JP2015138626A - Insulation wire and producing method thereof, and coil for electric device and producing method thereof - Google Patents

Insulation wire and producing method thereof, and coil for electric device and producing method thereof Download PDF

Info

Publication number
JP2015138626A
JP2015138626A JP2014008991A JP2014008991A JP2015138626A JP 2015138626 A JP2015138626 A JP 2015138626A JP 2014008991 A JP2014008991 A JP 2014008991A JP 2014008991 A JP2014008991 A JP 2014008991A JP 2015138626 A JP2015138626 A JP 2015138626A
Authority
JP
Japan
Prior art keywords
resin
insulated wire
temperature
resin composition
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014008991A
Other languages
Japanese (ja)
Inventor
森下 滋宏
Shigehiro Morishita
滋宏 森下
剛真 牛渡
Takami Ushiwata
剛真 牛渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2014008991A priority Critical patent/JP2015138626A/en
Publication of JP2015138626A publication Critical patent/JP2015138626A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an insulation wire and a producing method thereof, and a coil for an electric device and a producing method thereof in which a problem for the insulation wire comprising a pushing cover resin layer made of polyether ether ketone resin is solved in a point of cover separation resulting from reduction in adhesivity between conductor or an inner insulation layer and the pushing cover resin layer.SOLUTION: A producing method of a coil for an electric device comprises a step of forming pushing cover layer by pushing resin composition containing 40 mass% or more of polyether ether ketone resin onto periphery of pre-heated conductor under inactive gas atmosphere, but not comprising a step of performing an annealing process at a temperature over crystallization temperature of the resin composition so that crystallization ratio of the pushing cover layer is to be more than 20%. The pre-heating comprises: an assembling step in which an insulation wire produced by a producing method of insulation wire in which the resin composition is heated at a melting temperature is assembled into a coil form of an electric device; and a step of performing annealing process at a temperature over the crystallization temperature of the resin composition.

Description

本発明は、絶縁電線とその製造方法、及び電気機器のコイルとその製造方法に関するものである。   The present invention relates to an insulated wire and a manufacturing method thereof, and a coil of an electric device and a manufacturing method thereof.

回転電機や変圧器などの電気機器のコイルに用いられている絶縁電線(エナメル被覆絶縁電線)は、一般的に、コイルの用途・形状に合致した断面形状に成形された導体の外周に単層又は複数層の絶縁被覆が形成された構造をしている。導体の断面形状は、例えば丸形状のほか、コイルの占有体積を縮小する目的で矩形状のものを用いる場合も多くなってきている。   Insulated wires (enamel-insulated insulated wires) used in coils of electrical equipment such as rotating electrical machines and transformers are generally single-layered on the outer periphery of a conductor that is formed into a cross-sectional shape that matches the application and shape of the coil. Alternatively, it has a structure in which a plurality of insulating coatings are formed. For example, the cross-sectional shape of the conductor is not limited to a round shape, and a rectangular shape is often used for the purpose of reducing the volume occupied by the coil.

導体に絶縁被覆層を形成する方法には、樹脂を有機溶剤に溶解させた絶縁塗料を導体上に塗布・焼付けする方法、予め調合した樹脂組成物を導体上に押出被覆する方法、及びこれらの方法を併用する方法がある。   The method of forming an insulating coating layer on a conductor includes a method of applying and baking an insulating paint in which a resin is dissolved in an organic solvent, a method of extruding and coating a pre-prepared resin composition on the conductor, and these There is a method of using methods together.

近年、電気機器への小型化の要求により、コイル巻線工程において絶縁電線を高い張力下で小径のコアに高密度で巻くようになってきているため、絶縁被覆には過酷な加工ストレスに耐えられる機械的特性(例えば、密着性や耐摩耗性など)が求められている。   In recent years, due to the demand for miniaturization of electrical equipment, insulated wires have been wound at high density around small diameter cores under high tension in the coil winding process, so the insulation coating can withstand severe processing stress. Required mechanical properties (for example, adhesion and wear resistance) are required.

また、電気機器への高効率化・高出力化の要求から、インバータ制御や高電圧化が進展している。その結果、コイルの運転温度が以前よりも上昇傾向にあるため、絶縁被覆には高い耐熱性も求められている。   In addition, inverter control and higher voltage are progressing due to demands for higher efficiency and higher output of electrical equipment. As a result, since the operating temperature of the coil tends to be higher than before, the insulating coating is also required to have high heat resistance.

さらに、インバータサージ電圧などのより高い電圧が電気機器中のコイルに掛かることから、部分放電の発生によって絶縁被覆が劣化・損傷することがあるという問題が生じていた。   Furthermore, since a higher voltage such as an inverter surge voltage is applied to the coil in the electrical equipment, there has been a problem that the insulation coating may be deteriorated or damaged due to the occurrence of partial discharge.

部分放電による絶縁被覆の劣化・損傷を防ぐために、部分放電開始電圧の高い絶縁被覆の開発が進められている。絶縁被覆の部分放電開始電圧を高くする手法として、絶縁被覆に比誘電率の低い樹脂を用いる方法や、絶縁被覆の厚さを厚くする方法が挙げられる。   In order to prevent deterioration and damage of the insulation coating due to partial discharge, development of insulation coating with a high partial discharge starting voltage is underway. As a method of increasing the partial discharge start voltage of the insulating coating, there are a method using a resin having a low relative dielectric constant for the insulating coating and a method of increasing the thickness of the insulating coating.

例えば、特許文献1には、特定の構造を有するふっ素系ポリイミド樹脂を含む巻線の絶縁被覆材料が開示されている。特許文献1に記載の絶縁被覆材料は、比誘電率が2.3〜2.8であり、従来の絶縁塗料の比誘電率(3〜4程度)と比較して有意に低く、その結果、絶縁被覆の発熱量が抑えられて熱による劣化が抑えられるとされている。   For example, Patent Document 1 discloses an insulating coating material for a winding including a fluorine-based polyimide resin having a specific structure. The insulating coating material described in Patent Document 1 has a relative dielectric constant of 2.3 to 2.8, which is significantly lower than that of a conventional insulating paint (about 3 to 4). It is said that the heat generation of the insulating coating is suppressed and deterioration due to heat is suppressed.

また、特許文献2には、導体の外周に、少なくとも1層のエナメル焼き付け層と、その外側に少なくとも1層の押出被覆樹脂層を有し、該エナメル焼き付け層と該押出被覆樹脂層の厚さの合計が60μm以上であり、前記エナメル焼き付け層の厚さが50μm以下であり、前記押出被覆樹脂層が、25℃における引張弾性率が1000MPa以上であり、かつ250℃における引張弾性率が10MPa以上である樹脂材料(例えばポリフェニレンスルフィド)からなることを特徴とする耐インバータサージ絶縁ワイヤが開示されている。特許文献2に記載の絶縁ワイヤは、導体と絶縁被覆層の接着強度を下げることなく、高い部分放電開始電圧(900V程度)を有する絶縁ワイヤを提供することができるとされている。   Further, Patent Document 2 has at least one enamel baked layer on the outer periphery of the conductor and at least one extruded coated resin layer on the outer side thereof, and the thickness of the enamel baked layer and the extruded coated resin layer. The thickness of the enamel baked layer is 50 μm or less, the extruded coated resin layer has a tensile elastic modulus at 25 ° C. of 1000 MPa or higher, and a tensile elastic modulus at 250 ° C. of 10 MPa or higher. An inverter surge-resistant insulated wire characterized by comprising a resin material (for example, polyphenylene sulfide) is disclosed. The insulated wire described in Patent Document 2 is said to be able to provide an insulated wire having a high partial discharge starting voltage (about 900 V) without lowering the adhesive strength between the conductor and the insulating coating layer.

また、特許文献3には、導体と前記導体を被覆する押出絶縁層を有してなる2層以上の多層絶縁電線であって、前記絶縁層の最内層以外の少なくとも1層が、ポリフェニレンスルフィド樹脂を連続層とし、オレフィン系共重合体成分を分散相とする樹脂混和物で形成され、前記樹脂混和物からなる絶縁層が、ポリフェニレンスルフィド樹脂100質量部と、オレフィン系共重合体成分3〜40質量部とを含有することを特徴とする多層絶縁電線が開示されている。特許文献3に記載の絶縁電線は、耐熱性と耐薬品性に優れているとされている。   Patent Document 3 discloses a multilayer insulated wire having two or more layers having a conductor and an extruded insulating layer covering the conductor, wherein at least one layer other than the innermost layer of the insulating layer is a polyphenylene sulfide resin. Is formed of a resin blend having a olefinic copolymer component as a dispersed phase, and an insulating layer made of the resin blend comprises 100 parts by mass of a polyphenylene sulfide resin and 3 to 40 olefinic copolymer components. A multilayer insulated wire comprising a mass part is disclosed. The insulated wire described in Patent Document 3 is said to be excellent in heat resistance and chemical resistance.

特開2002−56720号公報JP 2002-56720 A 特許第4177295号公報Japanese Patent No. 4177295 WO2005/106898(再公表公報)WO2005 / 106898 (Republication Gazette)

しかしながら、特許文献1に記載されているようなふっ素系ポリイミド樹脂からなる絶縁塗料を用いて絶縁被覆を形成した場合、絶縁被覆の比誘電率を低くすることはできるが、ふっ素系ポリイミド樹脂から形成した絶縁被覆は導体への密着性が低いため、例えば、コイル巻線工程などにおける過酷な加工ストレスによって、絶縁被覆が導体から剥離する現象(被覆浮き)が発生してしまうことが懸念される。被覆浮きは、最悪の場合に絶縁破壊を起こす要因となる。   However, when an insulating coating is formed using an insulating coating made of a fluorine-based polyimide resin as described in Patent Document 1, the dielectric constant of the insulating coating can be lowered, but the insulating coating is formed from a fluorine-based polyimide resin. Since the insulating coating has low adhesion to the conductor, for example, there is a concern that a phenomenon (coating floating) of the insulating coating may be peeled off from the conductor due to severe processing stress in a coil winding process or the like. Cover floating is a cause of dielectric breakdown in the worst case.

また、特許文献2、3に記載されているような押出被覆樹脂層を有する絶縁電線は、押出被覆樹脂層の厚さを厚くすることによって部分放電開始電圧を高くすることができると考えられるが、絶縁層を形成しているポリフェニレンスルフィド樹脂は、樹脂を有機溶剤に溶解させた絶縁塗料を導体上に塗布・焼付けする方法で用いるポリアミドイミド、ポリアミド、ポリイミド等と比較して耐熱性が劣るという問題点がある。   Moreover, although the insulated wire which has an extrusion coating resin layer as described in patent document 2, 3, it is thought that partial discharge start voltage can be made high by thickening the thickness of an extrusion coating resin layer. The polyphenylene sulfide resin forming the insulating layer is inferior in heat resistance compared to polyamide imide, polyamide, polyimide, etc. used in a method of applying and baking an insulating paint obtained by dissolving the resin in an organic solvent on the conductor. There is a problem.

押出被覆樹脂層を有する絶縁電線において耐熱性を向上する方法として、押出被覆樹脂層にポリエーテルエーテルケトン樹脂を用いることが考えられるが、ポリエーテルエーテルケトン樹脂を押出被覆樹脂層に用いた絶縁電線は、ポリフェニレンスルフィド樹脂を押出被覆樹脂層に用いた絶縁電線のようには導体との密着性が出ないとの問題がある。   As a method for improving heat resistance in an insulated wire having an extrusion-coated resin layer, it is conceivable to use a polyetheretherketone resin for the extrusion-coated resin layer, but an insulated wire using a polyetheretherketone resin for the extrusion-coated resin layer Has a problem that adhesion with a conductor does not occur like an insulated wire using polyphenylene sulfide resin as an extrusion-coated resin layer.

すなわち、押出被覆樹脂層にポリエーテルエーテルケトン樹脂又はポリエーテルエーテルケトンを主成分とする樹脂を用いた絶縁電線では、ポリエーテルエーテルケトン樹脂の結晶化を促進させるためのアニール工程において導体と押出被覆樹脂層との間の密着性が低下するという問題点がある。同様に、当該押出被覆樹脂層の内側に絶縁層を有する多層構造においては、内側の絶縁層と押出被覆樹脂層との間の密着性が低下するという問題点がある。   That is, for insulated wires using polyetheretherketone resin or a resin composed mainly of polyetheretherketone as the extrusion coating resin layer, the conductor and extrusion coating are applied in the annealing process to promote crystallization of the polyetheretherketone resin. There exists a problem that the adhesiveness between resin layers falls. Similarly, in a multilayer structure having an insulating layer inside the extrusion-coated resin layer, there is a problem that the adhesion between the inner insulating layer and the extrusion-coated resin layer is lowered.

従って、本発明は、ポリエーテルエーテルケトン樹脂を用いた押出被覆樹脂層を有する絶縁電線における導体又は内側の絶縁層と押出被覆樹脂層との密着性が低下することに基づく被覆浮きの問題点を解決できる絶縁電線とその製造方法、及び電気機器のコイルとその製造方法を提供することを目的とする。   Therefore, the present invention has the problem of coating floating based on the decrease in the adhesion between the conductor or the inner insulating layer and the extrusion coating resin layer in the insulated wire having the extrusion coating resin layer using the polyether ether ketone resin. It is an object of the present invention to provide an insulated wire that can be solved and a manufacturing method thereof, and a coil of an electric device and a manufacturing method thereof.

上記目的を達成するため、本発明によれば、以下の絶縁電線とその製造方法、及び電気機器のコイルとその製造方法が提供される。   In order to achieve the above object, according to the present invention, there are provided the following insulated electric wire and a method for manufacturing the same, and a coil for an electric device and a method for manufacturing the same.

[1]不活性ガス雰囲気にて予備加熱された導体の外周に、ポリエーテルエーテルケトン樹脂を40質量%以上含有する樹脂組成物を押出被覆して押出被覆層を形成する工程を含み、前記樹脂組成物の結晶化温度以上の温度でアニール処理を行なって前記押出被覆層の結晶化率を20%より大にする工程を含まず、前記予備加熱では、前記樹脂組成物が融解する温度以上に加熱されることを特徴とする絶縁電線の製造方法。
[2]前記押出被覆層を形成した後に前記押出被覆層の温度が前記樹脂組成物の結晶化温度未満になるように冷却する工程を含むことを特徴とする前記[1]に記載の絶縁電線の製造方法。
[3]前記樹脂組成物は、ポリフェニレンサルファイド、ポリフェニルサルフォン、オレフィン系共重合樹脂、α−オレフィンコポリマー、エチレン−グリシジルメタクリレート共重合体、シンジオタクチックポリスチレン、ポリイミド、ポリアミド、ポリアミドイミド、熱可塑性ポリイミド、ポリエーテルイミド、ポリメチルペンテン、ポリブチレンテレフタレート、ポリブチレンナフタレートから選ばれる1以上の樹脂を60質量%以下含むことを特徴とする前記[1]又は前記[2]に記載の絶縁電線の製造方法。
[4]前記押出被覆層は、層厚0.1〜0.3mmとなるように形成されることを特徴とする前記[1]〜[3]のいずれか1つに記載の絶縁電線の製造方法。
[5]前記[1]〜[4]のいずれか1つに記載の製造方法で製造された絶縁電線を電気機器のコイル形状に組み立てる組立工程と、前記組立工程後、前記樹脂組成物の結晶化温度以上の温度でアニール処理を行なう工程とを含むことを特徴とする電気機器のコイルの製造方法。
[6]前記[1]〜[4]のいずれか1つに記載の製造方法で製造されたことを特徴とする絶縁電線。
[7]前記[5]に記載の製造方法で製造されたことを特徴とする電気機器のコイル。
[1] including a step of extrusion-coating a resin composition containing 40% by mass or more of a polyetheretherketone resin on the outer periphery of a conductor preheated in an inert gas atmosphere to form an extrusion coating layer, It does not include a step of annealing at a temperature equal to or higher than the crystallization temperature of the composition to increase the crystallization rate of the extruded coating layer to more than 20%, and in the preliminary heating, the temperature exceeds the temperature at which the resin composition melts. A method for producing an insulated wire, characterized by being heated.
[2] The insulated wire according to [1], further including a step of cooling the extrusion coating layer so that a temperature of the extrusion coating layer is lower than a crystallization temperature of the resin composition after the extrusion coating layer is formed. Manufacturing method.
[3] The resin composition includes polyphenylene sulfide, polyphenylsulfone, olefin copolymer resin, α-olefin copolymer, ethylene-glycidyl methacrylate copolymer, syndiotactic polystyrene, polyimide, polyamide, polyamideimide, thermoplasticity. Insulated wire according to [1] or [2] above, containing 60% by mass or less of one or more resins selected from polyimide, polyetherimide, polymethylpentene, polybutylene terephthalate, and polybutylene naphthalate Manufacturing method.
[4] The insulated wire production according to any one of [1] to [3], wherein the extrusion coating layer is formed to have a layer thickness of 0.1 to 0.3 mm. Method.
[5] An assembly process of assembling an insulated wire manufactured by the manufacturing method according to any one of [1] to [4] into a coil shape of an electric device, and after the assembly process, crystals of the resin composition And a step of performing an annealing process at a temperature equal to or higher than the activation temperature.
[6] An insulated wire manufactured by the manufacturing method according to any one of [1] to [4].
[7] A coil of an electric device manufactured by the manufacturing method according to [5].

本発明によれば、ポリエーテルエーテルケトン樹脂を用いた押出被覆樹脂層を有する絶縁電線における導体又は内側の絶縁層と押出被覆樹脂層との密着性が低下することに基づく被覆浮きの問題点を解決できる絶縁電線とその製造方法、及び電気機器のコイルとその製造方法が提供される。   According to the present invention, there is a problem of coating floating based on a decrease in adhesion between a conductor or an inner insulating layer and an extrusion coating resin layer in an insulated wire having an extrusion coating resin layer using a polyether ether ketone resin. An insulated wire that can be solved and a manufacturing method thereof, and a coil of an electric device and a manufacturing method thereof are provided.

本発明の絶縁電線の一実施形態を示す斜視図である。It is a perspective view which shows one Embodiment of the insulated wire of this invention.

〔絶縁電線及びその製造方法〕
図1は、本発明の絶縁電線の一実施形態を示す斜視図である。本発明の実施の形態に係る絶縁電線10は、導体1と、導体1の外周に直接、ポリエーテルエーテルケトン樹脂を40質量%以上含有する樹脂組成物を押出被覆して形成された押出被覆層2を備える。
[Insulated wire and its manufacturing method]
FIG. 1 is a perspective view showing an embodiment of the insulated wire of the present invention. An insulated wire 10 according to an embodiment of the present invention is an extruded coating layer formed by extrusion coating a conductor 1 and a resin composition containing 40% by mass or more of a polyether ether ketone resin directly on the outer periphery of the conductor 1. 2 is provided.

(導体1)
導体1の材料に特段の限定はなく、エナメル被覆絶縁電線で常用される材料、例えば、無酸素銅や低酸素銅などを用いることができる。導体1の形状は、断面が図1に示すような矩形状のものに限らず、円形状、楕円形状等であってもよい。
(Conductor 1)
There is no particular limitation on the material of the conductor 1, and materials that are commonly used in enamel-coated insulated wires, such as oxygen-free copper or low-oxygen copper, can be used. The shape of the conductor 1 is not limited to the rectangular shape as shown in FIG. 1, but may be a circular shape, an elliptical shape, or the like.

(押出被覆層2)
押出被覆層2は、ポリエーテルエーテルケトン樹脂を40質量%以上含有する樹脂組成物からなる。すなわち、押出被覆層2は、ポリエーテルエーテルケトン樹脂40〜100質量部と、ポリエーテルエーテルケトン以外の樹脂60〜0質量部とを混合した樹脂組成物を押出被覆した層である。樹脂組成物中のポリエーテルエーテルケトン樹脂の含有量は、60質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることがさらに好ましく、95質量%以上であることが最も好ましい。
(Extruded coating layer 2)
The extrusion coating layer 2 is made of a resin composition containing 40% by mass or more of polyetheretherketone resin. That is, the extrusion coating layer 2 is a layer obtained by extrusion coating a resin composition in which 40 to 100 parts by mass of a polyether ether ketone resin and 60 to 0 parts by mass of a resin other than the polyether ether ketone are mixed. The content of the polyether ether ketone resin in the resin composition is preferably 60% by mass or more, more preferably 80% by mass or more, further preferably 90% by mass or more, and 95% by mass. The above is most preferable.

押出被覆層2に用いられる樹脂組成物に含有されるポリエーテルエーテルケトン以外の樹脂としては、例えば、ポリフェニレンサルファイド、ポリフェニルサルフォン、オレフィン系共重合樹脂、α−オレフィンコポリマー、エチレン−グリシジルメタクリレート共重合体、シンジオタクチックポリスチレン、ポリイミド、ポリアミド、ポリアミドイミド、熱可塑性ポリイミド、ポリエーテルイミド、ポリメチルペンテン、ポリブチレンテレフタレート、ポリブチレンナフタレートから選ばれる1種以上を使用することができるが、これらに限定されるものではない。   Examples of the resin other than the polyetheretherketone contained in the resin composition used for the extrusion coating layer 2 include polyphenylene sulfide, polyphenylsulfone, olefin copolymer resin, α-olefin copolymer, and ethylene-glycidyl methacrylate copolymer. One or more selected from polymers, syndiotactic polystyrene, polyimide, polyamide, polyamideimide, thermoplastic polyimide, polyetherimide, polymethylpentene, polybutylene terephthalate, and polybutylene naphthalate can be used. It is not limited to.

樹脂組成物には、必要に応じて、酸化防止剤などを添加してもよい。   You may add antioxidant etc. to a resin composition as needed.

押出被覆層2は、層厚0.1〜0.3mmとなるように形成されることが好ましい。より好ましくは、層厚0.12〜0.20mmであり、さらに好ましくは、層厚0.12〜0.15mmである。   The extrusion coating layer 2 is preferably formed to have a layer thickness of 0.1 to 0.3 mm. More preferably, the layer thickness is 0.12 to 0.20 mm, and still more preferably, the layer thickness is 0.12 to 0.15 mm.

本実施の形態においては、必要に応じて、押出被覆層2の内側にさらにポリエーテルエーテルケトン樹脂以外の樹脂からなる絶縁層を被覆して多層構造とすることもできる。この場合、押出被覆層2と絶縁層の合計厚が0.1〜0.3mmとなるように形成されることが好ましい。   In the present embodiment, if necessary, an insulating layer made of a resin other than the polyether ether ketone resin may be further coated on the inner side of the extrusion coating layer 2 to form a multilayer structure. In this case, it is preferable that the total thickness of the extrusion coating layer 2 and the insulating layer is 0.1 to 0.3 mm.

(製造方法)
絶縁電線10は、不活性ガス雰囲気にて予備加熱された導体1の外周に直接、ポリエーテルエーテルケトン樹脂を40質量%以上含有する樹脂組成物を押出被覆して押出被覆層2を形成する工程を含み、予備加熱では、上記樹脂組成物が融解する温度以上に加熱される製造方法により製造できる。好ましくは、押出被覆層2を形成した後に押出被覆層2の温度が上記樹脂組成物の結晶化温度未満になるように冷却する工程を含む。より具体的には、例えば、以下の方法により製造できる。なお、絶縁電線10の製造工程において、前記樹脂組成物の結晶化温度以上の温度でアニール処理を行なうことにより前記押出被覆層の結晶化率を20%より大にする工程を行なってはならない。好ましくは、結晶化率を15%より大にする工程を行なってはならず、より好ましくは、結晶化率を10%より大にする工程を行なってはならない。
(Production method)
Insulated wire 10 is a step of forming extrusion coating layer 2 by extrusion coating a resin composition containing 40% by mass or more of polyetheretherketone resin directly on the outer periphery of conductor 1 preheated in an inert gas atmosphere. In the preliminary heating, the resin composition can be manufactured by a manufacturing method in which the resin composition is heated to a temperature equal to or higher than the melting temperature. Preferably, the method includes a step of cooling the extrusion coating layer 2 so that the temperature of the extrusion coating layer 2 is lower than the crystallization temperature of the resin composition after the extrusion coating layer 2 is formed. More specifically, for example, it can be produced by the following method. In addition, in the manufacturing process of the insulated wire 10, the process which makes the crystallization rate of the said extrusion coating layer larger than 20% by performing annealing treatment at the temperature more than the crystallization temperature of the said resin composition must not be performed. Preferably, the step of increasing the crystallization rate to more than 15% should not be performed, and more preferably, the step of increasing the crystallization rate to more than 10% should not be performed.

まず、送出機より送出された矩形状の導体1を押出機へ到達する前に予備加熱装置を用いて導体1を不活性ガス中で上記樹脂組成物が融解する温度以上に予備加熱する。ポリエーテルエーテルケトンを40質量%以上含有する樹脂を押出機内で溶融状態にして押出し、走行中の予備加熱された導体1に樹脂を被覆する。被覆後、冷却水槽で冷却し、巻取機で巻取ることにより、絶縁電線10が製造される。冷却は、押出しのために加熱された樹脂を結晶化が進行しないように結晶化温度未満となるように行なうものである。   First, before the rectangular conductor 1 delivered from the delivery machine reaches the extruder, the conductor 1 is preheated to a temperature higher than the temperature at which the resin composition melts in an inert gas using a preheating device. A resin containing 40% by mass or more of polyetheretherketone is melted and extruded in an extruder, and the preheated conductor 1 that is running is coated with the resin. After the coating, the insulated wire 10 is manufactured by cooling with a cooling water tank and winding with a winder. The cooling is performed so that the resin heated for extrusion is lower than the crystallization temperature so that crystallization does not proceed.

予備加熱する加熱装置内では高温状態で導体表面が露出されているため、加熱装置内を不活性ガスで置換することにより、導体1の表面の酸化を抑制する。導体表面の酸化を抑制することで、導体1と押出被覆層2との密着性が低下することを防ぐことができる。   Since the conductor surface is exposed at a high temperature in the preheating apparatus, the surface of the conductor 1 is prevented from being oxidized by replacing the inside of the heating apparatus with an inert gas. By suppressing the oxidation of the conductor surface, it is possible to prevent the adhesion between the conductor 1 and the extrusion coating layer 2 from being lowered.

不活性ガスとしては、低コストの汎用気体である窒素ガスや熱伝導性の優れたヘリウムガスが有効であるが、これらに限定されるものではない。   As the inert gas, nitrogen gas, which is a low-cost general-purpose gas, or helium gas having excellent thermal conductivity is effective, but is not limited thereto.

予備加熱装置による導体1の加熱温度及び押出機による押出温度は、ポリエーテルエーテルケトン樹脂を40質量%以上含有する樹脂組成物が融解する温度以上である必要があり、導体1の到達温度が345℃以上であることが望ましく、350℃以上400℃以下であることがより望ましい。これによって、導体1と押出被覆層2との密着性が良好となる。   The heating temperature of the conductor 1 by the preheating device and the extrusion temperature by the extruder need to be equal to or higher than the temperature at which the resin composition containing 40% by mass or more of the polyether ether ketone resin is melted, and the ultimate temperature of the conductor 1 is 345. It is desirable that the temperature be higher than 350 ° C., and more desirably 350 ° C. or higher and 400 ° C. or lower. Thereby, the adhesiveness between the conductor 1 and the extrusion coating layer 2 becomes good.

また、押出被覆層2を形成した後に冷却することにより、押出被覆層2の結晶化の進行を抑制することができ、導体1と押出被覆層2との良好な密着性を維持できる。   Moreover, by cooling after forming the extrusion coating layer 2, the progress of crystallization of the extrusion coating layer 2 can be suppressed, and good adhesion between the conductor 1 and the extrusion coating layer 2 can be maintained.

〔電気機器のコイル及びその製造方法〕
本発明の実施の形態に係る電気機器のコイルは、上記本発明の実施の形態に係る絶縁電線を用いて製造されるものである。その製造方法は、上記本発明の実施の形態に係る製造方法で製造された絶縁電線を電気機器のコイル形状に組み立てる組立工程と、前記組立工程後、前記樹脂組成物の結晶化温度以上の温度でアニール処理を行なう工程とを含む。
[Electrical Equipment Coil and Manufacturing Method Thereof]
The coil of the electric equipment which concerns on embodiment of this invention is manufactured using the insulated wire which concerns on the said embodiment of this invention. The manufacturing method includes an assembly step of assembling the insulated wire manufactured by the manufacturing method according to the embodiment of the present invention into a coil shape of an electric device, and a temperature equal to or higher than the crystallization temperature of the resin composition after the assembly step. And an annealing process.

より具体的には、回転電機や変圧器などの電気機器の所望のコイル形状に組み立てた後、押出被覆層を構成する樹脂組成物の結晶化温度以上融点以下の温度でアニール処理を行なう。   More specifically, after assembling into a desired coil shape of an electric device such as a rotating electrical machine or a transformer, annealing is performed at a temperature not lower than the crystallization temperature of the resin composition constituting the extrusion coating layer and not higher than the melting point.

アニール温度は、例えば、ポリエーテルエーテルケトン樹脂のみを用いた場合、150〜320℃が好ましく、180〜300℃がより好ましく、190〜250℃がさらに好ましい。また、ポリエーテルエーテルケトン樹脂に他の樹脂を混合する場合、例えば、ポリフェニルサルフォンを混合した場合には、アニール温度は、110〜240℃が好ましく、130〜220℃がより好ましく、150〜200℃がさらに好ましい。   For example, when only the polyether ether ketone resin is used, the annealing temperature is preferably 150 to 320 ° C, more preferably 180 to 300 ° C, and further preferably 190 to 250 ° C. Moreover, when mixing other resin with polyetheretherketone resin, for example, when polyphenyl sulfone is mixed, the annealing temperature is preferably 110 to 240 ° C, more preferably 130 to 220 ° C, and 150 to 200 ° C. is more preferable.

アニール処理前の絶縁電線は、導体と押出被覆層との密着性に優れるため、この状態で組み立て加工を行ない、組み立て後(製品形状完成後)に、耐溶剤性を高めるために、当該アニール処理を行なうことにより、絶縁電線の押出被覆層の結晶化率を高める。結晶化率を高めることにより、押出被覆層の化学的・機械的・熱的な性能を向上させることができる。アニール処理により導体と絶縁被覆層との密着性が低下するが、その後の工程では絶縁電線の変形加工が無く、またコイルを封止樹脂等で固めてしまうために、絶縁特性上、特に問題とはならない。   Since the insulated wire before annealing has excellent adhesion between the conductor and the extrusion coating layer, assembly processing is performed in this state, and after annealing (after completion of the product shape), the annealing treatment is performed to increase the solvent resistance. By performing this, the crystallization rate of the extrusion coating layer of the insulated wire is increased. By increasing the crystallization rate, the chemical, mechanical and thermal performance of the extrusion coating layer can be improved. Although the adhesion between the conductor and the insulating coating layer is lowered by the annealing treatment, there is no deformation process of the insulated wire in the subsequent process, and the coil is hardened with a sealing resin or the like. Must not.

アニール時間は数秒の短時間でも上記温度を達成すればよいが、コイル形状に形成されている場合は、コイル内部まで含め全体が上記温度に到達する必要があるため、1時間程度のアニール時間が必要となる。   The annealing temperature may be achieved even in a short time of several seconds. However, when the coil is formed in a coil shape, the entire temperature including the inside of the coil needs to reach the above temperature, so the annealing time of about 1 hour is required. Necessary.

上記アニール処理により、絶縁電線の押出被覆層の結晶化率を0〜20%程度(処理前)から、70〜100%程度に高めることが好ましい。より好ましくは、90〜100%程度に高める。   It is preferable to raise the crystallization rate of the extrusion coating layer of the insulated wire from about 0 to 20% (before treatment) to about 70 to 100% by the annealing treatment. More preferably, it is increased to about 90 to 100%.

〔本発明の実施の形態の効果〕
本実施の形態によれば、導体と押出被覆樹脂層との密着性が良好な状態で絶縁電線の変形加工を伴う電気機器のコイルの組み立てを行うことができるため、ポリエーテルエーテルケトン樹脂を用いた押出被覆樹脂層を有する絶縁電線における導体と押出被覆樹脂層との密着性が低下することに基づく被覆浮きの問題点を解決できる絶縁電線とその製造方法、及び電気機器のコイルとその製造方法を提供できる。同様に、当該押出被覆樹脂層の内側に他の絶縁層を有する多層構造を備える場合においては、内側の絶縁層と押出被覆樹脂層との密着性が良好な状態で絶縁電線の変形加工を伴う電気機器のコイルの組み立てを行うことができるため、ポリエーテルエーテルケトン樹脂を用いた押出被覆樹脂層を有する絶縁電線における内側の絶縁層と当該押出被覆樹脂層との間の密着性が低下することに基づく被覆浮きの問題点を解決できる絶縁電線とその製造方法、及び電気機器のコイルとその製造方法を提供できる。
[Effect of the embodiment of the present invention]
According to the present embodiment, it is possible to assemble a coil of an electric device accompanied by deformation processing of an insulated wire with good adhesion between the conductor and the extrusion-coated resin layer. Insulated wire that can solve the problem of floating coating based on the decrease in adhesion between the conductor and the extrusion coated resin layer in an insulated wire having an extruded coated resin layer, and a coil for an electrical device, and a method for producing the same Can provide. Similarly, in the case of providing a multilayer structure having another insulating layer inside the extrusion-coated resin layer, deformation of the insulated wire is accompanied with good adhesion between the inner insulating layer and the extrusion-coated resin layer. Since it is possible to assemble coils of electrical equipment, the adhesion between the inner insulating layer and the extruded coated resin layer in an insulated wire having an extruded coated resin layer using a polyether ether ketone resin is reduced. It is possible to provide an insulated wire and a method for manufacturing the same, and a coil for an electric device and a method for manufacturing the same.

また、コイル組み立て終了後、絶縁電線を電気機器のコイルごと加熱することでポリエーテルエーテルケトン樹脂の結晶化率を高めることにより、優れた耐薬品性を有する電気機器のコイルを提供することができる。   Moreover, the coil of the electrical equipment which has the outstanding chemical resistance can be provided by raising the crystallization rate of polyetheretherketone resin by heating an insulated wire with the coil of an electrical equipment after completion | finish of coil assembly. .

また、本実施の形態に係る絶縁電線の押出被覆層は、ポリエーテルエーテルケトン樹脂を40質量%以上含有する樹脂組成物を押出被覆した層であるため、高い耐熱性と高い機械的特性(優れた長期信頼性)を達成することができる。さらに、押出被覆により形成されているために絶縁厚を厚くすることが可能となり、従来よりも高い部分放電開始電圧を達成することができる。これより、高い電気特性、機械的特性、耐薬品性、耐熱性を発現した絶縁電線及び電気機器のコイルを提供することができる。   Moreover, since the extrusion coating layer of the insulated wire which concerns on this Embodiment is a layer which carried out extrusion coating of the resin composition containing 40 mass% or more of polyetheretherketone resin, it has high heat resistance and high mechanical characteristics (excellent Long-term reliability). Furthermore, since it is formed by extrusion coating, the insulation thickness can be increased, and a partial discharge starting voltage higher than the conventional one can be achieved. As a result, it is possible to provide an insulated wire and a coil of an electric device that exhibit high electrical characteristics, mechanical characteristics, chemical resistance, and heat resistance.

以下に、本発明を実施例に基づいて更に詳しく説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.

(実施例1〜8及び比較例1の絶縁電線の作製)
図1に示す矩形状の絶縁電線を以下のようにして作製した。
(1)導体として長辺約3mm、短辺約2mm、コーナーの曲率半径が0.3mmの矩形状の銅線を用い、樹脂組成物を押出被覆する前に銅線を予め窒素雰囲気中で銅線温度が300〜400℃に到達するように予備加熱した。それぞれの予備加熱温度は、表1の通りである。
(2)予備加熱した銅線の外周に、押出機を用いて、ポリエーテルエーテルケトンを主成分とする樹脂組成物を押出被覆して押出被覆層を形成した。押出被覆時の樹脂組成物の押出温度は約350℃で、絶縁被覆の厚さは0.15〜0.30mmとなるようにした。各実施例及び比較例で用いた樹脂組成物の組成、及び押出被覆層の厚さは、表1の通りである。
(3)押出機により銅線に押出被覆層を形成した直後、押出電線を冷却水槽により冷却し、絶縁電線を作製した。
(Production of insulated wires of Examples 1 to 8 and Comparative Example 1)
A rectangular insulated wire shown in FIG. 1 was produced as follows.
(1) A rectangular copper wire having a long side of about 3 mm, a short side of about 2 mm, and a corner radius of curvature of 0.3 mm is used as a conductor, and the copper wire is previously copper in a nitrogen atmosphere before extrusion coating the resin composition. Preheating was performed so that the line temperature reached 300 to 400 ° C. The respective preheating temperatures are as shown in Table 1.
(2) On the outer periphery of the preheated copper wire, a resin composition containing polyetheretherketone as a main component was extrusion coated using an extruder to form an extrusion coating layer. The extrusion temperature of the resin composition during extrusion coating was about 350 ° C., and the thickness of the insulation coating was 0.15 to 0.30 mm. Table 1 shows the composition of the resin composition used in each example and comparative example, and the thickness of the extrusion coating layer.
(3) Immediately after forming the extrusion coating layer on the copper wire with an extruder, the extruded electric wire was cooled in a cooling water tank to produce an insulated electric wire.

ポリエーテルエーテルケトン樹脂は、融点343℃、メルトフローレート36のものを用いた。また、ポリフェニルサルフォン樹脂は、融点280℃、メルトフローレート29のものを用いた。   A polyether ether ketone resin having a melting point of 343 ° C. and a melt flow rate of 36 was used. Polyphenylsulfone resin having a melting point of 280 ° C. and a melt flow rate of 29 was used.

350℃に到達するように予備加熱した銅線に前述の樹脂組成物を押出被覆した絶縁電線は、導体と押出被覆層との密着は良好であるが、この時点ではポリエーテルエーテルケトンの結晶化反応が進んでいないために耐溶剤性は劣る。   The insulated wire obtained by extrusion-coating the above resin composition on a copper wire preheated to reach 350 ° C has good adhesion between the conductor and the extrusion coating layer. Since the reaction has not progressed, the solvent resistance is poor.

(電気機器のコイルの組み立てに相当する絶縁電線の曲げ加工)
作製した絶縁電線に対し、30%伸長後、φ2mmで90度のエッジワイズ曲げを施した。なお、この曲げ加工は、電気機器のコイルの組み立て時に必要となる加工を模擬したものである。この段階では、アニール処理により結晶化を促進させていないため、実施例1〜6における導体と絶縁被覆層との密着性は良好であり、曲げ加工を行なっても問題とはならない。
(Bending of insulated wire equivalent to coil assembly of electrical equipment)
The produced insulated wire was stretched by 30% and then edgewise bent at 90 ° with φ2 mm. In addition, this bending process simulates the process required at the time of the assembly of the coil of an electric equipment. At this stage, since the crystallization is not promoted by the annealing treatment, the adhesion between the conductor and the insulating coating layer in Examples 1 to 6 is good, and there is no problem even if bending is performed.

(曲げ加工後のアニール処理)
続いて曲げ加工を行った絶縁電線を190℃で1時間程度、アニール処理を施し、ポリエーテルエーテルケトン及びポリフェニルサルフォンの結晶化率を高めた。
(Annealing after bending)
Subsequently, the insulated wire subjected to bending processing was annealed at 190 ° C. for about 1 hour to increase the crystallization rate of polyetheretherketone and polyphenylsulfone.

上記のように作製した絶縁電線に対して、次のような測定及び試験を行った。結果を表1に示す。   The following measurements and tests were performed on the insulated wires produced as described above. The results are shown in Table 1.

(1)結晶化率
絶縁電線の押出被覆層から約10mgのサンプル(測定対象)を採取し、示差走査熱量計により毎分10℃の割合で400℃まで昇温し、その時の140℃付近の結晶化ピーク面積を割り出した。また、押出被覆層形成後に急冷して作製された絶縁電線の絶縁被覆層から採取したサンプル(結晶化が殆ど進行していないと考えられるサンプル)の140℃付近の結晶化ピーク面積を100%とした場合の結晶化ピーク面積の比を求め、これを結晶化率とした。結晶化が既に進行している押出被覆層の場合は、示差走査熱量計において140℃付近の結晶化ピークは現れない。
結晶化率={1−(測定したいサンプルの140℃付近の結晶化ピーク面積/結晶化が殆ど進行していないサンプルの140℃付近の結晶化ピーク面積)}×100
(1) Crystallization rate A sample (measurement object) of about 10 mg was taken from the extruded coating layer of the insulated wire, heated to 400 ° C. at a rate of 10 ° C. per minute by a differential scanning calorimeter, and around 140 ° C. at that time The crystallization peak area was determined. In addition, the crystallization peak area around 140 ° C. of a sample (a sample considered that crystallization hardly proceeds) of a sample collected from an insulation coating layer of an insulated wire produced by rapid cooling after forming an extrusion coating layer is 100%. In this case, the ratio of the crystallization peak areas was determined and used as the crystallization rate. In the case of an extruded coating layer in which crystallization has already progressed, a crystallization peak near 140 ° C. does not appear in the differential scanning calorimeter.
Crystallization rate = {1− (crystallization peak area around 140 ° C. of sample to be measured / crystallization peak area around 140 ° C. of sample with little crystallization)} × 100

(2)コイル組立時の密着性
作製した絶縁電線(アニール処理前)を30%伸長後、φ2mmで90度のエッジワイズ曲げを施した。その際、押出被覆層に亀裂及び浮きの発生が無かったものを○(合格)、浮きが発生したものを△(不合格)、絶縁体に亀裂や割れが発生したものを×(不合格)とした。
(2) Adhesiveness at the time of coil assembly The produced insulated wire (before annealing treatment) was stretched 30%, and then edgewise bent at 90 ° with φ2 mm. At that time, ○ (accepted) that the extrusion coating layer did not crack or float, △ (failed) that the float occurred, × (failed) that the crack occurred in the insulator It was.

(3)部分放電発生電圧
2本の絶縁電線の長辺となる面同士を長さ150mmに渡って隙間が無いように密着させた試料の2本の導体間に50Hzの交流電流で電圧を10V/sで昇圧させながら、50pCの部分放電が50回以上発生する電圧を測定し、1500V以上となるものを○(合格)、1500V未満となるものを×(不合格)とした。
(3) Partial discharge generation voltage A voltage of 10 V is applied with an alternating current of 50 Hz between two conductors of a sample in which the long sides of the two insulated wires are closely attached to each other over a length of 150 mm so that there is no gap. The voltage at which 50 pC partial discharge was generated 50 times or more was measured while increasing the voltage at / s, and a value of 1500 V or higher was evaluated as ◯ (passed) and a voltage of less than 1500 V was evaluated as x (failed).

(4)耐電圧
(3)と同じ試料を作製し、絶縁破壊電圧が10kV以上となるものを○(合格)、10kV未満となるものを×(不合格)とした。
(4) Dielectric withstanding voltage The same sample as in (3) was prepared, and a dielectric breakdown voltage of 10 kV or higher was evaluated as ◯ (acceptable) and a breakdown voltage of less than 10 kV as x (failed).

(5)耐溶剤性(耐薬品性)
絶縁電線の試験片(試験長:約150mm)を、200℃の恒温槽で約10分間加熱処理後、温度60℃のJIS K8271に規定するキシレン中に30分間浸した後、取り出し、押出被覆層に泡又は膨れを生じないものを○(合格)、被覆に泡又は膨れを生じたものを×(不合格)、被覆に微小な泡又は膨れを生じたものを△(不合格)とした。
(5) Solvent resistance (chemical resistance)
A test piece (test length: about 150 mm) of an insulated wire is heated in a thermostatic bath at 200 ° C. for about 10 minutes, immersed in xylene specified in JIS K8271 at a temperature of 60 ° C. for 30 minutes, then taken out, and an extrusion coating layer The case where no bubble or blister was generated was evaluated as ◯ (passed), the case where bubble or blister was generated in the coating was evaluated as x (failed), and the case where minute bubble or swollen was formed in the coating was evaluated as Δ (failed).

(6)コイル性能
コイル組立時の密着性、部分放電発生電圧、耐電圧、及び耐溶剤性がすべて○のものを○(合格)とし、コイル組立時の密着性、部分放電発生電圧、耐電圧のうち1つでも×があるものは×(不合格)とした。コイル組立時の密着性、部分放電発生電圧、耐電圧が○で、耐溶剤性が×のものを△とした。
(6) Coil performance The ones that have good adhesion, partial discharge generation voltage, withstand voltage, and solvent resistance during coil assembly are marked as “Good”, and the adhesion, partial discharge generation voltage, withstand voltage during coil assembly are as follows. Those with at least one x were evaluated as x (failed). The adhesion at the time of coil assembly, the partial discharge generation voltage, the withstand voltage was ◯, and the solvent resistance was x.

Figure 2015138626
Figure 2015138626

表1の実施例1の絶縁電線では、押出温度を350℃、導体予備加熱温度を350℃でポリエーテルエーテルケトン樹脂の押出被覆層を0.15mm厚、形成した。密着性が発現している状態で絶縁電線の曲げ加工を行い、190℃で1時間アニール処理によりポリエーテルエーテルケトン樹脂を結晶化させているため、耐溶剤性が向上している。結晶化が行われると、透明の押出被覆層が不透明となることで確認することが出来る。アニール後の密着性は低下しているが、絶縁特性上、問題にはならない。   In the insulated wire of Example 1 in Table 1, an extrusion coating layer of polyether ether ketone resin was formed to a thickness of 0.15 mm at an extrusion temperature of 350 ° C. and a conductor preheating temperature of 350 ° C. Since the insulation electric wire is bent in a state where the adhesiveness is expressed and the polyether ether ketone resin is crystallized by annealing at 190 ° C. for 1 hour, the solvent resistance is improved. When crystallization is performed, the transparent extrusion coating layer can be confirmed to be opaque. Although the adhesion after annealing is lowered, there is no problem in the insulation characteristics.

実施例2〜4では、絶縁厚を0.12mm、0.2mm、0.3mmとしているが、実施例1同様の結果が得られた。コイルとしての性能は良好である。   In Examples 2 to 4, the insulation thickness was set to 0.12 mm, 0.2 mm, and 0.3 mm, but the same results as in Example 1 were obtained. The performance as a coil is good.

実施例5では、押出樹脂にポリエーテルエーテルケトン40質量部、ポリフェニルサルフォン60質量部を二軸押出機により混練した樹脂を用いているが、実施例1同様の結果が得られた。コイルとしての性能は良好である。なお、ポリエーテルエーテルケトンとポリフェニルサルフォンとを混練した樹脂の結晶化率は算定が困難であるため、本実施例の結晶化率はポリエーテルエーテルケトン成分のみを測定したものとする。   In Example 5, a resin obtained by kneading 40 parts by mass of polyetheretherketone and 60 parts by mass of polyphenylsulfone with a twin-screw extruder was used as the extruded resin, but the same results as in Example 1 were obtained. The performance as a coil is good. In addition, since it is difficult to calculate the crystallization rate of a resin obtained by kneading polyetheretherketone and polyphenylsulfone, the crystallization rate in this example is obtained by measuring only the polyetheretherketone component.

実施例6では、導体予備加熱温度を400℃としているが、実施例1同様の結果が得られた。コイルとしての性能は良好である。   In Example 6, the conductor preheating temperature was 400 ° C., but the same result as in Example 1 was obtained. The performance as a coil is good.

実施例7の絶縁電線では、導体と押出被覆層との密着性は良好であった。しかし、アニール温度が130℃と実施例と比較して低いため、結晶化が促進されず、耐溶剤性が劣る。実施例8の絶縁電線では、導体と押出被覆層との密着性は良好であった。しかし、アニール処理を行っていないため、曲げ加工後においても密着性は良好であるが、実施例7と同様に耐溶剤性が劣る。したがって、本発明の絶縁電線をコイルとして用いる場合には、前述のアニール処理を施すのが望ましい。   In the insulated wire of Example 7, the adhesion between the conductor and the extrusion coating layer was good. However, since the annealing temperature is 130 ° C., which is lower than that of the example, crystallization is not promoted and the solvent resistance is poor. In the insulated wire of Example 8, the adhesion between the conductor and the extrusion coating layer was good. However, since the annealing treatment is not performed, the adhesion is good even after bending, but the solvent resistance is inferior as in Example 7. Therefore, when the insulated wire of the present invention is used as a coil, it is desirable to perform the above-described annealing treatment.

一方、比較例1の絶縁電線では、導体予備加熱温度が低いため、押出成形後の密着性が劣り、曲げ加工時に押出被覆層に浮きが生じた。   On the other hand, in the insulated wire of Comparative Example 1, since the conductor preheating temperature was low, the adhesion after extrusion was inferior, and the extrusion coating layer was lifted during bending.

1:導体、2:押出被覆層、10:絶縁電線
1: Conductor, 2: Extrusion coating layer, 10: Insulated wire

Claims (7)

不活性ガス雰囲気にて予備加熱された導体の外周に、ポリエーテルエーテルケトン樹脂を40質量%以上含有する樹脂組成物を押出被覆して押出被覆層を形成する工程を含み、前記樹脂組成物の結晶化温度以上の温度でアニール処理を行なって前記押出被覆層の結晶化率を20%より大にする工程を含まず、前記予備加熱では、前記樹脂組成物が融解する温度以上に加熱されることを特徴とする絶縁電線の製造方法。   Including a step of extrusion-coating a resin composition containing 40% by mass or more of a polyether ether ketone resin on the outer periphery of a conductor preheated in an inert gas atmosphere to form an extrusion coating layer, The preliminary heating does not include a step of annealing at a temperature higher than the crystallization temperature to increase the crystallization rate of the extruded coating layer to more than 20%, and the preliminary heating is performed at a temperature higher than the melting temperature of the resin composition. The manufacturing method of the insulated wire characterized by the above-mentioned. 前記押出被覆層を形成した後に前記押出被覆層の温度が前記樹脂組成物の結晶化温度未満になるように冷却する工程を含むことを特徴とする請求項1に記載の絶縁電線の製造方法。   The method for producing an insulated wire according to claim 1, further comprising a step of cooling the extrusion coating layer so that a temperature of the extrusion coating layer is lower than a crystallization temperature of the resin composition after the extrusion coating layer is formed. 前記樹脂組成物は、ポリフェニレンサルファイド、ポリフェニルサルフォン、オレフィン系共重合樹脂、α−オレフィンコポリマー、エチレン−グリシジルメタクリレート共重合体、シンジオタクチックポリスチレン、ポリイミド、ポリアミド、ポリアミドイミド、熱可塑性ポリイミド、ポリエーテルイミド、ポリメチルペンテン、ポリブチレンテレフタレート、ポリブチレンナフタレートから選ばれる1以上の樹脂を60質量%以下含むことを特徴とする請求項1又は請求項2に記載の絶縁電線の製造方法。   The resin composition includes polyphenylene sulfide, polyphenylsulfone, olefin copolymer resin, α-olefin copolymer, ethylene-glycidyl methacrylate copolymer, syndiotactic polystyrene, polyimide, polyamide, polyamideimide, thermoplastic polyimide, poly The method for producing an insulated wire according to claim 1 or 2, comprising 60% by mass or less of one or more resins selected from ether imide, polymethylpentene, polybutylene terephthalate, and polybutylene naphthalate. 前記押出被覆層は、層厚0.1〜0.3mmとなるように形成されることを特徴とする請求項1〜3のいずれか1項に記載の絶縁電線の製造方法。   The said extrusion coating layer is formed so that it may become a layer thickness of 0.1-0.3 mm, The manufacturing method of the insulated wire of any one of Claims 1-3 characterized by the above-mentioned. 請求項1〜4のいずれか1項に記載の製造方法で製造された絶縁電線を電気機器のコイル形状に組み立てる組立工程と、
前記組立工程後、前記樹脂組成物の結晶化温度以上の温度でアニール処理を行なう工程とを含むことを特徴とする電気機器のコイルの製造方法。
An assembly step of assembling the insulated wire manufactured by the manufacturing method according to any one of claims 1 to 4 into a coil shape of an electrical device;
And a step of annealing after the assembly step at a temperature equal to or higher than the crystallization temperature of the resin composition.
請求項1〜4のいずれか1項に記載の製造方法で製造されたことを特徴とする絶縁電線。   The insulated wire manufactured by the manufacturing method of any one of Claims 1-4. 請求項5に記載の製造方法で製造されたことを特徴とする電気機器のコイル。
A coil for an electric device, which is manufactured by the manufacturing method according to claim 5.
JP2014008991A 2014-01-21 2014-01-21 Insulation wire and producing method thereof, and coil for electric device and producing method thereof Pending JP2015138626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014008991A JP2015138626A (en) 2014-01-21 2014-01-21 Insulation wire and producing method thereof, and coil for electric device and producing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014008991A JP2015138626A (en) 2014-01-21 2014-01-21 Insulation wire and producing method thereof, and coil for electric device and producing method thereof

Publications (1)

Publication Number Publication Date
JP2015138626A true JP2015138626A (en) 2015-07-30

Family

ID=53769509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014008991A Pending JP2015138626A (en) 2014-01-21 2014-01-21 Insulation wire and producing method thereof, and coil for electric device and producing method thereof

Country Status (1)

Country Link
JP (1) JP2015138626A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017054754A (en) * 2015-09-11 2017-03-16 日立金属株式会社 Insulation wire and manufacturing method therefor
JP2019160507A (en) * 2018-03-12 2019-09-19 古河電気工業株式会社 Insulation wire, manufacturing method therefor, coil, electronic and electric device, and manufacturing method of electronic and electric device
CN114420345A (en) * 2022-01-24 2022-04-29 松田电工(台山)有限公司 High-voltage-resistance composite insulated wire and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017054754A (en) * 2015-09-11 2017-03-16 日立金属株式会社 Insulation wire and manufacturing method therefor
JP2019160507A (en) * 2018-03-12 2019-09-19 古河電気工業株式会社 Insulation wire, manufacturing method therefor, coil, electronic and electric device, and manufacturing method of electronic and electric device
CN114420345A (en) * 2022-01-24 2022-04-29 松田电工(台山)有限公司 High-voltage-resistance composite insulated wire and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6016846B2 (en) Insulated wire and manufacturing method thereof
US9224523B2 (en) Inverter surge-resistant insulated wire
US9514863B2 (en) Inverter surge-resistant insulated wire and method of producing the same
JP2013033607A (en) Electric insulated wire and manufacturing method thereof
JP2014154511A (en) Insulated wire and method of manufacturing the same
JPWO2015033821A1 (en) Flat electric wire, method for manufacturing the same, and electrical equipment
JP5699971B2 (en) Insulated wire
JP2013109874A (en) Insulated wire
US20200312535A1 (en) Magnet wire with thermoplastic insulation
US10199138B2 (en) Insulated winding wire
US20170032868A1 (en) Insulated wire and method of manufacturing the same
JP2015138626A (en) Insulation wire and producing method thereof, and coil for electric device and producing method thereof
JP5454297B2 (en) Insulated wire
JP5516303B2 (en) Insulated wire and manufacturing method thereof
JP6355304B2 (en) Solderable insulated wire and manufacturing method thereof
JP6503993B2 (en) Insulated wire and method of manufacturing the same
US20230083970A1 (en) Magnet wire with thermoplastic insulation
JP6519231B2 (en) Winding and method of manufacturing the same
JP5561238B2 (en) Insulated wire and manufacturing method thereof
JP5521568B2 (en) Insulated wire
JP2017010613A (en) Insulation wire and manufacturing method therefor
RU191750U1 (en) HIGH VOLTAGE Unshielded WIRE
JP2011210519A (en) Insulated wire
JP2017076560A (en) Insulated wire and method for producing the same
JP2018022636A (en) Insulated wire and fusible insulated wire, and method for producing the same