JP5514526B2 - Vehicle window glass manufacturing method - Google Patents

Vehicle window glass manufacturing method Download PDF

Info

Publication number
JP5514526B2
JP5514526B2 JP2009279945A JP2009279945A JP5514526B2 JP 5514526 B2 JP5514526 B2 JP 5514526B2 JP 2009279945 A JP2009279945 A JP 2009279945A JP 2009279945 A JP2009279945 A JP 2009279945A JP 5514526 B2 JP5514526 B2 JP 5514526B2
Authority
JP
Japan
Prior art keywords
vapor deposition
substrate
protective film
window glass
polycarbonate resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009279945A
Other languages
Japanese (ja)
Other versions
JP2011122196A5 (en
JP2011122196A (en
Inventor
倉内  利春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2009279945A priority Critical patent/JP5514526B2/en
Publication of JP2011122196A publication Critical patent/JP2011122196A/en
Publication of JP2011122196A5 publication Critical patent/JP2011122196A5/ja
Application granted granted Critical
Publication of JP5514526B2 publication Critical patent/JP5514526B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、ポリカーボネイト樹脂基板に、SiO2からなる耐摩耗性の高い硬質膜を形成する技術に関する。 The present invention relates to a technique for forming a hard film made of SiO 2 with high wear resistance on a polycarbonate resin substrate.

ポリカーボネイト樹脂(PC)は透明で機械的強度が高いことから、窓用の材料として適しているが、硬度が低いために、傷が付きやすいことが欠点であり、車両用の窓材として用いるための大きな障害となっている。
PCの表面硬化方法として、電子ビーム蒸着法により、PC表面に厚さ5μm〜6μmのSiO2蒸着膜を形成することが検討された。しかし、一般的な電子ビーム蒸着法の条件で形成されたSiO2蒸着膜は、ガラス並みの十分な硬度を有するが、膜の潤滑性が劣るため、テーバー摩耗による摩耗テストを行うと膜に曇り(ヘーズ)が生じる問題があった。
Polycarbonate resin (PC) is transparent and has high mechanical strength, so it is suitable as a material for windows. However, its hardness is low, so it has a drawback of being easily scratched and used as a window material for vehicles. Has become a major obstacle.
As a surface hardening method for PC, it was studied to form a SiO 2 vapor deposition film having a thickness of 5 μm to 6 μm on the PC surface by an electron beam vapor deposition method. However, SiO 2 deposited film formed under the conditions of general electron beam deposition has sufficient hardness as glass, but the film is inferior in lubricity. There was a problem of causing (haze).

特開2000−289153号公報JP 2000-289153 A

本発明は上記従来技術の不都合を解決するために創作されたものであり、その目的は、PC上にヘーズに対する耐性の高いSiO2膜を形成する点にある。 The present invention was created to solve the above-mentioned disadvantages of the prior art, and an object thereof is to form a SiO 2 film having high resistance to haze on a PC.

上記課題を解決するために、本発明は、真空雰囲気中にポリカーボネイト樹脂基板を配置し、前記真空雰囲気中に有機ケイ素化合物の気体を導入しながら、シリコン酸化物から成る蒸着材料を加熱して蒸気を発生させ、発生した蒸気を前記ポリカーボネイト樹脂基板上に到達させ、炭素を含有するシリコン酸化物薄膜から成る保護膜を形成し、前記保護膜を有する前記ポリカーボネイト樹脂基板から成る車両用窓ガラスを製造する車両用窓ガラス製造方法であって、前記ポリカーボネイト樹脂基板が配置された基板ホルダに交流電圧を印加しながら、炭素を含有する前記シリコン酸化物薄膜を形成する車両用窓ガラス製造方法である。 In order to solve the above-described problems, the present invention is directed to disposing a polycarbonate resin substrate in a vacuum atmosphere and heating a vapor deposition material made of silicon oxide while introducing a gas of an organosilicon compound into the vacuum atmosphere. And the generated vapor reaches the polycarbonate resin substrate to form a protective film made of a silicon oxide thin film containing carbon, and a vehicle window glass made of the polycarbonate resin substrate having the protective film is manufactured. A vehicle window glass manufacturing method for forming a silicon oxide thin film containing carbon while applying an AC voltage to a substrate holder on which the polycarbonate resin substrate is disposed.

本発明により、耐摩耗性に優れたポリカーボネイト樹脂基板の車両用窓ガラスを得ることができる。   By this invention, the window glass for vehicles of the polycarbonate resin substrate excellent in abrasion resistance can be obtained.

本発明に適用できる蒸着装置の一例An example of a vapor deposition apparatus applicable to the present invention 本発明に適用できる蒸着装置の他の例Other examples of vapor deposition apparatus applicable to the present invention 本発明の車両用窓ガラスを説明するための図The figure for demonstrating the window glass for vehicles of this invention HMDSOの分圧と保護膜中の炭素濃度の関係を説明するためのグラフGraph to explain the relationship between HMDSO partial pressure and carbon concentration in the protective film

図1、図2の符号11、12は、本発明の車両用窓ガラスの形成に使用できる第一、第二の蒸着装置であり、同じ部材には同じ符号を付して説明する。
第一、第二の蒸着装置11、12は、真空槽20をそれぞれ有しており、真空槽20の内部には、底壁側に蒸着源21が配置され、その上方位置に基板ホルダ23が配置されている。
基板ホルダ23には、PC基板(ポリカーボネイト樹脂基板)25が保持されており、蒸着源21内には、シリコン酸化物(SiO2)から成る蒸着材料22が配置されている。
Reference numerals 11 and 12 in FIGS. 1 and 2 are first and second vapor deposition apparatuses that can be used for forming the vehicle window glass according to the present invention.
The first and second vapor deposition apparatuses 11 and 12 each have a vacuum chamber 20, a vapor deposition source 21 is disposed on the bottom wall side inside the vacuum chamber 20, and a substrate holder 23 is disposed above the vapor deposition source 21. Has been placed.
The substrate holder 23 holds a PC substrate (polycarbonate resin substrate) 25, and a vapor deposition material 22 made of silicon oxide (SiO 2 ) is disposed in the vapor deposition source 21.

真空槽20には真空排気系28が接続されており、真空槽20内は所定圧力まで真空排気される。
真空槽20にはガス導入系29が接続されている。後述する蒸着方法による薄膜形成は、残留ガスから成る真空雰囲気中と、ガス導入系29から導入した所定のガス雰囲気から成る真空雰囲気中で行うことができ、本発明では、真空槽20内が所定圧力まで真空排気された後、ガス導入系29から有機ケイ素化合物ガスを導入し、真空槽20内を大気よりも低圧の有機ケイ素化合物ガス雰囲気にし、真空槽20に配置EBガン39から蒸着材料22に電子ビームを照射し、加熱して蒸着材料22の蒸気を放出させる。ここでは蒸着材料22として粒状のSiO2の塊が配置されている。
An evacuation system 28 is connected to the vacuum chamber 20, and the inside of the vacuum chamber 20 is evacuated to a predetermined pressure.
A gas introduction system 29 is connected to the vacuum chamber 20. Thin film formation by a vapor deposition method to be described later can be performed in a vacuum atmosphere consisting of residual gas and in a vacuum atmosphere consisting of a predetermined gas atmosphere introduced from the gas introduction system 29. In the present invention, the inside of the vacuum chamber 20 is predetermined. After being evacuated to a pressure, an organosilicon compound gas is introduced from the gas introduction system 29 to make the inside of the vacuum chamber 20 an organosilicon compound gas atmosphere having a pressure lower than that of the atmosphere. Are irradiated with an electron beam and heated to release vapor of the vapor deposition material 22. Here, a granular SiO 2 lump is disposed as the vapor deposition material 22.

基板ホルダ23と蒸着源21の間にはシャッター27が配置されており、蒸着源21から放出された蒸着材料22の蒸気はシャッター27に到達し、PC基板25表面には到達しない。   A shutter 27 is disposed between the substrate holder 23 and the vapor deposition source 21. The vapor of the vapor deposition material 22 released from the vapor deposition source 21 reaches the shutter 27 and does not reach the surface of the PC substrate 25.

第一の蒸着装置11では、基板ホルダ23にバイアス電源30が接続されており、基板ホルダ23に交流電圧を印加できるようにされている。ここではバイアス電源30内にはRF電源33とマッチングボックス34が配置されており、マッチングボックス34によってインピーダンスが調節された状態で、RF電源33から基板ホルダ23に交流電圧が印加され、その状態で蒸着材料22が加熱されてその蒸気が真空槽20内に放出された後、シャッター27を蒸着材料22とPC基板25の間から移動させ、PC基板25を蒸着材料22に対面させると、PC基板25の表面に、導入した有機ケイ素化合物由来の炭素を化学構造中に含有するシリコン酸化物の薄膜が形成される。   In the first vapor deposition apparatus 11, a bias power supply 30 is connected to the substrate holder 23 so that an AC voltage can be applied to the substrate holder 23. Here, an RF power source 33 and a matching box 34 are disposed in the bias power source 30, and an AC voltage is applied from the RF power source 33 to the substrate holder 23 in a state where the impedance is adjusted by the matching box 34. After the vapor deposition material 22 is heated and its vapor is released into the vacuum chamber 20, the shutter 27 is moved from between the vapor deposition material 22 and the PC substrate 25, and the PC substrate 25 faces the vapor deposition material 22. A thin film of silicon oxide containing carbon derived from the introduced organosilicon compound in the chemical structure is formed on the surface of 25.

バイアス電源30を動作させず、基板ホルダ23に交流電圧を印加しない場合でも、炭素を化学構造中に含有するシリコン酸化物の薄膜が形成される。   Even when the bias power supply 30 is not operated and no AC voltage is applied to the substrate holder 23, a silicon oxide thin film containing carbon in the chemical structure is formed.

他方、第二の蒸着装置12では、真空槽20にプラズマ化装置40が設けられており、真空槽20内に導入した有機ケイ素化合物の気体の一部をプラズマ化し、そのプラズマがPC基板25の表面に到達するように構成されている。   On the other hand, in the second vapor deposition apparatus 12, a plasma generator 40 is provided in the vacuum chamber 20, and a part of the organosilicon compound gas introduced into the vacuum chamber 20 is converted into plasma, and the plasma is generated on the PC substrate 25. It is configured to reach the surface.

プラズマ化装置40は、ここでは、RFコイル45と、RFコイル45にマッチングボックス44を介して接続されたRF電源43とで構成されており、RFコイル45は、真空槽20内で、基板ホルダ23と、蒸着源21内の蒸着材料22との間に配置され、シャッター27を開けると、RFコイル45で取り囲まれた領域を挟んで、PC基板25と蒸着材料22とが対面するように構成されている。   Here, the plasmification apparatus 40 includes an RF coil 45 and an RF power source 43 connected to the RF coil 45 via a matching box 44. The RF coil 45 is disposed in the vacuum chamber 20 with a substrate holder. 23 and the vapor deposition material 22 in the vapor deposition source 21. When the shutter 27 is opened, the PC substrate 25 and the vapor deposition material 22 face each other with the region surrounded by the RF coil 45 interposed therebetween. Has been.

RF電源43によってマッチングボックス44を介してRFコイル45に交流電圧を印加し、RFコイル45に交流電流を流すと、RFコイル45で取り囲まれた領域に交番磁界が形成され、RFコイル45で取り囲まれた領域に導入した反応ガスがプラズマにされる。
蒸着源21から放出された蒸着材料22の蒸気がRFコイル45で取り囲まれた領域を通過してPC基板25表面に到達すると、プラズマ内又はPC基板25の表面でプラズマと反応し、導入した有機ケイ素化合物由来の炭素を化学構造中に含有するシリコン酸化物が生成され、その薄膜がPC基板25上に形成される。
When an AC voltage is applied to the RF coil 45 via the matching box 44 by the RF power source 43 and an AC current is passed through the RF coil 45, an alternating magnetic field is formed in the region surrounded by the RF coil 45 and is surrounded by the RF coil 45. The reaction gas introduced into the region is turned into plasma.
When the vapor of the vapor deposition material 22 released from the vapor deposition source 21 passes through the region surrounded by the RF coil 45 and reaches the surface of the PC substrate 25, it reacts with the plasma in the plasma or on the surface of the PC substrate 25 and introduces the introduced organic material. A silicon oxide containing carbon derived from a silicon compound in the chemical structure is generated, and the thin film is formed on the PC substrate 25.

<実施例1>
図1の第一の蒸着装置11を用い、バイアス電源30を動作させず、ガス導入系29から気体状の有機ケイ素化合物を導入しながら蒸着源21から蒸着材料22の蒸気を放出させ、PC基板25表面に炭素含有SiO2薄膜から成る保護膜を形成した。
<Example 1>
The vapor deposition material 22 is discharged from the vapor deposition source 21 while introducing the gaseous organosilicon compound from the gas introduction system 29 without operating the bias power supply 30 using the first vapor deposition apparatus 11 of FIG. A protective film made of a carbon-containing SiO 2 thin film was formed on the surface of 25.

本実施例1及び下記実施例2、3では、用いた有機ケイ素化合物はHMDSO(ヘキサメチルジシロキサン)であり、それを加熱して発生した蒸気を真空槽20内に導入した(HMDSO反応性蒸着)。真空槽20内に酸素ガスは導入していない。
図3の符号1は、得られた車両用窓ガラスであり、PC基板25表面に、炭素含有SiO2薄膜から成る保護膜3が配置されている。
In this Example 1 and Examples 2 and 3 below, the organosilicon compound used was HMDSO (hexamethyldisiloxane), and steam generated by heating it was introduced into the vacuum chamber 20 (HMDSO reactive vapor deposition). ). No oxygen gas is introduced into the vacuum chamber 20.
Reference numeral 1 in FIG. 3 is the obtained window glass for a vehicle, and a protective film 3 made of a carbon-containing SiO 2 thin film is disposed on the surface of the PC substrate 25.

この車両用窓ガラス1の保護膜3表面に、「TABER摩耗試験機」MODEL5135(ダイトエレクトロン株式会社製)によって、荷重;500g、回転数;1000回の条件で試験用のホイールを当接させ、保護膜3の耐摩耗性試験を行い、ヘーズメータによってヘーズ(ヘーズ:曇りの測定結果、濁度)を測定した。
成膜条件と測定結果を下記表1に示す。下記実施例2、3と比較例の耐摩耗性試験と測定の条件は実施例1と同じである。
A test wheel is brought into contact with the surface of the protective film 3 of the vehicle window glass 1 under the conditions of a load: 500 g, a rotational speed: 1000 times, using a “TABER abrasion tester” MODEL5135 (manufactured by Daito Electron) The abrasion resistance test of the protective film 3 was performed, and haze (haze: measurement result of haze, turbidity) was measured with a haze meter.
The film formation conditions and measurement results are shown in Table 1 below. The wear resistance test and measurement conditions of Examples 2 and 3 below and the comparative example are the same as those of Example 1.

Figure 0005514526
Figure 0005514526

下記比較例と対比させると、SiO2の蒸着中にHMDSOを導入することによって、保護膜3の耐摩耗性が5%まで大幅に改善され、自動車用窓に適用可能なレベルに近い結果である。シリコン酸化物(SiO2)膜に含有される炭素がシリコン酸化物(SiO2)と強く結合し、シリコン酸化物間の結合強度を高めているためと考えられる。 In comparison with the following comparative example, by introducing HMDSO during the deposition of SiO 2 , the wear resistance of the protective film 3 is greatly improved to 5%, which is close to a level applicable to automobile windows. . This is presumably because the carbon contained in the silicon oxide (SiO 2 ) film is strongly bonded to the silicon oxide (SiO 2 ) to increase the bond strength between the silicon oxides.

<実施例2>
図1の第一の蒸着装置11を用い、基板ホルダー23にRF電力を印加しながら、真空槽20内にHMDSOを導入し、PC基板25の表面に保護膜3を形成した(RFバイアスイオンプレーティング)
成膜条件と測定結果を下記表2に示す。
<Example 2>
While applying RF power to the substrate holder 23 using the first vapor deposition device 11 of FIG. 1, HMDSO was introduced into the vacuum chamber 20 to form the protective film 3 on the surface of the PC substrate 25 (RF bias ion plate). Ting)
The film formation conditions and measurement results are shown in Table 2 below.

Figure 0005514526
Figure 0005514526

ヘーズが2.5%にまで低減しており、実施例1の反応性蒸着法よりも膜の耐摩耗性が改善されている。   The haze is reduced to 2.5%, and the wear resistance of the film is improved as compared with the reactive vapor deposition method of Example 1.

<実施例3>
図2の第二の蒸着装置12を用い、RFコイル45に通電しながら真空槽20内にHMDSOの気体を導入し、HMDSOのプラズマを生成しながら蒸着材料22を加熱してその蒸気を放出させ、PC基板25の表面に保護膜3を形成した(RF反応性蒸着(RFイオンプレーティング))。
成膜条件と測定結果を下記表3に示す。
<Example 3>
The HMDSO gas is introduced into the vacuum chamber 20 while energizing the RF coil 45 using the second vapor deposition apparatus 12 of FIG. 2, and the vapor deposition material 22 is heated while generating the HMDSO plasma to release the vapor. The protective film 3 was formed on the surface of the PC substrate 25 (RF reactive vapor deposition (RF ion plating)).
The film formation conditions and measurement results are shown in Table 3 below.

Figure 0005514526
Figure 0005514526

ヘーズが3.8%まで低減されており、実施例1の反応性蒸着法による車両用窓ガラス1よりも保護膜3の耐摩耗性が改善された。   The haze was reduced to 3.8%, and the wear resistance of the protective film 3 was improved as compared with the window glass 1 for a vehicle by the reactive vapor deposition method of Example 1.

<比較例>
第一の蒸着装置11を用い、バイアス電源30を動作させず、ガス導入系29から酸素ガスを導入しながら蒸着材料22を加熱してその蒸気を放出させ、PC基板25表面にSiO2薄膜を形成した。HMDSOガスは導入していない。
成膜条件と測定結果を下記表4に示す。
<Comparative example>
Using the first vapor deposition apparatus 11, without operating the bias power supply 30, the vapor deposition material 22 is heated while oxygen gas is introduced from the gas introduction system 29 to release the vapor, and a SiO 2 thin film is formed on the surface of the PC substrate 25. Formed. HMDSO gas is not introduced.
The film forming conditions and measurement results are shown in Table 4 below.

Figure 0005514526
Figure 0005514526

耐摩耗試験の結果、膜の曇り(ヘーズ)は30%に達し、自動車用窓ガラスには適さないことが分かる。   As a result of the abrasion resistance test, it can be seen that the haze of the film reaches 30%, which is not suitable for an automotive window glass.

なお、以上の本実施例1〜3ではHMDSOを用いたが、HMDSOに限定されるものではなく、HMDSO以外の有機ケイ素化合物の気体を真空槽20内に導入しながら保護膜3を形成しても、実施例1〜3と同じ成膜条件ではそれぞれ実施例1〜3と同様の耐摩耗性を有する保護膜3が得られる。   In addition, although HMDSO was used in the above Examples 1-3, it is not limited to HMDSO, and the protective film 3 is formed while introducing a gas of an organosilicon compound other than HMDSO into the vacuum chamber 20. In addition, the protective film 3 having the same wear resistance as in Examples 1 to 3 can be obtained under the same film forming conditions as in Examples 1 to 3.

HMDSOを真空槽20内に導入して保護膜3を形成する場合、真空雰囲気中に、HMDSOの気体に加えて酸素ガスも導入したところ、形成された保護膜は2時間の煮沸で密着性が悪化した。   In the case where the protective film 3 is formed by introducing HMDSO into the vacuum chamber 20, when the oxygen gas is also introduced into the vacuum atmosphere in addition to the gas of HMDSO, the formed protective film has adhesiveness after boiling for 2 hours. It got worse.

上記実施例3では、RFコイル45を用い、交番磁界によって導入した有機ケイ素化合物をプラズマ化したが、有機ケイ素化合物をプラズマ化するプラズマ化装置40は、RFコイル45を有するものに限定されるものではなく、例えば、真空槽内に配置した電極に交流電圧を印加して有機ケイ素化合物のプラズマを生成する装置でもよく、更に、その他の手段によって真空槽20内に導入した有機ケイ素化合物のプラズマを生成する装置であってもよい。
また、上記実施例では、ポリカーボネイト樹脂基板25の表面に保護膜3を形成したが、ポリカーボネイト樹脂基板25と保護膜3との間に、密着性を高める薄膜等、他の薄膜を配置してもよい。
In Example 3 described above, the RF coil 45 was used to convert the organosilicon compound introduced by the alternating magnetic field into plasma. However, the plasma generator 40 that converts the organosilicon compound into plasma is limited to the one having the RF coil 45. Instead, for example, an apparatus for generating an organosilicon compound plasma by applying an AC voltage to an electrode disposed in the vacuum chamber may be used. Further, the plasma of the organosilicon compound introduced into the vacuum chamber 20 by other means may be used. It may be a generating device.
Moreover, in the said Example, although the protective film 3 was formed in the surface of the polycarbonate resin substrate 25, even if it arrange | positions other thin films, such as a thin film which improves adhesiveness, between the polycarbonate resin substrate 25 and the protective film 3 Good.

<測定例>
次に、実施例と同様に、第一の蒸着装置11を用い、基板ホルダー23にRF電力を印加しながら真空槽20内にHMDSOを導入してPC基板25の表面にSiO2膜を形成する際に、PC基板25毎にHMDSOの導入量を変え、異なる真空槽20内のHMDSO分圧中で炭素含有量が異なる保護膜3を形成した。
HMDSO分圧値、形成された保護膜3中の炭素含有量、ヘーズ度の関係を下記表5に示す。HMDSO分圧値と炭素含有量の関係は図4のグラフにも示す。
<Measurement example>
Next, as in the example, using the first vapor deposition device 11, HMDSO is introduced into the vacuum chamber 20 while applying RF power to the substrate holder 23 to form a SiO 2 film on the surface of the PC substrate 25. At this time, the amount of HMDSO introduced was changed for each PC substrate 25, and the protective film 3 having different carbon contents was formed in the HMDSO partial pressures in the different vacuum chambers 20.
Table 5 below shows the relationship between the HMDSO partial pressure value, the carbon content in the formed protective film 3, and the haze degree. The relationship between the HMDSO partial pressure value and the carbon content is also shown in the graph of FIG.

Figure 0005514526
Figure 0005514526

表中、C濃度(mol%)は、保護膜の単位体積当たりの、(保護膜中の炭素原子数)/(保護膜中の炭素、酸素、Siの合計の原子数) の値である。
保護膜3の炭素濃度は高い方がヘーズが小さく、SiO2の蒸気によってSiO2の薄膜が形成できる範囲内で、シロキサン等の有機ケイ素化合物の分圧を大きくするのがよい。
In the table, the C concentration (mol%) is a value of (number of carbon atoms in the protective film) / (total number of atoms of carbon, oxygen, and Si in the protective film) per unit volume of the protective film.
Carbon concentration of the protective film 3 is higher the smaller haze, within the range that can be a thin film of SiO 2 is formed by the SiO 2 vapor, it is preferable to increase the partial pressure of the organic silicon compounds such as siloxane.

次に、本発明の上記実施例1で得られた保護膜3と、実施例2で、基板ホルダ23への投入電力(表中「RF Power」)をPC基板25毎に変えて形成した保護膜3の密着性を測定した。その測定結果を下記表6に示す。   Next, the protective film 3 obtained in the first embodiment of the present invention and the protection film formed by changing the input power (“RF Power” in the table) to the substrate holder 23 for each PC substrate 25 in the second embodiment. The adhesion of the film 3 was measured. The measurement results are shown in Table 6 below.

Figure 0005514526
Figure 0005514526

「初期密着性」は、温水又は沸騰水に浸漬する前の密着性であり、「煮沸」は、沸騰水に2時間浸漬した後の密着性であり、「耐水性」は、60℃の温水に150時間浸漬した後の密着性を示している。
密着性の測定は、保護膜3に切れ目を形成して粘着シートを貼付した後、粘着シートを引き剥がしたときに保護膜3がPC基板25から剥離した場合を×とし、PC基板25上に残った場合を○として記載した。
“Initial adhesion” is adhesion before immersion in warm water or boiling water, “boiling” is adhesion after immersion in boiling water for 2 hours, and “water resistance” is 60 ° C. warm water. Shows the adhesion after being immersed in 150 hours.
In the measurement of adhesion, a case where the protective film 3 is peeled off from the PC board 25 when the adhesive sheet is peeled off after forming a cut in the protective film 3 is pasted on the PC board 25. The case where it remained was described as ◯.

表に記載した結果から、保護膜3が煮沸に対する耐性を必要とする場合は、基板ホルダ23には、PC基板25の成膜面(PC基板25の片面)の単位面積1cm2当たり0.1W(0.1W/cm2)以上の交流電力を投入することが望ましいことが分かる。 From the results shown in the table, when the protective film 3 requires resistance to boiling, the substrate holder 23 has 0.1 W per 1 cm 2 of unit area of the film formation surface of the PC substrate 25 (one surface of the PC substrate 25). It can be seen that it is desirable to input AC power of (0.1 W / cm 2 ) or more.

22……シリコン酸化物(蒸着材料)
23……基板ホルダ
25……ポリカーボネイト樹脂基板
22 …… Silicon oxide (deposition material)
23 …… Substrate holder 25 …… Polycarbonate resin substrate

Claims (1)

真空雰囲気中にポリカーボネイト樹脂基板を配置し、
前記真空雰囲気中に有機ケイ素化合物の気体を導入しながら、シリコン酸化物から成る蒸着材料を加熱して蒸気を発生させ、発生した蒸気を前記ポリカーボネイト樹脂基板上に到達させ、炭素を含有するシリコン酸化物薄膜から成る保護膜を形成し、前記保護膜を有する前記ポリカーボネイト樹脂基板から成る車両用窓ガラスを製造する車両用窓ガラス製造方法であって、
前記ポリカーボネイト樹脂基板が配置された基板ホルダに交流電圧を印加しながら、炭素を含有する前記シリコン酸化物薄膜を形成する車両用窓ガラス製造方法。


Place the polycarbonate resin substrate in a vacuum atmosphere,
While introducing an organic silicon compound gas into the vacuum atmosphere, the vapor deposition material made of silicon oxide is heated to generate vapor, and the generated vapor reaches the polycarbonate resin substrate to oxidize the silicon-containing silicon oxide. A vehicle window glass manufacturing method for manufacturing a vehicle window glass formed of a polycarbonate resin substrate having the protective film by forming a protective film made of a physical thin film ,
A vehicle window glass manufacturing method for forming the silicon oxide thin film containing carbon while applying an AC voltage to a substrate holder on which the polycarbonate resin substrate is disposed.


JP2009279945A 2009-12-09 2009-12-09 Vehicle window glass manufacturing method Active JP5514526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009279945A JP5514526B2 (en) 2009-12-09 2009-12-09 Vehicle window glass manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009279945A JP5514526B2 (en) 2009-12-09 2009-12-09 Vehicle window glass manufacturing method

Publications (3)

Publication Number Publication Date
JP2011122196A JP2011122196A (en) 2011-06-23
JP2011122196A5 JP2011122196A5 (en) 2012-11-29
JP5514526B2 true JP5514526B2 (en) 2014-06-04

Family

ID=44286362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009279945A Active JP5514526B2 (en) 2009-12-09 2009-12-09 Vehicle window glass manufacturing method

Country Status (1)

Country Link
JP (1) JP5514526B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5766172B2 (en) * 2012-11-15 2015-08-19 尾池工業株式会社 Heat ray shielding film
CN104561898A (en) * 2015-01-27 2015-04-29 大连爱瑞德纳米科技有限公司 Method for depositing wearing layer of glass window film and glass window film
JP6776528B2 (en) * 2015-12-07 2020-10-28 凸版印刷株式会社 Manufacturing method of gas barrier film

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06212430A (en) * 1991-03-28 1994-08-02 Mitsubishi Heavy Ind Ltd Formation of hardened protective film on surface of plastic substrate
JP4176538B2 (en) * 2003-04-17 2008-11-05 帝人化成株式会社 Polymer resin laminate and window material

Also Published As

Publication number Publication date
JP2011122196A (en) 2011-06-23

Similar Documents

Publication Publication Date Title
JP6085652B2 (en) Method for fixing to a layer made of amorphous carbon film and laminate
JP5966928B2 (en) Gas barrier film
US9564610B2 (en) Electronic device and method for manufacturing same
JPH08281861A (en) Gas barrier film
JP6642003B2 (en) Laminated films and flexible electronic devices
WO2012176824A1 (en) Method for inspecting laminated film and method for producing laminated film
WO2016052369A1 (en) Laminated film and flexible electronic device
Mu et al. Preparation and atomic oxygen erosion resistance of SiOx coating formed on polyimide film by plasma polymer deposition
JPWO2015111572A1 (en) Gas barrier film
JP4424033B2 (en) Deposition film by plasma CVD method
JP2015174270A (en) Film having gas barrier property
WO2013132889A1 (en) Chemical vapor deposited film formed by plasma chemical vapor deposition method
JP5514526B2 (en) Vehicle window glass manufacturing method
Wrobel et al. Remote Hydrogen Microwave Plasma Chemical Vapor Deposition of Amorphous Silicon Carbonitride (a‐SiCN) Coatings Derived From Tris (dimethylamino) Silane
JPWO2018168671A1 (en) Gas barrier film, gas barrier film, method of manufacturing gas barrier film, and method of manufacturing gas barrier film
Mittal et al. Adhesion in microelectronics
JPH0699536A (en) Gas barrier transparent conductive laminate and manufacture thereof
Wrobel et al. Amorphous silicon carbonitride thin‐film coatings produced by remote nitrogen microwave plasma chemical vapour deposition using organosilicon precursor
JP2014088016A (en) Gas barrier film
JP5159422B2 (en) Polyester resin container
Uznanski et al. Atomic hydrogen induced chemical vapor deposition of silicon oxycarbide thin films derived from diethoxymethylsilane precursor
Wrobel et al. Silicon oxycarbide films produced by remote microwave hydrogen plasma CVD using a tetramethyldisiloxane precursor: Growth kinetics, structure, surface morphology, and properties
JP2018052041A (en) Laminate
JP5595897B2 (en) Manufacturing method of resin products
RU2374358C1 (en) Method of carbon-bearing coating receiving

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121011

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130619

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140331

R150 Certificate of patent or registration of utility model

Ref document number: 5514526

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250