JP5516303B2 - Insulated wire and manufacturing method thereof - Google Patents

Insulated wire and manufacturing method thereof Download PDF

Info

Publication number
JP5516303B2
JP5516303B2 JP2010227344A JP2010227344A JP5516303B2 JP 5516303 B2 JP5516303 B2 JP 5516303B2 JP 2010227344 A JP2010227344 A JP 2010227344A JP 2010227344 A JP2010227344 A JP 2010227344A JP 5516303 B2 JP5516303 B2 JP 5516303B2
Authority
JP
Japan
Prior art keywords
resin
insulated wire
ethylene
conductor
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010227344A
Other languages
Japanese (ja)
Other versions
JP2012084256A (en
Inventor
孝則 山崎
清 渡辺
淳一 安部
英行 菊池
大輔 日野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2010227344A priority Critical patent/JP5516303B2/en
Publication of JP2012084256A publication Critical patent/JP2012084256A/en
Application granted granted Critical
Publication of JP5516303B2 publication Critical patent/JP5516303B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Insulated Conductors (AREA)

Description

本発明は、回転電機や変圧器などの電気機器のコイルに用いられる絶縁電線に係り、特に、押出被覆層からなる絶縁被覆層が設けられている絶縁電線に関するものである。   The present invention relates to an insulated wire used for a coil of an electric device such as a rotating electric machine or a transformer, and more particularly to an insulated wire provided with an insulating coating layer made of an extrusion coating layer.

回転電機や変圧器などの電気機器のコイルに用いられている絶縁電線(エナメル被覆絶縁電線)は、一般的に、コイルの用途・形状に合致した断面形状(例えば、丸形状や矩形状)に成形された導体の外周に単層または複数層の絶縁被覆が形成された構造をしている。該絶縁被覆を形成する方法には、樹脂を有機溶剤に溶解させた絶縁塗料を導体上に塗布・焼付けする方法と、予め調合した樹脂組成物を導体上に押出被覆する方法がある。   Insulated wires (enamel-covered insulated wires) used in coils of electrical equipment such as rotating electrical machines and transformers generally have a cross-sectional shape (for example, round shape or rectangular shape) that matches the coil application and shape. It has a structure in which a single-layer or multiple-layer insulation coating is formed on the outer periphery of the molded conductor. As a method for forming the insulating coating, there are a method in which an insulating paint in which a resin is dissolved in an organic solvent is applied and baked on the conductor, and a method in which a resin composition prepared in advance is coated on the conductor by extrusion.

近年、電気機器への小型化の要求により、コイル巻線工程において絶縁電線を高い張力下で小径のコアに高密度で巻くようになってきており、絶縁被覆には過酷な加工ストレスに耐えられる機械的特性(例えば、密着性や耐摩耗性など)が求められている。また、電気機器への高効率化・高出力化の要求からインバータ制御や高電圧化が進展している。その結果、コイルの運転温度が以前よりも上昇傾向にあり、絶縁被覆には高い耐熱性も求められている。それらに加えて、インバータサージ電圧などのより高い電圧が電気機器中のコイルに掛かることから、部分放電の発生によって絶縁被覆が劣化・損傷することがあるという問題が生じていた。   In recent years, due to the demand for miniaturization of electrical equipment, insulated wires have been wound at high density around small diameter cores under high tension in the coil winding process, and the insulation coating can withstand severe processing stress. Mechanical properties (for example, adhesion and wear resistance) are required. In addition, inverter control and higher voltage are progressing due to demands for higher efficiency and higher output of electrical equipment. As a result, the operating temperature of the coil tends to be higher than before, and the insulation coating is also required to have high heat resistance. In addition, since a higher voltage such as an inverter surge voltage is applied to the coil in the electric device, there has been a problem that the insulation coating may be deteriorated or damaged due to the occurrence of partial discharge.

部分放電による絶縁被覆の劣化・損傷を防ぐために、部分放電開始電圧の高い絶縁被覆の開発が進められている。絶縁被覆の部分放電開始電圧を高くする手法として、絶縁被覆に比誘電率の低い樹脂を用いる方法や、絶縁被覆の厚さを厚くする方法が挙げられる。   In order to prevent deterioration and damage of the insulation coating due to partial discharge, development of insulation coating with a high partial discharge starting voltage is underway. As a method of increasing the partial discharge start voltage of the insulating coating, there are a method using a resin having a low relative dielectric constant for the insulating coating and a method of increasing the thickness of the insulating coating.

例えば、特許文献1には、特定の構造を有するフッ素系ポリイミド樹脂を含む巻線の絶縁被覆材料が開示されている。特許文献1に記載の絶縁被覆材料は、比誘電率が2.3〜2.8であり、従来の絶縁塗料の比誘電率(3〜4程度)と比較して有意に低く、その結果、絶縁被覆の発熱量が抑えられて熱による劣化が抑えられるとされている。   For example, Patent Document 1 discloses an insulating coating material for a winding including a fluorine-based polyimide resin having a specific structure. The insulating coating material described in Patent Document 1 has a relative dielectric constant of 2.3 to 2.8, which is significantly lower than the relative dielectric constant (about 3 to 4) of conventional insulating coatings. It is said that the amount is reduced and deterioration due to heat is suppressed.

特許文献2では、導体の外周に、少なくとも1層のエナメル焼き付け層と、その外側に少なくとも1層の押出被覆樹脂層を有し、該エナメル焼き付け層と該押出被覆樹脂層の厚さの合計が60μm以上であり、前記エナメル焼き付け層の厚さが50μm以下であり、前記押出被覆樹脂層が、25℃における引張弾性率が1000 MPa以上であり、かつ250℃における引張弾性率が10 MPa以上である樹脂材料(ポリエーテルエーテルケトンを除く)からなることを特徴とする耐インバータサージ絶縁ワイヤが開示されている。特許文献2に記載の絶縁ワイヤは、導体と絶縁被覆層の接着強度を下げることなく、高い部分放電開始電圧(900 Vp程度)を有する絶縁ワイヤを提供することができるとされている。   In Patent Document 2, the conductor has at least one enamel baked layer on the outer periphery and at least one extruded coated resin layer on the outer side thereof, and the total thickness of the enamel baked layer and the extruded coated resin layer is 60 μm or more, the thickness of the enamel baking layer is 50 μm or less, the extrusion-coated resin layer has a tensile elastic modulus at 25 ° C. of 1000 MPa or more, and a tensile elastic modulus at 250 ° C. of 10 MPa or more. An inverter surge-insulated wire characterized by being made of a certain resin material (excluding polyether ether ketone) is disclosed. The insulated wire described in Patent Document 2 is said to be able to provide an insulated wire having a high partial discharge starting voltage (about 900 Vp) without lowering the adhesive strength between the conductor and the insulating coating layer.

また、特許文献3では、導体と前記導体を被覆する押出絶縁層を有してなる2層以上の多層絶縁電線であって、前記絶縁層の最内層以外の少なくとも1層が、ポリフェニレンスルフィド樹脂を連続層とし、オレフィン系共重合体成分を分散相とする樹脂混和物で形成され、前記樹脂混和物からなる絶縁層が、ポリフェニレンスルフィド樹脂100質量部と、オレフィン系共重合体成分3〜40質量部とを含有することを特徴とする多層絶縁電線が開示されている。特許文献3に記載の絶縁電線は、耐熱性と耐薬品性に優れているとされている。   Moreover, in patent document 3, it is a multilayer insulated wire of two or more layers which has a conductor and the extrusion insulation layer which coat | covers the said conductor, Comprising: At least 1 layer other than the innermost layer of the said insulation layer is polyphenylene sulfide resin. It is a continuous layer and is formed of a resin blend having an olefin copolymer component as a dispersed phase, and the insulating layer made of the resin blend is composed of 100 parts by mass of a polyphenylene sulfide resin and 3 to 40 masses of an olefin copolymer component. The multilayer insulated wire characterized by containing a part is disclosed. The insulated wire described in Patent Document 3 is said to be excellent in heat resistance and chemical resistance.

特開2002−56720号公報JP 2002-56720 A 特許第4177295号公報Japanese Patent No. 4177295 再公表2005−106898号公報Republished 2005-106898

しかしながら、特許文献1に記載されているようなフッ素系ポリイミド樹脂からなる絶縁塗料を用いて絶縁被覆を形成した場合、絶縁被覆の比誘電率を低くすることはできるが、フッ素系ポリイミド樹脂から形成した絶縁被覆は導体への密着性が低いため、例えば、コイル巻線工程などにおける過酷な加工ストレスによって、絶縁被覆が導体から剥離する現象(被覆浮き)が発生してしまうことが懸念される。被覆浮きは、最悪の場合に絶縁破壊を起こす要因となる。   However, when an insulating coating is formed using an insulating paint made of a fluorine-based polyimide resin as described in Patent Document 1, the dielectric constant of the insulating coating can be lowered, but it is formed from a fluorine-based polyimide resin. Since the insulating coating has low adhesion to the conductor, for example, there is a concern that a phenomenon (coating floating) of the insulating coating may be peeled off from the conductor due to severe processing stress in a coil winding process or the like. Cover floating is a cause of dielectric breakdown in the worst case.

特許文献2に記載されているような押出被覆樹脂層を有する絶縁電線は、押出被覆樹脂層の厚さを厚くすることによって部分放電開始電圧を高くすることができると考えられるが、押出被覆樹脂層の密着性を確保するために、導体と押出被覆樹脂層との間にエナメル焼き付け層を介在させている。また、特許文献2では、その好ましい態様としてエナメル焼き付け層と押出被覆樹脂層との間に接着層を更に介在させ、エナメル焼き付け層と押出被覆樹脂層との接着力を強化している。   Insulated wires having an extrusion-coated resin layer as described in Patent Document 2 are considered to be able to increase the partial discharge start voltage by increasing the thickness of the extrusion-coated resin layer. In order to ensure the adhesion of the layers, an enamel baking layer is interposed between the conductor and the extrusion-coated resin layer. Moreover, in patent document 2, the adhesive force is further interposed between the enamel baking layer and the extrusion coating resin layer as the preferable aspect, and the adhesive force of an enamel baking layer and an extrusion coating resin layer is strengthened.

しかしながら、エナメル焼き付け層と押出被覆樹脂層とは樹脂組成物の性質と形成方法とが大きく異なることから、特許文献2の絶縁電線は、製造工程が煩雑になりやすく製造コストが増大しやすい問題がある。加えて、それらの層間に接着層を更に介在させる場合、製造コストが更に増大する問題がある。   However, since the enamel baked layer and the extrusion-coated resin layer are greatly different in the properties and forming method of the resin composition, the insulated wire of Patent Document 2 has a problem that the manufacturing process tends to be complicated and the manufacturing cost tends to increase. is there. In addition, when an adhesive layer is further interposed between these layers, there is a problem that the manufacturing cost further increases.

従って、本発明の目的は、上記の課題を解決し、導体と絶縁被覆との密着性を低下させることなく、薄い絶縁被覆厚さで高い部分放電開始電圧を有する絶縁電線を提供することにある。   Accordingly, an object of the present invention is to solve the above problems and provide an insulated wire having a high partial discharge starting voltage with a thin insulating coating thickness without reducing the adhesion between the conductor and the insulating coating. .

本発明は、上記目的を達成するため、絶縁被覆が導体上に形成されている絶縁電線であって、前記絶縁被覆は、ポリフェニレンサルファイドからなる樹脂(A)とポリエチレン、エチレン−酢酸ビニル共重合体、エチレン−エチルアクリレート共重合体、エチレン−メチルアクリレート共重合体、エチレングリシジルメタクリレート共重合体から構成されるエチレン共重合体(B1)の群と、アイソタクチックポリプロピレン、シンジオタクチックポリプロピレン、ポリメチルペンテンから構成される樹脂(B2)の群と、前記樹脂(B2)を無水マレイン酸またはグリシジルメタクリレートで変性させてなる樹脂(B3)の群のうちの少なくとも1群の1種からなるオレフィン系共重合樹脂からなる樹脂(B)とを重量部比で「(B)/(A) = 20/80 〜70/30」の範囲で混和した樹脂組成物からなり、前記樹脂組成物を前記導体の直上に押出被覆した層(押出被覆層)が形成された後に、前記押出被覆層中の前記樹脂(A)の結晶が融解する温度での熱処理が施されていることを特徴とする絶縁電線を提供する。なお、「20/80 〜 70/30」とは、「20/80以上、70/30以下」を意味するものとする。
To achieve the above object, the present invention provides an insulated wire in which an insulation coating is formed on a conductor, the insulation coating comprising a resin (A) made of polyphenylene sulfide, polyethylene, and an ethylene-vinyl acetate copolymer. , Ethylene-ethyl acrylate copolymer, ethylene-methyl acrylate copolymer, ethylene glycidyl methacrylate copolymer ethylene copolymer (B1) group, isotactic polypropylene, syndiotactic polypropylene, polymethyl An olefinic copolymer comprising at least one of a group of resins (B2) composed of pentene and a group of resins (B3) obtained by modifying the resin (B2) with maleic anhydride or glycidyl methacrylate. The resin (B) made of a polymerized resin is mixed in the range of “(B) / (A) = 20/80 to 70/30” by weight part ratio. A temperature at which the crystal of the resin (A) in the extrusion coating layer melts after a layer (extrusion coating layer) formed by extrusion coating the resin composition directly on the conductor is formed. An insulated wire characterized by being subjected to heat treatment in (1) is provided. Note that “20/80 to 70/30” means “20/80 or more and 70/30 or less”.

また、本発明は、上記目的を達成するため、絶縁被覆が導体上に形成されている絶縁電線の製造方法であって、前記絶縁被覆はポリフェニレンサルファイドからなる樹脂(A)とポリエチレン、エチレン−酢酸ビニル共重合体、エチレン−エチルアクリレート共重合体、エチレン−メチルアクリレート共重合体、エチレングリシジルメタクリレート共重合体から構成されるエチレン共重合体(B1)の群と、アイソタクチックポリプロピレン、シンジオタクチックポリプロピレン、ポリメチルペンテンから構成される樹脂(B2)の群と、前記樹脂(B2)を無水マレイン酸またはグリシジルメタクリレートで変性させてなる樹脂(B3)の群のうちの少なくとも1群の1種からなるオレフィン系共重合樹脂からなる樹脂(B)とを重量部比で「(B)/(A) = 20/80 〜70/30」の範囲で混和された樹脂組成物からなり、前記樹脂組成物を前記導体の直上に押出被覆して押出被覆層を形成する工程と、前記押出被覆層中の前記樹脂(A)の結晶が融解する温度で熱処理を施す工程とを有することを特徴とする絶縁電線の製造方法を提供する。
In order to achieve the above object, the present invention provides a method for producing an insulated wire in which an insulation coating is formed on a conductor, the insulation coating comprising a resin (A) made of polyphenylene sulfide, polyethylene, and ethylene-acetic acid. A group of ethylene copolymers (B1) composed of vinyl copolymers, ethylene-ethyl acrylate copolymers, ethylene-methyl acrylate copolymers, ethylene glycidyl methacrylate copolymers, isotactic polypropylene, syndiotactic From at least one of the group of resins (B2) composed of polypropylene and polymethylpentene and at least one of the group of resins (B3) obtained by modifying the resin (B2) with maleic anhydride or glycidyl methacrylate And (B) / (A) = 20/80 to 70 by weight part ratio with the resin (B) made of the olefin copolymer resin / 30 '', a step of extrusion coating the resin composition directly on the conductor to form an extrusion coating layer, and the resin (A) in the extrusion coating layer And a process of performing a heat treatment at a temperature at which the crystal melts.

本発明は、上記目的を達成するため、上記の本発明に係る絶縁電線または絶縁電線の製造方法において、以下のような改良や変更を加えることができる。
(1)前記熱処理の温度は、250℃以上300℃以下である。
In order to achieve the above object, the present invention can make the following improvements and changes in the insulated wire or the method for manufacturing an insulated wire according to the present invention.
(1) temperature before Symbol heat treatment is 250 ° C. or higher 300 ° C. or less.

本発明によれば、導体と絶縁被覆との密着性を低下させることなく、押出被覆層の厚さが薄くても高い部分放電開始電圧を有する絶縁電線を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the insulated wire which has a high partial discharge start voltage can be provided, even if the thickness of an extrusion coating layer is thin, without reducing the adhesiveness of a conductor and insulation coating.

本発明に係る絶縁電線の実施形態の1例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of embodiment of the insulated wire which concerns on this invention. 本発明に係る絶縁電線の実施形態の他の1例を示す断面模式図である。It is a cross-sectional schematic diagram which shows another example of embodiment of the insulated wire which concerns on this invention. 本発明に係る絶縁電線の実施形態のさらに他の1例を示す断面模式図である。It is a cross-sectional schematic diagram which shows another example of embodiment of the insulated wire which concerns on this invention.

本発明者らは、絶縁電線における導体と絶縁被覆との密着性、および耐部分放電特性の両方を向上させるため、絶縁被覆の樹脂組成物や構造を鋭意検討した結果、ポリフェニレンサルファイドからなる樹脂(A)とオレフィン系共重合樹脂からなる樹脂(B)とを所定の重量部比で混和した樹脂組成物を用いて導体の直上に押出被覆して押出被覆層を形成した後に、押出被覆層中の樹脂(A)の結晶が融解する温度での加熱処理を施すことが有効であることを見出した。本発明は、それらの知見に基づいて完成されたものである。   In order to improve both the adhesion between the conductor and the insulation coating in the insulated wire and the partial discharge resistance, the present inventors have intensively studied the resin composition and structure of the insulation coating, and as a result, a resin comprising polyphenylene sulfide ( After forming an extrusion coating layer by extrusion coating directly on the conductor using a resin composition in which A) and a resin (B) composed of an olefin copolymer resin are mixed at a predetermined weight ratio, in the extrusion coating layer It was found that heat treatment at a temperature at which the resin (A) crystals melted was effective. The present invention has been completed based on these findings.

以下、本発明に係る実施形態を説明する。ただし、本発明はここで取り上げた実施の形態に限定されることはなく、要旨を変更しない範囲で適宜組み合わせや改良が可能である。   Embodiments according to the present invention will be described below. However, the present invention is not limited to the embodiment taken up here, and can be appropriately combined and improved without departing from the scope of the invention.

図1は、本発明に係る絶縁電線の実施形態の1例を示す断面模式図である。図1に示したように、本発明に係る絶縁電線11は導体2の直上に第1押出被覆層3が形成されている。第1押出被覆層3は、ポリフェニレンサルファイドからなる樹脂(A)とオレフィン系共重合樹脂からなる樹脂(B)とを混合した樹脂組成物を押出被覆した層であり、前記樹脂組成物は、前記樹脂(A)と前記樹脂(B)とが重量部比で「(B)/(A) = 20/80 〜 70/30」の範囲で混和されている。さらに、第1押出被覆層3は、押出成形された後に、該押出被覆層中の樹脂(A)の結晶が融解する温度での加熱処理が施されていることを特徴とする。このような構成とすることにより、導体2と第1押出被覆層3との密着性を低下させることなく従来よりも高い部分放電開始電圧(例えば、1300 Vp以上の高い部分放電開始電圧)を達成することができる。   FIG. 1 is a schematic cross-sectional view showing an example of an embodiment of an insulated wire according to the present invention. As shown in FIG. 1, the insulated wire 11 according to the present invention has a first extrusion coating layer 3 formed immediately above a conductor 2. The first extrusion coating layer 3 is a layer obtained by extrusion coating a resin composition in which a resin (A) made of polyphenylene sulfide and a resin (B) made of an olefin copolymer resin are mixed. The resin (A) and the resin (B) are mixed in the range of “(B) / (A) = 20/80 to 70/30” by weight. Further, the first extrusion coating layer 3 is characterized by being subjected to heat treatment at a temperature at which the crystals of the resin (A) in the extrusion coating layer are melted after being extruded. By adopting such a configuration, a partial discharge start voltage higher than the conventional one (for example, a high partial discharge start voltage of 1300 Vp or more) is achieved without lowering the adhesion between the conductor 2 and the first extrusion coating layer 3. can do.

ポリフェニレンサルファイドからなる樹脂(A)は、高い耐熱性と高い機械的特性とを有するが、それのみでは導体との密着性が十分と言えない場合がある。そこで、導体との密着性を向上させるためにオレフィン系共重合樹脂からなるからなる樹脂(B)を混合させた樹脂組成物を検討した。樹脂(B)としては、ポリエチレン、エチレン−酢酸ビニル共重合体、エチレン−エチルアクリレート共重合体、エチレン−メチルアクリレート共重合体、エチレングリシジルメタクリレート共重合体から構成されるエチレン共重合体(B1)の群と、アイソタクチックポリプロピレン、シンジオタクチックポリプロピレン、ポリメチルペンテンから構成される樹脂(B2)の群と、前記樹脂(B2)を無水マレイン酸および/またはグリシジルメタクリレートで変性させてなる樹脂(B3)の群のうちの少なくとも1群の1種からなる。特に、無水マレイン酸やグリシジル基を有する樹脂群を混和させることが好ましい。   The resin (A) made of polyphenylene sulfide has high heat resistance and high mechanical properties, but it cannot be said that the adhesiveness with the conductor alone is sufficient. Therefore, in order to improve adhesion to the conductor, a resin composition in which a resin (B) made of an olefin copolymer resin is mixed was examined. As the resin (B), ethylene copolymer composed of polyethylene, ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, ethylene-methyl acrylate copolymer, ethylene glycidyl methacrylate copolymer (B1) And a resin (B2) group composed of isotactic polypropylene, syndiotactic polypropylene and polymethylpentene, and a resin obtained by modifying the resin (B2) with maleic anhydride and / or glycidyl methacrylate ( It consists of 1 type of at least 1 group in the group of B3). In particular, it is preferable to mix a resin group having maleic anhydride or a glycidyl group.

樹脂(A)と樹脂(B)とを混和する比率(重量部比)は、「(B)/(A) = 20/80 〜 70/30」の範囲が好ましく、「(B)/(A) = 55/45 〜 70/30」の範囲がより好ましい。それにより、導体との密着性を向上させるとともに、部分放電開始電圧が高い絶縁電線を得ることができる。重量部比が「(B)/(A) < 20/80」であると、樹脂(B)が少な過ぎて導体との密着性向上の効果が十分に得られない。一方、該重量部比が「(B)/(A) > 70/30」になると、樹脂(B)が多過ぎて分子構造中に持つ極性基の影響が相対的に増大し、部分放電開始電圧を低下させる要因となる。なお、本発明の樹脂組成物は、必要に応じて、酸化防止剤や銅害防止剤、滑剤、着色剤などが添加されていてもよい。   The ratio of mixing the resin (A) and the resin (B) (part by weight) is preferably in the range of “(B) / (A) = 20/80 to 70/30”, and “(B) / (A ) = 55/45 to 70/30 ”is more preferable. Thereby, while improving adhesiveness with a conductor, the insulated wire with a high partial discharge start voltage can be obtained. When the weight part ratio is “(B) / (A) <20/80”, the resin (B) is too small and the effect of improving the adhesion to the conductor cannot be sufficiently obtained. On the other hand, when the ratio by weight becomes “(B) / (A)> 70/30”, the resin (B) is too much and the influence of the polar group in the molecular structure is relatively increased, and partial discharge starts. It becomes a factor to reduce the voltage. The resin composition of the present invention may contain an antioxidant, a copper damage inhibitor, a lubricant, a colorant, and the like as necessary.

前述したように、本発明は、第1押出被覆層3を導体2上に押出成形した後に、押出被覆層中の樹脂(A)の結晶が融解する温度での熱処理を施すことを特徴とする。熱処理温度としては、樹脂(A)のガラス転移温度(Tg)よりも100℃以上高い温度が好ましく、例えば、250℃以上300℃以下が好ましい。樹脂(A)の結晶を融解させることで樹脂分子の流動性が高まり、導体2の表面(金属表面)と樹脂分子との距離を縮められることによるものと考えられる。その結果、導体2と第1押出被覆層3との密着性向上に著しい効果があることが見出された。密着性が向上することで、絶縁電線11を小径(例えば、自己径)に屈曲させてもシワの発生を防止できるとともに耐摩耗性も向上する。一方、300℃よりも高い温度の熱処理は、絶縁被膜自体の変形が懸念されることから好ましくない。   As described above, the present invention is characterized in that after the first extrusion coating layer 3 is extruded on the conductor 2, heat treatment is performed at a temperature at which the crystals of the resin (A) in the extrusion coating layer melt. . The heat treatment temperature is preferably 100 ° C. or more higher than the glass transition temperature (Tg) of the resin (A), for example, 250 ° C. or more and 300 ° C. or less. It is considered that melting of the resin (A) crystals increases the fluidity of the resin molecules and shortens the distance between the surface of the conductor 2 (metal surface) and the resin molecules. As a result, it was found that there is a remarkable effect in improving the adhesion between the conductor 2 and the first extrusion coating layer 3. By improving the adhesion, it is possible to prevent the generation of wrinkles and improve the wear resistance even when the insulated wire 11 is bent to a small diameter (for example, a self-diameter). On the other hand, heat treatment at a temperature higher than 300 ° C. is not preferable because there is a concern about deformation of the insulating coating itself.

なお、熱処理時間に特段の限定はないが、数十秒間から数分間保持するのが好ましい。また、加熱方法にも特段の限定はなく、電気炉やバーナー、温風加熱装置、誘導加熱装置などを用いることができる。   Although there is no particular limitation on the heat treatment time, it is preferable to hold for several tens of seconds to several minutes. Also, the heating method is not particularly limited, and an electric furnace, burner, hot air heating device, induction heating device, or the like can be used.

ここで、押出被覆時の加熱と上記熱処理(押出被覆後の熱処理)との関係を簡単に説明する。第1押出被覆層の押出時に、絶縁被覆樹脂(樹脂組成物)は300℃程度に加熱された溶融状態で押出供給される。一方、導体は、その表面の温度が絶縁被覆樹脂の温度よりも低い状態(例えば200℃程度以下)で供給される。   Here, the relationship between the heating during extrusion coating and the heat treatment (heat treatment after extrusion coating) will be briefly described. At the time of extrusion of the first extrusion coating layer, the insulating coating resin (resin composition) is extruded and supplied in a molten state heated to about 300 ° C. On the other hand, the conductor is supplied in a state where the surface temperature is lower than the temperature of the insulating coating resin (for example, about 200 ° C. or less).

すなわち、押出被覆時において、絶縁被覆樹脂と導体とには大きな温度差が存在する。さらに、エナメル被覆絶縁電線は被覆厚さが薄いことから、導体の熱容量の方が絶縁被膜よりも大きい。これらのことから、絶縁被覆樹脂と導体との界面では、絶縁被覆樹脂の急激な熱収縮が起こり易く、密着性低下の要因になっていたと考えられる。本発明は、押出被覆後(かつコイル成形加工工程の前)に所定の熱処理を施すことにより、前述の作用効果を奏するものである。なお、絶縁被覆樹脂と導体との温度差を小さくするために、絶縁被覆する前の導体を250℃以上に加熱すると導体表面に酸化被膜などが形成され易く、導体と絶縁被覆との間の密着性がかえって低下してしまうことが懸念される。   That is, during extrusion coating, there is a large temperature difference between the insulating coating resin and the conductor. Further, since the enamel-insulated insulated wire has a small coating thickness, the heat capacity of the conductor is larger than that of the insulation coating. From these facts, it is considered that rapid thermal shrinkage of the insulating coating resin is likely to occur at the interface between the insulating coating resin and the conductor, causing a decrease in adhesion. The present invention exhibits the above-described effects by applying a predetermined heat treatment after extrusion coating (and before the coil forming process). In order to reduce the temperature difference between the insulation coating resin and the conductor, if the conductor before insulation coating is heated to 250 ° C or higher, an oxide film or the like tends to be formed on the conductor surface, and adhesion between the conductor and the insulation coating There is a concern that the nature will decline.

図2は本発明に係る絶縁電線の実施形態の他の1例を示す断面模式図であり、図3は本発明に係る絶縁電線の実施形態のさらに他の1例を示す断面模式図である。図2,3に示したように、本発明に係る絶縁電線12は、導体2の直上に第1押出被覆層3が形成されており、第1押出被覆層3の外周に第2押出被覆層4が形成されている。また、本発明に係る絶縁電線13は、絶縁電線12に加えて、第2押出被覆層4の外周に第3押出被覆層5が更に形成されている。なお、第2押出被覆層4や第3押出被覆層5の形成は、第1押出被覆層3に対する上記熱処理の後に行われ、第1押出被覆層3を融解させない温度で押出被覆される。   FIG. 2 is a schematic cross-sectional view showing another example of the embodiment of the insulated wire according to the present invention, and FIG. 3 is a schematic cross-sectional view showing still another example of the embodiment of the insulated wire according to the present invention. . As shown in FIGS. 2 and 3, in the insulated wire 12 according to the present invention, the first extrusion coating layer 3 is formed immediately above the conductor 2, and the second extrusion coating layer 3 is formed on the outer periphery of the first extrusion coating layer 3. 4 is formed. Further, in the insulated wire 13 according to the present invention, a third extruded coating layer 5 is further formed on the outer periphery of the second extruded coating layer 4 in addition to the insulated wire 12. The second extrusion coating layer 4 and the third extrusion coating layer 5 are formed after the heat treatment for the first extrusion coating layer 3 and are extrusion coated at a temperature at which the first extrusion coating layer 3 is not melted.

第2押出被覆層4および第3押出被覆層5としては、熱可塑性ポリアミドイミド、熱可塑性ポリイミド、ポリエーテルイミド、ポリフェニレンサルファイド等の樹脂を好適に用いることができる。第2押出被覆層4や第3押出被覆層5を形成することにより、絶縁電線の耐摩耗性を更に向上させることができる。その結果、例えば、コイル巻線工程などにおいて絶縁電線に強い外力(張力や剪断応力)が掛る場合であっても、絶縁被覆層の表面にクラック等(例えば、クラック、クレージング、しわ、被覆浮き)が発生するのを防ぐことができる。なお、絶縁被覆の最外周に潤滑層を別途形成してもよい。   As the second extrusion coating layer 4 and the third extrusion coating layer 5, resins such as thermoplastic polyamideimide, thermoplastic polyimide, polyetherimide, and polyphenylene sulfide can be suitably used. By forming the second extrusion coating layer 4 and the third extrusion coating layer 5, the wear resistance of the insulated wire can be further improved. As a result, for example, even if a strong external force (tension or shear stress) is applied to the insulated wire in the coil winding process, etc., the surface of the insulating coating layer is cracked (for example, cracks, crazing, wrinkles, coating floating) Can be prevented. A lubricating layer may be separately formed on the outermost periphery of the insulating coating.

第1押出被覆層3の厚さは30μm以上が好ましく、第2押出被覆層4と第3押出被覆層5の厚さはそれぞれ20μm以上が好ましい。一方、絶縁被覆全体の厚さは、70〜100μmであることが好ましい。   The thickness of the first extrusion coating layer 3 is preferably 30 μm or more, and the thickness of each of the second extrusion coating layer 4 and the third extrusion coating layer 5 is preferably 20 μm or more. On the other hand, the total thickness of the insulating coating is preferably 70 to 100 μm.

導体2の材料に特段の限定はなく、エナメル被覆絶縁電線で常用される材料(例えば、無酸素銅や低酸素銅など)を用いることができる。なお、図1〜3においては導体2として丸形状の断面を有する例を示したが、それに限定されることはなく、矩形状(四辺形状)の断面を有する導体であってもよい。   There is no particular limitation on the material of the conductor 2, and materials that are commonly used in enamel-coated insulated wires (for example, oxygen-free copper or low-oxygen copper) can be used. 1-3, although the example which has a round-shaped cross section as the conductor 2 was shown, it is not limited to it, The conductor which has a rectangular-shaped (four-sided) cross section may be sufficient.

以下、本発明を実施例に基づいて更に詳しく説明するが、本発明はこれらに限定されるものではない。なお、実施例1〜8および比較例1〜3の絶縁被覆を構成する樹脂組成物の組成を後述する表1に示した。   EXAMPLES Hereinafter, although this invention is demonstrated in more detail based on an Example, this invention is not limited to these. In addition, the composition of the resin composition which comprises the insulation coating of Examples 1-8 and Comparative Examples 1-3 was shown in Table 1 mentioned later.

(実施例1〜8および比較例1〜3の作製)
導体として外径1.25 mmの銅線を用い、該銅線の外層に押出機を用いて表1・表2に示した樹脂組成物を押出被覆して、図1に示すような形状の絶縁電線を作製した。押出被覆時の樹脂温度は約300℃で、絶縁被覆(第1押出被覆層)の厚さは約100μmとした。実施例1〜8および比較例2〜3については、樹脂組成物を押出被覆した後に、加熱温度(設定温度)が200〜300℃の電気炉を通して熱処理を施した。
(Production of Examples 1 to 8 and Comparative Examples 1 to 3)
A copper wire having an outer diameter of 1.25 mm was used as the conductor, and the resin composition shown in Tables 1 and 2 was extrusion coated on the outer layer of the copper wire using an extruder to form an insulated wire having a shape as shown in FIG. Was made. The resin temperature at the time of extrusion coating was about 300 ° C., and the thickness of the insulation coating (first extrusion coating layer) was about 100 μm. About Examples 1-8 and Comparative Examples 2-3, after carrying out extrusion coating of the resin composition, it heat-processed through the electric furnace whose heating temperature (setting temperature) is 200-300 degreeC.

上記のように作製した絶縁電線(実施例1〜8および比較例1〜3)に対して、次のような測定および試験を行った。   The following measurements and tests were performed on the insulated wires (Examples 1 to 8 and Comparative Examples 1 to 3) produced as described above.

(1)部分放電開始電圧測定
部分放電開始電圧の測定は次のような手順で行った。絶縁電線を500 mmの長さで2本切り出し、39 N(4 kgf)の張力を掛けながら撚り合わせて中央部の120 mmの範囲に6回の撚り部を有するツイストペアの試料を用意した。試料端部10 mmの絶縁被覆をアビソフィックス装置で剥離した。その後、絶縁被覆の乾燥のため、120℃の恒温槽中に30分間保持し、デシケータ中で室温になるまで18時間放置した。部分放電開始電圧は、部分放電自動試験システム(総研電気株式会社製、DAC-6024)を用いて測定した。測定条件は、25℃で相対湿度50%の雰囲気とし、50 Hzの電圧を10〜30 V/sで昇圧しながらツイストペア試料に課電した。ツイストペア試料に50 pCの放電が50回発生した電圧を部分放電開始電圧(Vp)とした。1300 Vp以上の部分放電開始電圧を合格と判定した。
(1) Partial discharge start voltage measurement The partial discharge start voltage was measured according to the following procedure. Two insulated wires having a length of 500 mm were cut out and twisted while applying a tension of 39 N (4 kgf) to prepare a twisted pair sample having six twisted portions in the range of 120 mm at the center. The insulating coating at the 10 mm edge of the sample was peeled off with an abisofix device. Thereafter, in order to dry the insulating coating, it was kept in a constant temperature bath at 120 ° C. for 30 minutes and left in a desiccator for 18 hours until it reached room temperature. The partial discharge start voltage was measured using a partial discharge automatic test system (manufactured by Soken Denki Co., Ltd., DAC-6024). The measurement conditions were an atmosphere with a relative humidity of 50% at 25 ° C., and a voltage of 50 Hz was applied to the twisted pair sample while increasing the voltage at 10 to 30 V / s. The voltage at which 50 pC discharge occurred 50 times in the twisted pair sample was defined as the partial discharge start voltage (Vp). A partial discharge start voltage of 1300 Vp or higher was judged acceptable.

(2)密着性評価
密着性は、JIS C3003に準拠した急激伸張試験を実施することにより評価した。急激伸張試験の結果、絶縁被覆の浮き(剥離)の長さが破断点から2 mm以下のものを「◎:優秀の意味」、2〜20 mmのものを「○:合格の意味」、20 mmよりも長いものを「×:不合格の意味」とした。
(2) Adhesion evaluation Adhesion was evaluated by carrying out a rapid extension test based on JIS C3003. As a result of the rapid extension test, when the length of the insulation coating floats (peel) is 2 mm or less from the breaking point, “◎: Excellent meaning”, 2-20 mm of “○: Meaning of pass”, 20 Those longer than mm were defined as “x: meaning of failure”.

(3)耐熱性評価
耐熱性試験は次のような手順で行った。作製した絶縁電線を500 mmの長さで2本切り出し、39 N(4 kgf)の張力を掛けながら撚り合わせて中央部の120 mmの範囲に6回の撚り部を有するツイストペアの試料を用意した。次に、老化試験機(東洋精機株式会社製、ギヤー・オーブンSTD60P)において150℃で2000時間保持して加熱老化させた。その後、直径4 mmの丸棒(巻き付け棒)にツイストペア試料を巻き付け、50倍の光学顕微鏡を用いて絶縁被覆でのクラックの有無を調査した。クラック等(例えば、クラック、クレージング、シワ)の発生がないものを「○:合格の意味」、クラックの発生はないがクレージングが発生したものを「△:不十分の意味」、クラックの発生があるものを「×:不合格の意味」とした。なお、ここでは、クレージングとは絶縁被覆層の表面が局所的に凹んだ状態になっているものと定義し、クラックとは亀裂が導体表面まで届いているものと定義する。
(3) Heat resistance evaluation The heat resistance test was performed in the following procedure. Two pieces of the manufactured insulated wire were cut out at a length of 500 mm, twisted while applying a tension of 39 N (4 kgf), and a twisted pair sample having six twisted parts in the range of 120 mm in the central part was prepared. . Next, it was heat-aged by holding at 150 ° C. for 2000 hours in an aging tester (manufactured by Toyo Seiki Co., Ltd., Gear Oven STD60P). Thereafter, a twisted pair sample was wound around a round bar (winding bar) having a diameter of 4 mm, and the presence or absence of cracks in the insulation coating was examined using a 50 × optical microscope. “○: Meaning of pass” when no cracks (for example, cracks, crazing, wrinkles) occurred, “△: Meaning of insufficient” when no crazing occurred but no cracks occurred Some were defined as “x: meaning of failure”. Here, crazing is defined as a surface in which the surface of the insulating coating layer is locally recessed, and a crack is defined as a crack reaching the conductor surface.

実施例1〜8および比較例1〜3の樹脂組成物の組成および測定評価結果を表1に示す。   Table 1 shows the compositions and measurement evaluation results of the resin compositions of Examples 1 to 8 and Comparative Examples 1 to 3.

Figure 0005516303
Figure 0005516303

表1に示したように、実施例1〜8の絶縁電線は、絶縁被覆層の厚さが薄くても(約100μm)、1300 Vp以上の高い部分放電開始電圧を有していることが確認された。さらに、密着性・耐熱性評価に関しても、実施例1〜8の絶縁電線は必要十分な特性を有していることが確認された。特に、本発明に係る実施例1〜6は、実施例7〜8と比べて、部分放電開始電圧がより高い値を示した。   As shown in Table 1, it was confirmed that the insulated wires of Examples 1 to 8 had a high partial discharge starting voltage of 1300 Vp or more even when the thickness of the insulating coating layer was thin (about 100 μm). It was done. Furthermore, regarding the adhesion and heat resistance evaluation, it was confirmed that the insulated wires of Examples 1 to 8 had necessary and sufficient characteristics. In particular, Examples 1 to 6 according to the present invention showed higher values of partial discharge start voltage than Examples 7 to 8.

これに対し、表2に示したように、比較例1〜3は、ポリフェニルサルファイド樹脂(A)のみからなる絶縁被覆であり、密着性が不十分であったことから耐熱性評価も不合格となり、部分放電開始電圧も実施例に比して低い値を示した。すなわち、本発明に係る絶縁電線は、導体と絶縁被覆との密着性を低下させることなく、押出被覆層の厚さが薄くても高い部分放電開始電圧を有していることが実証された。   On the other hand, as shown in Table 2, Comparative Examples 1 to 3 are insulating coatings composed only of the polyphenyl sulfide resin (A), and the heat resistance evaluation was also rejected because the adhesion was insufficient. Thus, the partial discharge start voltage was lower than that of the example. That is, it was demonstrated that the insulated wire according to the present invention has a high partial discharge starting voltage even when the thickness of the extruded coating layer is thin, without reducing the adhesion between the conductor and the insulating coating.

11,12,13…絶縁電線、
2…導体、3…第1押出被覆層、4…第2押出被覆層、5…第3押出被覆層。
11, 12, 13 ... insulated wires,
2 ... conductor, 3 ... first extrusion coating layer, 4 ... second extrusion coating layer, 5 ... third extrusion coating layer.

Claims (4)

絶縁被覆が導体上に形成されている絶縁電線であって、
前記絶縁被覆は、ポリフェニレンサルファイドからなる樹脂(A)とポリエチレン、エチレン−酢酸ビニル共重合体、エチレン−エチルアクリレート共重合体、エチレン−メチルアクリレート共重合体、エチレングリシジルメタクリレート共重合体から構成されるエチレン共重合体(B1)の群と、アイソタクチックポリプロピレン、シンジオタクチックポリプロピレン、ポリメチルペンテンから構成される樹脂(B2)の群と、前記樹脂(B2)を無水マレイン酸またはグリシジルメタクリレートで変性させてなる樹脂(B3)の群のうちの少なくとも1群の1種からなるオレフィン系共重合樹脂からなる樹脂(B)とを重量部比で「(B)/(A) = 20/80 〜70/30」の範囲で混和した樹脂組成物からなり、前記樹脂組成物を前記導体の直上に押出被覆した層(押出被覆層)が形成された後に、前記押出被覆層中の前記樹脂(A)の結晶が融解する温度での熱処理が施されていることを特徴とする絶縁電線。
An insulated wire having an insulation coating formed on a conductor,
The insulating coating is composed of a resin (A) made of polyphenylene sulfide and polyethylene, ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, ethylene-methyl acrylate copolymer, ethylene glycidyl methacrylate copolymer. A group of ethylene copolymers (B1), a group of resins (B2) composed of isotactic polypropylene, syndiotactic polypropylene and polymethylpentene, and the resin (B2) modified with maleic anhydride or glycidyl methacrylate And (B) / (A) = 20/80 to the resin (B) made of an olefin copolymer resin consisting of at least one of the groups of the resin (B3) made A layer formed by extrusion-coating the resin composition directly on the conductor (extruded coating layer). ) Is formed, and then the insulated wire is subjected to a heat treatment at a temperature at which the crystal of the resin (A) in the extrusion coating layer melts.
請求項1に記載の絶縁電線において、
前記熱処理の温度は250℃以上300℃以下であることを特徴とする絶縁電線。
The insulated wire according to claim 1 ,
The insulated wire is characterized in that the temperature of the heat treatment is 250 ° C or higher and 300 ° C or lower.
絶縁被覆が導体上に形成されている絶縁電線の製造方法であって、
前記絶縁被覆はポリフェニレンサルファイドからなる樹脂(A)とポリエチレン、エチレン−酢酸ビニル共重合体、エチレン−エチルアクリレート共重合体、エチレン−メチルアクリレート共重合体、エチレングリシジルメタクリレート共重合体から構成されるエチレン共重合体(B1)の群と、アイソタクチックポリプロピレン、シンジオタクチックポリプロピレン、ポリメチルペンテンから構成される樹脂(B2)の群と、前記樹脂(B2)を無水マレイン酸またはグリシジルメタクリレートで変性させてなる樹脂(B3)の群のうちの少なくとも1群の1種からなるオレフィン系共重合樹脂からなる樹脂(B)とを重量部比で「(B)/(A) = 20/80 〜70/30」の範囲で混和された樹脂組成物からなり、
前記樹脂組成物を前記導体の直上に押出被覆して押出被覆層を形成する工程と、
前記押出被覆層中の前記樹脂(A)の結晶が融解する温度で熱処理を施す工程とを有することを特徴とする絶縁電線の製造方法。
A method of manufacturing an insulated wire in which an insulation coating is formed on a conductor,
The insulating coating is composed of a resin (A) made of polyphenylene sulfide and polyethylene, an ethylene-vinyl acetate copolymer, an ethylene-ethyl acrylate copolymer, an ethylene-methyl acrylate copolymer, an ethylene glycidyl methacrylate copolymer. A group of copolymers (B1), a group of resins (B2) composed of isotactic polypropylene, syndiotactic polypropylene, polymethylpentene, and the resin (B2) are modified with maleic anhydride or glycidyl methacrylate. And (B) / (A) = 20/80 to 70 in terms of parts by weight with respect to the resin (B) made of an olefin copolymer resin consisting of at least one of the group of resins (B3) / 30 '' consisting of a resin composition mixed in the range,
A step of extrusion coating the resin composition directly on the conductor to form an extrusion coating layer;
And a step of performing a heat treatment at a temperature at which the crystal of the resin (A) in the extrusion coating layer melts.
請求項に記載の絶縁電線の製造方法において、
前記熱処理の温度は250℃以上300℃以下であることを特徴とする絶縁電線の製造方法。
In the manufacturing method of the insulated wire of Claim 3 ,
The method of manufacturing an insulated wire, wherein the heat treatment temperature is 250 ° C. or higher and 300 ° C. or lower.
JP2010227344A 2010-10-07 2010-10-07 Insulated wire and manufacturing method thereof Expired - Fee Related JP5516303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010227344A JP5516303B2 (en) 2010-10-07 2010-10-07 Insulated wire and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010227344A JP5516303B2 (en) 2010-10-07 2010-10-07 Insulated wire and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012084256A JP2012084256A (en) 2012-04-26
JP5516303B2 true JP5516303B2 (en) 2014-06-11

Family

ID=46242945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010227344A Expired - Fee Related JP5516303B2 (en) 2010-10-07 2010-10-07 Insulated wire and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5516303B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5765316B2 (en) * 2012-11-01 2015-08-19 日立金属株式会社 Non-halogen flame retardant resin composition and electric wire / cable using the same
CN105304211A (en) * 2015-10-21 2016-02-03 安徽亚南电缆厂 Anti-aging treatment liquid for wire insulation coating layer
CA3119040A1 (en) 2019-08-23 2021-03-04 Zeus Industrial Products, Inc. Polymer-coated wires

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3159700B2 (en) * 1990-08-06 2001-04-23 日本ケーブル・システム株式会社 Control cable
JP3618485B2 (en) * 1996-08-29 2005-02-09 呉羽化学工業株式会社 Covered metal parts
CN1906706B (en) * 2004-04-28 2010-05-26 古河电气工业株式会社 Multilayer insulated wire and transformer made using the same
JP4999077B2 (en) * 2007-04-02 2012-08-15 古河電気工業株式会社 Insulated wire and transformer using the same
JP5306742B2 (en) * 2008-08-28 2013-10-02 古河電気工業株式会社 Insulated wire

Also Published As

Publication number Publication date
JP2012084256A (en) 2012-04-26

Similar Documents

Publication Publication Date Title
US9514863B2 (en) Inverter surge-resistant insulated wire and method of producing the same
US9224523B2 (en) Inverter surge-resistant insulated wire
JP5699971B2 (en) Insulated wire
JP6325550B2 (en) Flat electric wire, method for manufacturing the same, and electrical equipment
JP2013033607A (en) Electric insulated wire and manufacturing method thereof
JP2013109874A (en) Insulated wire
WO2015130681A1 (en) Insulated winding wire
JP2014154511A (en) Insulated wire and method of manufacturing the same
US11615914B2 (en) Magnet wire with thermoplastic insulation
JP5454297B2 (en) Insulated wire
JP5516303B2 (en) Insulated wire and manufacturing method thereof
JP2017027904A (en) Insulation wire
JP2014103045A (en) Insulation wire and its manufacturing method
JP2015138626A (en) Insulation wire and producing method thereof, and coil for electric device and producing method thereof
US20230083970A1 (en) Magnet wire with thermoplastic insulation
JP5561238B2 (en) Insulated wire and manufacturing method thereof
JP5521568B2 (en) Insulated wire
JP2011210519A (en) Insulated wire
JP6519231B2 (en) Winding and method of manufacturing the same
JP5445109B2 (en) Insulated wire
JP2015099742A (en) Inverter surge-resistant insulation wire and method for production thereof
JP2014067656A (en) Insulated wire and method for producing the same
JP2015228285A (en) Coil and method for producing the same
JP2012015038A (en) Insulated electric wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121221

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130624

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20131105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140317

R150 Certificate of patent or registration of utility model

Ref document number: 5516303

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees