JP5513981B2 - Absorption heat pump - Google Patents

Absorption heat pump Download PDF

Info

Publication number
JP5513981B2
JP5513981B2 JP2010112595A JP2010112595A JP5513981B2 JP 5513981 B2 JP5513981 B2 JP 5513981B2 JP 2010112595 A JP2010112595 A JP 2010112595A JP 2010112595 A JP2010112595 A JP 2010112595A JP 5513981 B2 JP5513981 B2 JP 5513981B2
Authority
JP
Japan
Prior art keywords
temperature
dilute solution
low
absorber
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010112595A
Other languages
Japanese (ja)
Other versions
JP2011242016A (en
Inventor
修行 井上
智芳 入江
幸大 福住
Original Assignee
荏原冷熱システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荏原冷熱システム株式会社 filed Critical 荏原冷熱システム株式会社
Priority to JP2010112595A priority Critical patent/JP5513981B2/en
Publication of JP2011242016A publication Critical patent/JP2011242016A/en
Application granted granted Critical
Publication of JP5513981B2 publication Critical patent/JP5513981B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

本発明は吸収ヒートポンプに関し、特に昇温能力の向上を可能にしつつ適切なCOPで運転可能な吸収ヒートポンプに関する。   The present invention relates to an absorption heat pump, and more particularly, to an absorption heat pump that can be operated with an appropriate COP while allowing an increase in heating capability.

駆動熱源温度より高い温度の被加熱媒体を取り出す昇温型のヒートポンプである第二種吸収ヒートポンプには、被加熱媒体を利用価値の高い高温水又は高温蒸気として取り出すため、被加熱媒体の昇温幅を大きくするべく、吸収器を多段に構成した多段昇温型吸収ヒートポンプがある。多段昇温型吸収ヒートポンプの一例として、高温側吸収器及び低温側吸収器へ供給する冷媒蒸気を発生させる蒸発器を共通にし、高温側吸収器及び低温側吸収器の作動圧力を等しい圧力にして内圧の上昇を抑制した二段昇温型吸収ヒートポンプ(例えば、特許文献1参照。)や、高温側吸収器へ供給する冷媒蒸気を発生させる高温側蒸発器と、低温側吸収器へ供給する冷媒蒸気を発生させる低温側蒸発器とを個別に設け、高温側吸収器を低温側吸収器よりも高い圧力で作動させて、吸収液の結晶ライン付近への濃度上昇を抑制した二段昇温型吸収ヒートポンプ(例えば、特許文献2参照。)がある。   In the type 2 absorption heat pump, which is a temperature rising type heat pump that takes out a heated medium having a temperature higher than the driving heat source temperature, the temperature of the heated medium is increased because the heated medium is taken out as high-temperature water or high-temperature steam having high utility value. In order to increase the width, there is a multistage temperature rising type absorption heat pump in which absorbers are configured in multiple stages. As an example of a multi-stage temperature rising type absorption heat pump, a common evaporator is used to generate refrigerant vapor to be supplied to the high temperature side absorber and the low temperature side absorber, and the operating pressures of the high temperature side absorber and the low temperature side absorber are made equal. A two-stage temperature rising absorption heat pump (for example, refer to Patent Document 1) that suppresses an increase in internal pressure, a high temperature side evaporator that generates refrigerant vapor to be supplied to the high temperature side absorber, and a refrigerant to be supplied to the low temperature side absorber. A two-stage temperature rise type that separately installs a low-temperature side evaporator that generates steam and operates the high-temperature side absorber at a higher pressure than the low-temperature side absorber to suppress the concentration rise near the crystal line of the absorbent There exists an absorption heat pump (for example, refer patent document 2).

特開昭59−115952号公報(図2等)JP 59-115952 (FIG. 2 etc.) 特開2006−112686号公報(図6等)JP 2006-112686 A (FIG. 6 etc.)

しかしながら、特許文献1及び特許文献2に記載の二段昇温型吸収ヒートポンプでは、被加熱媒体を昇温できる幅が限定的であり、昇温能力が不足する場合があった。昇温能力を向上させるためには吸収器をさらに多段に構成することが考えられるが、吸収器を多段にするほど内圧又は結晶の問題が生ずるだけでなく、COP(成績係数)が低下してしまうという問題があった。   However, in the two-stage temperature rising type absorption heat pump described in Patent Document 1 and Patent Document 2, the range in which the medium to be heated can be raised is limited, and the temperature raising ability may be insufficient. In order to improve the temperature raising capability, it is conceivable to configure the absorber in multiple stages. However, as the number of absorbers is increased, not only the problem of internal pressure or crystals occurs, but also the COP (coefficient of performance) decreases. There was a problem that.

本発明は上述の課題に鑑み、昇温能力の向上を可能にしつつ適切なCOPで運転可能な吸収ヒートポンプを提供することを目的とする。   In view of the above-described problems, an object of the present invention is to provide an absorption heat pump that can be operated with an appropriate COP while enabling an increase in heating capability.

上記目的を達成するために、本発明の第1の態様に係る吸収ヒートポンプは、例えば図1に示すように、被加熱媒体Wの流路11を内部に有し、第1の吸収液Saが第1の冷媒蒸気Vrを吸収する際に発生する吸収熱で被加熱媒体Wを加熱する第1の吸収器10と;第1の吸収器10に第1の冷媒蒸気Vrを供給する蒸発器20と;第2の吸収液Sbが第2の冷媒蒸気Vsを吸収する際に発生する吸収熱で蒸発器20内の冷媒液Vfを加熱して第1の冷媒蒸気Vrを生成する、第1の吸収器10よりも作動温度が低い第2の吸収器30と;第1の吸収器10で第1の吸収液Saが第1の冷媒蒸気Vrを吸収して濃度が低下した第1の希溶液Swを導入し加熱して、第1の希溶液Swから冷媒を蒸発させて第1の吸収液Saを生成する高温再生器50と;第2の吸収器30で第2の吸収液Sbが第2の冷媒蒸気Vsを吸収して濃度が低下した第2の希溶液Svを導入し加熱して、第2の希溶液Svから冷媒を蒸発させて第2の吸収液Sbを生成する低温再生器60と;第1の吸収器10内の第1の希溶液Swを高温再生器50に導く第1の希溶液管16と;第1の希溶液管16に接続され、第1の希溶液管16を流れる第1の希溶液Swを直接的又は間接的に低温再生器60へ導く分岐管17と;第1の希溶液管16を流れる第1の希溶液Swを、高温再生器50へ流入させるのと、低温再生器60へ流入させるのとを切り替える切替弁18とを備える。低温再生器において第2の希溶液を加熱する加熱源は、典型的には、排熱が用いられる。   In order to achieve the above object, the absorption heat pump according to the first aspect of the present invention has a flow path 11 of the medium to be heated W inside, for example, as shown in FIG. A first absorber 10 that heats the medium W to be heated with absorption heat generated when absorbing the first refrigerant vapor Vr; and an evaporator 20 that supplies the first refrigerant vapor Vr to the first absorber 10. And the second absorbing liquid Sb heats the refrigerant liquid Vf in the evaporator 20 with the absorption heat generated when the second refrigerant vapor Vs absorbs the second refrigerant vapor Vs, thereby generating the first refrigerant vapor Vr. A second absorber 30 having an operating temperature lower than that of the absorber 10; a first dilute solution in which the first absorber Sa absorbs the first refrigerant vapor Vr in the first absorber 10 to reduce its concentration. High temperature regeneration in which Sw is introduced and heated to evaporate the refrigerant from the first dilute solution Sw to produce the first absorbent Sa 50; the second absorber Sb absorbs the second refrigerant vapor Vs in the second absorber 30 and the second dilute solution Sv having a reduced concentration is introduced and heated to heat the second dilute solution Sv. A low-temperature regenerator 60 that evaporates the refrigerant from the low-pressure regenerator 60 to generate the second absorbent Sb; a first dilute solution pipe 16 that guides the first dilute solution Sw in the first absorber 10 to the high-temperature regenerator 50; A branch pipe 17 connected to the first dilute solution pipe 16 and directing the first dilute solution Sw flowing through the first dilute solution pipe 16 directly or indirectly to the low-temperature regenerator 60; There is provided a switching valve 18 for switching between flowing the first dilute solution Sw flowing through the pipe 16 into the high temperature regenerator 50 and flowing into the low temperature regenerator 60. Exhaust heat is typically used as a heating source for heating the second dilute solution in the low-temperature regenerator.

このように構成すると、第1の希溶液を高温再生器へ流入させるのと低温再生器へ流入させるのとを切り替えることができ、ヒートポンプサイクルの状況に応じて昇温を重視する運転とCOPを重視する運転とを切り替えることができる。   If comprised in this way, it can switch between making a 1st dilute solution flow in into a high temperature regenerator, and letting it flow into a low temperature regenerator, and operation and COP which attach importance to temperature rising according to the situation of a heat pump cycle. It is possible to switch between important driving.

また、本発明の第2の態様に係る吸収ヒートポンプは、例えば図1に示すように、上記本発明の第1の態様に係る吸収ヒートポンプ1において、第1の吸収器10から導出される第1の希溶液Swの濃度を検出する第1の希溶液濃度検出手段95と;低温再生器60で生成された第2の吸収液Sbの濃度を検出する第2の吸収液濃度検出手段96と;第1の希溶液濃度検出手段95で検出された値が第2の吸収液濃度検出手段96で検出された値よりも小さいときに第1の希溶液Swの少なくとも一部を低温再生器60に導き、第1の希溶液濃度検出手段95で検出された値が第2の吸収液濃度検出手段96で検出された値以上のときに第1の希溶液Swの全部を高温再生器50に導くように、切替弁18を制御する制御装置99とを備える。   Further, the absorption heat pump according to the second aspect of the present invention is a first derived from the first absorber 10 in the absorption heat pump 1 according to the first aspect of the present invention as shown in FIG. First dilute solution concentration detecting means 95 for detecting the concentration of the dilute solution Sw; and second absorbing solution concentration detecting means 96 for detecting the concentration of the second absorbing solution Sb generated by the low temperature regenerator 60; When the value detected by the first dilute solution concentration detecting means 95 is smaller than the value detected by the second absorbing liquid concentration detecting means 96, at least a part of the first dilute solution Sw is transferred to the low temperature regenerator 60. Then, when the value detected by the first dilute solution concentration detecting means 95 is equal to or greater than the value detected by the second absorbing liquid concentration detecting means 96, all of the first dilute solution Sw is guided to the high temperature regenerator 50. And a control device 99 for controlling the switching valve 18.

このように構成すると、ヒートポンプサイクルの状況に応じた運転の切り替えを適切なタイミングで行うことが可能になる。   If comprised in this way, it will become possible to perform the switching of the operation | movement according to the condition of the heat pump cycle at an appropriate timing.

また、本発明の第3の態様に係る吸収ヒートポンプは、例えば図1に示すように、上記本発明の第1の態様又は第2の態様に係る吸収ヒートポンプ1において、第2の吸収器30で発生した吸収熱を、直接的又は間接的に高温再生器50内に搬送する吸収熱搬送手段51を備える。   Moreover, the absorption heat pump which concerns on the 3rd aspect of this invention is a 2nd absorber 30 in the absorption heat pump 1 which concerns on the said 1st aspect or this 2nd aspect of this invention, for example, as shown in FIG. Absorbing heat transfer means 51 for transferring the generated absorbed heat directly or indirectly into the high temperature regenerator 50 is provided.

このように構成すると、昇温の幅を大きくすることができる。   If comprised in this way, the range of temperature rise can be enlarged.

また、本発明の第4の態様に係る吸収ヒートポンプは、例えば図1に示すように、上記本発明の第1の態様乃至第3の態様のいずれか1つの態様に係る吸収ヒートポンプ1において、第2の吸収器30に導入される第2の吸収液Sbのうち、第2の冷媒蒸気Vsを吸収する第2の吸収液Sbの流量を調節する吸収液流量調節手段35、35vを備える。   Moreover, the absorption heat pump according to the fourth aspect of the present invention includes an absorption heat pump 1 according to any one of the first to third aspects of the present invention, as shown in FIG. Among the second absorbing liquid Sb introduced into the second absorber 30, absorbing liquid flow rate adjusting means 35, 35v for adjusting the flow rate of the second absorbing liquid Sb that absorbs the second refrigerant vapor Vs are provided.

このように構成すると、第1の冷媒蒸気の生成量に関係する第2の吸収器で発生する吸収熱の量を調節することができ、ひいては高温再生器に投入される熱量を調節することができ、高温再生器における吸収液の結晶を回避することが可能になる。   With this configuration, it is possible to adjust the amount of heat absorbed by the second absorber related to the amount of first refrigerant vapor generated, and thus to adjust the amount of heat input to the high-temperature regenerator. This makes it possible to avoid crystallization of the absorbing solution in the high-temperature regenerator.

本発明によれば、第1の希溶液を高温再生器へ流入させるのと低温再生器へ流入させるのとを切り替えることができ、ヒートポンプサイクルの状況に応じて昇温を重視する運転とCOPを重視する運転とを切り替えることができる。   According to the present invention, the first dilute solution can be switched between flowing into the high-temperature regenerator and flowing into the low-temperature regenerator, and the operation and COP that place importance on the temperature rise according to the state of the heat pump cycle. It is possible to switch between important driving.

本発明の実施の形態に係る吸収ヒートポンプの模式的系統図である。1 is a schematic system diagram of an absorption heat pump according to an embodiment of the present invention. 本発明の実施の形態に係る吸収ヒートポンプのデューリング線図である。It is a Duhring diagram of the absorption heat pump concerning an embodiment of the invention. 参考例に係る三段昇温型吸収ヒートポンプのデューリング線図である。(a)はシリーズフローのもの、(b)はパラレルフローのものを示す。It is a Duhring diagram of the three-step temperature rising type absorption heat pump which concerns on a reference example. (A) shows a series flow, and (b) shows a parallel flow. 本発明の実施の形態に係る吸収ヒートポンプの別の状態におけるデューリング線図である。(a)は高温希溶液を低温再生器へ流入させつつ高温再生器へ熱を投入した状態のもの、(b)高温希溶液を低温再生器へ流入させつつ高温再生器へ熱を投入しない状態のものの図である。It is a Duhring diagram in another state of an absorption heat pump concerning an embodiment of the invention. (A) is a state where heat is supplied to the high temperature regenerator while flowing the high temperature dilute solution into the low temperature regenerator, and (b) is a state where heat is not input to the high temperature regenerator while flowing the high temperature dilute solution into the low temperature regenerator. FIG. 本発明の実施の形態の変形例に係る吸収ヒートポンプの模式的系統図である。(a)は第1の変形例、(b)は第2の変形例の図である。It is a typical systematic diagram of the absorption heat pump which concerns on the modification of embodiment of this invention. (A) is a 1st modification, (b) is a figure of a 2nd modification.

以下、図面を参照して本発明の実施の形態について説明する。なお、各図において互いに同一又は相当する部材には同一あるいは類似の符号を付し、重複した説明は省略する。   Embodiments of the present invention will be described below with reference to the drawings. In the drawings, the same or similar members are denoted by the same or similar reference numerals, and redundant description is omitted.

まず図1を参照して、本発明の実施の形態に係る吸収ヒートポンプ1を説明する。図1は、吸収ヒートポンプ1の模式的系統図である。吸収ヒートポンプ1は、濃度方向及び圧力方向にそれぞれ昇温する三段昇温型の吸収ヒートポンプである。吸収ヒートポンプ1は、主要構成機器として、第1の吸収液としての高温濃溶液Saが第1の冷媒蒸気としての高温冷媒蒸気Vrを吸収する際の吸収熱で被加熱媒体Wを加熱する第1の吸収器としての高温吸収器10と、高温冷媒蒸気Vrを高温吸収器10に供給する蒸発器としての高温蒸発器20と、高温吸収器10よりも作動温度が低い第2の吸収器としての低温吸収器30と、第2の冷媒蒸気としての低温冷媒蒸気Vsを低温吸収器30に供給する低温蒸発器40と、高温濃溶液Saが高温冷媒蒸気Vrを吸収して濃度が低下した第1の希溶液としての高温希溶液Swを加熱濃縮して高温濃溶液Saを生成する高温再生器50と、低温吸収器30において第2の吸収液としての低温濃溶液Sbが低温冷媒蒸気Vsを吸収して濃度が低下した第2の希溶液としての低温希溶液Svを加熱濃縮して低温濃溶液Sbを生成する低温再生器60と、高温再生器50で高温希溶液Swから蒸発した冷媒と低温再生器60で低温希溶液Svから蒸発した冷媒とが混合した再生器冷媒蒸気Vgを冷却して凝縮させる凝縮器70とを備えている。   First, an absorption heat pump 1 according to an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic system diagram of the absorption heat pump 1. The absorption heat pump 1 is a three-stage temperature rising type absorption heat pump that raises the temperature in the concentration direction and the pressure direction, respectively. The absorption heat pump 1 is a first component that heats the heated medium W with heat absorbed when the high-temperature concentrated solution Sa as the first absorption liquid absorbs the high-temperature refrigerant vapor Vr as the first refrigerant vapor. A high-temperature absorber 10 as an absorber, a high-temperature evaporator 20 as an evaporator for supplying the high-temperature refrigerant vapor Vr to the high-temperature absorber 10, and a second absorber having a lower operating temperature than the high-temperature absorber 10. The low temperature absorber 30, the low temperature evaporator 40 that supplies the low temperature refrigerant vapor Vs as the second refrigerant vapor to the low temperature absorber 30, and the high temperature concentrated solution Sa absorbs the high temperature refrigerant vapor Vr and the first concentration is lowered. The high-temperature regenerator 50 that heat-concentrates the high-temperature dilute solution Sw as a dilute solution to produce a high-temperature concentrated solution Sa, and the low-temperature concentrated solution Sb as the second absorbent in the low-temperature absorber 30 absorbs the low-temperature refrigerant vapor Vs. The concentration drops The low temperature regenerator 60 that heat-concentrates the low temperature dilute solution Sv as the second dilute solution to generate the low temperature concentrated solution Sb, the refrigerant evaporated from the high temperature dilute solution Sw in the high temperature regenerator 50, and the low temperature regenerator 60 at low temperature. And a condenser 70 for cooling and condensing the regenerator refrigerant vapor Vg mixed with the refrigerant evaporated from the dilute solution Sv.

さらに、吸収ヒートポンプ1は、高温再生器50の内部を通過するように配設された吸収熱搬送手段としての冷媒蒸気熱源管51と、高温吸収器10で加熱された被加熱媒体Wを導入して気体の被加熱媒体Wである被加熱媒体蒸気Wvと液体の被加熱媒体Wである被加熱媒体液Wqとを分離する気液分離器80と、制御装置99とを備えている。吸収ヒートポンプ1は、本実施の形態では、比較的利用価値の低い低温(例えば80℃〜90℃程度)の排温水hを熱源媒体として低温再生器60及び低温蒸発器40に供給して、利用価値の高い蒸気Wv(例えば、圧力が約0.2MPa(ゲージ圧)を超え、望ましくは0.8MPa(ゲージ圧)程度)を気液分離器80から取り出すことができるものである。   Further, the absorption heat pump 1 introduces a refrigerant vapor heat source pipe 51 as absorption heat transfer means disposed so as to pass through the inside of the high-temperature regenerator 50 and the heated medium W heated by the high-temperature absorber 10. A gas-liquid separator 80 that separates a heated medium vapor Wv, which is a gaseous heated medium W, and a heated medium liquid Wq, which is a liquid heated medium W, and a control device 99. In the present embodiment, the absorption heat pump 1 supplies the low-temperature regenerator 60 and the low-temperature evaporator 40 with the low-temperature (for example, about 80 ° C. to 90 ° C.) waste water h having a relatively low utility value as a heat source medium. High-value steam Wv (for example, the pressure exceeds about 0.2 MPa (gauge pressure), desirably about 0.8 MPa (gauge pressure)) can be taken out from the gas-liquid separator 80.

なお、以下の説明においては、吸収液に関し、ヒートポンプサイクル上における区別を容易にするために、性状やヒートポンプサイクル上の位置に応じて「高温希溶液Sw」、「低温希溶液Sv」、「高温濃溶液Sa」、「低温濃溶液Sb」等と呼称するが、性状等を不問にするときは総称して「吸収液S」ということとする。同様に、冷媒に関し、ヒートポンプサイクル上における区別を容易にするために、性状やヒートポンプサイクル上の位置に応じて「高温冷媒蒸気Vr」、「低温冷媒蒸気Vs」、「再生器冷媒蒸気Vg」、「冷媒液Vf」等と呼称するが、性状等を不問にするときは総称して「冷媒V」ということとする。本実施の形態では、吸収液S(吸収剤と冷媒Vとの混合物)としてLiBr水溶液が用いられており、冷媒Vとして水(HO)が用いられている。また、被加熱媒体Wは、液体の被加熱媒体Wである被加熱媒体液Wq、気体の被加熱媒体である被加熱媒体蒸気Wv、被加熱媒体液Wqと被加熱媒体蒸気Wvとが混合した混合被加熱媒体Wmの総称である。本実施の形態では、被加熱媒体Wとして水(HO)が用いられている。 In the following description, in order to facilitate the distinction on the heat pump cycle with respect to the absorbing liquid, “high temperature dilute solution Sw”, “low temperature dilute solution Sv”, “high temperature dilute” depending on properties and positions on the heat pump cycle. Although they are referred to as “concentrated solution Sa”, “low temperature concentrated solution Sb”, etc., they are collectively referred to as “absorbing liquid S” when the properties are not questioned. Similarly, regarding the refrigerant, in order to facilitate the distinction on the heat pump cycle, “high temperature refrigerant vapor Vr”, “low temperature refrigerant vapor Vs”, “regenerator refrigerant vapor Vg”, depending on properties and positions on the heat pump cycle, Although it is referred to as “refrigerant liquid Vf” or the like, it is generally referred to as “refrigerant V” when the property or the like is not questioned. In the present embodiment, an LiBr aqueous solution is used as the absorbing liquid S (a mixture of the absorbent and the refrigerant V), and water (H 2 O) is used as the refrigerant V. The heated medium W is a heated medium liquid Wq which is a liquid heated medium W, a heated medium vapor Wv which is a gaseous heated medium, and the heated medium liquid Wq and the heated medium vapor Wv are mixed. A general term for the mixed medium Wm to be heated. In the present embodiment, water (H 2 O) is used as the heating medium W.

高温吸収器10は、被加熱媒体Wの流路を構成する加熱管11と、高温濃溶液Saを散布する高温濃溶液散布ノズル12を内部に有している。高温濃溶液散布ノズル12は、散布した高温濃溶液Saが加熱管11に降りかかるように、加熱管11の上方に配設されている。高温吸収器10は、高温濃溶液散布ノズル12から高温濃溶液Saが散布され、高温濃溶液Saが高温冷媒蒸気Vrを吸収する際に吸収熱を発生させる。この吸収熱を、加熱管11を流れる被加熱媒体Wが受熱して、被加熱媒体Wが加熱されるように構成されている。高温吸収器10の下部には、散布された高温濃溶液Saが高温冷媒蒸気Vrを吸収して濃度が低下した高温希溶液Swが貯留される貯留部13が形成されている。加熱管11は、高温希溶液Swに没入しないように、貯留部13よりも上方に配設されている。このようにすると、発生した吸収熱が加熱管11を流れる被加熱媒体Wに速やかに伝わり、吸収能力の回復を早めることができる。貯留部13には、貯留された高温希溶液Swの液位を検出する高温吸収器液位検出器14が配設されていると共に、高温希溶液Swを高温再生器50又は低温再生器60へ向けて導出する高温希溶液管16の一端が接続されている。高温希溶液管16には、高温吸収器10から導出される高温希溶液Swの濃度を検出する第1の希溶液濃度検出手段としての高温希溶液濃度検出器95が設けられている。なお、高温希溶液濃度検出器95は、貯留部13に設けられていてもよい。   The high-temperature absorber 10 includes a heating tube 11 that forms a flow path of the medium to be heated W and a high-temperature concentrated solution spray nozzle 12 that sprays the high-temperature concentrated solution Sa. The hot concentrated solution spray nozzle 12 is disposed above the heating tube 11 so that the sprayed hot concentrated solution Sa falls on the heating tube 11. The high temperature absorber 10 sprays the high temperature concentrated solution Sa from the high temperature concentrated solution spray nozzle 12 and generates heat of absorption when the high temperature concentrated solution Sa absorbs the high temperature refrigerant vapor Vr. The heated medium W flowing through the heating tube 11 receives this absorbed heat so that the heated medium W is heated. In the lower part of the high-temperature absorber 10, a storage part 13 is formed in which the high-temperature dilute solution Sw that has been dispersed by the dispersed high-temperature concentrated solution Sa absorbing the high-temperature refrigerant vapor Vr is stored. The heating tube 11 is disposed above the storage unit 13 so as not to be immersed in the hot dilute solution Sw. If it does in this way, generated absorbed heat will be quickly transmitted to the to-be-heated medium W which flows through the heating pipe | tube 11, and recovery | restoration of absorption capability can be accelerated. The storage unit 13 is provided with a high-temperature absorber liquid level detector 14 that detects the liquid level of the stored high-temperature dilute solution Sw, and the high-temperature dilute solution Sw is supplied to the high-temperature regenerator 50 or the low-temperature regenerator 60. One end of the hot dilute solution pipe 16 leading out is connected. The high temperature dilute solution tube 16 is provided with a high temperature dilute solution concentration detector 95 as a first dilute solution concentration detecting means for detecting the concentration of the high temperature dilute solution Sw derived from the high temperature absorber 10. The high-temperature dilute solution concentration detector 95 may be provided in the storage unit 13.

高温蒸発器20は、高温吸収器10に高温冷媒蒸気Vrを供給する構成部材である。高温蒸発器20は、冷媒液Vf及び高温冷媒蒸気Vrを収容する冷媒気液分離胴21と、冷媒液Vfを低温吸収器30の加熱管31に導く冷媒液供給管22と、加熱管31で冷媒液Vfが加熱されて生成された高温冷媒蒸気Vrあるいは高温冷媒蒸気Vrと冷媒液Vfとの冷媒気液混相を冷媒気液分離胴21まで案内する高温冷媒蒸気受入管24と、冷媒気液分離胴21内にて高温冷媒蒸気Vr中に含まれる冷媒Vの液滴を衝突分離させるバッフル板25と、冷媒気液分離胴21内の冷媒液Vfの液位を検出する高温蒸発器液位検出器26とを有し、加熱管31の内面を高温蒸発器20の伝熱面としている。また、高温蒸発器20には冷媒液Vfを導入する冷媒液管29が接続されている。冷媒液供給管22は、冷媒気液分離胴21の冷媒液Vfが貯留されている部分に一端が接続され、他端が加熱管31の一端に接続されている。高温冷媒蒸気受入管24は、冷媒気液分離胴21内の冷媒液Vfの最高液位とバッフル板25との間の高さに一端が位置するように配設され、他端が加熱管31の他端に接続されている。高温蒸発器液位検出器26は、冷媒液管29に配設された二方弁29vと信号ケーブルで接続されており、検出した冷媒液Vfの液位に応じて冷媒気液分離胴21内に導入する冷媒液Vfの流量を調節することができるように構成されている。なお、加熱管31の内部で冷媒液Vfが蒸気に変化して密度が大幅に減少するので、加熱管31を気泡ポンプとして機能させることで、冷媒液供給管22内で冷媒液Vfを圧送するポンプを省略することが可能となる。なお、冷媒液供給管22内に冷媒液Vfを圧送するポンプを設けてもよく、この場合、管内流量を最適化(管内二相流のかわき度の最適化)することで伝熱を改良することも可能となる。   The high temperature evaporator 20 is a component that supplies the high temperature refrigerant vapor Vr to the high temperature absorber 10. The high-temperature evaporator 20 includes a refrigerant gas-liquid separation cylinder 21 that stores the refrigerant liquid Vf and the high-temperature refrigerant vapor Vr, a refrigerant liquid supply pipe 22 that guides the refrigerant liquid Vf to the heating pipe 31 of the low-temperature absorber 30, and the heating pipe 31. A high-temperature refrigerant vapor receiving pipe 24 that guides the high-temperature refrigerant vapor Vr generated by heating the refrigerant liquid Vf or a refrigerant gas-liquid mixed phase of the high-temperature refrigerant vapor Vr and the refrigerant liquid Vf to the refrigerant gas-liquid separation cylinder 21; A baffle plate 25 that collides and separates the droplets of the refrigerant V contained in the high-temperature refrigerant vapor Vr in the separation cylinder 21, and a high-temperature evaporator liquid level that detects the liquid level of the refrigerant liquid Vf in the refrigerant gas-liquid separation cylinder 21. The inner surface of the heating tube 31 is used as the heat transfer surface of the high-temperature evaporator 20. The high-temperature evaporator 20 is connected to a refrigerant liquid pipe 29 for introducing the refrigerant liquid Vf. One end of the refrigerant liquid supply pipe 22 is connected to the portion of the refrigerant gas-liquid separation cylinder 21 where the refrigerant liquid Vf is stored, and the other end is connected to one end of the heating pipe 31. The high-temperature refrigerant vapor receiving pipe 24 is disposed so that one end is located at a height between the highest liquid level of the refrigerant liquid Vf in the refrigerant gas-liquid separation cylinder 21 and the baffle plate 25, and the other end is the heating pipe 31. Is connected to the other end. The high-temperature evaporator liquid level detector 26 is connected to a two-way valve 29v disposed in the refrigerant liquid pipe 29 by a signal cable, and the refrigerant gas-liquid separation cylinder 21 is provided in accordance with the detected liquid level of the refrigerant liquid Vf. It is comprised so that the flow volume of the refrigerant | coolant liquid Vf introduce | transduced into can be adjusted. Since the refrigerant liquid Vf changes to steam inside the heating pipe 31 and the density is significantly reduced, the refrigerant liquid Vf is pumped in the refrigerant liquid supply pipe 22 by causing the heating pipe 31 to function as a bubble pump. The pump can be omitted. A pump for pumping the refrigerant liquid Vf may be provided in the refrigerant liquid supply pipe 22, and in this case, the heat transfer is improved by optimizing the flow rate in the pipe (optimizing the degree of the two-phase flow in the pipe). It is also possible.

高温吸収器10と高温蒸発器20とは、相互に連通するように1つの缶胴内に形成されている。高温吸収器10と高温蒸発器20とが連通することにより、高温蒸発器20内の高温冷媒蒸気Vrを高温吸収器10に供給することができるように構成されている。高温吸収器10と高温蒸発器20とは、典型的には、高温濃溶液散布ノズル12より上方及びバッフル板25より上方で連通している。   The high temperature absorber 10 and the high temperature evaporator 20 are formed in one can body so as to communicate with each other. The high temperature absorber 10 and the high temperature evaporator 20 communicate with each other so that the high temperature refrigerant vapor Vr in the high temperature evaporator 20 can be supplied to the high temperature absorber 10. The high-temperature absorber 10 and the high-temperature evaporator 20 typically communicate with each other above the high-temperature concentrated solution spray nozzle 12 and above the baffle plate 25.

低温吸収器30は、冷媒液Vf及び高温冷媒蒸気Vrの流路を構成する加熱管31と、低温濃溶液Sbを散布する低温濃溶液散布ノズル32を内部に有している。加熱管31は、上述のように、一端に冷媒液供給管22が、他端に高温冷媒蒸気受入管24が、それぞれ接続されている。低温濃溶液散布ノズル32は、散布した低温濃溶液Sbが加熱管31に降りかかるように、加熱管31の上方に配設されている。低温濃溶液散布ノズル32には、低温濃溶液Sbを内部に流す低温濃溶液管38の一端が接続されている。低温吸収器30は、低温濃溶液散布ノズル32から低温濃溶液Sbが散布され、低温濃溶液Sbが低温冷媒蒸気Vsを吸収する際に生じる吸収熱により、加熱管31を流れる冷媒液Vfを加熱して高温冷媒蒸気Vrを生成することができるように構成されている。低温吸収器30は、高温吸収器10よりも低い圧力(露点温度)で作動するように構成されており、高温吸収器10よりも作動温度が低くなっている。低温吸収器30の下部には、散布された低温濃溶液Sbが低温冷媒蒸気Vsを吸収して濃度が低下した低温希溶液Svが貯留される貯留部33が形成されている。加熱管31は、貯留部33よりも上方に配設されている。貯留部33には、貯留された低温希溶液Svの液位を検出する低温吸収器液位検出器34が配設されていると共に、低温希溶液Svを低温再生器60へ向けて導出する低温希溶液管36の一端が接続されている。また、低温濃溶液管38には、内部を流れる低温濃溶液Sbを、低温濃溶液散布ノズル32をバイパスして加熱管31の下方に導くバイパス管35が接続されている。バイパス管35には、内部を流れる低温濃溶液Sbの流量を調節する流量調節弁35vが配設されている。バイパス管35及び流量調節弁35vは、吸収液流量調節手段の一形態である。   The low-temperature absorber 30 includes a heating pipe 31 that forms a flow path for the refrigerant liquid Vf and the high-temperature refrigerant vapor Vr, and a low-temperature concentrated solution spray nozzle 32 that sprays the low-temperature concentrated solution Sb. As described above, the heating pipe 31 has one end connected to the refrigerant liquid supply pipe 22 and the other end connected to the high-temperature refrigerant vapor receiving pipe 24. The low temperature concentrated solution spray nozzle 32 is disposed above the heating tube 31 so that the sprayed low temperature concentrated solution Sb falls on the heating tube 31. One end of a low-temperature concentrated solution tube 38 that allows the low-temperature concentrated solution Sb to flow inside is connected to the low-temperature concentrated solution spray nozzle 32. The low-temperature absorber 30 sprays the low-temperature concentrated solution Sb from the low-temperature concentrated solution spray nozzle 32, and heats the refrigerant liquid Vf flowing through the heating pipe 31 by heat absorbed when the low-temperature concentrated solution Sb absorbs the low-temperature refrigerant vapor Vs. Thus, the high-temperature refrigerant vapor Vr can be generated. The low temperature absorber 30 is configured to operate at a pressure (dew point temperature) lower than that of the high temperature absorber 10, and the operating temperature is lower than that of the high temperature absorber 10. In the lower part of the low-temperature absorber 30, a storage part 33 is formed in which the sprayed low-temperature concentrated solution Sb absorbs the low-temperature refrigerant vapor Vs to store the low-temperature dilute solution Sv having a reduced concentration. The heating tube 31 is disposed above the storage unit 33. The storage unit 33 is provided with a low-temperature absorber liquid level detector 34 for detecting the liquid level of the stored low-temperature dilute solution Sv, and a low temperature for deriving the low-temperature dilute solution Sv toward the low-temperature regenerator 60. One end of the dilute solution pipe 36 is connected. The low-temperature concentrated solution pipe 38 is connected to a bypass pipe 35 that guides the low-temperature concentrated solution Sb flowing through the low-temperature concentrated solution pipe 38 to the lower side of the heating pipe 31 by bypassing the low-temperature concentrated solution spray nozzle 32. The bypass pipe 35 is provided with a flow rate adjustment valve 35v for adjusting the flow rate of the low-temperature concentrated solution Sb flowing inside. The bypass pipe 35 and the flow rate adjusting valve 35v are one form of the absorbing liquid flow rate adjusting means.

低温蒸発器40は、熱源媒体としての排温水hの流路を構成する第1の熱源媒体管としての熱源管41と、冷媒液Vfを散布する冷媒液散布ノズル42とを内部に有している。冷媒液散布ノズル42は、散布した冷媒液Vfが熱源管41に降りかかるように、熱源管41の上方に配設されている。冷媒液散布ノズル42には、冷媒液Vfを内部に流す冷媒液管48の一端が接続されている。冷媒液管48には、冷媒液散布ノズル42に供給する冷媒液Vfの流量を調節する流量調節弁48vが配設されている。低温蒸発器40は、冷媒液散布ノズル42から冷媒液Vfが散布され、散布された冷媒液Vfが熱源管41内を流れる排温水hの熱で蒸発して低温冷媒蒸気Vsが発生するように構成されている。低温蒸発器40は、高温蒸発器20よりも低い圧力(露点温度)で作動するように構成されており、高温蒸発器20よりも作動温度が低くなっている。低温蒸発器40の下部には、凝縮器70から導入し散布された冷媒液Vfのうち蒸発しなかった冷媒液Vfが貯留される貯留部43が形成されている。貯留部43には、貯留されている冷媒液Vfを凝縮器70へと導く冷媒液管45が接続されている。熱源管41は、貯留部43よりも上方に配設されている。貯留部43には、貯留された冷媒液Vfの液位を検出する低温蒸発器液位検出器44が配設されている。低温蒸発器液位検出器44は、冷媒液管48に配設された流量調節弁48vと信号ケーブルで接続されており、検出した冷媒液Vfの液位に応じて低温蒸発器40に導入する冷媒液Vfの流量を調節することができるように構成されている。   The low-temperature evaporator 40 includes a heat source pipe 41 as a first heat source medium pipe that constitutes a flow path of the exhaust hot water h as a heat source medium, and a refrigerant liquid spray nozzle 42 that sprays the refrigerant liquid Vf. Yes. The refrigerant liquid spray nozzle 42 is disposed above the heat source pipe 41 so that the sprayed refrigerant liquid Vf falls on the heat source pipe 41. One end of a refrigerant liquid pipe 48 through which the refrigerant liquid Vf flows is connected to the refrigerant liquid spray nozzle 42. The refrigerant liquid pipe 48 is provided with a flow rate adjusting valve 48v for adjusting the flow rate of the refrigerant liquid Vf supplied to the refrigerant liquid spraying nozzle 42. In the low-temperature evaporator 40, the refrigerant liquid Vf is sprayed from the refrigerant liquid spray nozzle 42, and the sprayed refrigerant liquid Vf is evaporated by the heat of the exhausted hot water h flowing in the heat source pipe 41 to generate the low-temperature refrigerant vapor Vs. It is configured. The low temperature evaporator 40 is configured to operate at a pressure (dew point temperature) lower than that of the high temperature evaporator 20, and the operating temperature is lower than that of the high temperature evaporator 20. In the lower part of the low-temperature evaporator 40, a storage part 43 is formed in which the refrigerant liquid Vf that has not evaporated out of the refrigerant liquid Vf introduced and dispersed from the condenser 70 is stored. A refrigerant liquid pipe 45 that guides the stored refrigerant liquid Vf to the condenser 70 is connected to the storage unit 43. The heat source tube 41 is disposed above the storage unit 43. The storage unit 43 is provided with a low-temperature evaporator liquid level detector 44 that detects the liquid level of the stored refrigerant liquid Vf. The low-temperature evaporator liquid level detector 44 is connected to the flow rate adjusting valve 48v disposed in the refrigerant liquid pipe 48 by a signal cable, and is introduced into the low-temperature evaporator 40 according to the detected liquid level of the refrigerant liquid Vf. The flow rate of the refrigerant liquid Vf can be adjusted.

低温吸収器30と低温蒸発器40とは、相互に連通するように1つの缶胴内に形成されている。低温吸収器30と低温蒸発器40とが連通することにより、低温蒸発器40で発生した低温冷媒蒸気Vsを低温吸収器30に供給することができるように構成されている。低温吸収器30と低温蒸発器40とは、典型的には、低温濃溶液散布ノズル32より上方及び冷媒液散布ノズル42より上方で連通している。   The low temperature absorber 30 and the low temperature evaporator 40 are formed in one can body so as to communicate with each other. The low temperature absorber 30 and the low temperature evaporator 40 communicate with each other so that the low temperature refrigerant vapor Vs generated in the low temperature evaporator 40 can be supplied to the low temperature absorber 30. The low-temperature absorber 30 and the low-temperature evaporator 40 typically communicate with each other above the low-temperature concentrated solution spray nozzle 32 and above the refrigerant liquid spray nozzle 42.

高温再生器50は、冷媒蒸気熱源管51の一部が内部に配設されている。冷媒蒸気熱源管51は、高温再生器50内で開放されておらず、一端が高温蒸発器20の気相部に接続され、他端が凝縮器70に接続されており、高温蒸発器20内で高温冷媒蒸気Vrの形態の冷媒Vを受け入れ、高温再生器50で冷媒液Vfに形を変えたうえで凝縮器70内へと導くことができるように構成されている。冷媒蒸気熱源管51には、高温再生器50の外側で、内部を流れる高温冷媒蒸気Vrの流量を調節する冷媒蒸気熱源流量調節弁としての熱源流量調節弁51vが配設されている。高温再生器50は、高温希溶液Sw、あるいは低温再生器60で生成された低温濃溶液Sbを導入して散布する中間濃溶液散布ノズル52を有している。中間濃溶液散布ノズル52は、散布した高温希溶液Sw又は低温濃溶液Sbが冷媒蒸気熱源管51に降りかかるように、冷媒蒸気熱源管51の上方に配設されている。高温再生器50は、散布された高温希溶液Sw又は低温濃溶液Sbが冷媒蒸気熱源管51内を流れる高温冷媒蒸気Vrに加熱されることにより、吸収液Sから冷媒Vが蒸発して濃度が上昇した高温濃溶液Saが生成され、生成された高温濃溶液Saが下部に貯留されるように構成されている。   In the high temperature regenerator 50, a part of the refrigerant vapor heat source pipe 51 is disposed inside. The refrigerant vapor heat source pipe 51 is not opened in the high temperature regenerator 50, one end is connected to the gas phase part of the high temperature evaporator 20, and the other end is connected to the condenser 70. Then, the refrigerant V in the form of the high-temperature refrigerant vapor Vr is received, changed into the refrigerant liquid Vf by the high-temperature regenerator 50, and then introduced into the condenser 70. The refrigerant vapor heat source pipe 51 is provided with a heat source flow rate adjustment valve 51v as a refrigerant vapor heat source flow rate adjustment valve that adjusts the flow rate of the high temperature refrigerant vapor Vr flowing inside the high temperature regenerator 50 outside. The high temperature regenerator 50 has an intermediate concentrated solution spray nozzle 52 for introducing and spraying the high temperature dilute solution Sw or the low temperature concentrated solution Sb generated by the low temperature regenerator 60. The intermediate concentrated solution spray nozzle 52 is disposed above the refrigerant vapor heat source pipe 51 so that the sprayed hot dilute solution Sw or low temperature concentrated solution Sb falls on the refrigerant vapor heat source pipe 51. In the high-temperature regenerator 50, the sprayed high-temperature dilute solution Sw or low-temperature concentrated solution Sb is heated by the high-temperature refrigerant vapor Vr flowing in the refrigerant vapor heat source pipe 51, whereby the refrigerant V evaporates from the absorbent S and the concentration is increased. The elevated high temperature concentrated solution Sa is generated, and the generated high temperature concentrated solution Sa is stored in the lower part.

高温再生器50の高温濃溶液Saが貯留される部分と高温吸収器10の高温濃溶液散布ノズル12とは、高温濃溶液Saを流す高温濃溶液管55で接続されている。高温濃溶液管55には、高温再生器50の高温濃溶液Saを高温吸収器10に圧送する高温溶液ポンプ56が配設されている。高温溶液ポンプ56は、高温吸収器液位検出器14と信号ケーブルで接続されたインバータ56vを有しており、高温吸収器液位検出器14が検出する液位に応じて回転速度が調節されて高温吸収器10に圧送する高温濃溶液Saの流量を調節することができるように構成されている。中間濃溶液散布ノズル52と高温吸収器10の貯留部13とは、高温希溶液Swを流す高温希溶液管16で接続されている。高温濃溶液管55及び高温希溶液管16には、高温濃溶液Saと高温希溶液Swとの間で熱交換を行わせる高温溶液熱交換器58が配設されている。   The portion of the high temperature regenerator 50 in which the high temperature concentrated solution Sa is stored and the high temperature concentrated solution spray nozzle 12 of the high temperature absorber 10 are connected by a high temperature concentrated solution tube 55 through which the high temperature concentrated solution Sa flows. The high temperature concentrated solution tube 55 is provided with a high temperature solution pump 56 that pumps the high temperature concentrated solution Sa of the high temperature regenerator 50 to the high temperature absorber 10. The high temperature solution pump 56 has an inverter 56v connected to the high temperature absorber liquid level detector 14 by a signal cable, and the rotation speed is adjusted according to the liquid level detected by the high temperature absorber liquid level detector 14. Thus, the flow rate of the hot concentrated solution Sa pumped to the high temperature absorber 10 can be adjusted. The intermediate concentrated solution spray nozzle 52 and the storage unit 13 of the high-temperature absorber 10 are connected by a high-temperature dilute solution pipe 16 through which the high-temperature dilute solution Sw flows. The high temperature concentrated solution tube 55 and the high temperature diluted solution tube 16 are provided with a high temperature solution heat exchanger 58 that performs heat exchange between the high temperature concentrated solution Sa and the high temperature diluted solution Sw.

低温再生器60は、熱源媒体としての排温水hの流路を構成する第2の熱源媒体管としての熱源管61と、低温希溶液Sv又は混合希溶液Sxを散布する低混希溶液散布ノズル62とを有している。混合希溶液Sxは、高温希溶液Swと低温希溶液Svとが混合した吸収液である。本実施の形態では、低温蒸発器40の熱源管41を流れる排温水hと、低温再生器60の熱源管61を流れる排温水hとは同じ温水であり、熱源管41を流れた排温水hがその後熱源管61を流れるように配管(不図示)で接続されているが、各熱源管41、61に異なる熱源媒体が流れることとしてもよい。低混希溶液散布ノズル62は、散布した低温希溶液Sv又は混合希溶液Sxが熱源管61に降りかかるように、熱源管61の上方に配設されている。低温再生器60は、散布された低温希溶液Sv又は混合希溶液Sxが排温水hで加熱されることにより、吸収液Sから冷媒Vが蒸発して濃度が上昇した低温濃溶液Sbが生成され、生成された低温濃溶液Sbが下部に貯留されるように構成されている。低温再生器60の下部には、生成された低温濃溶液Sbを貯留する貯留部63が形成されている。貯留部63は、堰63sによって落下貯留部63aと越流貯留部63bとに分割されており、排温水hで加熱されることによって生成された低温濃溶液Sbが落下してまず落下貯留部63aに貯留され、落下貯留部63aに溜まって堰63sを超えた低温濃溶液Sbが越流貯留部63bに流入するように構成されている。   The low-temperature regenerator 60 includes a heat source pipe 61 as a second heat source medium pipe that constitutes a flow path of the exhaust hot water h as a heat source medium, and a low-mix dilute solution spray nozzle that sprays the low-temperature dilute solution Sv or the mixed dilute solution Sx. 62. The mixed dilute solution Sx is an absorbing solution in which the high temperature dilute solution Sw and the low temperature dilute solution Sv are mixed. In the present embodiment, the exhaust warm water h flowing through the heat source pipe 41 of the low temperature evaporator 40 and the exhaust warm water h flowing through the heat source pipe 61 of the low temperature regenerator 60 are the same hot water, and the exhaust warm water h flowing through the heat source pipe 41 is the same. Are connected by piping (not shown) so as to flow through the heat source pipe 61 thereafter, but different heat source media may flow through the heat source pipes 41 and 61. The low-mixed dilute solution spray nozzle 62 is disposed above the heat source pipe 61 so that the sprayed low-temperature dilute solution Sv or mixed dilute solution Sx falls on the heat source pipe 61. The low-temperature regenerator 60 generates a low-temperature concentrated solution Sb whose concentration has been increased by evaporating the refrigerant V from the absorbing solution S by heating the sprayed low-temperature diluted solution Sv or mixed diluted solution Sx with the exhaust hot water h. The generated low-temperature concentrated solution Sb is stored in the lower part. A storage part 63 for storing the generated low-temperature concentrated solution Sb is formed in the lower part of the low-temperature regenerator 60. The storage part 63 is divided into a drop storage part 63a and an overflow storage part 63b by a weir 63s, and the low temperature concentrated solution Sb generated by being heated by the exhausted hot water h falls and first falls storage part 63a. The low temperature concentrated solution Sb stored in the fall storage part 63a and exceeding the weir 63s is configured to flow into the overflow storage part 63b.

低温再生器60は、高温再生器50と同じ缶胴内に収容されている。本実施の形態では、缶胴の下部に高温再生器50が、上部に低温再生器60が配設されており、両者の間には熱源管61の下方及び側方を囲うように設けられた区画板64が配置されている。区画板64は、高温再生器50と低温再生器60とを完全に隔離するものではなく、両者は互いに連通していて概ね等しい圧力(露点温度)で作動するように構成されている。また、高温再生器50の気相部と低温再生器60の気相部とを連通する連通管67が設けられている。低温再生器60の落下貯留部63aと低温吸収器30の低温濃溶液散布ノズル32とは、低温濃溶液Sbを流す低温濃溶液管38で接続されている。低温濃溶液管38には、低温再生器60で生成された低温濃溶液Sbの濃度を検出する第2の吸収液濃度検出手段としての低温濃溶液濃度検出器96が設けられている。低温濃溶液濃度検出器96は、貯留部63に設けられていてもよい。また、低温濃溶液管38には、バイパス管35の接続部よりも上流側に、低温再生器60の低温濃溶液Sbを低温吸収器30に圧送する低温溶液ポンプ66が配設されている。低温溶液ポンプ66は、低温吸収器液位検出器34と信号ケーブルで接続されたインバータ66vを有しており、低温吸収器液位検出器34が検出する液位に応じて回転速度が調節され、低温吸収器30に向けて圧送される低温濃溶液Sbの流量を調節することができるように構成されている。低温再生器60の越流貯留部63bと、高温溶液熱交換器58の下流側の高温希溶液管16とは、中間濃溶液管57で接続されている。中間濃溶液管57には、流路を遮断可能な開閉弁57vが配設されている。   The low temperature regenerator 60 is accommodated in the same can body as the high temperature regenerator 50. In the present embodiment, a high-temperature regenerator 50 is disposed at the lower portion of the can body, and a low-temperature regenerator 60 is disposed at the upper portion, and is provided so as to surround the lower side and the side of the heat source pipe 61 therebetween. A partition plate 64 is disposed. The partition plate 64 does not completely separate the high-temperature regenerator 50 and the low-temperature regenerator 60, and both are in communication with each other and are configured to operate at substantially the same pressure (dew point temperature). In addition, a communication pipe 67 that communicates the gas phase portion of the high temperature regenerator 50 and the gas phase portion of the low temperature regenerator 60 is provided. The drop storage part 63a of the low temperature regenerator 60 and the low temperature concentrated solution spray nozzle 32 of the low temperature absorber 30 are connected by a low temperature concentrated solution pipe 38 through which the low temperature concentrated solution Sb flows. The low temperature concentrated solution tube 38 is provided with a low temperature concentrated solution concentration detector 96 as a second absorbent concentration detecting means for detecting the concentration of the low temperature concentrated solution Sb produced by the low temperature regenerator 60. The low-temperature concentrated solution concentration detector 96 may be provided in the storage unit 63. The low temperature concentrated solution pipe 38 is provided with a low temperature solution pump 66 that pumps the low temperature concentrated solution Sb of the low temperature regenerator 60 to the low temperature absorber 30 upstream of the connection portion of the bypass pipe 35. The low temperature solution pump 66 has an inverter 66v connected to the low temperature absorber liquid level detector 34 by a signal cable, and the rotation speed is adjusted according to the liquid level detected by the low temperature absorber liquid level detector 34. The flow rate of the low-temperature concentrated solution Sb pumped toward the low-temperature absorber 30 can be adjusted. The overflow reservoir 63 b of the low temperature regenerator 60 and the high temperature dilute solution pipe 16 on the downstream side of the high temperature solution heat exchanger 58 are connected by an intermediate concentrated solution pipe 57. The intermediate concentrated solution tube 57 is provided with an open / close valve 57v that can shut off the flow path.

低混希溶液散布ノズル62には、低温希溶液Sv又は混合希溶液Sxを内部に流す低混希溶液管37の一端が接続されており、低混希溶液管37の他端には、低温希溶液管36と分岐管17とが接続されている。分岐管17は、高温希溶液管16を流れる高温希溶液Swを、低温再生器60へ向かわせるように、中間濃溶液管57の接続部と高温溶液熱交換器58との間で高温希溶液管16から分岐した管である。高温希溶液管16及び分岐管17には、高温希溶液Swを高温再生器50へ向かわせるのと低温再生器60へ向かわせるのとを切り替える切替弁18が配設されている。本実施の形態では、切替弁18が、高温希溶液管16と分岐管17との接続部に配設された三方弁であるが、高温希溶液管16と分岐管17との接続部より下流側にそれぞれ二方弁を設けることとしてもよい。バイパス管35の接続部よりも上流側の低温濃溶液管38及び低温希溶液管36には、低温濃溶液Sbと低温希溶液Svとの間で熱交換を行わせる低温溶液熱交換器68が配設されている。   One end of a low-mixed dilute solution pipe 37 for flowing the low-temperature dilute solution Sv or the mixed dilute solution Sx is connected to the low-mixed dilute solution spray nozzle 62. The dilute solution pipe 36 and the branch pipe 17 are connected. The branch pipe 17 is a high-temperature dilute solution between the connection portion of the intermediate concentrated solution pipe 57 and the high-temperature solution heat exchanger 58 so that the high-temperature dilute solution Sw flowing in the high-temperature dilute solution pipe 16 is directed to the low-temperature regenerator 60. This is a pipe branched from the pipe 16. The high-temperature dilute solution pipe 16 and the branch pipe 17 are provided with a switching valve 18 for switching between directing the high-temperature dilute solution Sw toward the high-temperature regenerator 50 and the low-temperature regenerator 60. In the present embodiment, the switching valve 18 is a three-way valve disposed at the connection portion between the high temperature dilute solution pipe 16 and the branch pipe 17, but is downstream from the connection portion between the high temperature dilute solution pipe 16 and the branch pipe 17. A two-way valve may be provided on each side. The low temperature concentrated solution pipe 38 and the low temperature diluted solution pipe 36 upstream of the connection portion of the bypass pipe 35 are provided with a low temperature solution heat exchanger 68 that performs heat exchange between the low temperature concentrated solution Sb and the low temperature diluted solution Sv. It is arranged.

凝縮器70は、冷却媒体流路を形成する冷却水管71を有している。冷却水管71には、冷却媒体としての冷却水cが流れる。凝縮器70は、高温再生器50で発生した冷媒Vの蒸気と低温再生器60で発生した冷媒Vの蒸気とが混合した再生器冷媒蒸気Vgを導入し、これを冷却水cで冷却して凝縮させるように構成されている。冷却水管71は、再生器冷媒蒸気Vgを直接冷却することができるように、再生器冷媒蒸気Vgが凝縮した冷媒液Vfに浸らないように配設されている。凝縮器70には、凝縮した冷媒液Vfを高温蒸発器20及び低温蒸発器40に向けて送る冷媒液管75が接続されている。冷媒液管75は、高温蒸発器20に接続された冷媒液管29及び低温蒸発器40に接続された冷媒液管48に接続されており、凝縮器70内の冷媒液Vfを高温蒸発器20と低温蒸発器40とに分配することができるように構成されている。冷媒液管75には、冷媒液Vfを圧送するための凝縮器冷媒ポンプ76が配設されている。冷媒液管75と、冷媒液Vfを低温蒸発器40の貯留部43から凝縮器70へと導く冷媒液管45とには、凝縮器70に流入する冷媒液Vfと凝縮器70から流出した冷媒液Vfとの間で熱交換を行わせる冷媒液熱交換器78が配設されている。   The condenser 70 has a cooling water pipe 71 that forms a cooling medium flow path. The cooling water c as a cooling medium flows through the cooling water pipe 71. The condenser 70 introduces the regenerator refrigerant vapor Vg in which the vapor of the refrigerant V generated in the high temperature regenerator 50 and the vapor of the refrigerant V generated in the low temperature regenerator 60 are mixed, and cools it with the cooling water c. It is configured to condense. The cooling water pipe 71 is disposed so that the regenerator refrigerant vapor Vg is not immersed in the condensed refrigerant liquid Vf so that the regenerator refrigerant vapor Vg can be directly cooled. The condenser 70 is connected to a refrigerant liquid pipe 75 that sends the condensed refrigerant liquid Vf toward the high temperature evaporator 20 and the low temperature evaporator 40. The refrigerant liquid pipe 75 is connected to the refrigerant liquid pipe 29 connected to the high temperature evaporator 20 and the refrigerant liquid pipe 48 connected to the low temperature evaporator 40, and the refrigerant liquid Vf in the condenser 70 is transferred to the high temperature evaporator 20. And the low-temperature evaporator 40 can be distributed. The refrigerant liquid pipe 75 is provided with a condenser refrigerant pump 76 for pumping the refrigerant liquid Vf. A refrigerant liquid pipe 75 and a refrigerant liquid pipe 45 that guides the refrigerant liquid Vf from the storage portion 43 of the low-temperature evaporator 40 to the condenser 70 are connected to the refrigerant liquid Vf that flows into the condenser 70 and the refrigerant that flows out of the condenser 70. A refrigerant liquid heat exchanger 78 that performs heat exchange with the liquid Vf is disposed.

高温再生器50及び低温再生器60と凝縮器70とは、相互に連通するように1つの缶胴内に形成されている。高温再生器50及び低温再生器60と凝縮器70とが連通することにより、高温再生器50及び低温再生器60で発生した再生器冷媒蒸気Vgを凝縮器70に供給することができるように構成されている。高温再生器50及び低温再生器60と凝縮器70とは、上部の気相部で連通している。また、本実施の形態では、高温再生器50及び低温再生器60並びに凝縮器70が、高温吸収器10、高温蒸発器20、低温吸収器30、低温蒸発器40の下方に設けられている。   The high temperature regenerator 50, the low temperature regenerator 60, and the condenser 70 are formed in one can body so as to communicate with each other. The high temperature regenerator 50, the low temperature regenerator 60, and the condenser 70 communicate with each other, so that the regenerator refrigerant vapor Vg generated in the high temperature regenerator 50 and the low temperature regenerator 60 can be supplied to the condenser 70. Has been. The high temperature regenerator 50, the low temperature regenerator 60, and the condenser 70 communicate with each other in the upper gas phase portion. In the present embodiment, the high temperature regenerator 50, the low temperature regenerator 60, and the condenser 70 are provided below the high temperature absorber 10, the high temperature evaporator 20, the low temperature absorber 30, and the low temperature evaporator 40.

気液分離器80は、高温吸収器10の加熱管11を流れて加熱された被加熱媒体Wを導入し、被加熱媒体蒸気Wvと被加熱媒体液Wqとを分離する機器である。気液分離器80には、内部に貯留する被加熱媒体液Wqの液位を検出する気液分離器液位検出器81が設けられている。気液分離器80の下部と高温吸収器10の加熱管11の一端とは、被加熱媒体液Wqを加熱管11に導く被加熱媒体液管82で接続されている。被加熱媒体液管82には、被加熱媒体液Wqを加熱管11に向けて圧送する被加熱媒体ポンプ83が配設されている。内部が気相部となる気液分離器80の側面と加熱管11の他端とは、加熱された被加熱媒体Wを気液分離器80に導く加熱後被加熱媒体管84で接続されている。   The gas-liquid separator 80 is a device that introduces the heated medium W that flows through the heating tube 11 of the high-temperature absorber 10 and separates the heated medium vapor Wv and the heated medium liquid Wq. The gas-liquid separator 80 is provided with a gas-liquid separator liquid level detector 81 that detects the liquid level of the heated medium liquid Wq stored inside. The lower part of the gas-liquid separator 80 and one end of the heating pipe 11 of the high-temperature absorber 10 are connected by a heated medium liquid pipe 82 that guides the heated medium liquid Wq to the heating pipe 11. The heated medium liquid pipe 82 is provided with a heated medium pump 83 that pumps the heated medium liquid Wq toward the heated pipe 11. The side surface of the gas-liquid separator 80 whose inside is a gas phase portion and the other end of the heating tube 11 are connected by a heated medium tube 84 after heating that guides the heated medium W to the gas-liquid separator 80. Yes.

また、気液分離器80には、蒸気として系外に供給された分の被加熱媒体Wを補うための補給水Wsを系外から導入する補給水管85が接続されている。補給水管85には、気液分離器80に向けて補給水Wsを圧送する補給水ポンプ86と、逆止弁85cと、補給水Wsを温水で予熱する補給水熱交換器87とが、補給水Wsの流れ方向に向かってこの順に配設されている。補給水ポンプ86は、気液分離器液位検出器81と信号ケーブルで接続されており、気液分離器80内の被加熱媒体液Wqの液位に応じて発停が制御されるように構成されている。また、気液分離器80には、被加熱媒体蒸気Wvを系外に供給する被加熱媒体蒸気供給管89が上部(典型的には頂部)に接続されている。被加熱媒体蒸気供給管89には、系外に供給する被加熱媒体蒸気Wvの流量を調節することで気液分離器80内の圧力を調節する圧力調節弁89vが配設されている。気液分離器80には、内部の静圧を検出する気液分離器圧力センサ92が設けられている。圧力調節弁89vは、気液分離器圧力センサ92と信号ケーブルで接続されており、気液分離器圧力センサ92で検出された圧力に応じて開度を調節することができるように構成されている。   The gas-liquid separator 80 is connected to a makeup water pipe 85 that introduces makeup water Ws for supplementing the heated medium W supplied to the outside of the system as steam from outside the system. The make-up water pipe 85 is supplied with a make-up water pump 86 for pumping make-up water Ws toward the gas-liquid separator 80, a check valve 85c, and a make-up water heat exchanger 87 for preheating the make-up water Ws with warm water. It arrange | positions in this order toward the flow direction of water Ws. The make-up water pump 86 is connected to the gas-liquid separator liquid level detector 81 through a signal cable so that the start / stop is controlled according to the liquid level of the heated medium liquid Wq in the gas-liquid separator 80. It is configured. Further, the heated liquid vapor supply pipe 89 for supplying the heated medium vapor Wv to the outside of the system is connected to the upper part (typically the top) of the gas-liquid separator 80. The heated medium vapor supply pipe 89 is provided with a pressure adjustment valve 89v that adjusts the pressure in the gas-liquid separator 80 by adjusting the flow rate of the heated medium vapor Wv supplied outside the system. The gas-liquid separator 80 is provided with a gas-liquid separator pressure sensor 92 that detects an internal static pressure. The pressure control valve 89v is connected to the gas-liquid separator pressure sensor 92 through a signal cable, and is configured to be able to adjust the opening according to the pressure detected by the gas-liquid separator pressure sensor 92. Yes.

気液分離器80は、加熱管11内で被加熱媒体液Wqの一部が蒸発して被加熱媒体液Wqと被加熱媒体蒸気Wvとが混合した混合被加熱媒体Wmを導入してもよく、被加熱媒体液Wqのまま気液分離器80に導いて減圧し一部を気化させて混合被加熱媒体Wmとしたものを気液分離させるようにしてもよい。被加熱媒体液Wqを減圧気化するには、オリフィス等の絞り手段を用いることができる。加熱管11内で被加熱媒体液Wqの一部を蒸発させるか否かは、典型的には、被加熱媒体ポンプ83及び/又は補給水ポンプ86の吐出圧力を調節することにより、加熱管11内の圧力を被加熱媒体液Wqの温度に相当する飽和圧力よりも高くするか否かによって調節することができる。   The gas-liquid separator 80 may introduce a mixed heated medium Wm in which part of the heated medium liquid Wq is evaporated in the heating tube 11 and the heated medium liquid Wq and the heated medium vapor Wv are mixed. Alternatively, the heated medium liquid Wq may be guided to the gas-liquid separator 80, and the pressure may be reduced to partially vaporize the mixed heated medium Wm for gas-liquid separation. In order to vaporize the medium to be heated Wq under reduced pressure, a throttle means such as an orifice can be used. Whether or not a part of the heated medium liquid Wq is evaporated in the heating pipe 11 is typically determined by adjusting the discharge pressure of the heated medium pump 83 and / or the make-up water pump 86. The internal pressure can be adjusted by whether or not the internal pressure is higher than a saturation pressure corresponding to the temperature of the heated medium liquid Wq.

制御装置99は、吸収ヒートポンプ1の運転を制御する機器である。制御装置99は、凝縮器冷媒ポンプ76、被加熱媒体ポンプ83とそれぞれ信号ケーブルで接続されており、これらの発停や回転速度の調節を行うことができるように構成されている。これまでの説明では高温吸収器液位検出器14の出力を直接入力して制御されることとした高温溶液ポンプ56、低温吸収器液位検出器34の出力を直接入力して制御されることとした低温溶液ポンプ66、及び気液分離器液位検出器81の出力を直接入力して制御されることとした補給水ポンプ86も、制御装置99を介して(検出器の出力信号を一旦制御装置99に入力して)制御されることとしてもよい。また、制御装置99は、切替弁18、流量調節弁35v、開閉弁57v、熱源流量調節弁51vとそれぞれ信号ケーブルで接続されており、各弁の切り替え又は開閉動作あるいは開度を調節することができるように構成されている。これまでの説明では高温蒸発器液位検出器26の出力を直接入力して制御されることとした二方弁29v、低温蒸発器液位検出器44の出力を直接入力して制御されることとした流量調節弁48v、及び気液分離器圧力センサ92の出力を直接入力して制御されることとした圧力調節弁89vも、制御装置99を介して(検出器の出力信号を一旦制御装置99に入力して)制御されることとしてもよい。また、制御装置99は、高温希溶液濃度検出器95及び低温濃溶液濃度検出器96とそれぞれ信号ケーブルで接続されており、検出値のデータを受信することができるように構成されている。   The control device 99 is a device that controls the operation of the absorption heat pump 1. The control device 99 is connected to the condenser refrigerant pump 76 and the heated medium pump 83 via signal cables, respectively, and is configured to be able to start / stop and adjust the rotation speed. In the description so far, the output of the high-temperature absorber liquid level detector 14 is directly input and controlled, and the output of the high-temperature solution pump 56 and the low-temperature absorber liquid level detector 34 is directly input and controlled. The replenishing water pump 86 that is controlled by directly inputting the output of the low-temperature solution pump 66 and the gas-liquid separator liquid level detector 81 are also connected via the control device 99 (the output signal of the detector is temporarily set). It is good also as being controlled by inputting into the control apparatus 99. FIG. Further, the control device 99 is connected to the switching valve 18, the flow rate adjusting valve 35v, the on-off valve 57v, and the heat source flow rate adjusting valve 51v through signal cables, respectively, and can adjust the switching or opening / closing operation or opening degree of each valve. It is configured to be able to. In the description so far, the output of the high-temperature evaporator liquid level detector 26 is directly input and controlled. The two-way valve 29v and the output of the low-temperature evaporator liquid level detector 44 are directly input and controlled. The flow rate control valve 48v and the pressure control valve 89v that are controlled by directly inputting the output of the gas-liquid separator pressure sensor 92 are also connected via the control device 99 (the output signal of the detector is once controlled by the control device). It is also possible to be controlled (by inputting to 99). The control device 99 is connected to the high-temperature dilute solution concentration detector 95 and the low-temperature concentrated solution concentration detector 96 via signal cables, respectively, and is configured to receive detection value data.

引き続き図1を参照して、吸収ヒートポンプ1の作用を説明する。はじめに、切替弁18が高温希溶液Swを高温再生器50へ導くように設定され、開閉弁57vが閉じられており、熱源流量調節弁51vが開となっている状態の作用を説明する。まず、冷媒側のサイクルを説明する。凝縮器70では、高温再生器50及び低温再生器60で発生した再生器冷媒蒸気Vgを受け入れて、冷却水管71を流れる冷却水cで冷却して凝縮し、冷媒液Vfとする。凝縮した冷媒液Vfは、凝縮器冷媒ポンプ76で高温蒸発器20及び低温蒸発器40に向けて圧送される。凝縮器冷媒ポンプ76で圧送された冷媒液Vfは、冷媒液管75を流れた後、冷媒液管29と冷媒液管48とに分流され、冷媒液管29を流れる冷媒液Vfは冷媒気液分離胴21に導入され、冷媒液管48を流れる冷媒液Vfは冷媒液散布ノズル42から散布される。このとき、高温蒸発器20の冷媒気液分離胴21の下部に溜まった冷媒液Vfが所定の液位になるように、高温蒸発器液位検出器26の検出液位に応じて二方弁29vが制御され、低温蒸発器40の貯留部43内の冷媒液Vfが所定の液位になるように、低温蒸発器液位検出器44の検出液位に応じて流量調節弁48vが制御される。   With continued reference to FIG. 1, the operation of the absorption heat pump 1 will be described. First, the operation in a state in which the switching valve 18 is set to guide the hot dilute solution Sw to the high temperature regenerator 50, the on-off valve 57v is closed, and the heat source flow rate adjustment valve 51v is opened will be described. First, the refrigerant side cycle will be described. In the condenser 70, the regenerator refrigerant vapor Vg generated in the high temperature regenerator 50 and the low temperature regenerator 60 is received, cooled and condensed with the cooling water c flowing through the cooling water pipe 71, and the refrigerant liquid Vf is obtained. The condensed refrigerant liquid Vf is pumped by the condenser refrigerant pump 76 toward the high temperature evaporator 20 and the low temperature evaporator 40. The refrigerant liquid Vf pumped by the condenser refrigerant pump 76 flows through the refrigerant liquid pipe 75, and then is divided into the refrigerant liquid pipe 29 and the refrigerant liquid pipe 48. The refrigerant liquid Vf flowing through the refrigerant liquid pipe 29 is the refrigerant gas-liquid. The refrigerant liquid Vf introduced into the separation cylinder 21 and flowing through the refrigerant liquid pipe 48 is sprayed from the refrigerant liquid spray nozzle 42. At this time, the two-way valve according to the detected liquid level of the high-temperature evaporator liquid level detector 26 so that the refrigerant liquid Vf accumulated in the lower part of the refrigerant gas-liquid separation cylinder 21 of the high-temperature evaporator 20 becomes a predetermined liquid level. 29v is controlled, and the flow rate adjustment valve 48v is controlled according to the detected liquid level of the low temperature evaporator liquid level detector 44 so that the refrigerant liquid Vf in the storage unit 43 of the low temperature evaporator 40 becomes a predetermined liquid level. The

冷媒液散布ノズル42から散布された冷媒液Vfは、熱源管41内を流れる排温水hによって加熱され蒸発して低温冷媒蒸気Vsとなる。低温蒸発器40で発生した低温冷媒蒸気Vsは、低温蒸発器40と連通する低温吸収器30へと移動する。他方、冷媒気液分離胴21に導入された冷媒液Vfは、重力によって低温吸収器30の加熱管31に送られる。加熱管31に送られた冷媒液Vfは、低温吸収器30において、低温蒸発器40で発生して低温吸収器30に移動してきた低温冷媒蒸気Vsが低温濃溶液Sbに吸収される際に発生する吸収熱により加熱され、この加熱により蒸発して高温冷媒蒸気Vrとなる。加熱管31内で発生した高温冷媒蒸気Vrは、冷媒液Vfよりも密度が小さいために高温蒸発器20に向かって上昇し、高温冷媒蒸気受入管24を流れて冷媒気液分離胴21に至り、高温蒸発器20と連通する高温吸収器10へと移動する。さらに、冷媒気液分離胴21に到達した高温冷媒蒸気Vrの一部は冷媒蒸気熱源管51内に入り、高温再生器50内で、中間濃溶液散布ノズル52から散布された低温濃溶液Sbに熱を奪われて凝縮し、凝縮した冷媒液Vfは凝縮器70内に流入する。このように、冷媒蒸気熱源管51内の高温冷媒蒸気Vrは、特別な動力を要しないで凝縮器70へ向けて流れる。   The refrigerant liquid Vf sprayed from the refrigerant liquid spray nozzle 42 is heated and evaporated by the exhausted hot water h flowing in the heat source pipe 41 to become a low-temperature refrigerant vapor Vs. The low-temperature refrigerant vapor Vs generated in the low-temperature evaporator 40 moves to the low-temperature absorber 30 that communicates with the low-temperature evaporator 40. On the other hand, the refrigerant liquid Vf introduced into the refrigerant gas-liquid separation cylinder 21 is sent to the heating pipe 31 of the low-temperature absorber 30 by gravity. The refrigerant liquid Vf sent to the heating pipe 31 is generated in the low temperature absorber 30 when the low temperature refrigerant vapor Vs generated in the low temperature evaporator 40 and moved to the low temperature absorber 30 is absorbed by the low temperature concentrated solution Sb. It is heated by the absorbed heat, and evaporates by this heating to become high-temperature refrigerant vapor Vr. Since the high-temperature refrigerant vapor Vr generated in the heating pipe 31 has a lower density than the refrigerant liquid Vf, the high-temperature refrigerant vapor Vr rises toward the high-temperature evaporator 20 and flows through the high-temperature refrigerant vapor receiving pipe 24 to reach the refrigerant gas-liquid separation cylinder 21. Then, it moves to the high-temperature absorber 10 that communicates with the high-temperature evaporator 20. Further, part of the high-temperature refrigerant vapor Vr that has reached the refrigerant gas-liquid separation cylinder 21 enters the refrigerant vapor heat source pipe 51, and in the high-temperature regenerator 50, the low-temperature concentrated solution Sb sprayed from the intermediate concentrated solution spray nozzle 52. The condensed refrigerant liquid Vf is deprived of heat and flows into the condenser 70. Thus, the high-temperature refrigerant vapor Vr in the refrigerant vapor heat source pipe 51 flows toward the condenser 70 without requiring special power.

次に吸収ヒートポンプ1の吸収液側のサイクルを説明する。高温吸収器10では、高温濃溶液Saが高温濃溶液散布ノズル12から散布され、この散布された高温濃溶液Saが高温蒸発器20から移動してきた高温冷媒蒸気Vrを吸収する。高温冷媒蒸気Vrを吸収した高温濃溶液Saは、濃度が低下して高温希溶液Swとなる。高温吸収器10では、高温濃溶液Saが高温冷媒蒸気Vrを吸収する際に吸収熱が発生する。この吸収熱により、加熱管11を流れる被加熱媒体液Wqが加熱される。ここで、被加熱媒体蒸気Wvを取り出すための気液分離器80まわりの作用について説明する。   Next, the cycle on the absorption liquid side of the absorption heat pump 1 will be described. In the high-temperature absorber 10, the hot concentrated solution Sa is sprayed from the hot concentrated solution spray nozzle 12, and the sprayed hot concentrated solution Sa absorbs the high-temperature refrigerant vapor Vr that has moved from the high-temperature evaporator 20. The high temperature concentrated solution Sa that has absorbed the high temperature refrigerant vapor Vr is reduced in concentration to become a high temperature diluted solution Sw. In the high-temperature absorber 10, heat of absorption is generated when the high-temperature concentrated solution Sa absorbs the high-temperature refrigerant vapor Vr. The absorbed medium liquid Wq flowing through the heating tube 11 is heated by the absorbed heat. Here, the operation around the gas-liquid separator 80 for taking out the heated medium vapor Wv will be described.

気液分離器80には、系外から補給水Wsが補給水管85を介して導入される。補給水Wsは、補給水ポンプ86により補給水管85を圧送され、補給水熱交換器87で温度が上昇した後に気液分離器80に導入される。気液分離器80に導入された補給水Wsは、被加熱媒体液Wqとして気液分離器80の下部に貯留される。気液分離器80の下部に貯留される被加熱媒体液Wqが所定の液位になるように、補給水ポンプ86が制御される。気液分離器80の下部に貯留されている被加熱媒体液Wqは、被加熱媒体ポンプ83で高温吸収器10の加熱管11に送られる。加熱管11に送られた被加熱媒体液Wqは、高温吸収器10における上述の吸収熱により加熱される。加熱管11で加熱された被加熱媒体液Wqは、一部が蒸発して被加熱媒体蒸気Wvとなった混合被加熱媒体Wmとして、あるいは温度が上昇した被加熱媒体液Wqとして、気液分離器80に向けて加熱後被加熱媒体管84を流れる。加熱後被加熱媒体管84を、温度が上昇した被加熱媒体液Wqが流れる場合、被加熱媒体液Wqは、気液分離器80に導入される際に減圧され、一部が蒸発して被加熱媒体蒸気Wvとなった混合被加熱媒体Wmとして気液分離器80に導入される。気液分離器80に導入された混合被加熱媒体Wmは、被加熱媒体液Wqと被加熱媒体蒸気Wvとが分離される。分離された被加熱媒体液Wqは、気液分離器80の下部に貯留され、再び高温吸収器10の加熱管11に送られる。他方、分離された被加熱媒体蒸気Wvは、被加熱媒体蒸気供給管89に導出され、蒸気利用場所に供給される。本実施の形態では、0.2〜0.4MPa(ゲージ圧)を超える被加熱媒体蒸気Wvが気液分離器80から導出され、また、排温水hの温度を上昇させることで0.8MPa(ゲージ圧)程度の、あるいはこれらの間の任意の圧力の被加熱媒体蒸気Wvが導出される。   The gas-liquid separator 80 is introduced with makeup water Ws from outside the system via a makeup water pipe 85. The makeup water Ws is pumped through the makeup water pipe 85 by the makeup water pump 86 and is introduced into the gas-liquid separator 80 after the temperature rises by the makeup water heat exchanger 87. The makeup water Ws introduced into the gas-liquid separator 80 is stored in the lower part of the gas-liquid separator 80 as the heated medium liquid Wq. The makeup water pump 86 is controlled so that the heated medium liquid Wq stored in the lower part of the gas-liquid separator 80 becomes a predetermined liquid level. The heated medium liquid Wq stored in the lower part of the gas-liquid separator 80 is sent to the heating tube 11 of the high-temperature absorber 10 by the heated medium pump 83. The heated medium liquid Wq sent to the heating tube 11 is heated by the above-described absorption heat in the high-temperature absorber 10. The heated medium liquid Wq heated by the heating tube 11 is gas-liquid separated as a mixed heated medium Wm partially evaporated to become a heated medium vapor Wv, or as a heated medium liquid Wq whose temperature has increased. Flows through the heated medium tube 84 after heating toward the vessel 80. When the heated medium liquid Wq whose temperature has risen flows through the heated medium pipe 84 after heating, the heated medium liquid Wq is depressurized when being introduced into the gas-liquid separator 80, and a part of the heated medium liquid Wq is evaporated and covered. The mixed medium to be heated Wm that has become the heating medium vapor Wv is introduced into the gas-liquid separator 80. In the mixed heated medium Wm introduced into the gas-liquid separator 80, the heated medium liquid Wq and the heated medium vapor Wv are separated. The separated heated medium liquid Wq is stored in the lower part of the gas-liquid separator 80 and sent again to the heating tube 11 of the high-temperature absorber 10. On the other hand, the separated heated medium vapor Wv is led out to the heated medium vapor supply pipe 89 and supplied to the vapor use place. In the present embodiment, the heated medium vapor Wv exceeding 0.2 to 0.4 MPa (gauge pressure) is led out from the gas-liquid separator 80, and the temperature of the exhaust hot water h is raised to 0.8 MPa ( The heated medium vapor Wv having a pressure of about the gauge pressure) or an arbitrary pressure therebetween is derived.

再び吸収ヒートポンプ1の吸収液側のサイクルの説明に戻る。高温吸収器10で高温冷媒蒸気Vrを吸収した高温濃溶液Saは、濃度が低下して高温希溶液Swとなり、貯留部13に貯留される。貯留部13内の高温希溶液Swは、重力及び内圧の差により高温再生器50に向かって高温希溶液管16を流れ、高温溶液熱交換器58で高温濃溶液Saと熱交換して温度が低下した後に、中間濃溶液散布ノズル52に至る。その後、高温希溶液Swは、冷媒蒸気熱源管51に向けて散布され、冷媒蒸気熱源管51内を流れる高温冷媒蒸気Vrによって加熱濃縮されて、冷媒Vの一部が蒸発して濃度が上昇し、高温濃溶液Saとなって、高温再生器50の下部に貯留される。高温再生器50の下部に貯留された高温濃溶液Saは、高温溶液ポンプ56により、高温濃溶液管55を介して吸収器10の高温濃溶液散布ノズル12に向けて圧送され、高温溶液熱交換器58で高温希溶液Swと熱交換して温度が上昇した後に、高温濃溶液散布ノズル12に至る。このとき、高温吸収器10の貯留部13に貯留された高温希溶液Swが所定の液位になるように、高温吸収器液位検出器14の検出液位に応じてインバータ56vにより高温溶液ポンプ56の回転速度(ひいては吐出流量)が調節される。高温濃溶液散布ノズル12に到達した高温濃溶液Saは、高温濃溶液散布ノズル12から散布され、以降、同様のサイクルを繰り返す。   Returning to the description of the cycle on the absorption liquid side of the absorption heat pump 1 again. The high-temperature concentrated solution Sa that has absorbed the high-temperature refrigerant vapor Vr by the high-temperature absorber 10 is reduced in concentration to become a high-temperature dilute solution Sw, and is stored in the storage unit 13. The high-temperature dilute solution Sw in the reservoir 13 flows through the high-temperature dilute solution pipe 16 toward the high-temperature regenerator 50 due to the difference between gravity and internal pressure, and exchanges heat with the high-temperature concentrated solution Sa in the high-temperature solution heat exchanger 58 to have a temperature. After the decrease, the intermediate concentrated solution spray nozzle 52 is reached. Thereafter, the high-temperature dilute solution Sw is sprayed toward the refrigerant vapor heat source pipe 51 and is heated and concentrated by the high-temperature refrigerant vapor Vr flowing in the refrigerant vapor heat source pipe 51, and a part of the refrigerant V evaporates to increase the concentration. The high-temperature concentrated solution Sa is stored in the lower part of the high-temperature regenerator 50. The high temperature concentrated solution Sa stored in the lower part of the high temperature regenerator 50 is pumped by the high temperature solution pump 56 toward the high temperature concentrated solution spray nozzle 12 of the absorber 10 via the high temperature concentrated solution tube 55, and high temperature solution heat exchange is performed. After the temperature rises due to heat exchange with the hot dilute solution Sw in the vessel 58, the hot melt solution spray nozzle 12 is reached. At this time, the high temperature solution pump is driven by the inverter 56v according to the detected liquid level of the high temperature absorber liquid level detector 14 so that the high temperature dilute solution Sw stored in the storage unit 13 of the high temperature absorber 10 becomes a predetermined liquid level. The rotational speed 56 (and thus the discharge flow rate) is adjusted. The hot concentrated solution Sa that has reached the hot concentrated solution spray nozzle 12 is sprayed from the hot concentrated solution spray nozzle 12, and thereafter the same cycle is repeated.

他方、低温吸収器30では、低温濃溶液Sbが、低温濃溶液散布ノズル32から加熱管31に向けて散布され、低温蒸発器40から移動してきた低温冷媒蒸気Vsを吸収し、その際に発生する吸収熱で加熱管31内を流れる冷媒液Vfを加熱して高温冷媒蒸気Vrとする。低温冷媒蒸気Vsを吸収した低温濃溶液Sbは、濃度が低下して低温希溶液Svとなり、貯留部33に貯留される。貯留部33の低温希溶液Svは、重力及び内圧の差により低温再生器60へ送られる。低温希溶液Svは、低温吸収器30から低温再生器60に向かって低温希溶液管36を流れる際、低温溶液熱交換器68で落下貯留部63aから導出された低温濃溶液Sbと熱交換して温度が低下した後に、低混希溶液管37を介して低温再生器60に送られて、低混希溶液散布ノズル62から散布される。低混希溶液散布ノズル62から散布された低温希溶液Svは、熱源管61を流れる排温水h(本実施の形態では約80℃前後)によって加熱され、散布された低温希溶液Sv中の冷媒Vの一部が蒸発し濃度が上昇して低温濃溶液Sbとなり、まず低温再生器60の落下貯留部63aに貯留され、落下貯留部63aの液位が上昇して堰63sを越えた分が越流貯留部63bに貯留される。ここでは、開閉弁57vが閉じているので、低温濃溶液Sbは越流貯留部63bから流出せずに貯留される。なお、貯留部63の低温濃溶液Sbの液位が連通管67の上端開口よりも上昇した場合は、連通管67を通して高温再生器50に流入する。   On the other hand, in the low-temperature absorber 30, the low-temperature concentrated solution Sb is sprayed from the low-temperature concentrated solution spray nozzle 32 toward the heating pipe 31, absorbs the low-temperature refrigerant vapor Vs that has moved from the low-temperature evaporator 40, and is generated at that time. The refrigerant liquid Vf flowing in the heating pipe 31 is heated by the absorbed heat to be converted into a high-temperature refrigerant vapor Vr. The low-temperature concentrated solution Sb that has absorbed the low-temperature refrigerant vapor Vs decreases in concentration to become a low-temperature dilute solution Sv and is stored in the storage unit 33. The low temperature dilute solution Sv in the reservoir 33 is sent to the low temperature regenerator 60 due to the difference between gravity and internal pressure. When the low-temperature dilute solution Sv flows through the low-temperature dilute solution tube 36 from the low-temperature absorber 30 toward the low-temperature regenerator 60, the low-temperature dilute solution Sv exchanges heat with the low-temperature concentrated solution Sb derived from the drop storage unit 63a by the low-temperature solution heat exchanger 68. Then, after the temperature is lowered, it is sent to the low-temperature regenerator 60 through the low-mixed dilute solution pipe 37 and sprayed from the low-mixed dilute solution spray nozzle 62. The low temperature dilute solution Sv sprayed from the low dilute solution spray nozzle 62 is heated by the exhausted hot water h (about 80 ° C. in the present embodiment) flowing through the heat source pipe 61, and the refrigerant in the sprayed low temperature dilute solution Sv. A part of V evaporates and the concentration rises to become a low-temperature concentrated solution Sb, which is first stored in the drop reservoir 63a of the low-temperature regenerator 60, and the liquid level in the drop reservoir 63a rises and exceeds the weir 63s. It is stored in the overflow storage part 63b. Here, since the on-off valve 57v is closed, the low-temperature concentrated solution Sb is stored without flowing out of the overflow storage portion 63b. When the liquid level of the low-temperature concentrated solution Sb in the storage unit 63 rises from the upper end opening of the communication pipe 67, it flows into the high-temperature regenerator 50 through the communication pipe 67.

他方、低温希溶液Svから蒸発した冷媒Vは、高温再生器50で発生した冷媒Vの蒸気と合流し、再生器冷媒蒸気Vgとして凝縮器70へと移動する。低温再生器60の落下貯留部63aに貯留された低温濃溶液Sbは、低温溶液ポンプ66により、低温濃溶液管38を介して低温吸収器30の低温濃溶液散布ノズル32に圧送される。このとき、低温吸収器30の貯留部33に貯留される低温希溶液Svの液位が所定の液位になるように、低温吸収器液位検出器34の検出液位に応じてインバータ66vにより低温溶液ポンプ66の回転速度(ひいては吐出流量)が調節される。低温濃溶液管38を流れる低温濃溶液Sbは、低温溶液熱交換器68で低温希溶液Svと熱交換して温度が上昇してから低温吸収器30に流入し、低温濃溶液散布ノズル32から散布される。以降、同様のサイクルを繰り返す。このように、これまで説明した状態の吸収ヒートポンプ1では、吸収液S側のサイクルが、高温吸収器10及び高温再生器50の系統と、低温吸収器30及び低温再生器60の系統とに分かれている。   On the other hand, the refrigerant V evaporated from the low temperature dilute solution Sv merges with the vapor of the refrigerant V generated in the high temperature regenerator 50 and moves to the condenser 70 as the regenerator refrigerant vapor Vg. The low temperature concentrated solution Sb stored in the drop storage unit 63a of the low temperature regenerator 60 is pumped by the low temperature solution pump 66 to the low temperature concentrated solution spray nozzle 32 of the low temperature absorber 30 via the low temperature concentrated solution pipe 38. At this time, the inverter 66v according to the detected liquid level of the low temperature absorber liquid level detector 34 so that the liquid level of the low temperature diluted solution Sv stored in the storage unit 33 of the low temperature absorber 30 becomes a predetermined liquid level. The rotational speed (and hence the discharge flow rate) of the low temperature solution pump 66 is adjusted. The low-temperature concentrated solution Sb flowing through the low-temperature concentrated solution pipe 38 heat-exchanges with the low-temperature dilute solution Sv in the low-temperature solution heat exchanger 68 and rises in temperature, and then flows into the low-temperature absorber 30. Be sprayed. Thereafter, the same cycle is repeated. Thus, in the absorption heat pump 1 in the state described so far, the cycle on the side of the absorbent S is divided into a system of the high temperature absorber 10 and the high temperature regenerator 50 and a system of the low temperature absorber 30 and the low temperature regenerator 60. ing.

図2のデューリング線図をも参照して、上述した状態の吸収ヒートポンプ1の作用の説明を補足する。図2のデューリング線図は、縦軸に冷媒V(本実施の形態では水)の露点温度を、横軸に吸収液S(本実施の形態ではLiBr水溶液)の温度をとっている。右上がりの線は吸収液Sの等濃度線を表し、右に行くほど高濃度、左に行くほど低濃度となり、図中の原点を通る右上がりの線は溶液濃度0%(すなわち冷媒のみ)の線である。なお、縦軸が示す露点温度は飽和圧力と対応関係にあるため、冷媒蒸気Vr、Vs、Vgが飽和蒸気である本実施の形態のヒートポンプサイクルでは、縦軸は主要構成部材10、20、30、40、50、60、70の内部圧力を表していると見ることもできる。   The explanation of the operation of the absorption heat pump 1 in the above-described state will be supplemented also with reference to the Duhring diagram of FIG. In the Dueling diagram of FIG. 2, the vertical axis represents the dew point temperature of the refrigerant V (water in the present embodiment), and the horizontal axis represents the temperature of the absorbing liquid S (LiBr aqueous solution in the present embodiment). The line rising to the right represents the isoconcentration line of the absorbent S, and the concentration increases toward the right and decreases toward the left. The line rising toward the right passing through the origin in the figure has a solution concentration of 0% (that is, only the refrigerant). It is a line. Since the dew point temperature indicated by the vertical axis has a corresponding relationship with the saturation pressure, in the heat pump cycle of the present embodiment in which the refrigerant vapors Vr, Vs, and Vg are saturated vapors, the vertical axis indicates the main constituent members 10, 20, 30. , 40, 50, 60, 70 can be viewed as representing the internal pressure.

図2中、吸収ヒートポンプ1の定格運転における吸収液Sの状態は、高温吸収器10及び高温再生器50の系統が高温溶液線SHDで、低温吸収器30及び低温再生器60の系統が低温溶液線SLDで表され、定格運転における冷媒Vの状態は冷媒線VDで表されている。図2中、状態P12、P13、P52、P53は、それぞれ高温濃溶液散布ノズル12、貯留部13、中間濃溶液散布ノズル52、高温再生器50の下部における吸収液Sの状態を表しており、状態P32、P33、P62、P63は、それぞれ低温濃溶液散布ノズル32、貯留部33、低混希溶液散布ノズル62、貯留部63、における吸収液Sの状態を表している。状態P12〜P13、状態P32〜P33、状態P62〜P63、P52〜P53が水平方向に伸びているのは、等圧下で吸収液Sの濃度が変化していることを表している。また、状態P20は高温蒸発器20の状態を、状態P40は低温蒸発器40の状態を、状態P70は凝縮器70の状態をそれぞれ表している。図2から明らかなように、本実施の形態では、高温吸収器10と高温蒸発器20、低温吸収器30と低温蒸発器40、高温再生器50及び低温再生器60と凝縮器70の圧力が、それぞれ等しくなっている。なお、冷媒Vの蒸気を移動させるために互いに連通している高温吸収器10と高温蒸発器20、低温吸収器30と低温蒸発器40、高温再生器50及び低温再生器60と凝縮器70の内部圧力は、厳密に言えば冷媒Vの蒸気の下流側となる方が冷媒Vの蒸気の流動による圧力損失分だけ低くなるが、ほぼ同じ圧力である。   In FIG. 2, the state of the absorbent S in the rated operation of the absorption heat pump 1 is that the system of the high temperature absorber 10 and the high temperature regenerator 50 is the high temperature solution line SHD, and the system of the low temperature absorber 30 and the low temperature regenerator 60 is the low temperature solution. It is represented by a line SLD, and the state of the refrigerant V in the rated operation is represented by a refrigerant line VD. In FIG. 2, states P12, P13, P52, and P53 represent the states of the absorbing liquid S at the lower part of the high temperature concentrated solution spray nozzle 12, the storage unit 13, the intermediate concentrated solution spray nozzle 52, and the high temperature regenerator 50, respectively. The states P32, P33, P62, and P63 represent the states of the absorbing liquid S in the low-temperature concentrated solution spray nozzle 32, the storage unit 33, the low-mixed dilute solution spray nozzle 62, and the storage unit 63, respectively. The states P12 to P13, states P32 to P33, states P62 to P63, and P52 to P53 extending in the horizontal direction indicate that the concentration of the absorbing liquid S changes under the same pressure. Further, the state P20 represents the state of the high temperature evaporator 20, the state P40 represents the state of the low temperature evaporator 40, and the state P70 represents the state of the condenser 70. As apparent from FIG. 2, in this embodiment, the pressures of the high temperature absorber 10 and the high temperature evaporator 20, the low temperature absorber 30 and the low temperature evaporator 40, the high temperature regenerator 50, the low temperature regenerator 60 and the condenser 70 are as follows. Are equal. Note that the high-temperature absorber 10 and the high-temperature evaporator 20, the low-temperature absorber 30 and the low-temperature evaporator 40, the high-temperature regenerator 50, the low-temperature regenerator 60, and the condenser 70 that are in communication with each other to move the vapor of the refrigerant V. Strictly speaking, the internal pressure is lower on the downstream side of the vapor of the refrigerant V by a pressure loss due to the flow of the vapor of the refrigerant V, but is almost the same pressure.

低温吸収器30及び低温再生器60の系統は、吸収液Sが、低温溶液線SLD上を反時計回りに循環する。状態P62〜P63に示すように、低温再生器60では、排温水hから排熱を受けて吸収液Sの温度が上昇すると共に濃度が上昇し、低温希溶液Svが低温濃溶液Sbとなる。低温再生器60において吸収液Sの濃度の上昇に伴い発生した冷媒Vの蒸気は、高温再生器50で発生した冷媒Vの蒸気と共に再生器冷媒蒸気Vgとして凝縮器70に流入して冷却される(状態P70)。状態P40にある低温蒸発器40の冷媒Vは、排温水hから排熱を受けて低温冷媒蒸気Vsとなり、これを低温吸収器30の低温濃溶液Sbに吸収させて、状態P32〜P33に示すように低温濃溶液Sbの濃度を低下させる。状態P32〜P33における低温濃溶液Sbが低温冷媒蒸気Vsを吸収して発生する吸収熱H20は、状態P20にある高温蒸発器20の冷媒Vを加熱して、これを高温冷媒蒸気Vrとする。そして、吸収熱H20によって発生した高温冷媒蒸気Vrを高温吸収器10の高温濃溶液Saに吸収させて、状態P12〜P13に示すように高温濃溶液Saの濃度を低下させる。   In the system of the low-temperature absorber 30 and the low-temperature regenerator 60, the absorbing liquid S circulates counterclockwise on the low-temperature solution line SLD. As shown in states P62 to P63, in the low-temperature regenerator 60, the temperature of the absorbing liquid S rises as it receives exhaust heat from the exhausted hot water h, and the concentration increases, and the low-temperature dilute solution Sv becomes the low-temperature concentrated solution Sb. The refrigerant V generated in the low temperature regenerator 60 with the increase in the concentration of the absorbent S flows into the condenser 70 as the regenerator refrigerant vapor Vg together with the refrigerant V generated in the high temperature regenerator 50 and is cooled. (State P70). The refrigerant V of the low-temperature evaporator 40 in the state P40 receives the exhaust heat from the exhaust hot water h to become the low-temperature refrigerant vapor Vs, which is absorbed by the low-temperature concentrated solution Sb of the low-temperature absorber 30 and shown in the states P32 to P33. As such, the concentration of the low temperature concentrated solution Sb is lowered. Absorption heat H20 generated by the low-temperature concentrated solution Sb absorbing the low-temperature refrigerant vapor Vs in the states P32 to P33 heats the refrigerant V of the high-temperature evaporator 20 in the state P20, and makes this the high-temperature refrigerant vapor Vr. Then, the high-temperature refrigerant vapor Vr generated by the absorption heat H20 is absorbed by the high-temperature concentrated solution Sa of the high-temperature absorber 10 to reduce the concentration of the high-temperature concentrated solution Sa as shown in the states P12 to P13.

高温吸収器10及び高温再生器50の系統は、吸収液Sが、高温溶液線SHD上を反時計回りに循環する。状態P12〜P13における高温濃溶液Saが高温冷媒蒸気Vrを吸収して発生する吸収熱Hwは、被加熱媒体Wを加熱する。これにより、被加熱媒体Wを、状態P13における吸収液Sの温度付近まで温度上昇させることが可能となる。この、被加熱媒体Wの温度が上昇する過程で、加熱されている被加熱媒体液Wqの圧力における沸点を超えると、被加熱媒体蒸気Wvの生成が可能となる。高温溶液線SHDの下部に相当する高温再生器50では、状態P52〜P53に示すように、高温冷媒蒸気Vrの保有熱H50を受けて吸収液Sの温度が上昇すると共に濃度が上昇し、高温希溶液Swが高温濃溶液Saとなる。図2中、高温冷媒蒸気Vrの保有熱H50の移動を示す線図の傾きが大きく、温度変化が小さいように見えるが、高温冷媒蒸気Vrは状態P52〜P53において吸収液Sを加熱する際に気相から液相に状態変化をしており、すなわち潜熱を高温再生器50の吸収液Sに与えている。したがって、高温再生器50の吸収液Sに与えられる保有熱H50は、温度変化に伴う顕熱を与える場合に比べて極めて大きな熱量となり、効果的に高温希溶液Swを高温濃溶液Saに再生することができる。   In the system of the high temperature absorber 10 and the high temperature regenerator 50, the absorbing liquid S circulates counterclockwise on the high temperature solution line SHD. The absorption heat Hw generated by the high temperature concentrated solution Sa in the states P12 to P13 absorbing the high temperature refrigerant vapor Vr heats the medium W to be heated. Thereby, it becomes possible to raise the temperature of the to-be-heated medium W to the temperature vicinity of the absorption liquid S in the state P13. If the boiling point of the heated medium liquid Wq exceeds the boiling point in the process of increasing the temperature of the heated medium W, the heated medium vapor Wv can be generated. In the high-temperature regenerator 50 corresponding to the lower part of the high-temperature solution line SHD, as shown in the states P52 to P53, the temperature of the absorbing liquid S increases and the concentration increases due to the retained heat H50 of the high-temperature refrigerant vapor Vr. The dilute solution Sw becomes the high temperature concentrated solution Sa. In FIG. 2, the slope of the diagram showing the movement of the retained heat H50 of the high-temperature refrigerant vapor Vr is large and the temperature change seems to be small. However, the high-temperature refrigerant vapor Vr is heated when the absorbing liquid S is heated in the states P52 to P53. The state is changed from the gas phase to the liquid phase, that is, latent heat is given to the absorbing liquid S of the high temperature regenerator 50. Therefore, the retained heat H50 given to the absorbing liquid S of the high-temperature regenerator 50 becomes an extremely large amount of heat compared to the case where sensible heat accompanying temperature change is given, and the high-temperature dilute solution Sw is effectively regenerated into the high-temperature concentrated solution Sa. be able to.

図3に、参考例に係る三段昇温型吸収ヒートポンプのデューリング線図を示す。(a)は吸収液をシリーズフローとしたもの、(b)は吸収液をパラレルフローとしたものである。図3(a)に示すものは、吸収器と蒸発器との組み合わせを三段設けたものであり、低温吸収器ALにおける吸収熱を中温蒸発器EMの冷媒を蒸発させるために用い、中温吸収器AMにおける吸収熱を高温蒸発器EHの冷媒を蒸発させるために用いており、高温吸収器AHは高温蒸発器EHと同圧に、低温蒸発器ELは低温吸収器ALと同圧に、凝縮器Cと再生器Gとが同圧になっている。これは、圧力方向に三段昇圧したもので、理論COPは0.250である。他方、図3(b)に示すものは、吸収器と再生器との組み合わせを三段設けたものであり、低温吸収器ALにおける吸収熱を中温再生器GMの吸収液を再生させるために用い、中温吸収器AMにおける吸収熱を高温再生器GHの吸収液を再生させるために用いており、高温吸収器AH及び蒸発器Eは低温吸収器AL及び中温吸収器AMと同圧に、低温再生器GL及び凝縮器Cは高温再生器GH及び中温再生器GMと同圧になっている。これは、温度方向に三段昇温したもので、理論COPは0.250である。   FIG. 3 shows a Duhring diagram of a three-stage temperature rising type absorption heat pump according to a reference example. (A) is a series flow of the absorbent, and (b) is a parallel flow of the absorbent. In FIG. 3A, the combination of the absorber and the evaporator is provided in three stages. The absorption heat in the low temperature absorber AL is used to evaporate the refrigerant of the intermediate temperature evaporator EM, and the intermediate temperature absorption is performed. The absorption heat in the evaporator AM is used to evaporate the refrigerant in the high temperature evaporator EH. The high temperature absorber AH is condensed to the same pressure as the high temperature evaporator EH, and the low temperature evaporator EL is condensed to the same pressure as the low temperature absorber AL. The vessel C and the regenerator G are at the same pressure. This is a three-step pressure increase in the pressure direction, and the theoretical COP is 0.250. On the other hand, what is shown in FIG. 3B is a three-stage combination of an absorber and a regenerator, and is used to regenerate the absorption heat of the intermediate temperature regenerator GM using the absorption heat in the low temperature absorber AL. The heat absorbed in the intermediate temperature absorber AM is used to regenerate the absorption liquid of the high temperature regenerator GH. The high temperature absorber AH and the evaporator E are at the same pressure as the low temperature absorber AL and the intermediate temperature absorber AM, and the low temperature regeneration. The condenser GL and the condenser C are at the same pressure as the high temperature regenerator GH and the medium temperature regenerator GM. This is a three-stage temperature rise in the temperature direction, and the theoretical COP is 0.250.

本実施の形態に係る吸収ヒートポンプ1のデューリング線図(図2参照)を見ると、2つのサイクルを示す高温溶液線SHD及び低温溶液線SLDは、低圧側は等しいものの、高温溶液線SHDでは、低温溶液線SLDよりも最高圧力が高い。このように構成されていることで、導入される排温水hから被加熱媒体蒸気Wvを生成する昇温幅を大きくすることができる。そして、本実施の形態に係る吸収ヒートポンプ1を、参考例に係る三段昇温型吸収ヒートポンプと、デューリング線図において比較してみると、図3(a)に示すものに対して最高圧力が低くなっており、図3(b)に示すものに対して吸収液Sの最高濃度が低くなっている。本実施の形態に係る吸収ヒートポンプ1は、温度方向に二段昇温したうえで圧力方向に二段昇圧したものといえ、理論COPは0.250である。本実施の形態に係る吸収ヒートポンプ1は、図3(a)に示す三段昇温型吸収ヒートポンプに対して、最高圧力が低いので内圧の上昇を抑制することができて缶胴の強度の観点からの条件が緩和されると共に、吸収液S及び冷媒Vの循環のためのポンプの必要ヘッドを抑制することができることに伴い動力の増加を防ぐことができ、また、図3(b)に示す三段昇温型吸収ヒートポンプに対して、最高濃度が低いので吸収液Sの濃度の過度の上昇を抑制することができて吸収液Sの結晶を回避した安定的な運転が可能となる。   Looking at the dueling diagram (see FIG. 2) of the absorption heat pump 1 according to the present embodiment, the high temperature solution line SHD and the low temperature solution line SLD showing two cycles are equal on the low pressure side, but in the high temperature solution line SHD, The maximum pressure is higher than that of the low temperature solution line SLD. By being comprised in this way, the temperature increase range which produces | generates the to-be-heated medium vapor | steam Wv from the exhausted hot water h introduce | transduced can be enlarged. Then, when the absorption heat pump 1 according to the present embodiment is compared with the three-stage temperature rising absorption heat pump according to the reference example in the Duering diagram, the maximum pressure with respect to that shown in FIG. Is lower, and the maximum concentration of the absorbing liquid S is lower than that shown in FIG. It can be said that the absorption heat pump 1 according to the present embodiment has a two-step temperature increase in the temperature direction and a two-step pressure increase in the pressure direction, and the theoretical COP is 0.250. The absorption heat pump 1 according to the present embodiment has a lower maximum pressure than the three-stage temperature increase type absorption heat pump shown in FIG. 3 is relaxed, and it is possible to prevent an increase in power due to the suppression of the necessary head of the pump for circulating the absorbing liquid S and the refrigerant V, as shown in FIG. Since the maximum concentration is low with respect to the three-stage temperature rising type absorption heat pump, an excessive increase in the concentration of the absorbing solution S can be suppressed, and a stable operation that avoids the crystals of the absorbing solution S is possible.

上述のように、本実施の形態に係る吸収ヒートポンプ1は、参考例に係る三段昇温型吸収ヒートポンプ(図3参照)と比較して、最高内圧及び最高濃度が抑制されるので、安定した運転を可能にしつつ、導入される排温水hから被加熱媒体蒸気Wvを生成する昇温幅を図3に示す参考例と同等にすることができる。しかしながら、これまで説明した状態の吸収ヒートポンプ1の理論COPは、図3に示す参考例と同じである。そこで、本実施の形態に係る吸収ヒートポンプ1は、排温水hの温度や冷却水cの温度等の、変化する運転条件に応じた適切なCOPで運転するべく、次のような制御を行う。すなわち、制御装置99は、高温希溶液濃度検出器95で検出された値(以下「検出値N95」ともいう。)及び低温濃溶液濃度検出器96で検出された値(以下「検出値N96」ともいう。)を比較して、検出値N95が検出値N96以上のときは、上述のように、高温希溶液管16を流れる高温希溶液Swの全部が高温再生器50へ流入するように、切替弁18を設定する。他方、検出値N95が検出値N96よりも小さいときは、高温希溶液管16を流れる高温希溶液Swが分岐管17及び低混希溶液管37を介して低温再生器60へ流入するように切替弁18を設定すると共に、開閉弁57vを開にする。   As described above, the absorption heat pump 1 according to the present embodiment is stable because the maximum internal pressure and the maximum concentration are suppressed as compared with the three-stage temperature rising absorption heat pump according to the reference example (see FIG. 3). While enabling operation, the temperature rise width for generating the heated medium vapor Wv from the introduced waste water h can be made equal to the reference example shown in FIG. However, the theoretical COP of the absorption heat pump 1 in the state described so far is the same as the reference example shown in FIG. Therefore, the absorption heat pump 1 according to the present embodiment performs the following control in order to operate with an appropriate COP according to changing operating conditions such as the temperature of the exhaust water h and the temperature of the cooling water c. That is, the control device 99 detects a value detected by the high temperature diluted solution concentration detector 95 (hereinafter also referred to as “detected value N95”) and a value detected by the low temperature concentrated solution concentration detector 96 (hereinafter “detected value N96”). When the detection value N95 is equal to or higher than the detection value N96, the high-temperature dilute solution Sw flowing through the high-temperature dilute solution pipe 16 flows into the high-temperature regenerator 50 as described above. The switching valve 18 is set. On the other hand, when the detection value N95 is smaller than the detection value N96, the high-temperature dilute solution Sw flowing through the high-temperature dilute solution pipe 16 is switched to flow into the low-temperature regenerator 60 via the branch pipe 17 and the low-mixed dilute solution pipe 37. The valve 18 is set and the on-off valve 57v is opened.

このようにすることで、運転条件によって高温溶液線SHDと低温溶液線SLDとに重なる部分が生じるときに、低温再生器60に投入される排温水hの排熱によって高温希溶液Swの一部又は全部の加熱濃縮を行うことで、高温冷媒蒸気Vrの熱(低温吸収器30で発生した吸収熱)の利用を抑制して、COPの向上を図ることができる。特に、凝縮器70に導入される冷却水cの温度が低下した状態では、高温再生器50から導出される吸収液Sの濃度が上昇しやすく過濃縮による結晶のおそれが生じ得る。過濃縮を抑制するためには、高温再生器50における加熱能力を制限するとよく、例えば熱源流量調節弁51vで冷媒蒸気熱源管51を流れる高温冷媒蒸気Vrの流量を制限することで過濃縮を防ぐことができる。このとき、高温冷媒蒸気Vrの使用量が減るので、低温吸収器30における加熱管31内での蒸気発生量を減らしてもよい。例えば、流量調節弁35vを調節してバイパス管35を流れる低温濃溶液Sbの流量を多くすると、低温吸収器30内における吸収熱の発生が抑制され、加熱管31内で発生する高温冷媒蒸気Vrの量が減少し、低温吸収器30から導出される低温希溶液Svの濃度はバイパスさせないときよりも上昇して、低温溶液線SLDが高温溶液線SHDに重なりやすくなる。つまり、流量調節弁35vを用いることで低温溶液線SLDと高温溶液線SHDとの重なりが早く生じ、COPの改善を図ることができる。   In this way, when a portion overlapping the high-temperature solution line SHD and the low-temperature solution line SLD occurs depending on the operating conditions, a part of the high-temperature dilute solution Sw is discharged by the exhaust heat of the exhaust water h that is input to the low-temperature regenerator 60. Alternatively, by performing all the heating and concentration, the utilization of the heat of the high-temperature refrigerant vapor Vr (absorption heat generated in the low-temperature absorber 30) can be suppressed, and the COP can be improved. In particular, in a state where the temperature of the cooling water c introduced into the condenser 70 is lowered, the concentration of the absorbing liquid S led out from the high-temperature regenerator 50 is likely to increase, and there is a risk of crystals due to overconcentration. In order to suppress overconcentration, the heating capacity in the high-temperature regenerator 50 may be limited. For example, by limiting the flow rate of the high-temperature refrigerant vapor Vr flowing through the refrigerant vapor heat source pipe 51 with the heat source flow rate adjustment valve 51v, overconcentration is prevented. be able to. At this time, since the amount of use of the high-temperature refrigerant vapor Vr is reduced, the amount of vapor generated in the heating pipe 31 in the low-temperature absorber 30 may be reduced. For example, when the flow rate of the low-temperature concentrated solution Sb flowing through the bypass pipe 35 is increased by adjusting the flow rate control valve 35v, the generation of absorbed heat in the low-temperature absorber 30 is suppressed, and the high-temperature refrigerant vapor Vr generated in the heating pipe 31 is suppressed. And the concentration of the low-temperature dilute solution Sv derived from the low-temperature absorber 30 is higher than when the bypass is not bypassed, and the low-temperature solution line SLD is likely to overlap the high-temperature solution line SHD. That is, by using the flow rate control valve 35v, the low temperature solution line SLD and the high temperature solution line SHD are quickly overlapped, and the COP can be improved.

ここで図1を参照して、高温希溶液Swを低温再生器60へ流入させた状態における吸収ヒートポンプ1の作用について、高温希溶液Swを高温再生器50へ流入させた状態との相違点を説明する。高温吸収器10の貯留部13内の高温希溶液Swは、重力及び内圧の差により低温再生器60に向かって高温希溶液管16を流れ、高温溶液熱交換器58で高温濃溶液Saと熱交換して温度が低下した後に、低混希溶液管37に流入する。低混希溶液管37に流入した高温希溶液Swは、低混希溶液管37に流入した低温希溶液Svと混合して混合希溶液Sxとなり、低温再生器60に送られる。低温再生器60に送られた混合希溶液Sxは、低混希溶液散布ノズル62から散布される。低混希溶液散布ノズル62から散布された混合希溶液Sxは、熱源管61を流れる排温水h(本実施の形態では約80℃前後)によって加熱され、散布された混合希溶液Sx中の冷媒Vの一部が蒸発し濃度が上昇して低温濃溶液Sbとなり、まず低温再生器60の落下貯留部63aに貯留され、落下貯留部63aの液位が上昇して堰63sを越えた分が越流貯留部63bに貯留される。   Here, referring to FIG. 1, the difference between the action of the absorption heat pump 1 in the state where the high temperature dilute solution Sw is flowed into the low temperature regenerator 60 and the state where the high temperature dilute solution Sw is flowed into the high temperature regenerator 50 will be described. explain. The high-temperature dilute solution Sw in the reservoir 13 of the high-temperature absorber 10 flows through the high-temperature dilute solution tube 16 toward the low-temperature regenerator 60 due to the difference between gravity and internal pressure, and the high-temperature solution heat exchanger 58 and the high-temperature concentrated solution Sa are heated. After the exchange and the temperature is lowered, it flows into the low dilute solution tube 37. The high-temperature dilute solution Sw that has flowed into the low-mixed dilute solution tube 37 is mixed with the low-temperature dilute solution Sv that has flowed into the low-mixed dilute solution tube 37 to form a mixed dilute solution Sx, which is sent to the low-temperature regenerator 60. The mixed dilute solution Sx sent to the low temperature regenerator 60 is sprayed from the low dilute solution spray nozzle 62. The mixed dilute solution Sx sprayed from the low dilute solution spray nozzle 62 is heated by the exhaust hot water h (about 80 ° C. in the present embodiment) flowing through the heat source pipe 61, and the refrigerant in the sprayed mixed dilute solution Sx. A part of V evaporates and the concentration rises to become a low-temperature concentrated solution Sb, which is first stored in the drop reservoir 63a of the low-temperature regenerator 60, and the liquid level in the drop reservoir 63a rises and exceeds the weir 63s. It is stored in the overflow storage part 63b.

低温再生器60の落下貯留部63aに貯留された低温濃溶液Sbは、高温希溶液Swを高温再生器50へ流入させた状態のときと同様に、低温溶液ポンプ66で低温濃溶液管38を介して低温吸収器30の低温濃溶液散布ノズル32に圧送される。他方、越流貯留部63bに貯留された低温濃溶液Sbは、中間濃溶液管57を介して高温希溶液管16に流入した後に高温再生器50に導入されて、中間濃溶液散布ノズル52から散布される。中間濃溶液散布ノズル52から散布された低温濃溶液Sbは、冷媒蒸気熱源管51内を流れる高温冷媒蒸気Vrによって加熱濃縮されて、冷媒Vの一部が蒸発して濃度が上昇し、高温濃溶液Saとなって、高温再生器50の下部に貯留され、高温溶液ポンプ56によって高温濃溶液散布ノズル12に圧送される。   The low temperature concentrated solution Sb stored in the drop storage unit 63a of the low temperature regenerator 60 is supplied to the low temperature concentrated solution tube 38 by the low temperature solution pump 66 in the same manner as when the high temperature dilute solution Sw is introduced into the high temperature regenerator 50. To the low-temperature concentrated solution spray nozzle 32 of the low-temperature absorber 30. On the other hand, the low-temperature concentrated solution Sb stored in the overflow storage section 63 b flows into the high-temperature dilute solution pipe 16 via the intermediate concentrated solution pipe 57 and is then introduced into the high-temperature regenerator 50, from the intermediate concentrated solution spray nozzle 52. Be sprayed. The low-temperature concentrated solution Sb sprayed from the intermediate concentrated solution spray nozzle 52 is heated and concentrated by the high-temperature refrigerant vapor Vr flowing in the refrigerant vapor heat source pipe 51, and a part of the refrigerant V evaporates to increase the concentration. The solution Sa is stored in the lower portion of the high temperature regenerator 50 and is pumped to the high temperature concentrated solution spray nozzle 12 by the high temperature solution pump 56.

図4は、高温希溶液Swを低温再生器60へ流入させた状態の吸収ヒートポンプ1のデューリング線図であり、上述した吸収液Sのサイクルを(a)に示している。図4(a)に示すように、検出値N95が検出値N96よりも小さいときは、高温溶液線SHDと低温溶液線SLDとに重なる部分が生じている。このときも、吸収液Sは、高温溶液線SHD及び低温溶液線SLDを反時計回りに循環する。低温吸収器30の貯留部33に貯留された状態P33の低温希溶液Svは分岐管17に向かって流れ、高温吸収器10の貯留部13に貯留された状態P13の高温希溶液Swは低混希溶液管37に向かって流れる。低混希溶液管37内に流入した低温希溶液Sv及び高温希溶液Swは混合されて混合希溶液Sxとなる。このときの混合希溶液Sx状態は、図4(a)のデューリング線図上における状態P17Lと状態P17Hとの間の混合割合に応じた状態となる。   FIG. 4 is a Duhring diagram of the absorption heat pump 1 in a state where the high-temperature dilute solution Sw is flowed into the low-temperature regenerator 60, and the cycle of the absorption liquid S described above is shown in (a). As shown in FIG. 4A, when the detection value N95 is smaller than the detection value N96, a portion overlapping the high temperature solution line SHD and the low temperature solution line SLD occurs. Also at this time, the absorbing liquid S circulates through the high temperature solution line SHD and the low temperature solution line SLD counterclockwise. The low-temperature dilute solution Sv in the state P33 stored in the storage unit 33 of the low-temperature absorber 30 flows toward the branch pipe 17, and the high-temperature dilute solution Sw in the state P13 stored in the storage unit 13 of the high-temperature absorber 10 is low mixed. It flows toward the dilute solution tube 37. The low temperature dilute solution Sv and the high temperature dilute solution Sw flowing into the low dilute solution tube 37 are mixed to form a mixed dilute solution Sx. The mixed dilute solution Sx state at this time becomes a state corresponding to the mixing ratio between the state P17L and the state P17H on the Dueling diagram of FIG.

低混希溶液管37から低温再生器60に流入した混合希溶液Sxは、排温水hから排熱を受けて吸収液Sの温度が上昇すると共に濃度が上昇し、状態P63に示すような低温濃溶液Sbとなる。低温再生器60で生成された低温濃溶液Sbのうち、落下貯留部63aのものは状態P63〜P32に示すように低温吸収器30に圧送されて低温冷媒蒸気Vsを吸収して吸収熱を発生させるのに用いられ、越流貯留部63bのものは高温再生器50に流入されて状態P63〜P53に示すように高温冷媒蒸気Vrの保有熱H50を受けて吸収液Sの温度が上昇すると共に濃度が上昇して高温濃溶液Saとなる。このように、高温希溶液Swを一旦低温再生器60に流入させて排温水hの排熱で一部を加熱濃縮させるので、排熱を最大限利用することにより高温冷媒蒸気Vrの保有熱H50の利用分を小さくすることができ、COPを向上させることができる。   The mixed dilute solution Sx flowing into the low temperature regenerator 60 from the low dilute solution tube 37 receives the exhaust heat from the exhaust hot water h, the temperature of the absorbing solution S rises and the concentration rises, and the low temperature as shown in the state P63. It becomes the concentrated solution Sb. Of the low-temperature concentrated solution Sb generated by the low-temperature regenerator 60, the drop storage part 63a is pumped to the low-temperature absorber 30 as shown in states P63 to P32 to absorb the low-temperature refrigerant vapor Vs and generate absorbed heat. As shown in states P63 to P53, the overflow reservoir 63b in the overflow reservoir 63b receives the retained heat H50 of the high-temperature refrigerant vapor Vr and rises in the temperature of the absorbent S. The concentration increases to become a hot concentrated solution Sa. In this way, the high-temperature dilute solution Sw once flows into the low-temperature regenerator 60 and is partially heated and concentrated by the exhaust heat of the exhaust hot water h. Therefore, the retained heat H50 of the high-temperature refrigerant vapor Vr can be obtained by making maximum use of the exhaust heat. Can be reduced and COP can be improved.

図4(b)に示すデューリング線図は、上述した高温希溶液Swを低温再生器60へ流入させた状態と同様の吸収液Sのサイクルにおいて、熱源流量調節弁51vを閉じて高温再生器50に熱を投入していない状態のものである。この場合、低温再生器60の落下貯留部63aから低温吸収器30へ圧送される吸収液S(状態P63、53〜P32)と、高温再生器50の下部から高温吸収器10へ圧送される吸収液S(状態P63、53〜P12)とは、同じ濃度となる。この図4(b)に示す吸収液Sのサイクルの場合は二段昇温サイクルとなり、このときの理論COPは0.333である。他方、図4(a)に示す吸収液Sのサイクルの場合は二〜三段昇温サイクルとなり、このときの理論COPは0.250を超え、0.333未満となる。このように、本実施の形態に係る吸収ヒートポンプ1は、切替弁18によって高温希溶液Swの導入先を高温再生器50と低温再生器60とで切り替えると共に、熱源流量調節弁51vによって高温再生器50への投入熱量を調節することにより、運転条件に応じた最適なCOPで運転することが可能となる。   The Duhring diagram shown in FIG. 4B is a high temperature regenerator in which the heat source flow rate adjustment valve 51v is closed in the same cycle of the absorbing liquid S as in the state where the high temperature dilute solution Sw is introduced into the low temperature regenerator 60. 50 is a state in which no heat is applied. In this case, the absorption liquid S (states P63, 53 to P32) pumped from the drop reservoir 63a of the low temperature regenerator 60 to the low temperature absorber 30 and the absorption pumped from the lower part of the high temperature regenerator 50 to the high temperature absorber 10. The liquid S (states P63, 53 to P12) has the same concentration. In the case of the cycle of the absorbing liquid S shown in FIG. 4B, a two-stage temperature increase cycle is obtained, and the theoretical COP at this time is 0.333. On the other hand, in the case of the cycle of the absorbing liquid S shown in FIG. 4 (a), it becomes a two- to three-stage heating cycle, and the theoretical COP at this time exceeds 0.250 and is less than 0.333. As described above, the absorption heat pump 1 according to the present embodiment switches the introduction destination of the high-temperature dilute solution Sw between the high-temperature regenerator 50 and the low-temperature regenerator 60 by the switching valve 18 and at the high-temperature regenerator by the heat source flow rate adjustment valve 51v. By adjusting the amount of heat input to 50, it is possible to operate with the optimum COP according to the operating conditions.

以上の説明では、分岐管17が低混希溶液管37に接続されていて、高温希溶液Swが低温再生器60に導入される際に低温希溶液Svと混合されることとしたが、分岐管17が低温希溶液Svの系統とは別に独立して低温再生器60まで配設され、低温再生器60内で低温希溶液Svを散布するノズルとは別の高温希溶液Swを散布するノズルに接続されるように構成され、つまり、高温希溶液Swを直接的に低温再生器60へ導くこととしてもよい。   In the above description, the branch pipe 17 is connected to the low-mix dilute solution pipe 37, and when the high-temperature dilute solution Sw is introduced into the low-temperature regenerator 60, it is mixed with the low-temperature dilute solution Sv. The nozzle 17 is provided up to the low temperature regenerator 60 independently of the system of the low temperature dilute solution Sv and sprays the high temperature dilute solution Sw different from the nozzle that sprays the low temperature dilute solution Sv in the low temperature regenerator 60. In other words, the high-temperature dilute solution Sw may be directly guided to the low-temperature regenerator 60.

以上の説明では、第1の希溶液濃度検出手段及び第2の吸収液濃度検出手段が、吸収液Sの濃度を直接検出する濃度計である高温希溶液濃度検出器95及び低温濃溶液濃度検出器96であるとしたが、吸収液Sの濃度に関連する物理量を検出して間接的に吸収液Sの濃度を検出することとしてもよい。間接的に検出する例として、吸収液Sの密度と温度とから濃度を算出する(温度の影響が小さい場合は密度だけで判断してもよい)、吸収液Sの温度と蒸気圧とから気液平衡状態と推定して濃度を算出する、吸収液Sの温度と露点とからデューリング線図に基づいて濃度を算出することが挙げられる。また、濃度に換算せずに沸点上昇の比較で行ってもよい。沸点上昇は吸収液Sの温度と露点との差であり、沸点上昇の大きい方が吸収液Sの濃度の濃い方として差し支えない。   In the above description, the first diluted solution concentration detecting means and the second absorbing solution concentration detecting means are a high temperature diluted solution concentration detector 95 and a low temperature concentrated solution concentration detection which are concentration meters that directly detect the concentration of the absorbing solution S. However, the concentration of the absorbing liquid S may be detected indirectly by detecting a physical quantity related to the concentration of the absorbing liquid S. As an indirect detection example, the concentration is calculated from the density and temperature of the absorbing liquid S (if the influence of temperature is small, it may be determined only by the density). The concentration is calculated based on the temperature and dew point of the absorbing liquid S, which is estimated as a liquid equilibrium state, and is calculated based on the Düring diagram. Moreover, you may carry out by the comparison of a boiling point rise, without converting into a density | concentration. The increase in boiling point is the difference between the temperature of the absorbing liquid S and the dew point, and the higher boiling point may be the higher concentration of the absorbing liquid S.

以上の説明では、高温再生器50と低温再生器60とが同じ缶胴内に収容されていて、缶胴の下部に高温再生器50が、上部に低温再生器60が配設されていることとしたが、上部に高温再生器50が、下部に低温再生器60が配設されていることとしてもよく、高温再生器50と低温再生器60とが横並びに配設されていることとしてもよい(このように構成する場合は、必要に応じて、低温再生器60から高温再生器50へ吸収液Sを搬送するポンプを設ける。)。また、高温再生器50で蒸発した冷媒Vの蒸気と低温再生器60で蒸発した冷媒Vの蒸気とが共通の凝縮器70で凝縮されることとしたが、高温再生器50で蒸発した冷媒Vの蒸気を凝縮させる凝縮器と、低温再生器60で蒸発した冷媒Vの蒸気を凝縮させる凝縮器とを個別に設けてもよい。この場合は、高温再生器50及び高温再生器50用の凝縮器と、低温再生器60及び低温再生器60用の凝縮器との組み合わせで、それぞれ別の缶胴に収容される構成とするのが好ましい。   In the above description, the high temperature regenerator 50 and the low temperature regenerator 60 are accommodated in the same can body, and the high temperature regenerator 50 is disposed in the lower portion of the can body, and the low temperature regenerator 60 is disposed in the upper portion. However, the high temperature regenerator 50 may be disposed at the top and the low temperature regenerator 60 may be disposed at the bottom, and the high temperature regenerator 50 and the low temperature regenerator 60 may be disposed side by side. (In the case of such a configuration, a pump for transporting the absorbing liquid S from the low temperature regenerator 60 to the high temperature regenerator 50 is provided if necessary). Further, the vapor of the refrigerant V evaporated in the high temperature regenerator 50 and the vapor of the refrigerant V evaporated in the low temperature regenerator 60 are condensed in the common condenser 70, but the refrigerant V evaporated in the high temperature regenerator 50 is used. You may provide separately the condenser which condenses this vapor | steam, and the condenser which condenses the vapor | steam of the refrigerant | coolant V evaporated by the low temperature regenerator 60 separately. In this case, the high-temperature regenerator 50 and the condenser for the high-temperature regenerator 50 are combined with the condenser for the low-temperature regenerator 60 and the low-temperature regenerator 60 so that they are accommodated in different can bodies. Is preferred.

以上の説明では、高温再生器50で発生した冷媒Vの蒸気を、特に他の流体と熱交換させずに凝縮器70へ導くこととしたが、低温再生器60の熱源管61の周辺を通すことによって低温希溶液散布ノズル62から散布された低温希溶液Svを加熱した後に凝縮器70へ導くこととしてもよい。このようにすると、高温再生器50で発生した高温の冷媒Vの蒸気が持つエネルギーを低温再生器60で加熱濃縮される低温希溶液Svに与えることができ、低温再生器60での外部熱源(排温水h)の必要量を低減することができ、COPの向上につながることとなる。   In the above description, the vapor of the refrigerant V generated in the high temperature regenerator 50 is guided to the condenser 70 without particularly exchanging heat with other fluids. However, it passes through the periphery of the heat source pipe 61 of the low temperature regenerator 60. Thus, the low-temperature dilute solution Sv sprayed from the low-temperature dilute solution spray nozzle 62 may be heated and then guided to the condenser 70. In this way, the energy of the vapor of the high-temperature refrigerant V generated in the high-temperature regenerator 50 can be given to the low-temperature dilute solution Sv heated and concentrated in the low-temperature regenerator 60, and the external heat source ( The required amount of the waste water h) can be reduced, leading to an improvement in COP.

以上の説明では、吸収熱搬送手段が、低温吸収器30で発生した吸収熱を保有する高温冷媒蒸気Vrを高温蒸発器20から高温再生器50へ導くことによって低温吸収器30で発生した吸収熱を間接的に高温再生器50内に搬送する冷媒蒸気熱源管51であることとしたが、冷媒蒸気熱源管51に代えて、以下のように構成してもよい。
図5は、本実施の形態の変形例に係る吸収ヒートポンプの模式的系統図であり、(a)は第1の変形例を、(b)は第2の変形例を示している。図5(a)に示す第1の変形例では、低温吸収器30と高温再生器50との間で液体の熱媒体tを循環させるクローズド配管の循環熱媒体管251を設け、循環熱媒体管251に配設された循環熱媒体ポンプ259で熱媒体tを循環させることにより、低温吸収器30で発生した吸収熱を直接的に高温再生器50内に搬送することとしている。図5(b)に示す第2の変形例では、冷媒蒸気熱源管51に代えて、低温吸収器の役割を果たす加熱用吸収装置351を高温再生器50内に設けている。ここで例示する加熱用吸収装置351は、複数の伝熱管が鉛直に延びるように配設され、複数の伝熱管の各上端が上部ヘッダーで、各下端が下部ヘッダーでそれぞれ接続され、上部ヘッダーに、配管357を介して低温蒸発器40内の低温冷媒蒸気Vsを、及び配管358を介して低温濃溶液管38を流れる低温濃溶液Sbを導入するように構成して、加熱用吸収装置351の内部に低温濃溶液Sb及び低温冷媒蒸気Vsを導入し、加熱用吸収装置351の伝熱管内で低温濃溶液Sbに低温冷媒蒸気Vsを吸収させて吸収熱を発生させ、中間濃溶液散布ノズル52から加熱用吸収装置の外部に散布された高温希溶液Sw又は低温濃溶液Sbを加熱することとしている。加熱用吸収装置351の下部ヘッダーは、配管359を介して低温希溶液管36に接続されており、加熱用吸収装置351で濃度が低下した吸収液Sを低温希溶液管36に導入することができるように構成されている。
In the above description, the absorption heat generated in the low-temperature absorber 30 by the absorption heat transfer means guiding the high-temperature refrigerant vapor Vr having the absorption heat generated in the low-temperature absorber 30 from the high-temperature evaporator 20 to the high-temperature regenerator 50. However, the refrigerant vapor heat source pipe 51 may be configured as follows in place of the refrigerant vapor heat source pipe 51.
FIG. 5 is a schematic system diagram of an absorption heat pump according to a modification of the present embodiment, where (a) shows a first modification and (b) shows a second modification. In the first modification shown in FIG. 5 (a), a circulating heat medium pipe 251 of a closed pipe that circulates a liquid heat medium t between the low temperature absorber 30 and the high temperature regenerator 50 is provided. The heat generated by the low-temperature absorber 30 is directly conveyed into the high-temperature regenerator 50 by circulating the heat medium t with a circulating heat medium pump 259 disposed at 251. In the second modification shown in FIG. 5B, a heating absorber 351 that functions as a low-temperature absorber is provided in the high-temperature regenerator 50 instead of the refrigerant vapor heat source pipe 51. The heating absorption device 351 exemplified here is arranged so that a plurality of heat transfer tubes extend vertically, and each upper end of the plurality of heat transfer tubes is connected to the upper header and each lower end is connected to the lower header. The low-temperature refrigerant vapor Vs in the low-temperature evaporator 40 is introduced via the pipe 357, and the low-temperature concentrated solution Sb flowing through the low-temperature concentrated solution pipe 38 is introduced via the pipe 358. The low-temperature concentrated solution Sb and the low-temperature refrigerant vapor Vs are introduced therein, and the low-temperature concentrated solution Sb absorbs the low-temperature concentrated solution Sb in the heat transfer tube of the heating absorption device 351 to generate heat of absorption. The high-temperature dilute solution Sw or the low-temperature concentrated solution Sb sprayed to the outside of the heating absorber is heated. The lower header of the heating absorber 351 is connected to the low temperature dilute solution pipe 36 via a pipe 359, and the absorbing solution S whose concentration has been reduced by the heating absorber 351 can be introduced into the low temperature dilute solution pipe 36. It is configured to be able to.

1 吸収ヒートポンプ
10 高温吸収器
11 加熱管
17 分岐管
18 切替弁
20 高温蒸発器
30 低温吸収器
35 バイパス管
35v 流量調節弁
40 低温蒸発器
50 高温再生器
51 冷媒蒸気熱源管
51v 熱源流量調節弁
60 低温再生器
70 凝縮器
95 高温希溶液濃度検出器
96 低温濃溶液濃度検出器
99 制御装置
Sa 高温濃溶液
Sb 低温濃溶液
Sv 低温希溶液
Sw 高温希溶液
Sx 混合希溶液
Vf 冷媒液
Vg 再生器冷媒蒸気
Vr 高温冷媒蒸気
Vs 低温冷媒蒸気
W 被加熱媒体

DESCRIPTION OF SYMBOLS 1 Absorption heat pump 10 High temperature absorber 11 Heating pipe 17 Branch pipe 18 Switching valve 20 High temperature evaporator 30 Low temperature absorber 35 Bypass pipe 35v Flow control valve 40 Low temperature evaporator 50 High temperature regenerator 51 Refrigerant vapor heat source pipe 51v Heat source flow control valve 60 Low temperature regenerator 70 Condenser 95 High temperature dilute solution concentration detector 96 Low temperature concentrated solution concentration detector 99 Control device Sa High temperature concentrated solution Sb Low temperature concentrated solution Sv Low temperature dilute solution Sw High temperature dilute solution Sx Mixed dilute solution Vf Refrigerant liquid Vg Regenerator refrigerant Steam Vr High-temperature refrigerant vapor Vs Low-temperature refrigerant vapor W Heated medium

Claims (4)

被加熱媒体の流路を内部に有し、第1の吸収液が第1の冷媒蒸気を吸収する際に発生する吸収熱で前記被加熱媒体を加熱する第1の吸収器と;
前記第1の吸収器に前記第1の冷媒蒸気を供給する蒸発器と;
第2の吸収液が第2の冷媒蒸気を吸収する際に発生する吸収熱で前記蒸発器内の冷媒液を加熱して前記第1の冷媒蒸気を生成する、前記第1の吸収器よりも作動温度が低い第2の吸収器と;
前記第1の吸収器で前記第1の吸収液が前記第1の冷媒蒸気を吸収して濃度が低下した第1の希溶液を導入し加熱して、前記第1の希溶液から冷媒を蒸発させて前記第1の吸収液を生成する高温再生器と;
前記第2の吸収器で前記第2の吸収液が前記第2の冷媒蒸気を吸収して濃度が低下した第2の希溶液を導入し加熱して、前記第2の希溶液から冷媒を蒸発させて前記第2の吸収液を生成する低温再生器と;
前記第1の吸収器内の前記第1の希溶液を前記高温再生器に導く第1の希溶液管と;
前記第1の希溶液管に接続され、前記第1の希溶液管を流れる第1の希溶液を直接的又は間接的に前記低温再生器へ導く分岐管と;
前記第1の希溶液管を流れる前記第1の希溶液を、前記高温再生器へ流入させるのと、前記低温再生器へ流入させるのとを切り替える切替弁とを備え;
前記第1の希溶液管を流れる前記第1の希溶液が前記低温再生器に流入したときに、前記低温再生器は前記第1の希溶液及び前記第2の希溶液から冷媒を蒸発させるように構成され;
前記低温再生器で生成された前記第2の吸収液の一部を前記高温再生器に導く中間濃溶液管であって、流路を遮断可能な開閉弁を有する中間濃溶液管をさらに備え;
前記第1の希溶液管を流れる前記第1の希溶液を前記高温再生器へ流入させたときは前記開閉弁を閉にし、前記第1の希溶液管を流れる前記第1の希溶液を前記低温再生器へ流入させたときは前記開閉弁を開にして前記低温再生器で生成された前記第2の吸収液の一部を前記高温再生器に導くように構成された;
吸収ヒートポンプ。
A first absorber that has a flow path for the medium to be heated, and that heats the medium to be heated with absorption heat generated when the first absorption liquid absorbs the first refrigerant vapor;
An evaporator for supplying the first refrigerant vapor to the first absorber;
More than the first absorber, wherein the first refrigerant vapor is generated by heating the refrigerant liquid in the evaporator with absorption heat generated when the second absorption liquid absorbs the second refrigerant vapor. A second absorber with a low operating temperature;
In the first absorber, the first absorbing liquid absorbs the first refrigerant vapor and introduces and heats the first dilute solution having a reduced concentration to evaporate the refrigerant from the first dilute solution. A high temperature regenerator for producing the first absorbent;
In the second absorber, the second absorbing liquid absorbs the second refrigerant vapor and introduces and heats the second dilute solution having a reduced concentration to evaporate the refrigerant from the second dilute solution. A low temperature regenerator for producing the second absorbent;
A first dilute solution tube that guides the first dilute solution in the first absorber to the high temperature regenerator;
A branch pipe connected to the first dilute solution pipe and leading the first dilute solution flowing through the first dilute solution pipe directly or indirectly to the low temperature regenerator;
Said first dilute solution flowing through the first dilute solution tube, and cause to flow into the high-temperature regenerator, Bei example a switching valve for switching between cause to flow into the low-temperature regenerator;
When the first dilute solution flowing through the first dilute solution tube flows into the low temperature regenerator, the low temperature regenerator evaporates refrigerant from the first dilute solution and the second dilute solution. Composed of;
An intermediate concentrated solution pipe for guiding a part of the second absorption liquid generated by the low temperature regenerator to the high temperature regenerator, further comprising an intermediate concentrated solution pipe having an on-off valve capable of blocking the flow path;
When the first dilute solution flowing through the first dilute solution pipe flows into the high-temperature regenerator, the on-off valve is closed, and the first dilute solution flowing through the first dilute solution pipe is When the refrigerant is flowed into the low temperature regenerator, the on-off valve is opened so that a part of the second absorbing liquid generated in the low temperature regenerator is guided to the high temperature regenerator;
Absorption heat pump.
被加熱媒体の流路を内部に有し、第1の吸収液が第1の冷媒蒸気を吸収する際に発生する吸収熱で前記被加熱媒体を加熱する第1の吸収器と;
前記第1の吸収器に前記第1の冷媒蒸気を供給する蒸発器と;
第2の吸収液が第2の冷媒蒸気を吸収する際に発生する吸収熱で前記蒸発器内の冷媒液を加熱して前記第1の冷媒蒸気を生成する、前記第1の吸収器よりも作動温度が低い第2の吸収器と;
前記第1の吸収器で前記第1の吸収液が前記第1の冷媒蒸気を吸収して濃度が低下した第1の希溶液を導入し加熱して、前記第1の希溶液から冷媒を蒸発させて前記第1の吸収液を生成する高温再生器と;
前記第2の吸収器で前記第2の吸収液が前記第2の冷媒蒸気を吸収して濃度が低下した第2の希溶液を導入し加熱して、前記第2の希溶液から冷媒を蒸発させて前記第2の吸収液を生成する低温再生器と;
前記第1の吸収器内の前記第1の希溶液を前記高温再生器に導く第1の希溶液管と;
前記第1の希溶液管に接続され、前記第1の希溶液管を流れる第1の希溶液を直接的又は間接的に前記低温再生器へ導く分岐管と;
前記第1の希溶液管を流れる前記第1の希溶液を、前記高温再生器へ流入させるのと、前記低温再生器へ流入させるのとを切り替える切替弁と;
前記第1の吸収器から導出される前記第1の希溶液の濃度を検出する第1の希溶液濃度検出手段と;
前記低温再生器で生成された第2の吸収液の濃度を検出する第2の吸収液濃度検出手段と;
前記第1の希溶液濃度検出手段で検出された値が前記第2の吸収液濃度検出手段で検出された値よりも小さいときに前記第1の希溶液の少なくとも一部を前記低温再生器に導き、前記第1の希溶液濃度検出手段で検出された値が前記第2の吸収液濃度検出手段で検出された値以上のときに前記第1の希溶液の全部を前記高温再生器に導くように、前記切替弁を制御する制御装置とを備える;
吸収ヒートポンプ。
A first absorber that has a flow path for the medium to be heated, and that heats the medium to be heated with absorption heat generated when the first absorption liquid absorbs the first refrigerant vapor;
An evaporator for supplying the first refrigerant vapor to the first absorber;
More than the first absorber, wherein the first refrigerant vapor is generated by heating the refrigerant liquid in the evaporator with absorption heat generated when the second absorption liquid absorbs the second refrigerant vapor. A second absorber with a low operating temperature;
In the first absorber, the first absorbing liquid absorbs the first refrigerant vapor and introduces and heats the first dilute solution having a reduced concentration to evaporate the refrigerant from the first dilute solution. A high temperature regenerator for producing the first absorbent;
In the second absorber, the second absorbing liquid absorbs the second refrigerant vapor and introduces and heats the second dilute solution having a reduced concentration to evaporate the refrigerant from the second dilute solution. A low temperature regenerator for producing the second absorbent;
A first dilute solution tube that guides the first dilute solution in the first absorber to the high temperature regenerator;
A branch pipe connected to the first dilute solution pipe and leading the first dilute solution flowing through the first dilute solution pipe directly or indirectly to the low temperature regenerator;
A switching valve for switching between flowing the first dilute solution flowing through the first dilute solution pipe into the high temperature regenerator and flowing into the low temperature regenerator ;
First dilute solution concentration detecting means for detecting the concentration of the first dilute solution derived from the first absorber;
Second absorbing liquid concentration detecting means for detecting the concentration of the second absorbing liquid generated by the low temperature regenerator;
When the value detected by the first dilute solution concentration detecting means is smaller than the value detected by the second absorbing solution concentration detecting means, at least a part of the first dilute solution is transferred to the low temperature regenerator. When the value detected by the first dilute solution concentration detecting means is greater than or equal to the value detected by the second absorbing solution concentration detecting means, all of the first dilute solution is led to the high temperature regenerator. And a control device for controlling the switching valve;
Absorption heat pump.
前記第2の吸収器で発生した吸収熱を、直接的又は間接的に前記高温再生器内に搬送する吸収熱搬送手段を備える;
請求項1又は請求項2に記載の吸収ヒートポンプ。
An absorption heat transfer means for transferring absorbed heat generated in the second absorber directly or indirectly into the high temperature regenerator;
The absorption heat pump according to claim 1 or 2.
前記第2の吸収器に導入される前記第2の吸収液のうち、前記第2の冷媒蒸気を吸収する前記第2の吸収液の流量を調節する吸収液流量調節手段を備える;
請求項1乃至請求項3のいずれか1項に記載の吸収ヒートポンプ。
An absorption liquid flow rate adjusting means for adjusting a flow rate of the second absorption liquid that absorbs the second refrigerant vapor among the second absorption liquid introduced into the second absorber;
The absorption heat pump according to any one of claims 1 to 3.
JP2010112595A 2010-05-14 2010-05-14 Absorption heat pump Active JP5513981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010112595A JP5513981B2 (en) 2010-05-14 2010-05-14 Absorption heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010112595A JP5513981B2 (en) 2010-05-14 2010-05-14 Absorption heat pump

Publications (2)

Publication Number Publication Date
JP2011242016A JP2011242016A (en) 2011-12-01
JP5513981B2 true JP5513981B2 (en) 2014-06-04

Family

ID=45408864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010112595A Active JP5513981B2 (en) 2010-05-14 2010-05-14 Absorption heat pump

Country Status (1)

Country Link
JP (1) JP5513981B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114413671B (en) * 2022-01-24 2023-08-25 上海交通大学 Reabsorption type large concentration difference heat storage and long-distance heat loss-free heat transfer system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59115952A (en) * 1982-12-23 1984-07-04 大阪瓦斯株式会社 Second class absorption type heat pump
JP3083360B2 (en) * 1991-08-20 2000-09-04 東京瓦斯株式会社 Absorption heat pump
JP3103225B2 (en) * 1992-12-18 2000-10-30 東京瓦斯株式会社 Absorption heat pump using low-temperature heat source
JPH0989407A (en) * 1995-09-27 1997-04-04 N T T Facilities:Kk Absorption refrigerator
JP3114854B2 (en) * 1996-11-27 2000-12-04 東京瓦斯株式会社 Absorption chiller / heater
JP4128068B2 (en) * 2002-11-08 2008-07-30 三洋電機株式会社 Absorption refrigerator
JP2007127342A (en) * 2005-11-04 2007-05-24 Ebara Corp Absorption heat pump and steam supply system
JP5250340B2 (en) * 2008-08-25 2013-07-31 荏原冷熱システム株式会社 Absorption heat pump

Also Published As

Publication number Publication date
JP2011242016A (en) 2011-12-01

Similar Documents

Publication Publication Date Title
JP5250340B2 (en) Absorption heat pump
JP6397747B2 (en) Absorption heat pump
JP5514003B2 (en) Absorption heat pump
JP2015025628A (en) Multi-stage temperature rising type absorption heat pump device
JP2006266633A (en) Cooling and heating operation method by absorption heat pump, and absorption heat pump
JP5513981B2 (en) Absorption heat pump
JP2011163601A (en) Absorption type heat pump device
JP5395502B2 (en) Absorption heat pump
JP6138642B2 (en) Absorption refrigerator
JP2012202589A (en) Absorption heat pump apparatus
JP2014163522A (en) Absorption heat pump, and operational method for absorption heat pump
JP5513980B2 (en) Absorption heat pump
JP5513979B2 (en) Absorption heat pump
JP6632951B2 (en) Absorption refrigerator
JP5552363B2 (en) Absorption heat pump
JP2013231577A (en) Absorption heat pump and operation method of absorption heat pump
JP6570965B2 (en) Absorption heat pump
JP2007333342A (en) Multi-effect absorption refrigerating machine
JP2009299936A (en) Absorption refrigerating machine
JP3443100B2 (en) Absorption refrigerator and method of operating the same
JP5536855B2 (en) Absorption refrigerator
JP2015025610A (en) Three-stage temperature rising type absorption heat pump
JP5528912B2 (en) Hybrid heat pump
JP2018096673A (en) Absorption type heat exchanging system
JP5816135B2 (en) Absorption heat pump and operation method of absorption heat pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140328

R150 Certificate of patent or registration of utility model

Ref document number: 5513981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250