第1の封止部材26aと第2の封止部材26bとの膨張係数の差による界面近傍での剥離を有効に防止でき好ましい。   By setting the second sealing member 26b to the above configuration, the contact area between the second sealing member 26b and the wiring board 9 can be increased, and both can be firmly connected. Furthermore, since the first sealing member 26a can be sandwiched between the second sealing member 26b and the wiring board 9, the covering member 26 and the wiring board 9 can be stably adhered. As a result, peeling in the vicinity of the interface due to a difference in expansion coefficient between the first sealing member 26a and the second sealing member 26b can be effectively prevented, which is preferable.

また、配線基板9による配線パターンについては特に限定されず、図6(a)に示すように、配線基板のスルーホールを介して裏面側に外部接続用の配線パターンを施して、他の部材との電気的な接続を容易とし二次利用性を高める構造、あるいは外部に熱伝導性の高い部材を露出させて放熱性を高める構造としてもよい。また、発光素子の実装された配線基板9の上面側に外部接続部を設けて、配線基板9の裏面側、好適には略全面を熱引きの放熱器の接着に用いることができる。   Further, the wiring pattern by the wiring board 9 is not particularly limited. As shown in FIG. 6A, a wiring pattern for external connection is applied to the back side through the through hole of the wiring board, and other members are connected. It is good also as a structure which makes easy the electrical connection of this, and improves secondary utilization, or the structure which exposes a member with high heat conductivity outside and improves heat dissipation. Further, an external connection portion can be provided on the upper surface side of the wiring board 9 on which the light emitting element is mounted, and the rear surface side, preferably substantially the entire surface, of the wiring board 9 can be used for bonding the heat sink.

(実施の形態4)
また第1の封止部材26aと第2の封止部材26bの間に光を反射可能な金属部材を設けてもよい。この形態の発光装置600を実施の形態4とし、図7(a)に概略断面図を、また図7(b)に光観測方面からの平面図をそれぞれ示す。実施の形態4の発光装置600は、第1の封止部材26aと第2の封止部材26bの間に反射率の高い金属部材34を設けており、この点が実施の形態1ないし実施の形態3と相違する。したがって他の部材における同様の構造については同一の符号を付して詳細な説明を省略する。
(Embodiment 4)
Further, a metal member capable of reflecting light may be provided between the first sealing member 26a and the second sealing member 26b. A light-emitting device 600 of this embodiment is referred to as Embodiment 4, FIG. 7A shows a schematic cross-sectional view, and FIG. 7B shows a plan view from the light observation direction. In the light emitting device 600 according to the fourth embodiment, the metal member 34 having a high reflectance is provided between the first sealing member 26a and the second sealing member 26b. This is different from Form 3. Accordingly, the same structures in other members are denoted by the same reference numerals, and detailed description thereof is omitted.

図7の発光装置600であれば、第1の封止部材26aと金属部材34の双方で、発光素子10から横方向へ拡散された出射光の進路を発光面15a側へと有効に矯正できる。また第2の封止部材26b側への光の進行をしっかりと遮断して、つまり光の染み出しを回避して光損失を防止できる。つまり金属部材34が光反射層の役割を果たし、相対的に発光装置600全体の出力を向上できる。ひいては、第1の封止部材26bにおける反射能力の負担を低減でき、具体的には第1の封止部材26aの厚みや含有される光反射性材料2の濃度を低減してコストを削減できる。また同時に、第1の封止部材26aと第1の封止部材26bは互いに光学的特性の異なる材料を含有しており、さらに互いに異種の樹脂を基材とする場合もあり、金属部材34を両部材間における構成材料の拡散や混入による効果不良や接着不良を防ぐバリア層として機能させることもできる。   With the light emitting device 600 of FIG. 7, the path of the emitted light diffused laterally from the light emitting element 10 can be effectively corrected toward the light emitting surface 15a by both the first sealing member 26a and the metal member 34. . Further, it is possible to prevent light loss by firmly blocking the progress of the light toward the second sealing member 26b, that is, avoiding the leakage of light. That is, the metal member 34 serves as a light reflecting layer, and the output of the entire light emitting device 600 can be relatively improved. As a result, the burden of the reflective ability in the first sealing member 26b can be reduced. Specifically, the thickness of the first sealing member 26a and the concentration of the light-reflecting material 2 contained can be reduced to reduce the cost. . At the same time, the first sealing member 26a and the first sealing member 26b contain materials having different optical characteristics from each other, and may be made of different types of resins as base materials. It can also function as a barrier layer that prevents defective effects and poor adhesion due to diffusion and mixing of constituent materials between both members.

したがって、金属部材34は反射率が高いことが好ましい。加えて金属部材34を第1の封止部材26a及び第2の封止部材26bと密着性に優れた材質とする。これにより金属部材34で互いに接合する第1の封止部材26aと第2の封止部材26bとを強固に固定して一体化を図れるからである。金属部材34としてはAl、Pt、Ag、Rh、Ir、Ti等が利用できる。   Therefore, the metal member 34 preferably has a high reflectance. In addition, the metal member 34 is made of a material having excellent adhesion to the first sealing member 26a and the second sealing member 26b. This is because the first sealing member 26a and the second sealing member 26b that are joined to each other by the metal member 34 can be firmly fixed and integrated. As the metal member 34, Al, Pt, Ag, Rh, Ir, Ti, or the like can be used.

(実施例1、比較例1ないし比較例3)
実施の形態における発光装置に関して、光束に係る特性を確認するため以下の比較例及び実施例を施す。実施例1、比較例1及び比較例2は、LEDチップを封止する被覆部材の構成部材のみが相違しており、他の構造については同一である。具体的に比較例1では封止部材を、TiO2の微粒子を含有するシリコーン樹脂である第1の封止部材26aのみとする。他方、比較例2では封止部材をカーボンブラック及びシリカを含有するシリコーン樹脂(東レ・ダウコーニング社製JCR6146)である第2の封止部材26bのみとする。また、実施例1は上記比較例で用いる第1の封止部材26aと第2の封止部材26bの両方を採用する。
(Example 1, Comparative Examples 1 to 3)
With respect to the light emitting device in the embodiment, the following comparative examples and examples will be given in order to confirm the characteristics relating to the luminous flux. Example 1, Comparative Example 1, and Comparative Example 2 differ only in the constituent members of the covering member that seals the LED chip, and the other structures are the same. Specifically, in Comparative Example 1, the sealing member is only the first sealing member 26a, which is a silicone resin containing TiO 2 fine particles. On the other hand, in Comparative Example 2, the sealing member is only the second sealing member 26b, which is a silicone resin containing carbon black and silica (JCR6146 manufactured by Toray Dow Corning). Moreover, Example 1 employs both the first sealing member 26a and the second sealing member 26b used in the comparative example.

さらに詳細に、比較例1、2及び実施例1の発光装置は、図1に示すように一の光透過部材15と、約1mm×1mmの略正方形の青色LEDチップを2個搭載している。また光透過部材15は、YAG濃度20%のYAG/Al23焼結体を約1.1mm×2.2mm、厚さ約120μmの大きさにスライスされた蛍光体板(以降、YAG板と呼称する)である。このYAG板を、上記2個のLEDチップを内包するようにLEDチップ上に固定し、それぞれの被覆部材26でもってYAG板及びLEDチップの一部を封止する。なお、比較例3では光透過部材15及び封止部材26はなく、上記搭載された2個の青色LEDチップが露出されている。比較例1ないし比較例3及び実施例1の発光装置における光束を図8に示す。また図8において、実施例1の光束をe1で表し、同様に比較例1ないし比較例3のそれぞれの光束をc1、c2、c3で表す。 In more detail, the light emitting devices of Comparative Examples 1 and 2 and Example 1 are mounted with one light transmitting member 15 and two approximately square blue LED chips of about 1 mm × 1 mm as shown in FIG. . The light transmitting member 15 is a phosphor plate (hereinafter referred to as a YAG plate) obtained by slicing a YAG / Al 2 O 3 sintered body having a YAG concentration of 20% into a size of about 1.1 mm × 2.2 mm and a thickness of about 120 μm. Called). The YAG plate is fixed on the LED chip so as to contain the two LED chips, and the YAG plate and a part of the LED chip are sealed with the respective covering members 26. In Comparative Example 3, the light transmitting member 15 and the sealing member 26 are not provided, and the two mounted blue LED chips are exposed. The luminous fluxes in the light emitting devices of Comparative Examples 1 to 3 and Example 1 are shown in FIG. In FIG. 8, the luminous flux of Example 1 is represented by e1, and similarly, the luminous fluxes of Comparative Examples 1 to 3 are represented by c1, c2, and c3.

図8より、比較例1の光束が最も高く、これを100%とすると、比較例2の光束は65%低下する。言い換えると65%の光成分は発光素子の側面方向へと拡散して第2の封止部材26bにより吸収され、残りの僅か35%程度の光成分がYAG板側へ進行していると認識される。一方、実施例1の発光装置、すなわち第1の封止部材26a及び第2の封止部材26bの双方でもってLEDチップが封止された場合、光吸収性の高い第2の封止部材26bを具備するにもかかわらず、光束の低下が5%に抑制されており高輝度性をほぼ維持していることがわかる。   From FIG. 8, the luminous flux of Comparative Example 1 is the highest, and if this is 100%, the luminous flux of Comparative Example 2 is reduced by 65%. In other words, 65% of the light component is diffused toward the side surface of the light emitting element and absorbed by the second sealing member 26b, and the remaining light component of only 35% is recognized as traveling to the YAG plate side. The On the other hand, when the LED chip is sealed with both the light emitting device of Example 1, that is, the first sealing member 26a and the second sealing member 26b, the second sealing member 26b having high light absorption. However, the decrease in luminous flux is suppressed to 5%, and it can be seen that the high luminance is substantially maintained.

また図9は、比較例1及び実施例1の発光装置において、YAG板の中心を通りYAG板の長手方向(2個のLEDチップを横断する方向)の輝度の断面を示したものである。なお、発光面の終端部における光のコントラストを確認するため、各例においてピーク値を1として規格化し低輝度の領域を拡大して示してある。また図9における実施例1の輝度をe1、比較例1の輝度をc1としてそれぞれ表記している。図9より、実施例1の発光装置においては、比較例1の発光装置に比べて輝度の立ち上がりが鋭くなっており、エッジの効いたコントラストの高い発光が得られていることがわかる。さらに発光面の周囲においては、比較例1の発光装置に比べて実施例1の発光装置の輝度が小さくなっており、吸収による迷光の低減効果がうかがえる。   FIG. 9 shows a cross section of luminance in the longitudinal direction of the YAG plate (in the direction crossing the two LED chips) through the center of the YAG plate in the light emitting devices of Comparative Example 1 and Example 1. In addition, in order to confirm the contrast of the light at the terminal portion of the light emitting surface, in each example, the peak value is normalized as 1, and the low luminance region is shown enlarged. In FIG. 9, the luminance of Example 1 is represented as e1, and the luminance of Comparative Example 1 is represented as c1. From FIG. 9, it can be seen that in the light emitting device of Example 1, the rise in brightness is sharper than that of the light emitting device of Comparative Example 1, and light emission with high edged contrast is obtained. Further, in the vicinity of the light emitting surface, the luminance of the light emitting device of Example 1 is lower than that of the light emitting device of Comparative Example 1, and it is apparent that stray light is reduced by absorption.

このように、発光素子10が高吸収性の第2の封止部材26a(黒樹脂)のみで被包された場合は、高反射性の第1の封止部材26a(白樹脂)のみで被包された場合に比べて65%以上の光束低下が見られるが、第1の封止部材26aと第2の封止部材26bとを特定の配置条件で組み合わせる本発明の形態であれば、発光領域を制限してもなお略同等の光束が維持されており、加えて輝度ムラや色ムラが低減された発光を実現できる。また光のコントラストも向上する。これは、封止部材による光遮断の効果のみならず、板状の光透過部材自体が波長変換量の偏在を抑止し、輝度ムラや色ムラの発生を効果的に回避できる相乗効果による。また、光透過部材15の装着後に封止部材26を成形する製造手法によって、光透過部材15の容量に依存せず、その側面側と封止部材26との密着性を保持できるため、内在する発光素子の密封環境を向上させ、ライフ特性に優れた発光装置とできる。また上述の発光装置を光源として、該光源からの放出光の光分布領域を調整可能な光学系を備える照明装置では、発光部でのコントラストが向上するとともに、高輝度な配光を得ることができる。   Thus, when the light emitting element 10 is encapsulated only by the high-absorbency second sealing member 26a (black resin), the light-emitting element 10 is encapsulated only by the highly reflective first sealing member 26a (white resin). The luminous flux is reduced by 65% or more as compared with the case of being wrapped. However, if the first sealing member 26a and the second sealing member 26b are combined in a specific arrangement condition, light emission is possible. Even if the region is limited, substantially the same luminous flux is maintained, and light emission with reduced luminance unevenness and color unevenness can be realized. Also, the contrast of light is improved. This is not only due to the light blocking effect by the sealing member, but also due to the synergistic effect that the plate-like light transmitting member itself suppresses the uneven distribution of the wavelength conversion amount and can effectively avoid the occurrence of luminance unevenness and color unevenness. In addition, the manufacturing method in which the sealing member 26 is formed after the light transmitting member 15 is mounted is independent of the capacity of the light transmitting member 15 and can maintain the adhesion between the side surface and the sealing member 26. It is possible to improve the sealing environment of the light emitting element and to obtain a light emitting device with excellent life characteristics. In addition, in an illuminating device including the above-described light emitting device as a light source and including an optical system capable of adjusting a light distribution region of light emitted from the light source, contrast in the light emitting portion is improved and high luminance light distribution can be obtained. it can.

本発明の発光装置及びその製造方法は、照明用光源、LEDディスプレイ、バックライト光源、信号機、照明式スイッチ、各種センサ及び各種インジケータ等に好適に利用できる。   The light emitting device and the manufacturing method thereof of the present invention can be suitably used for illumination light sources, LED displays, backlight light sources, traffic lights, illumination switches, various sensors, various indicators, and the like.

図1(a)は実施の形態1に係る発光装置100の概略断面図を、また図1(b)は発光装置100の光観測方面からの平面図をそれぞれ示す。1A is a schematic cross-sectional view of the light-emitting device 100 according to Embodiment 1, and FIG. 1B is a plan view of the light-emitting device 100 from the light observation direction. 実施の形態1に係る発光装置の別の形態を示す概略断面図である。FIG. 5 is a schematic cross-sectional view showing another form of the light emitting device according to Embodiment 1. 実施の形態1に係る発光素子の概略断面図である。2 is a schematic cross-sectional view of the light-emitting element according to Embodiment 1. FIG. 実施の形態1に係る発光装置の製造方法を示す模式図である。6 is a schematic diagram showing a method for manufacturing the light emitting device according to Embodiment 1. FIG. 図5(a)は実施の形態2に係る発光装置300の概略断面図を、また図5(b)は発光装置300の光観測方面からの平面図をそれぞれ示す。5A is a schematic cross-sectional view of the light-emitting device 300 according to Embodiment 2, and FIG. 5B is a plan view of the light-emitting device 300 from the light observation direction. 図6(a)は実施の形態3に係る発光装置400の概略断面図を、また図6(b)は発光装置400の光観測方面からの平面図をそれぞれ示す。6A is a schematic cross-sectional view of the light-emitting device 400 according to Embodiment 3, and FIG. 6B is a plan view of the light-emitting device 400 from the light observation direction. 図7(a)は実施の形態4に係る発光装置600の概略断面図を、また図7(b)は発光装置600の光観測方面からの平面図をそれぞれ示す。7A is a schematic cross-sectional view of the light-emitting device 600 according to Embodiment 4, and FIG. 7B is a plan view of the light-emitting device 600 from the light observation direction. 実施例1及び比較例1ないし比較例3に係る各光束を示すグラフである。6 is a graph showing light beams according to Example 1 and Comparative Examples 1 to 3. 実施例1及び比較例1に係る各輝度の断面を示すグラフである。6 is a graph showing cross sections of respective luminances according to Example 1 and Comparative Example 1. 従来の発光装置を示す断面図である。It is sectional drawing which shows the conventional light-emitting device.

符号の説明Explanation of symbols

2…光反射性材料
3A…第1の電極(n型パッド電極)
3B…第2の電極(p型パッド電極)
5…成長基板(サファイア基板)
6…第1の窒化物半導体層(n型半導体層)
7…第2の窒化物半導体層(p型半導体層)
8…発光層(活性層)
9…配線基板(サブマウント)
10…発光素子(LEDチップ)
11…半導体構造
12…波長変換材料
13…透光性導電層(ITO)
14…保護膜
15…光透過部材
15a…発光面(窓部)
15b…受光面
15c…側面
17…接着材(シリコーン樹脂)
24…導電部材
25…枠体
26…被覆部材(封止部材、樹脂)
26a…第1の封止部材(第1の被覆部材)
26b…第2の封止部材(第2の被覆部材)
27…(発光装置の)端面
28…(配線基板の)端面
29…光吸収性材料
31…界面
32…凹部
33…端面
34…金属部材
36b…第2の封止部材
100、200、300、400、600…発光装置
500…発光装置
501…発光素子
502…透光性材料
503…凹部
504…p型電極
505…蛍光体
506…n型電極
507…波長変換部材
508…基板
2 ... Light reflective material 3A ... 1st electrode (n-type pad electrode)
3B ... Second electrode (p-type pad electrode)
5 ... Growth substrate (sapphire substrate)
6: First nitride semiconductor layer (n-type semiconductor layer)
7: Second nitride semiconductor layer (p-type semiconductor layer)
8 ... Light emitting layer (active layer)
9 ... Wiring board (submount)
10 ... Light emitting element (LED chip)
DESCRIPTION OF SYMBOLS 11 ... Semiconductor structure 12 ... Wavelength conversion material 13 ... Translucent conductive layer (ITO)
14 ... Protective film 15 ... Light transmitting member 15a ... Light emitting surface (window)
15b ... Light receiving surface 15c ... Side 17 ... Adhesive (silicone resin)
24 ... Conductive member 25 ... Frame 26 ... Cover member (sealing member, resin)
26a: first sealing member (first covering member)
26b ... second sealing member (second covering member)
27 ... End face of light emitting device 28 ... End face of wiring board 29 ... Light absorbing material 31 ... Interface 32 ... Recess 33 ... End face 34 ... Metal member 36b ... Second sealing member 100, 200, 300, 400 , 600 ... Light emitting device 500 ... Light emitting device 501 ... Light emitting element 502 ... Translucent material 503 ... Recess 504 ... P-type electrode 505 ... Phosphor 506 ... N-type electrode 507 ... Wavelength conversion member 508 ... Substrate

Claims (11)

発光素子と、
発光面と該発光面から連続する側面とを有し、前記発光素子から出射される光が入射される光透過部材と、
前記光透過部材の側面を被覆して前記発光素子を包囲する光反射性の第1の被覆部材と、
前記第1の被覆部材を被覆して、前記発光面と共に該発光面側の表出面を構成し、可視光に対して前記第1の被覆部材より吸収係数が大きい第2の被覆部材と、を備え、
光観測方向からの平面視において、前記第1の被覆部材が、前記第2の被覆部材及び前記光透過部材の発光面との間に配置されてなることを特徴とする発光装置。
A light emitting element;
A light-transmitting member having a light-emitting surface and a side surface continuous from the light-emitting surface, into which light emitted from the light-emitting element is incident;
A light-reflective first covering member that covers a side surface of the light-transmitting member and surrounds the light-emitting element;
Covering the first covering member, forming a light-emitting surface-side exposed surface together with the light-emitting surface, and a second covering member having a larger absorption coefficient than the first covering member for visible light, Prepared,
The light emitting device, wherein the first covering member is disposed between the second covering member and a light emitting surface of the light transmitting member in a plan view from the light observation direction.
前記第1の被覆部材及び前記第2の被覆部材の表出面を、前記光透過部材の発光面と略同一面上に位置させてなることを特徴とする請求項1に記載の発光装置。   2. The light emitting device according to claim 1, wherein the exposed surfaces of the first covering member and the second covering member are positioned substantially on the same plane as the light emitting surface of the light transmitting member. 前記第2の被覆部材の表出面を、前記光透過部材の発光面より低い位置に形成してなることを特徴とする請求項1に記載の発光装置。   The light emitting device according to claim 1, wherein an exposed surface of the second covering member is formed at a position lower than a light emitting surface of the light transmitting member. 前記発光面から外部に放出される光が白色光であって、前記第2の被覆部材が黒色体であることを特徴とする請求項1〜3のいずれか一に記載の発光装置。   The light-emitting device according to claim 1, wherein the light emitted from the light-emitting surface to the outside is white light, and the second covering member is a black body. 前記第1の被覆部材は、前記光透過部材の側方より前記発光素子の側方において肉厚が大きく、
前記第2の被覆部材は、前記発光素子の側方より前記光透過部材の側方において肉厚が大きいことを特徴とする請求項1〜4のいずれか一に記載の発光装置。
The first covering member is thicker on the side of the light emitting element than on the side of the light transmitting member,
The light emitting device according to any one of claims 1 to 4, wherein the second covering member has a thickness greater on a side of the light transmission member than on a side of the light emitting element.
前記発光装置は、前記発光素子及び光透過部材を包囲する枠体を備え、
少なくとも前記第1の被覆部材は前記枠体内に充填されており、
前記第2の被覆部材は、前記第1の被覆部材及び枠体を被覆して、前記発光面と共に該発光面側の表出面を構成することを特徴とする請求項1〜5のいずれか一に記載の発光装置。
The light emitting device includes a frame that surrounds the light emitting element and the light transmitting member,
At least the first covering member is filled in the frame;
The said 2nd coating | coated member coat | covers the said 1st coating | coated member and a frame, and comprises the exposed surface of this light emission surface side with the said light emission surface, The any one of Claims 1-5 characterized by the above-mentioned. The light emitting device according to 1.
前記第2の被覆部材は、前記第1の被覆部材に接合されていることを特徴とする請求項1〜6のいずれか一に記載の発光装置。   The light emitting device according to claim 1, wherein the second covering member is joined to the first covering member. 前記第1の被覆部材と前記第2の被覆部材との間に、金属部材が介在することを特徴とする請求項1〜6のいずれか一に記載の発光装置。   The light emitting device according to claim 1, wherein a metal member is interposed between the first covering member and the second covering member. 前記第1及び第2の被覆部材は樹脂成形体であって、
前記第1の被覆部材は、光反射性材料を含有するシリコーン樹脂を基材とし、
前記第2の被覆部材は、顔料により着色された、エポキシ樹脂又はシリコーン樹脂を基材とすることを特徴とする請求項1〜8のいずれか一に記載の発光装置。
The first and second covering members are resin molded bodies,
The first covering member is based on a silicone resin containing a light reflective material,
The light emitting device according to any one of claims 1 to 8, wherein the second covering member is made of an epoxy resin or a silicone resin colored with a pigment as a base material.
前記光透過部材は、前記発光素子から出射される光の少なくとも一部を波長変換可能な蛍光体を含有し、
前記第2の被覆部材は、前記第1の被覆部材より熱伝導率が高いことを特徴とする請求項1〜9のいずれか一に記載の発光装置。
The light transmissive member contains a phosphor capable of wavelength-converting at least a part of the light emitted from the light emitting element,
The light emitting device according to claim 1, wherein the second covering member has a higher thermal conductivity than the first covering member.
発光素子と、
発光面と該発光面から連続する側面とを有し、前記発光素子から出射される光が入射される光透過部材と、を有する発光装置の製造方法であって、
前記発光素子を配線基板上に実装する工程と、
前記発光素子の上方に前記光透過部材を配置する工程と、
前記光透過部材の側面を被覆して前記発光素子を包囲する光反射性の第1の被覆部材を形成する工程と、
前記第1の被覆部材を被覆して、前記発光面と共に該発光面側の表出面を構成し、可視光に対して前記第1の被覆部材より吸収係数が大きい第2の被覆部材を、光観測方向からの平面視において、前記第1の被覆部材が該第2の被覆部材及び前記光透過部材の発光面との間に配置されるよう形成する工程と、
を含むことを特徴とする発光装置の製造方法。
A light emitting element;
A light-transmitting member having a light-emitting surface and a side surface continuous from the light-emitting surface, and having a light-transmitting member on which light emitted from the light-emitting element is incident,
Mounting the light emitting element on a wiring board;
Disposing the light transmissive member above the light emitting element;
Forming a light-reflective first covering member that covers a side surface of the light transmitting member and surrounds the light emitting element;
The first covering member is covered to form a light emitting surface-side exposed surface together with the light emitting surface, and a second covering member having a larger absorption coefficient than the first covering member for visible light Forming the first covering member so as to be disposed between the second covering member and the light emitting surface of the light transmitting member in a plan view from the observation direction;
A method for manufacturing a light-emitting device, comprising:
JP2008335579A 2008-12-27 2008-12-27 Light emitting device and manufacturing method thereof Active JP5521325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008335579A JP5521325B2 (en) 2008-12-27 2008-12-27 Light emitting device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008335579A JP5521325B2 (en) 2008-12-27 2008-12-27 Light emitting device and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014013720A Division JP5644967B2 (en) 2014-01-28 2014-01-28 Light emitting device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010157638A JP2010157638A (en) 2010-07-15
JP5521325B2 true JP5521325B2 (en) 2014-06-11

Family

ID=42575325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008335579A Active JP5521325B2 (en) 2008-12-27 2008-12-27 Light emitting device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5521325B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3174109A1 (en) * 2015-11-30 2017-05-31 Nichia Corporation Method of manufacturing light emitting device
JP2018082197A (en) * 2015-11-30 2018-05-24 日亜化学工業株式会社 Light-emitting device
JP2019016763A (en) * 2016-11-01 2019-01-31 日亜化学工業株式会社 Light-emitting device and method for manufacturing the same
US10424705B2 (en) 2016-11-01 2019-09-24 Nichia Corporation Light emitting device with large phosphor area and method for manufacturing same
WO2020028763A1 (en) * 2018-08-03 2020-02-06 Lumileds Llc Light emitting device with high near-field contrast ratio

Families Citing this family (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2614694B1 (en) 2010-09-06 2020-02-26 Heraeus Noblelight GmbH Coating method for an optoelectronic chip-on-board module
DE102010046254A1 (en) 2010-09-22 2012-04-19 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor component
JP5518662B2 (en) * 2010-09-30 2014-06-11 スタンレー電気株式会社 Light emitting device and manufacturing method thereof
DE102010048162A1 (en) * 2010-10-11 2012-04-12 Osram Opto Semiconductors Gmbh conversion component
EP2448028B1 (en) 2010-10-29 2017-05-31 Nichia Corporation Light emitting apparatus and production method thereof
US8455895B2 (en) * 2010-11-08 2013-06-04 Bridgelux, Inc. LED-based light source utilizing asymmetric conductors
JP5508244B2 (en) * 2010-11-15 2014-05-28 シチズンホールディングス株式会社 Manufacturing method of semiconductor light emitting device
JP5647028B2 (en) 2011-02-14 2014-12-24 スタンレー電気株式会社 Light emitting device and manufacturing method thereof
JP5962102B2 (en) 2011-03-24 2016-08-03 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
JP5680472B2 (en) * 2011-04-22 2015-03-04 シチズンホールディングス株式会社 Manufacturing method of semiconductor light emitting device
CN107706279B (en) * 2011-06-01 2020-10-30 亮锐控股有限公司 Light emitting device and method of attaching light emitting device to supporting substrate
CN103563111B (en) * 2011-06-01 2017-09-12 飞利浦照明控股有限公司 Light emitting module, lamp and light fixture including heat carrier
JP5831013B2 (en) * 2011-07-28 2015-12-09 日亜化学工業株式会社 LIGHT EMITTING DEVICE MANUFACTURING METHOD AND LIGHT EMITTING DEVICE
JP2013162021A (en) 2012-02-07 2013-08-19 Seiko Epson Corp Wavelength conversion element, light source device, and projector
JP2013162020A (en) 2012-02-07 2013-08-19 Seiko Epson Corp Wavelength conversion element, light source device, and projector
DE102012105677B4 (en) 2012-06-28 2016-06-09 Osram Opto Semiconductors Gmbh Light-emitting diode module and vehicle headlights
JP6089507B2 (en) * 2012-08-31 2017-03-08 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
US9337405B2 (en) * 2012-08-31 2016-05-10 Nichia Corporation Light emitting device and method for manufacturing the same
JP2014078678A (en) 2012-09-18 2014-05-01 Toyoda Gosei Co Ltd Semiconductor light-emitting device manufacturing method
JP5915483B2 (en) * 2012-09-27 2016-05-11 豊田合成株式会社 Light emitting device and manufacturing method thereof
KR20140059985A (en) * 2012-11-09 2014-05-19 엘지이노텍 주식회사 Light emitting device
JP6186904B2 (en) * 2013-06-05 2017-08-30 日亜化学工業株式会社 Light emitting device
US9111464B2 (en) * 2013-06-18 2015-08-18 LuxVue Technology Corporation LED display with wavelength conversion layer
US9673364B2 (en) 2013-07-19 2017-06-06 Nichia Corporation Light emitting device and method of manufacturing the same
KR102123039B1 (en) 2013-07-19 2020-06-15 니치아 카가쿠 고교 가부시키가이샤 Light emitting device and method of manufacturing the same
JP6244784B2 (en) 2013-09-30 2017-12-13 日亜化学工業株式会社 Light emitting device
JP6398611B2 (en) 2013-11-07 2018-10-03 日亜化学工業株式会社 LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE MANUFACTURING METHOD
JP2015207754A (en) 2013-12-13 2015-11-19 日亜化学工業株式会社 light-emitting device
JP6176171B2 (en) * 2014-03-28 2017-08-09 豊田合成株式会社 Method for manufacturing light emitting device
JP5830561B2 (en) * 2014-04-01 2015-12-09 スタンレー電気株式会社 Light emitting device and manufacturing method thereof
JP2017510997A (en) * 2014-04-07 2017-04-13 クリスタル アイエス, インコーポレーテッドCrystal Is, Inc. Ultraviolet light emitting device and method
JP6318844B2 (en) 2014-05-20 2018-05-09 日亜化学工業株式会社 Light emitting device
JP6661890B2 (en) 2014-05-21 2020-03-11 日亜化学工業株式会社 Light emitting device
JP6519311B2 (en) 2014-06-27 2019-05-29 日亜化学工業株式会社 Light emitting device
JP6940784B2 (en) * 2014-09-26 2021-09-29 日亜化学工業株式会社 Manufacturing method of light emitting device
JP6582382B2 (en) 2014-09-26 2019-10-02 日亜化学工業株式会社 Method for manufacturing light emitting device
DE102014116134A1 (en) 2014-11-05 2016-05-12 Osram Opto Semiconductors Gmbh Method for producing an optoelectronic component and optoelectronic component
WO2016093119A1 (en) * 2014-12-09 2016-06-16 信越化学工業株式会社 Led light source for vehicle-mounted headlight
CN107438899B (en) * 2015-03-31 2021-04-30 科锐Led公司 Light emitting diode with encapsulation and method
EP4273944A3 (en) 2015-04-02 2024-02-07 Nichia Corporation Light emitting device and method for manufacturing the same
JP6065135B2 (en) * 2015-04-02 2017-01-25 日亜化学工業株式会社 Light emitting device
JP6424738B2 (en) 2015-05-26 2018-11-21 日亜化学工業株式会社 Light emitting device and method of manufacturing light emitting device
KR102335106B1 (en) * 2015-06-19 2021-12-03 삼성전자 주식회사 Light Emitting Diode package and Method of manufacturing the same
DE102015112042B4 (en) * 2015-07-23 2021-07-01 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelectronic lighting device
JP6604786B2 (en) * 2015-09-11 2019-11-13 三星電子株式会社 Semiconductor light emitting device and manufacturing method thereof
EP3142158A1 (en) * 2015-09-14 2017-03-15 Lumileds Holding B.V. Solid state lighting unit and manufacturing method for the same
JP2016028461A (en) * 2015-11-27 2016-02-25 シチズン電子株式会社 LED light-emitting device
JP7266961B2 (en) * 2015-12-31 2023-05-01 晶元光電股▲ふん▼有限公司 light emitting device
JP6387973B2 (en) 2016-01-27 2018-09-12 日亜化学工業株式会社 Light emitting device
KR102572819B1 (en) * 2016-02-23 2023-08-30 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 Fabricating method for light emitting module and display device
JP6711021B2 (en) 2016-03-02 2020-06-17 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
EP3491678B1 (en) * 2016-07-28 2021-03-03 Lumileds LLC Light emitting device package with reflective side coating
US10193043B2 (en) 2016-07-28 2019-01-29 Lumileds Llc Light emitting device package with reflective side coating
TWI599078B (en) * 2016-08-05 2017-09-11 行家光電股份有限公司 Moisture-resistant chip scale packaging light emitting device
EP3396725B1 (en) * 2017-04-25 2021-01-13 Nichia Corporation Light emitting device and method of manufacturing same
JP6642594B2 (en) * 2017-04-25 2020-02-05 日亜化学工業株式会社 Light emitting device and method of manufacturing the same
US10224358B2 (en) 2017-05-09 2019-03-05 Lumileds Llc Light emitting device with reflective sidewall
CN110741484A (en) * 2017-05-30 2020-01-31 夏普株式会社 Semiconductor module, display device, and method for manufacturing semiconductor module
JP6966691B2 (en) 2017-05-31 2021-11-17 日亜化学工業株式会社 Light emitting device and manufacturing method of light emitting device
JP6973886B2 (en) 2017-06-30 2021-12-01 出光興産株式会社 Thermosetting material and molding method of the thermosetting material
JP6485503B2 (en) * 2017-08-01 2019-03-20 日亜化学工業株式会社 Method for manufacturing light emitting device
JP2017224867A (en) * 2017-09-28 2017-12-21 日亜化学工業株式会社 Light-emitting device and manufacturing method therefor
US10680147B2 (en) 2017-11-24 2020-06-09 Osram Oled Gmbh Method of producing a lighting device
JP6733646B2 (en) 2017-11-30 2020-08-05 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
JP6658808B2 (en) 2017-12-25 2020-03-04 日亜化学工業株式会社 Light emitting device and method of manufacturing light emitting device
JP6665851B2 (en) 2017-12-25 2020-03-13 日亜化学工業株式会社 Light emitting device and method of manufacturing light emitting device
KR102515285B1 (en) * 2017-12-27 2023-03-30 삼성전자주식회사 Display apparatus
JP7235944B2 (en) * 2018-02-21 2023-03-09 日亜化学工業株式会社 Light-emitting device and method for manufacturing light-emitting device
JP7117127B2 (en) * 2018-04-02 2022-08-12 スタンレー電気株式会社 light emitting device
JP7109236B2 (en) * 2018-04-04 2022-07-29 スタンレー電気株式会社 Semiconductor light emitting device and manufacturing method thereof
JP6848997B2 (en) * 2018-04-11 2021-03-24 日亜化学工業株式会社 Light emitting device
JP7100246B2 (en) * 2018-06-01 2022-07-13 日亜化学工業株式会社 Luminescent device
JP7117170B2 (en) * 2018-06-20 2022-08-12 スタンレー電気株式会社 light emitting device
JP7285362B2 (en) * 2018-06-27 2023-06-01 株式会社小糸製作所 vehicle headlight
JP7161330B2 (en) * 2018-07-20 2022-10-26 スタンレー電気株式会社 light emitting device
JP7108182B2 (en) * 2018-09-26 2022-07-28 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
JP7372512B2 (en) * 2018-09-28 2023-11-01 日亜化学工業株式会社 Light-emitting device and method for manufacturing the light-emitting device
JP7190889B2 (en) * 2018-12-07 2022-12-16 スタンレー電気株式会社 Light-emitting device and light-emitting device module
US20200203567A1 (en) * 2018-12-21 2020-06-25 Lumileds Holding B.V. Led package with increased contrast ratio
JP7082290B2 (en) * 2018-12-28 2022-06-08 日亜化学工業株式会社 Light emitting device and its manufacturing method
JP7025660B2 (en) * 2019-03-27 2022-02-25 日亜化学工業株式会社 Luminescent device
DE102019220379A1 (en) * 2019-12-20 2021-06-24 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung RADIATION-EMITTING SEMICONDUCTOR COMPONENT AND METHOD FOR MANUFACTURING A RADIATION-EMITTING SEMICONDUCTOR COMPONENT
JP7105415B2 (en) 2020-02-20 2022-07-25 日亜化学工業株式会社 Light-emitting device and manufacturing method thereof
JP6989807B2 (en) * 2020-07-08 2022-02-03 日亜化学工業株式会社 Light emitting device and its manufacturing method
JP7476002B2 (en) 2020-07-09 2024-04-30 シチズン電子株式会社 Light-emitting device
JP2023095356A (en) 2021-12-24 2023-07-06 日亜化学工業株式会社 Light-emitting device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4622253B2 (en) * 2004-01-22 2011-02-02 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
JP4667803B2 (en) * 2004-09-14 2011-04-13 日亜化学工業株式会社 Light emitting device
DE102004053116A1 (en) * 2004-11-03 2006-05-04 Tridonic Optoelectronics Gmbh Light-emitting diode arrangement with color conversion material
JP5224173B2 (en) * 2008-03-07 2013-07-03 スタンレー電気株式会社 Semiconductor light emitting device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3800673A1 (en) * 2015-11-30 2021-04-07 Nichia Corporation Light emitting device
JP2018082197A (en) * 2015-11-30 2018-05-24 日亜化学工業株式会社 Light-emitting device
US11791324B2 (en) 2015-11-30 2023-10-17 Nichia Corporation Light emitting device
US20220302098A1 (en) * 2015-11-30 2022-09-22 Nichia Corporation Light emitting device
US10461065B2 (en) 2015-11-30 2019-10-29 Nichia Corporation Method of manufacturing light emitting device
US11393803B2 (en) 2015-11-30 2022-07-19 Nichia Corporation Light emitting device
EP3174109A1 (en) * 2015-11-30 2017-05-31 Nichia Corporation Method of manufacturing light emitting device
US10825803B2 (en) 2015-11-30 2020-11-03 Nichia Corporation Light emitting device
US10763412B2 (en) 2016-11-01 2020-09-01 Nichia Corporation Light emitting device
US11309467B2 (en) 2016-11-01 2022-04-19 Nichia Corporation Method for manufacturing light emitting device
US10424705B2 (en) 2016-11-01 2019-09-24 Nichia Corporation Light emitting device with large phosphor area and method for manufacturing same
JP2019016763A (en) * 2016-11-01 2019-01-31 日亜化学工業株式会社 Light-emitting device and method for manufacturing the same
US11056618B2 (en) 2018-08-03 2021-07-06 Lumileds Llc Light emitting device with high near-field contrast ratio
WO2020028763A1 (en) * 2018-08-03 2020-02-06 Lumileds Llc Light emitting device with high near-field contrast ratio

Also Published As

Publication number Publication date
JP2010157638A (en) 2010-07-15

Similar Documents

Publication Publication Date Title
JP5521325B2 (en) Light emitting device and manufacturing method thereof
US11735699B2 (en) Light emitting apparatus and method for producing the same
JP5326837B2 (en) Light emitting device
JP5463901B2 (en) Light emitting device
JP5326705B2 (en) Light emitting device
JP5689225B2 (en) Light emitting device
JP6015734B2 (en) Light emitting device
US8723409B2 (en) Light emitting device
JP5967269B2 (en) Light emitting device
JP6020657B2 (en) Light emitting device
JP2013219397A (en) Light-emitting device
JP5610036B2 (en) Light emitting device
JP2015099940A (en) Light-emitting device
JP6665143B2 (en) Light emitting device manufacturing method
JP5644967B2 (en) Light emitting device and manufacturing method thereof
JP6222325B2 (en) Light emitting device
JP7469719B2 (en) Light-emitting device
JP5678462B2 (en) Light emitting device
JP5761391B2 (en) Light emitting device
JP5931006B2 (en) Light emitting device
JP6825636B2 (en) Light emitting device
JP2016189488A (en) Light emitting device
JP6274240B2 (en) Light emitting device
JP2018078327A (en) Light-emitting device
JP2021061444A (en) Light-emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140128

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140128

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140324

R150 Certificate of patent or registration of utility model

Ref document number: 5521325

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250