JP2008144307A - Method for producing carbon fiber bundle - Google Patents

Method for producing carbon fiber bundle Download PDF

Info

Publication number
JP2008144307A
JP2008144307A JP2006333315A JP2006333315A JP2008144307A JP 2008144307 A JP2008144307 A JP 2008144307A JP 2006333315 A JP2006333315 A JP 2006333315A JP 2006333315 A JP2006333315 A JP 2006333315A JP 2008144307 A JP2008144307 A JP 2008144307A
Authority
JP
Japan
Prior art keywords
fiber bundle
acrylonitrile
based precursor
carbon fiber
flame resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006333315A
Other languages
Japanese (ja)
Inventor
Takahiko Kunisawa
考彦 國澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2006333315A priority Critical patent/JP2008144307A/en
Publication of JP2008144307A publication Critical patent/JP2008144307A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a carbon fiber bundle, which is capable of producing the carbon fiber bundle having a good quality in spite of being a large tow, in a good productivity. <P>SOLUTION: In a burning process of an acrylonitrile-based precursor fiber bundle having a filament number of ≥49,000, the terminal end of the fiber bundle and the head end of another fiber bundle are subjected to flame retardant pretreatment to have a density of ≥1.30 g/cm<SP>3</SP>and joined, a region presenting in the rear of the joined part is made as flat tow form having a prescribed fiber bundle cross sectional shape so as to have a ratio of its width/thickness of 30-120, and further by integrally gathering at least three bundles of the prescribed fiber bundles to be burned in parallel so that the degree of intermingle between the filaments by hook drop method is 1-10 m<SP>-1</SP>so as not to mingle the twist in the acrylonitrile-based precursor fiber bundles positioning in the rear direction of the joined region. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は炭素繊維束の製造方法に関するものである。   The present invention relates to a method for producing a carbon fiber bundle.

炭素繊維は、アクリロニトリル系前駆体繊維束を200〜300℃の酸化性雰囲気中で加熱処理する耐炎化工程によって耐炎化繊維にした後、引き続いて1,000℃以上の不活性雰囲気中で加熱処理する炭素化工程によって製造するのが一般的である。このようにして得られた炭素繊維は、その優れた力学的性質により、航空宇宙用途を始め、スポーツ・レジャー用途等の高性能複合材料の補強繊維素材として広く利用されている。又、近年では自動車・船舶、建材用途等、一般産業分野への用途要求が増加している。   The carbon fiber is made into flame-resistant fiber by a flame-proofing process in which an acrylonitrile-based precursor fiber bundle is heat-treated in an oxidizing atmosphere at 200 to 300 ° C., and then heat-treated in an inert atmosphere at 1,000 ° C. or higher. Generally, it is produced by a carbonization process. The carbon fiber thus obtained is widely used as a reinforcing fiber material for high-performance composite materials for aerospace use, sports / leisure use, etc. due to its excellent mechanical properties. In recent years, demands for use in general industrial fields such as automobiles / ships and building materials are increasing.

しかしながら従来のスモールトウ(総繊度21,000dtex未満)の炭素繊維は物性、品質的には優れているが、価格が高いために、コストを重視する産業用途分野での多様化は十分に実現できていない状況であった。一方、太物トウであるラージトウ炭素繊維は、価格は低く設定されているものの、性能、品質の面から、やはり産業用途分野での使用は限定されるものであった。従って、高品質と低価格が両立する炭素繊維は多くの市場で望まれているものである。   However, the conventional small tow (total fineness less than 21,000 dtex) carbon fiber is excellent in physical properties and quality, but because of its high price, diversification can be sufficiently realized in cost-oriented industrial applications. There was no situation. On the other hand, the large tow carbon fiber, which is a thick tow, is set at a low price, but its use in the industrial application field is still limited in terms of performance and quality. Therefore, a carbon fiber having both high quality and low price is desired in many markets.

ところで、炭素繊維束の製造コストに占める割合が大きいのは、製造工程中の処理時間の最も長い耐炎化工程であり、低コスト化のためにはその生産性の向上が必要である。しかし、耐炎化工程においてはアクリロニトリル系前駆体繊維束の酸化反応による激しい発熱を伴うために、アクリロニトリル系前駆体繊維束内部に畜熱し処理温度に対し、該アクリロニトリル系前駆体繊維束内部の温度が極端に高くなりスモーク等が発生しやすくなる。そのために、耐炎化処理温度を下げて生産を行わなければならず、十分に耐炎化の進行した耐炎化繊維束を得るのに時間を要するという問題があった。又、ラージトウではスモールトウよりも蓄熱が多くなるために耐炎化工程中に撚りが混入すると糸切れ、スモーク等が発生しやすくなり生産性が大幅に低下する問題があった。   By the way, the ratio of the carbon fiber bundles in the manufacturing cost is large in the flameproofing process having the longest processing time in the manufacturing process, and it is necessary to improve the productivity in order to reduce the cost. However, in the flameproofing process, since intense heat generation is caused by the oxidation reaction of the acrylonitrile-based precursor fiber bundle, the temperature inside the acrylonitrile-based precursor fiber bundle is heat-treated inside the acrylonitrile-based precursor fiber bundle and the temperature inside the acrylonitrile-based precursor fiber bundle is It becomes extremely high and smoke and the like are likely to be generated. For this reason, there is a problem that the flameproofing treatment temperature has to be lowered and production takes place, and it takes time to obtain a flameproofed fiber bundle that has been sufficiently flameproofed. Further, since large tow has a higher heat storage than small tow, there is a problem that if twist is mixed in during the flameproofing process, yarn breakage, smoke, etc. are likely to occur and productivity is greatly reduced.

また、一般にアクリロニトリル系前駆体繊維束は、ボビン等に巻き上げられた形態、或いは箱の中に折りたたみ積層された形態で供給されている。したがってこれらのアクリロニトリル系前駆体繊維束を耐炎化工程と炭素化工程とからなる焼成工程に連続的に移して炭素繊維束にするためには、上記の形態にあるアクリロニトリル系前駆体繊維束の終末端と次に焼成されるアクリロニトリル系前駆体繊維束の先頭端を接続させる必要がある。しかしながら、単に結んで形成した接合部は耐炎化工程での蓄熱が著しく、糸切れ、スモーク等のトラブルの原因となる。このような問題点を解決すべく、種々の検討がなされている。   In general, the acrylonitrile-based precursor fiber bundle is supplied in a form wound on a bobbin or the like, or in a form folded and laminated in a box. Therefore, in order to continuously transfer these acrylonitrile-based precursor fiber bundles to a firing process comprising a flameproofing process and a carbonization process to form a carbon fiber bundle, the end of the acrylonitrile-based precursor fiber bundle in the above form is used. It is necessary to connect the end and the leading end of the acrylonitrile-based precursor fiber bundle to be fired next. However, the joint formed by simply tying has a significant heat storage in the flameproofing process, and causes troubles such as yarn breakage and smoke. Various studies have been made to solve such problems.

特許文献1には、アクリロニトリル系前駆体繊維束の終末端と次に焼成されるアクリロニトリル系前駆体繊維束の先頭端を高速流体処理により結合する方法が記載されている。しかし、接続部の糸条密度が繊維束自身の糸条密度よりも相当高くなるため、未だ耐炎化工程での蓄熱が著しく、焼損、糸切れなどが発生しやすい。   Patent Document 1 describes a method in which the terminal end of an acrylonitrile-based precursor fiber bundle and the leading end of a baked acrylonitrile-based precursor fiber bundle are bonded by high-speed fluid treatment. However, since the yarn density of the connecting portion is considerably higher than the yarn density of the fiber bundle itself, heat storage is still significant in the flameproofing process, and burnout, yarn breakage and the like are likely to occur.

特許文献2には、耐炎化温度において非発熱性である接続媒体を介して、単糸レベルの結合により接続する方法が記載されている。しかし、この方法でラージトウを製造すると、特に接続部付近で撚りが発生しやすく、その撚りによる糸切れが発生する傾向がみられる。
特開昭58−208420号公報 特開平10−226918号公報
Patent Document 2 describes a method of connecting by connecting at a single yarn level through a connection medium that is non-exothermic at a flameproof temperature. However, when large tow is produced by this method, twisting tends to occur particularly in the vicinity of the connecting portion, and there is a tendency for yarn breakage due to the twisting to occur.
JP 58-208420 A JP-A-10-226918

したがって、本発明が解決しようとする課題は、従来技術における問題点を解決し、ラージトウでありながらも品質の良い炭素繊維束を、生産性良く製造可能な炭素繊維の製造方法を提供することを課題とする。   Therefore, the problem to be solved by the present invention is to solve the problems in the prior art and to provide a carbon fiber production method capable of producing a high-quality carbon fiber bundle with high productivity while being a large tow. Let it be an issue.

上記課題を解決する本発明の炭素繊維の製造方法は、
フィラメント数が49,000以上であるアクリロニトリル系前駆体繊維束を焼成する工程において、
(a)繊維束の終末端と、もう一つ別な繊維束の先頭端を予め、前耐炎化処理として密度1.30g/cm3以上にする工程と、
(b)前記繊維束の終末端と、前記もう一つ別な繊維束の先頭端を接続する工程と、
(c)前記接続された結部から後ろのある領域を、繊維束断面形状を幅/厚み比で30〜120となるように規定された扁平トウ形状とし、さらに、並列して焼成せられる該規定された繊維束を少なくとも3本を、トウ間の、フックドロップ法による交絡度が1m-1〜10m-1の範囲となるように交絡させて一体集合化する工程と
により形成された接続領域により、その接続領域より後方に位置するそれぞれのアクリロニトリル系前駆体繊維束に撚りの混入がない状態にして、繊維束を酸化性雰囲気中200〜300℃で耐炎化処理し、さらに前記耐炎化処理された繊維束を、不活性雰囲気中1,000℃以上で炭素化処理することを特徴とする炭素繊維束の製造方法である。
The method for producing a carbon fiber of the present invention that solves the above problems is as follows.
In the step of firing the acrylonitrile-based precursor fiber bundle having a filament number of 49,000 or more,
(A) a step of preliminarily making the final end of the fiber bundle and the leading end of another fiber bundle a density of 1.30 g / cm 3 or more as a pre-flame resistance treatment;
(B) connecting a terminal end of the fiber bundle and a leading end of the another fiber bundle;
(C) A region behind the connected joint is formed into a flat tow shape in which the fiber bundle cross-sectional shape is defined as 30 to 120 in the width / thickness ratio, and further fired in parallel. defined at least three fiber bundles, between toe, connections area confounding degree is formed by the steps of integrally grouped by entangling to be in the range of 1 m -1 through 10m -1 by hook drop method Thus, each acrylonitrile-based precursor fiber bundle positioned behind the connection region is made in a state in which no twist is mixed, and the fiber bundle is subjected to a flame resistance treatment at 200 to 300 ° C. in an oxidizing atmosphere, and the flame resistance treatment is further performed. This carbon fiber bundle is carbonized at 1,000 ° C. or higher in an inert atmosphere.

本発明によれば、ラージトウでありながらも品質の良い炭素繊維束を、生産性良く製造可能となる。   According to the present invention, a high-quality carbon fiber bundle can be manufactured with high productivity while being a large tow.

本発明では、フィラメント数が49,000以上であるアクリロニトリル系前駆体繊維束から、炭素繊維束を製造する。フィラメント数を49,000以上とすることで、生産性が向上できる。フィラメント数は多くても特に問題はないが、紡糸工程や耐炎化工程等の制約から150,000以下が好ましい。   In the present invention, a carbon fiber bundle is produced from an acrylonitrile-based precursor fiber bundle having 49,000 or more filaments. Productivity can be improved by making the number of filaments 49,000 or more. Even if the number of filaments is large, there is no particular problem.

一般に、炭素繊維束製造用のアクリロニトリル系前駆体繊維束を製造する工程の速度と、アクリロニトリル系前駆体繊維束を焼成(耐炎化及び炭素化)して炭素繊維束にする工程の速度とは大幅に異なる。そのために、アクリロニトリル系前駆体繊維束は一旦ボビンに巻き上げられた状態、または、箱の中に折りたたみ積層されて収容された状態(ケンス収容という)で、耐炎化処理する工程へと供給される。   In general, the speed of the process of producing an acrylonitrile-based precursor fiber bundle for producing a carbon fiber bundle and the speed of the process of firing (flame-proofing and carbonizing) the acrylonitrile-based precursor fiber bundle into a carbon fiber bundle are greatly different. Different. For this purpose, the acrylonitrile-based precursor fiber bundle is supplied to a step of performing a flame resistance treatment in a state where the acrylonitrile-based precursor fiber bundle is once wound up on a bobbin or is folded and stacked in a box (referred to as cans accommodation).

まず、アクリロニトリル系前駆体繊維束の先頭端と、もう一つの繊維束の終末端を前耐炎化処理し密度1.30g/cm3以上にする(工程(a))。前耐炎化処理についての格別の制限はなく、例えば、空気、オゾン、その他の酸化性雰囲気中で200℃から300℃程度の加熱処理を行うことにより、密度が1.30g/cm3以上に前耐炎化処理された先頭端と終末端にすれば良い。 First, the leading end of the acrylonitrile-based precursor fiber bundle and the final end of the other fiber bundle are subjected to a pre-flame resistance treatment to a density of 1.30 g / cm 3 or more (step (a)). There is no particular limitation on the pre-flame resistance treatment. For example, by performing heat treatment at about 200 ° C. to 300 ° C. in air, ozone, or other oxidizing atmosphere, the density is increased to 1.30 g / cm 3 or more. What is necessary is just to make it the beginning end and the end end which were flameproofed.

次に、密度1.30g/cm3以上に前耐炎化処理されたアクリロニトリル系前駆体繊維束の終末端と、もう一つの繊維束の先頭端を接続する(工程(b))。前耐炎化処理されたもの同士を接続することにより、このアクリロニトリル系前駆体繊維束を焼成して炭素繊維束にするときの耐炎化工程での蓄熱を効果的に抑制できる。一方、密度1.30g/cm3未満の場合は、耐炎化工程での蓄熱を抑制する効果が低下するため、この接続部での糸切れ、スモーク等のトラブルが発生しやすい。 Next, the terminal end of the acrylonitrile-based precursor fiber bundle that has been pre-flame-resistant to a density of 1.30 g / cm 3 or more is connected to the leading end of another fiber bundle (step (b)). By connecting the parts subjected to the pre-flame resistance treatment, it is possible to effectively suppress heat storage in the flame-proofing step when the acrylonitrile-based precursor fiber bundle is baked into a carbon fiber bundle. On the other hand, when the density is less than 1.30 g / cm 3 , the effect of suppressing heat storage in the flameproofing process is reduced, and troubles such as yarn breakage and smoke at the connecting portion are likely to occur.

ここで、この接続方法は、例えば単に先頭端と終末端とを結ぶ方法、高速流体処理により結合する方法(特許文献1参照)、耐炎化温度において非発熱性である接続媒体を介して単糸レベルの結合により接続する方法(特許文献1参照)等により行うことができる。   Here, this connection method includes, for example, a method of simply connecting the leading end and the terminal end, a method of coupling by high-speed fluid processing (see Patent Document 1), and a single yarn via a connection medium that is non-exothermic at the flameproof temperature. It can be performed by a method of connecting by level coupling (see Patent Document 1) or the like.

ただし、一般にはこの接続の際に撚りが混入しやすくまた接続部が焼成工程を通過する際にも撚りが混入しやすくなる。この撚りが混入した状態で耐炎化処理を行うと、糸切れ、スモーク等が起こりやすくなるばかりか、後の高次加工においても繊維束幅が不均一となり性能、品質の低下を来す恐れがある。   However, in general, twist is likely to be mixed during this connection, and twist is also likely to be mixed when the connection portion passes through the firing step. If flameproofing is performed in a state where this twist is mixed, not only yarn breakage, smoke, etc. are likely to occur, but also the fiber bundle width becomes uneven in later high-order processing, and there is a risk of performance and quality deterioration. is there.

次に、前記接続された結部から後ろのある領域を、繊維束断面形状を幅/厚み比で30〜120となるように規定された扁平トウ形状とし、さらに、並列して焼成せられる該規定された繊維束を少なくとも3本を、フィラメント間の、フックドロップ法による交絡度が1m-1〜10m-1の範囲となるように交絡させて一体集合化する(工程(c))。 Next, an area behind the connected joint is formed into a flat tow shape in which the cross-sectional shape of the fiber bundle is 30 to 120 in a width / thickness ratio, and further fired in parallel. at least three of the defined fiber bundle, between the filaments, confounding degree of the hook drop method is integrally grouped by entangling to be in the range of 1 m -1 through 10m -1 (step (c)).

ここで、扁平トウ形態とは、走行する繊維束のトウ厚みをA、繊維束のトウ幅をBとしたとき、B/Aで算出される値を意味する。扁平トウ形態が30未満であると、繊維束の厚みが大きいことから断面形状を扁平状態に保つことができず、撚りを止めることができないために、糸切れ、スモーク等が起こりやすくなるばかりか、後の高次加工においても繊維束幅が不均一となり性能、品質の低下を来たす恐れがある。これに対して、扁平トウ形態が120を超えると、繊維束の幅が大きいことから耐炎化炉機幅にたいする処理糸条数が少なくなり、設備生産性が低下する。したがって扁平トウ形態を30〜120の範囲に規制するのが好ましく、40〜110の範囲がより好ましく、50〜100の範囲がさらに好ましい。   Here, the flat tow form means a value calculated by B / A, where A is the toe thickness of the traveling fiber bundle and B is the toe width of the fiber bundle. When the flat tow form is less than 30, the cross-sectional shape cannot be kept flat because the fiber bundle is thick, and twisting cannot be stopped, so not only yarn breakage, smoke is likely to occur. Even in the later high-order processing, the fiber bundle width may become non-uniform, and the performance and quality may be deteriorated. On the other hand, when the flat tow form exceeds 120, the width of the fiber bundle is large, so that the number of treated yarns for the flameproof furnace width decreases, and the equipment productivity decreases. Therefore, it is preferable to regulate the flat tow form in the range of 30 to 120, more preferably in the range of 40 to 110, and still more preferably in the range of 50 to 100.

この扁平トウ形態の規制は、ピンガイド、ガイドロール等により行うことができるがこれらに限定されるものではない。エアー絡合による接続方法では、エアー絡合に用いるノズルの前後にガイドロール等設置することが好ましい。   The regulation of the flat toe form can be performed by a pin guide, a guide roll, or the like, but is not limited thereto. In the connection method by air entanglement, it is preferable to install a guide roll or the like before and after the nozzle used for air entanglement.

前述したように一般には繊維束の終末端と別の繊維束の先頭端を接続する際、及び接続部が焼成工程を通過する際にもに撚りが混入しやすく、撚りが混入すると後のアクリロニトリル系前駆体繊維束に撚りが混入してしまうため、この撚りが蓄熱し糸切れ、スモーク等の原因となる。   As described above, generally, when connecting the terminal end of the fiber bundle and the leading end of another fiber bundle, and when the connecting portion passes through the firing step, twist is likely to be mixed, and if twist is mixed, acrylonitrile later Since the twist is mixed into the system precursor fiber bundle, the twist accumulates heat and causes yarn breakage, smoke, and the like.

よってアクリロニトリル系前駆体繊維束の前耐炎化処理した部分を結合させる際に混入した撚り及び接続部が焼成工程を通過する際に発生しやすい撚りは、この耐炎化した部分の範囲内に止めておくことが非常に重要である。   Therefore, the twist mixed when joining the pre-flame-proofed part of the acrylonitrile-based precursor fiber bundle and the twist that tends to occur when the connection part passes through the firing process should be kept within the range of this flame-proof part. It is very important to keep

通常炭素繊維の焼成においては、並列に配列するアクリロニトリル系前駆体繊維束は数百錘にのぼり、シート状である。上記のように並列に配置されたトウにおいて、トウ形態が扁平に規制されたアクリロニトリル系前駆体繊維束を、その隣り合う少なくとも3本を一体集合化する。一体集合化したアクリロニトリル系前駆体繊維束の本数が3本未満であると、撚りを止めることが確実には行えない。さらに、数百錘のアクリロニトリル系前駆体繊維束の全てを独立に耐炎化処理することになるため、多大な設備費用アップというコストアップ要因となり、さらに多大な作業負荷になるため、作業効率が大幅に低下する。好ましくは6本以上である。一体集合化するアクリロニトリル系前駆体繊維束の本数は、多いほど撚りを止めることが確実なものになるが、あまり本数が多くなりすぎると取り扱い性が低下する。したがって、その取り扱い性を考慮して一体集合化する本数を定めればよく、例えば30本以下が好ましい。こうすることで、接続の際或いは、接続部が焼成の各処理工程を通過させられる間に撚りが混入した場合において、その撚りを一体集合化部分で止めることが可能となり、以降の撚りを消失させることが可能となる。   Usually, in the firing of carbon fibers, acrylonitrile-based precursor fiber bundles arranged in parallel reach several hundreds of spindles and are in the form of a sheet. In the tows arranged in parallel as described above, at least three adjacent acrylonitrile-based precursor fiber bundles whose tow form is regulated flat are integrally assembled. If the number of integrally assembled acrylonitrile-based precursor fiber bundles is less than 3, the twist cannot be reliably stopped. Furthermore, since all of the hundreds of acrylonitrile-based precursor fiber bundles are flame-proofed independently, this increases the cost of equipment and increases the work load. To drop. Preferably it is 6 or more. As the number of the acrylonitrile-based precursor fiber bundles to be integrally assembled increases, the twist is surely stopped. However, when the number is too large, the handleability decreases. Therefore, it is only necessary to determine the number to be integrally assembled in consideration of the handleability, for example, 30 or less is preferable. By doing so, it becomes possible to stop the twist at the integrally assembled part when connecting or when the twist is mixed while the connecting part is passed through each firing process, and the subsequent twist disappears. It becomes possible to make it.

この一体集合化は、フィラメント同士の緩やかな交絡が優れた手法であり、フィラメントの交絡は、エアー交絡により容易に行うことができる。   This monolithic assembly is an excellent technique for loose entanglement between filaments, and the entanglement of filaments can be easily performed by air entanglement.

上述のようにして一体集合化されたトウ間は、フックドロップ法による交絡度が1m-1〜10m-1の範囲である。1m-1未満であると撚りを止めることが確実にできないために、糸切れ、スモーク等が起こりやすくなる。10m-1を超えると後の工程で分繊する際に単糸切れが生じやすく炭素繊維の品質に影響を与える可能性がある。 Between the tows assembled together as described above, the entanglement degree by the hook drop method is in the range of 1 m −1 to 10 m −1 . If it is less than 1 m −1 , twisting cannot be reliably stopped, and yarn breakage, smoke, etc. are likely to occur. If it exceeds 10 m −1 , single yarn breakage is likely to occur when splitting in a later step, which may affect the quality of the carbon fiber.

ここでフックドロップ法の評価方法は、一体集合化されたその形態を崩さないようにして、その先端に10g/3300dtexの荷重を掛け吊るす。先から20mm直角に折り曲げられた直径1mmの針金に100gの重りを吊り下げ、重りをトウ間に引っ掛け自由落下させたときの落下長をXmとするとき、
交絡度=1/X
とする。測定は30回繰り返して行い、得られた30個の数値のうち中20点の平均値を用いる。
Here, in the evaluation method of the hook drop method, a load of 10 g / 3300 dtex is applied to the tip of the hook drop method so as not to break the integrally assembled form. When a weight of 100 g is suspended from a wire with a diameter of 1 mm bent at a right angle of 20 mm from the tip, and the fall length when the weight is hooked between the tows and allowed to fall freely is Xm,
Degree of confounding = 1 / X
And The measurement is repeated 30 times, and an average value of 20 points among the obtained 30 numerical values is used.

図1はエアー交絡処理に適したエアー交絡装置の概略を示す断面図である。前記エアー交絡装置1は中心に断面が矩形の糸道2が形成されており、同糸道2には扁平なアクリル系繊維糸条3が水平方向に走行している。同糸道2の上下には均圧室4,5が形成されており、上方の均圧室4には上壁に、下方の均圧室5には下壁に、それぞれ流体導入口4a,5aが形成されている。   FIG. 1 is a cross-sectional view schematically showing an air entanglement apparatus suitable for air entanglement processing. The air entanglement device 1 is formed with a thread path 2 having a rectangular cross section at the center, and a flat acrylic fiber yarn 3 runs in the horizontal direction on the thread path 2. The pressure equalizing chambers 4 and 5 are formed above and below the yarn path 2, and the upper pressure equalizing chamber 4 is formed on the upper wall and the lower pressure equalizing chamber 5 is formed on the lower wall, respectively. 5a is formed.

前記均圧室4,5との隔壁を構成する前記糸道2の上下壁部2a,2bには互いに対向するように、各々複数個の流体噴射孔6が1列に配列されている。この流体噴射孔6は、アクリル系繊維糸条3に均一に交絡を付与するために、少なくとも4個以上形成されていることが好ましい。   A plurality of fluid ejection holes 6 are arranged in a row on the upper and lower wall portions 2a, 2b of the yarn path 2 constituting a partition wall with the pressure equalizing chambers 4, 5, respectively, so as to face each other. It is preferable that at least four fluid injection holes 6 are formed in order to uniformly entangle the acrylic fiber yarns 3.

前記流体導入口4a,5aから前記均圧室4,5に導入された常温のエアーは、同均圧室4,5内で均圧化された後、流体噴射孔6から糸道2内に連続的に供給されるアクリル系繊維糸条3に向けて均等に、同糸条3に直交して噴射される。この噴射エアーにより、アクリル系繊維糸条3には均一に交絡が付与される。   The normal temperature air introduced into the pressure equalizing chambers 4 and 5 from the fluid inlets 4a and 5a is equalized in the pressure equalizing chambers 4 and 5 and then into the yarn path 2 from the fluid injection holes 6. Injected perpendicularly to the yarn 3 evenly toward the continuously supplied acrylic fiber yarn 3. The entanglement is uniformly imparted to the acrylic fiber yarn 3 by this jet air.

なお、前記エアー交絡装置1の前後にガイドバー等を設けて、同交絡装置1に供給されるアクリル系繊維糸条3を扁平状にすることが望ましい。アクリル系繊維糸条を扁平状に開繊して交絡装置1に供給することにより、同アクリル系繊維糸条3の全体に噴射エアーをあてることができるため、均一な交絡を付与することができる。   In addition, it is desirable to provide a guide bar etc. before and behind the said air entanglement apparatus 1, and to make the acrylic fiber yarn 3 supplied to the same entanglement apparatus 1 flat. By opening the acrylic fiber yarn in a flat shape and supplying it to the entanglement device 1, spray air can be applied to the entire acrylic fiber yarn 3, so that uniform entanglement can be imparted. .

供給されるエアー圧は、単糸繊度、フィラメント数、油剤の付着状況等により適宜調整される。   The supplied air pressure is appropriately adjusted according to the single yarn fineness, the number of filaments, the state of adhesion of the oil agent, and the like.

一体集合化させる部分は、数cmから数十mに渡って行うことが出来る。一体集合化作業の点から、好ましくは1cmから9m、さらに好ましくは2cmから100cm程度である。   The part to be integrally assembled can be performed over several centimeters to several tens of meters. From the point of monolithic assembly work, it is preferably about 1 cm to 9 m, more preferably about 2 cm to 100 cm.

前記の長さを一体集合化させる方法としては、エアー交絡装置を固定し糸条を走行させながら処理しても良いし、糸条を固定しエアー交絡処理装置を走行させても良い。   As a method of integrating the above lengths, the air entanglement device may be fixed and the yarn may be run while being processed, or the yarn may be fixed and the air entanglement device may be run.

また、一体集合化させる部分は、耐炎化処理を施されていても、いなくともどちらでもよい。好ましくは、耐炎化処理を施されているものがより良い。   Further, the part to be integrally assembled may or may not be subjected to flameproofing treatment. Preferably, the one subjected to flameproofing treatment is better.

このようにして形成された接続領域により、その接続領域より後方に位置するそれぞれのアクリロニトリル系前駆体繊維束に撚りの混入がない状態にすることが可能となる。ここで撚りの混入がない状態とは、通常耐炎化炉の両側に設置されたロール間で例えば10mのスパンで4パス構成で90錘処理で1m当たり0.5ターンが目安であり、よって前駆体繊維束1本毎では1mあたり、0.0002ターン以下であることを指す。   The connection region formed in this manner makes it possible to make each acrylonitrile-based precursor fiber bundle located behind the connection region free from twisting. Here, the state in which no twist is mixed is usually 0.5 turns per 1 m by 90 spindle treatment in a 4-pass configuration with 10 m span between the rolls installed on both sides of the flameproofing furnace. For each body fiber bundle, it means 0.0002 turns or less per 1 m.

こうして接続・一体集合化されたアクリロニトリル系前駆体繊維束集合体が酸化性雰囲気下で200℃から300℃で耐炎化処理され耐炎繊維束とされる。さらに耐炎繊維束は、不活性雰囲気中1,000℃以上で炭素化処理することで、炭素繊維とされる。不活性雰囲気としては、窒素、アルゴン、ヘリウム等公知の不活性雰囲気を採用できるが、経済性の面から窒素が望ましい。なお、一般には、この炭素化処理する前に不活性雰囲気中300〜800℃での前炭素化処理を行うことが好ましい。不活性雰囲気としては、窒素、アルゴン、ヘリウム等公知の不活性雰囲気を採用できるが、経済性の面から窒素が好ましい。   The acrylonitrile-based precursor fiber bundle assembly thus connected and integrally assembled is subjected to a flame resistance treatment at 200 to 300 ° C. in an oxidizing atmosphere to form a flame resistant fiber bundle. Furthermore, the flame resistant fiber bundle is made into carbon fiber by carbonizing at 1,000 ° C. or higher in an inert atmosphere. As the inert atmosphere, a known inert atmosphere such as nitrogen, argon or helium can be adopted, but nitrogen is desirable from the viewpoint of economy. In general, it is preferable to perform a pre-carbonization treatment at 300 to 800 ° C. in an inert atmosphere before the carbonization treatment. As the inert atmosphere, a known inert atmosphere such as nitrogen, argon, or helium can be adopted, but nitrogen is preferable from the viewpoint of economy.

このようにして得られた炭素繊維は、必要に応じてさらに従来公知の技術により表面処理、サイジング付与等を行うことができる。   The carbon fibers obtained in this manner can be further subjected to surface treatment, sizing application, and the like as required by a conventionally known technique.

以下、本発明の炭素繊維の製造装置とその製造方法の具体的な構成を、実施例に基づいて説明する。   Hereinafter, the specific structure of the carbon fiber manufacturing apparatus and the manufacturing method of the present invention will be described based on examples.

(実施例1)
ケンスAより焼成工程に投入中であり、単繊維繊度1.2dtex、フィラメント数50,000のアクリロニトリル系前駆体繊維束の終末端を前耐炎化処理し密度1.36g/cm3とした。、またケンスBとして次回焼成予定である、単繊維繊度1.2dtex、フィラメント数50,000のアクリロニトリル系前駆体繊維束の先頭端を前耐炎化処理し密度1.36g/cm3とした。
(Example 1)
The end of the acrylonitrile-based precursor fiber bundle having a single fiber fineness of 1.2 dtex and a filament number of 50,000 was subjected to pre-flame resistance treatment to a density of 1.36 g / cm 3 . Also, the leading end of the acrylonitrile-based precursor fiber bundle having a single fiber fineness of 1.2 dtex and a filament number of 50,000, which is scheduled to be fired next as Kens B, was subjected to a pre-flame resistance treatment to a density of 1.36 g / cm 3 .

上記ケンスAの終末端と、ケンスBの先頭端は、240℃の熱風が循環している耐炎化炉中にて136×10-3cN/dtexの張力下で70min耐炎化処理を施した。処理した長さは2mであった。 The final end of the can A and the leading end of the can B were subjected to a flame resistance treatment for 70 minutes under a tension of 136 × 10 −3 cN / dtex in a flame resistance furnace in which hot air of 240 ° C. was circulating. The treated length was 2 m.

次いで、上記のケンスAの終末端とケンスBの先頭端とを相互に重ね合わせた後、この重ね合わせた部分の繊維束にエアー絡合を施し接続した。接続した長さは0.5m、交絡度は8m-1であった。 Next, after the end of the above-mentioned can A and the top end of the can B were overlapped with each other, the fiber bundle of the overlapped portion was subjected to air entanglement and connected. The connected length was 0.5 m, and the entanglement degree was 8 m −1 .

次いで、この接続部より、0.5mのところで、1本あたりの扁平トウ形態を76に規制し、6本の隣り合うアクリロニトリル系前駆体繊維束の前耐炎化処理された各々の端部分を重ね合わせエアー絡合を施し一体集合化した。一体集合化した部分の長さは0.5mであった。   Next, at 0.5 m from this connection part, the flat tow form per one is regulated to 76, and each end part subjected to the pre-flame resistance treatment of six adjacent acrylonitrile-based precursor fiber bundles is overlapped. Combined air entangled and assembled together. The length of the integrally assembled part was 0.5 m.

次いで、上記の接続・一体集合化したアクリロニトリル系前駆体繊維束集合体を220〜270℃の熱風が循環している耐炎化炉中にて、工程張力136×10-3cN/dtexにして、アクリロニトリル系前駆体繊維束及び途中の繊維束の収縮を制限しながら耐炎化処理を行った。耐炎化炉の両側に設置するロールとしては、フラットロールを使用した。 Next, in the flameproofing furnace in which hot air of 220 to 270 ° C. is circulated through the connected and integrally assembled acrylonitrile-based precursor fiber bundle assembly, the process tension is set to 136 × 10 −3 cN / dtex, The flameproofing treatment was performed while restricting the shrinkage of the acrylonitrile-based precursor fiber bundle and the fiber bundle on the way. Flat rolls were used as rolls installed on both sides of the flameproofing furnace.

その後、300〜700℃の温度分布を有する窒素雰囲気からなる前炭素化炉を通過させ、続いて1,000〜1,300℃の温度分布を有する窒素雰囲気からなる炭素化炉を通過させ、炭素繊維を製造した。   Then, it passes through the pre-carbonization furnace consisting of a nitrogen atmosphere having a temperature distribution of 300 to 700 ° C., and then passes through the carbonization furnace consisting of a nitrogen atmosphere having a temperature distribution of 1,000 to 1,300 ° C. A fiber was produced.

耐炎化工程及び炭素化工程の繊維束通過性は極めて良好であり、さらに得られた炭素繊維束の高次加工においても繊維束幅は極めて均一で、毛羽がなく品位の優れるものであった。   The fiber bundle passability in the flameproofing process and the carbonization process was extremely good, and the fiber bundle width was extremely uniform even in the high-order processing of the obtained carbon fiber bundle, and there was no fluff and excellent quality.

(実施例2)
一体集合化するアクリロニトリル系前駆体繊維束の数を3本としたこと以外は、実施例1と同様にして実施した。
(Example 2)
The same procedure as in Example 1 was performed except that the number of acrylonitrile-based precursor fiber bundles to be integrally assembled was three.

耐炎化工程及び炭素化工程の繊維束通過性は良好であり、さらに得られた炭素繊維束の高次加工においても繊維束幅は均一で、毛羽がなく品位の優れるものであった。   The fiber bundle permeability of the flameproofing process and the carbonization process was good, and the fiber bundle width was uniform even in high-order processing of the obtained carbon fiber bundle, and there was no fluff and excellent quality.

(実施例3)
扁平トウ形態を30としたこと以外は、実施例1と同様にして実施した。耐炎化工程及び炭素化工程の繊維束通過性は良好であり、さらに得られた炭素繊維束の高次加工においても繊維束幅は均一で、毛羽がなく品位の優れるものであった。
(Example 3)
It implemented similarly to Example 1 except having set the flat tow form to 30. The fiber bundle permeability of the flameproofing process and the carbonization process was good, and the fiber bundle width was uniform even in high-order processing of the obtained carbon fiber bundle, and there was no fluff and excellent quality.

(実施例4)
接続部より20mのところで、アクリロニトリル系前駆体繊維束の扁平トウ形態を76に規制しアクリロニトリル系前駆体繊維束の各々の端部分を重ね合わせエアー絡合を施し一体集合化したこと以外は、実施例1と同様に実施した。
Example 4
Except that the flat tow form of the acrylonitrile-based precursor fiber bundle is regulated to 76 at 20 m from the connecting portion, and each end portion of the acrylonitrile-based precursor fiber bundle is overlapped and subjected to air entanglement to form an integrated assembly. Performed as in Example 1.

耐炎化工程にてフィラメント切れが発生し耐炎化工程の繊維束通過性は若干不安定であった。   Filament breakage occurred in the flameproofing process, and the fiber bundle permeability in the flameproofing process was slightly unstable.

(実施例5)
ケンスCより焼成工程に投入中である、単繊維繊度1.0dtex、フィラメント数60,000のアクリロニトリル系前駆体繊維束の終末端を前耐炎化処理し密度1.36g/cm3とした。ケンスDより次回焼成予定である、単繊維繊度1.0dtex、フィラメント数60,000のアクリロニトリル系前駆体繊維束の先頭端を前耐炎化処理し密度1.36g/cm3とした。処理した長さは、1.0mである。
(Example 5)
The final end of an acrylonitrile-based precursor fiber bundle having a single fiber fineness of 1.0 dtex and a filament number of 60,000, which is being put into the firing process from Kens C, was subjected to a pre-flame resistance treatment to a density of 1.36 g / cm 3 . The leading end of an acrylonitrile-based precursor fiber bundle having a single fiber fineness of 1.0 dtex and a filament number of 60,000, which is scheduled to be fired next time from Kens D, was subjected to pre-flame resistance treatment to a density of 1.36 g / cm 3 . The treated length is 1.0 m.

上記ケンスAの終末端と、ケンスBの先頭端は、240℃の熱風が循環している耐炎化炉中にて136×10-3cN/dtexの張力下で70min耐炎化処理を施した。 The final end of the can A and the leading end of the can B were subjected to a flame resistance treatment for 70 minutes under a tension of 136 × 10 −3 cN / dtex in a flame resistance furnace in which hot air of 240 ° C. was circulating.

次いで、上記のケンスCの先頭端とケンスDの終末端とを相互に重ね合わせた後、この重ね合わせた部分の繊維束にエアー絡合を施し接続した。接続部の長さは0.5mであった。   Next, after the top end of the can C and the end end of the can D were overlapped with each other, the fiber bundle of the overlapped portion was subjected to air entanglement and connected. The length of the connection part was 0.5 m.

次いで、この接続部より、0.25mのところで、1本あたりの扁平トウ形態を95に規制し、6本の隣り合うアクリロニトリル系前駆体繊維束の前耐炎化処理された各々の端部分を重ね合わせエアー絡合を施し一体集合化した。一体集合化した部分の長さは、0.3m、交絡度は7m-1だった。 Next, at 0.25 m from this connecting portion, the flat tow form per one is restricted to 95, and each of the six adjacent acrylonitrile-based precursor fiber bundles subjected to the pre-flame resistance treatment is overlapped. Combined air entangled and assembled together. The length of the integrally assembled part was 0.3 m, and the degree of entanglement was 7 m −1 .

その他は実施例1と同様にして実施した。   Others were carried out in the same manner as in Example 1.

耐炎化工程及び炭素化工程の繊維束通過性は極めて良好であり、さらに得られた炭素繊維束の高次加工においても繊維束幅は極めて均一で、毛羽がなく品位の優れるものであった。   The fiber bundle passability in the flameproofing process and the carbonization process was extremely good, and the fiber bundle width was extremely uniform even in the high-order processing of the obtained carbon fiber bundle, and there was no fluff and excellent quality.

(実施例6)
一体集合化するアクリロニトリル系前駆体繊維束の数を3本としたこと以外は、実施例5と同様にして実施した。
(Example 6)
The same procedure as in Example 5 was performed except that the number of acrylonitrile-based precursor fiber bundles to be integrally assembled was three.

耐炎化工程及び炭素化工程の繊維束通過性は良好であり、さらに得られた炭素繊維束の高次加工においても繊維束幅は均一で、毛羽がなく品位の優れるものであった。   The fiber bundle permeability of the flameproofing process and the carbonization process was good, and the fiber bundle width was uniform even in high-order processing of the obtained carbon fiber bundle, and there was no fluff and excellent quality.

(比較例1)
単繊維繊度1.2dtex、フィラメント数50,000のアクリロニトリル系前駆体繊維束の終末端を前耐炎化処理し密度1.28g/cm3の耐炎繊維終末端にして焼成工程に投入中であるケンスEと、同じく単繊維繊度1.2dtex、フィラメント数50,000のアクリロニトリル系前駆体繊維束の先頭端を前耐炎化処理し密度1.28g/cm3の耐炎繊維先頭端にしてある次回焼成予定であるケンスFを用意した。
(Comparative Example 1)
Kens being put into the firing process by making the terminal ends of acrylonitrile-based precursor fiber bundles having a single fiber fineness of 1.2 dtex and a filament number of 50,000 into a flame resistant fiber having a density of 1.28 g / cm 3 by pre-flame resistance treatment E and the next firing schedule where the leading end of the acrylonitrile-based precursor fiber bundle having a single fiber fineness of 1.2 dtex and a filament number of 50,000 is subjected to a pre-flame resistance treatment to form a flame resistant fiber leading end having a density of 1.28 g / cm 3. Kens F was prepared.

上記耐炎繊維終末端と耐炎繊維先頭端は、240℃の熱風が循環している耐炎化炉中にて136×10-3cN/dtexの張力下で30min耐炎化処理を施した。 The flame-resistant fiber end and flame-resistant fiber leading end were subjected to a flame resistance treatment for 30 minutes under a tension of 136 × 10 −3 cN / dtex in a flame resistance furnace in which hot air at 240 ° C. was circulating.

その他は実施例1と同様にして実施した。   Others were carried out in the same manner as in Example 1.

耐炎化工程にて糸切れが生じてしまい、炭素繊維の製造が行えなかった。   The yarn breakage occurred in the flameproofing process, and carbon fiber could not be produced.

(比較例2)
アクリロニトリル系前駆体繊維束の扁平トウ形態の一体集合化を行わなかったこと以外は実施例1と同様に実施した。
(Comparative Example 2)
The same procedure as in Example 1 was performed except that the flat tow form of the acrylonitrile-based precursor fiber bundle was not integrated.

耐炎化工程にて糸切れが生じてしまい、炭素繊維の製造が行えなかった。糸切れ箇所を観察すると、撚りの部分であった。   The yarn breakage occurred in the flameproofing process, and carbon fiber could not be produced. When the yarn breakage portion was observed, it was a twisted portion.

(比較例3)
アクリロニトリル系前駆体繊維束の扁平トウ形態を19に規制し一体集合化したこと以外は、実施例1と同様に実施した。
(Comparative Example 3)
This was carried out in the same manner as in Example 1 except that the flat tow form of the acrylonitrile-based precursor fiber bundle was regulated to 19 and integrated.

耐炎化工程にて糸切れが生じてしまい、炭素繊維の製造が行えなかった。   The yarn breakage occurred in the flameproofing process, and carbon fiber could not be produced.

(比較例4)
一体集合化するアクリロニトリル系前駆体繊維束の本数を2本としたこと以外は、実施例1と同様にして実施した。
(Comparative Example 4)
This was carried out in the same manner as in Example 1 except that the number of acrylonitrile-based precursor fiber bundles to be integrally assembled was two.

耐炎化工程にて糸切れが生じてしまい、炭素繊維の製造が行えなかった。糸切れした部分は、撚りの部分であった。   The yarn breakage occurred in the flameproofing process, and carbon fiber could not be produced. The broken part was a twisted part.

(比較例5)
交絡度を20m-1にしたこと以外は、実施例5と同様にして実施した。
(Comparative Example 5)
The same operation as in Example 5 was performed except that the degree of entanglement was 20 m −1 .

耐炎化工程及び炭素化工程の繊維束通過性は極めて良好であり、さらに得られた炭素繊維束の高次加工においても繊維束幅は極めて均一であったが、分繊時に毛羽が発生し品位の優れるものではなかった。   The fiber bundle passage through the flameproofing process and the carbonization process is extremely good, and the fiber bundle width was extremely uniform even in the high-order processing of the obtained carbon fiber bundle, but fluff was generated during splitting and the quality It was not excellent.

(比較例6)
交絡度を0.1m-1にしたこと以外は、実施例5と同様にして実施した。
(Comparative Example 6)
The same operation as in Example 5 was performed except that the degree of entanglement was 0.1 m −1 .

耐炎化工程にてフィラメント切れが発生し耐炎化工程の繊維束通過性は若干不安定であった。   Filament breakage occurred in the flameproofing process, and the fiber bundle permeability in the flameproofing process was slightly unstable.

本発明のアクリル系繊維糸条を製造する際に、好適に用いられるエアー交絡装置の概略を示す、糸条の軸方向に直交する断面図である。It is sectional drawing orthogonal to the axial direction of a yarn which shows the outline of the air entanglement apparatus used suitably when manufacturing the acrylic fiber yarn of this invention.

符号の説明Explanation of symbols

1 エアー交絡装置
2 糸道
2a 上壁部
2b 下壁部
3 アクリル系繊維糸条
4 均圧室
4a 流体導入口
5 均圧室
5a 流体導入口
6 流体噴射孔
DESCRIPTION OF SYMBOLS 1 Air entanglement apparatus 2 Yarn path 2a Upper wall part 2b Lower wall part 3 Acrylic fiber yarn 4 Pressure equalizing chamber 4a Fluid introduction port 5 Equalization chamber 5a Fluid introduction port 6 Fluid injection hole

Claims (1)

フィラメント数が49,000以上であるアクリロニトリル系前駆体繊維束を焼成する工程において、
(a)繊維束の終末端と、もう一つ別な繊維束の先頭端を予め、前耐炎化処理として密度1.30g/cm3以上にする工程と、
(b)前記繊維束の終末端と、前記もう一つ別な繊維束の先頭端を接続する工程と、
(c)前記接続された結部から後ろのある領域を、繊維束断面形状を幅/厚み比で30〜120となるように規定された扁平トウ形状とし、さらに、並列して焼成せられる該規定された繊維束を少なくとも3本を、フィラメント間の、フックドロップ法による交絡度が1m-1〜10m-1の範囲となるように交絡させて一体集合化する工程と
により形成された接続領域により、その接続領域より後方に位置するそれぞれのアクリロニトリル系前駆体繊維束に撚りの混入がない状態にして、繊維束を酸化性雰囲気中200〜300℃で耐炎化処理し、さらに前記耐炎化処理された繊維束を、不活性雰囲気中1,000℃以上で炭素化処理することを特徴とする炭素繊維束の製造方法。
In the step of firing the acrylonitrile-based precursor fiber bundle having a filament number of 49,000 or more,
(A) a step of preliminarily making the final end of the fiber bundle and the leading end of another fiber bundle a density of 1.30 g / cm 3 or more as a pre-flame resistance treatment;
(B) connecting a terminal end of the fiber bundle and a leading end of the another fiber bundle;
(C) A region behind the connected joint is formed into a flat tow shape in which the fiber bundle cross-sectional shape is defined as 30 to 120 in the width / thickness ratio, and further fired in parallel. prescribed at least three fiber bundles, between the filaments, connections area confounding degree is formed by the steps of integrally grouped by entangling so that the range of 1 m -1 through 10m -1 by hook drop method Thus, each acrylonitrile-based precursor fiber bundle positioned behind the connection region is made in a state in which no twist is mixed, and the fiber bundle is subjected to a flame resistance treatment at 200 to 300 ° C. in an oxidizing atmosphere, and the flame resistance treatment is further performed. The carbon fiber bundle is carbonized at 1,000 ° C. or higher in an inert atmosphere.
JP2006333315A 2006-12-11 2006-12-11 Method for producing carbon fiber bundle Pending JP2008144307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006333315A JP2008144307A (en) 2006-12-11 2006-12-11 Method for producing carbon fiber bundle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006333315A JP2008144307A (en) 2006-12-11 2006-12-11 Method for producing carbon fiber bundle

Publications (1)

Publication Number Publication Date
JP2008144307A true JP2008144307A (en) 2008-06-26

Family

ID=39604784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006333315A Pending JP2008144307A (en) 2006-12-11 2006-12-11 Method for producing carbon fiber bundle

Country Status (1)

Country Link
JP (1) JP2008144307A (en)

Similar Documents

Publication Publication Date Title
JP3722323B2 (en) Carbon fiber, manufacturing method and manufacturing apparatus thereof
WO2010053170A1 (en) Fiber bundle with pieced part, process for producing same, and process for producing carbon fiber
US5908290A (en) Heat treatment furnace for fiber
JP3833654B2 (en) Carbon fiber manufacturing apparatus and manufacturing method thereof
JPS5846122A (en) Continuous process for producing carbon fiber
JP2008144307A (en) Method for producing carbon fiber bundle
JP2005060871A (en) Method for producing flame-proofed fiber and method for producing carbon fiber
JP5515957B2 (en) Carbon fiber manufacturing method
JP5515652B2 (en) A method for producing a carbon fiber having a yarn splicing joint and a yarn splicing joint.
JP3047695B2 (en) Carbon fiber production method
JP2010255168A5 (en)
JP2003055843A (en) Method for producing carbon fiber
JP2007314901A (en) Method for producing carbon fiber
JP4669343B2 (en) Method for producing flame resistant fiber
JP3890701B2 (en) Continuous carbon fiber manufacturing process
JP4592208B2 (en) Method for connecting fiber yarn and method for producing carbon fiber
US6007465A (en) Yarn guide roller
JP4408323B2 (en) Entangling device for carbon fiber precursor fiber bundle
JP2008019526A (en) Method for producing carbon fiber
JPH04214414A (en) Production of carbon fiber
JP2018031083A (en) Carbon fiber precursor acryl fiber bundle, production method thereof, and production method of carbon fiber bundle
JPS58208420A (en) Continuous production of carbon fiber
JP2003321160A (en) Fiber tow package, carbon fiber using the package, and manufacturing method for chopped fiber
JP2002294517A (en) Acrylic fiber yarn for producing carbon fiber yarn and method for producing the same
JP2004076174A (en) Method for producing carbon fiber