JP5499729B2 - Manufacturing method of solar cell module - Google Patents

Manufacturing method of solar cell module Download PDF

Info

Publication number
JP5499729B2
JP5499729B2 JP2010012048A JP2010012048A JP5499729B2 JP 5499729 B2 JP5499729 B2 JP 5499729B2 JP 2010012048 A JP2010012048 A JP 2010012048A JP 2010012048 A JP2010012048 A JP 2010012048A JP 5499729 B2 JP5499729 B2 JP 5499729B2
Authority
JP
Japan
Prior art keywords
temperature
solar cell
connection
conductive
plastic deformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010012048A
Other languages
Japanese (ja)
Other versions
JP2011151246A (en
JP2011151246A5 (en
Inventor
宏治 濱口
俊明 田中
直樹 福嶋
雄介 淺川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2010012048A priority Critical patent/JP5499729B2/en
Publication of JP2011151246A publication Critical patent/JP2011151246A/en
Publication of JP2011151246A5 publication Critical patent/JP2011151246A5/ja
Application granted granted Critical
Publication of JP5499729B2 publication Critical patent/JP5499729B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

本発明は、太陽電池モジュールの製造方法に関する。   The present invention relates to a method for manufacturing a solar cell module.

太陽電池モジュールの各太陽電池セル同士は、例えば、受光面側に設けられた表面電極及び受光面の裏側に設けられた裏面電極が、配線部材を介して隣接する太陽電池セルの表面電極及び裏面電極と接続されることによって互いに連結されている。従来、太陽電池セルの表面電極及び裏面電極と配線部材とを接続する際に用いられる導電性接続材料として、導通性や固着強度などの点から接続信頼性に優れ、安価で汎用性があることからはんだが広く使われてきた(特許文献1,2参照)。また、はんだ以外の導電性接続材料として、導電性フィルム又は導電性ペーストを用い、太陽電池セルの表面電極及び裏面電極と配線部材とを熱圧着する方法が採用される場合もあった(例えば、特許文献3〜7参照)。   Each solar cell of the solar cell module is, for example, a surface electrode provided on the light receiving surface side and a back electrode provided on the back side of the light receiving surface are adjacent to each other through the wiring member. They are connected to each other by being connected to electrodes. Conventionally, as a conductive connection material used when connecting the front and back electrodes of a solar battery cell and a wiring member, it has excellent connection reliability in terms of conductivity and adhesion strength, is inexpensive and versatile. Solder has been widely used (see Patent Documents 1 and 2). Moreover, as a conductive connection material other than solder, a method of using a conductive film or a conductive paste and thermocompression bonding of the front and back electrodes of the solar battery cell and the wiring member may be employed (for example, (See Patent Documents 3 to 7).

特開2004−204256号公報JP 2004-204256 A 特開2005−050780号公報JP-A-2005-050780 特開2000−286436号公報JP 2000-286436 A 特開2001−357897号公報JP 2001-357897 A 特許第3448924号公報Japanese Patent No. 3448924 特開2005−101519号公報JP 2005-101519 A 特開2007−214533号公報JP 2007-214533 A 特開2000−90734号公報JP 2000-90734 A 特開2001−313402号公報JP 2001-313402 A 特開2006−261621号公報JP 2006-261621 A 特開2008−166344号公報JP 2008-166344 A

ところで、導電性フィルムや導電性ペーストを用いて表面電極及び裏面電極と配線部材とを熱圧着した場合、接続後の太陽電池セルの反りの問題が以前から指摘されていた。この反りの問題は、太陽電池セルを構成する基板と裏面電極との間の熱膨張率の違いによって両者の間に応力が生じることが原因であると考えられている(特許文献8〜11参照)。   By the way, when the front surface electrode, the back surface electrode, and the wiring member are thermocompression bonded using a conductive film or a conductive paste, the problem of warping of the solar battery cell after connection has been pointed out. This warpage problem is considered to be caused by a stress generated between the substrates and the back electrode constituting the solar battery cell due to a difference in thermal expansion coefficient (see Patent Documents 8 to 11). ).

しかしながら、接続後の太陽電池セルの反りは、その後の工程における太陽電池セルの割れなどを誘発し、太陽電池モジュールの歩留まり低下の一因となるおそれがある。   However, the warpage of the solar cells after connection may induce cracking of the solar cells in the subsequent process, and may cause a decrease in the yield of the solar cell modules.

本発明は、上記課題の解決のためになされたものであり、太陽電池セルにおける反りの発生を抑制することにより、歩留まりの向上を図ることができる太陽電池モジュールの製造方法を提供する。   The present invention has been made to solve the above problems, and provides a method for manufacturing a solar cell module capable of improving the yield by suppressing the occurrence of warpage in the solar cell.

上記課題の解決のために、本発明に係る太陽電池モジュールの製造方法は、太陽電池セルの受光面側に設けられた表面電極及び裏面側に設けられた裏面電極に、導電性接続材料を介して配線部材をそれぞれ接続する配線接続工程を含む太陽電池モジュールの製造方法であって、配線接続工程における配線部材の接続温度が20℃以上かつ裏面電極に塑性変形が生じる塑性変形温度未満であり、配線接続前の太陽電池セルについて温度に対する反り量の変化を予め測定し、低温領域における測定結果に最小二乗法を適用して求まる近似直線と、高温領域における測定結果に最小二乗法を適用して求まる近似直線との交点に基づいて、塑性変形温度を決定することを特徴としている。   In order to solve the above problems, a method for manufacturing a solar cell module according to the present invention includes a conductive electrode connecting a surface electrode provided on a light receiving surface side of a solar battery cell and a back electrode provided on a back surface side. A method of manufacturing a solar cell module including a wiring connection step of connecting wiring members to each other, wherein the connection temperature of the wiring member in the wiring connection step is 20 ° C. or higher and lower than the plastic deformation temperature at which plastic deformation occurs at the back electrode, Preliminarily measure the change in the amount of warp with respect to the temperature of the solar cells before wiring connection, apply the least square method to the measurement result in the low temperature region, and apply the least square method to the measurement result in the high temperature region. It is characterized in that the plastic deformation temperature is determined based on the intersection with the obtained approximate straight line.

この太陽電池モジュールの製造方法では、配線接続工程における配線部材の接続温度を20℃以上かつ裏面電極に塑性変形が生じる塑性変形温度未満とすることで、太陽電池セルの基板と裏面電極との間の熱膨張差が抑えられ、接続後の太陽電池セルにおける反りの発生を抑制することが可能となる。また、この太陽電池セルの製造方法では、配線接続前の太陽電池セルについて温度に対する反り量の変化を予め測定し、低温領域における測定結果に最小二乗法を適用して求まる近似直線と、高温領域における測定結果に最小二乗法を適用して求まる近似直線との交点に基づいて、接続温度の上限である塑性変形温度を決定している。これにより、太陽電池セルの反りの抑制に有効な接続温度の範囲を精度良く求めることができる。   In this solar cell module manufacturing method, the connection temperature of the wiring member in the wiring connection step is set to 20 ° C. or more and lower than the plastic deformation temperature at which plastic deformation occurs in the back electrode, so that the space between the substrate of the solar cell and the back electrode is reduced. Thus, it is possible to suppress the occurrence of warpage in the solar cells after connection. Further, in this solar cell manufacturing method, an approximate straight line obtained by applying a least square method to a measurement result in a low temperature region, measuring a change in the amount of warp with respect to the temperature of the solar cell before wiring connection in advance, and a high temperature region The plastic deformation temperature, which is the upper limit of the connection temperature, is determined based on the intersection point with the approximate straight line obtained by applying the least square method to the measurement result in FIG. Thereby, the range of connection temperature effective in suppression of the curvature of a photovoltaic cell can be calculated | required accurately.

本発明の導電性接続材料としては、絶縁樹脂に導電粒子を含有した導電性フィルム又は導電性ペーストであることが好ましい。これらの導電性フィルム又は導電性ペースト用いることで、表面電極及び裏面電極と配線部材との間の接続抵抗が十分に低減され、良好な電気的接続が実現される。   The conductive connecting material of the present invention is preferably a conductive film or conductive paste containing conductive particles in an insulating resin. By using these conductive films or conductive pastes, the connection resistance between the front and back electrodes and the wiring member is sufficiently reduced, and good electrical connection is realized.

上述した以外の導電性接続材料としては、低融点合金に導電粒子を分散して含有させた導電性フィルム又は導電性ペーストであることが好ましい。これらの導電性フィルム又は導電性ペースト用いることで、表面電極及び裏面電極と配線部材との間の接続抵抗が十分に低減され、良好な電気的接続が実現される。   The conductive connecting material other than those described above is preferably a conductive film or conductive paste in which conductive particles are dispersed and contained in a low melting point alloy. By using these conductive films or conductive pastes, the connection resistance between the front and back electrodes and the wiring member is sufficiently reduced, and good electrical connection is realized.

本発明によれば、太陽電池セルにおける反りの発生を抑制することにより、歩留まりの向上を図ることができる太陽電池モジュールの製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the solar cell module which can aim at the improvement of a yield can be provided by suppressing generation | occurrence | production of the curvature in a photovoltaic cell.

本発明に係る太陽電池モジュールの製造方法を適用する太陽電池セルを受光面から見た図である。It is the figure which looked at the photovoltaic cell which applies the manufacturing method of the solar cell module which concerns on this invention from the light-receiving surface. 図1に示した太陽電池セルを裏面側から見た図である。It is the figure which looked at the photovoltaic cell shown in FIG. 1 from the back surface side. 塑性変形温度の決定方法を示すグラフである。It is a graph which shows the determination method of plastic deformation temperature. 表面電極及び裏面電極と配線部材とを接続する導電性フィルムの構成を示す断面図である。It is sectional drawing which shows the structure of the electroconductive film which connects a surface electrode and a back surface electrode, and a wiring member. 配線接続工程を示す図である。It is a figure which shows a wiring connection process. 配線接続工程を経た後の裏面電極と配線部材との接続状態を示す断面図である。It is sectional drawing which shows the connection state of the back surface electrode and wiring member after passing through a wiring connection process. 配線部材の接続温度と太陽電池セルの反り量との関係の検証結果を示す図である。It is a figure which shows the verification result of the relationship between the connection temperature of a wiring member, and the curvature amount of a photovoltaic cell. 裏面電極に添加剤を加えた場合の塑性変形温度の決定方法を示すグラフである。It is a graph which shows the determination method of the plastic deformation temperature at the time of adding an additive to a back surface electrode. 裏面電極に添加剤を加えた場合の配線部材の接続温度と太陽電池セルの反り量との関係の検証結果を示す図である。It is a figure which shows the verification result of the relationship between the connection temperature of a wiring member at the time of adding an additive to a back surface electrode, and the curvature amount of a photovoltaic cell.

以下、図面を参照しながら、本発明に係る太陽電池モジュールの製造方法の好適な実施形態について詳細に説明する。   Hereinafter, preferred embodiments of a method for producing a solar cell module according to the present invention will be described in detail with reference to the drawings.

始めに、接続対象である太陽電池セル10の構成について説明する。図1は、本発明に係る太陽電池モジュールの製造方法を適用する太陽電池セル10を受光面側から見た図である。また、図2は、太陽電池セル10を裏面側から見た図である。   First, the configuration of the solar battery cell 10 to be connected will be described. FIG. 1 is a view of a solar battery cell 10 to which a method for manufacturing a solar battery module according to the present invention is applied, as viewed from the light receiving surface side. Moreover, FIG. 2 is the figure which looked at the photovoltaic cell 10 from the back surface side.

太陽電池セル10は、図1に示すように、平板状の基板11の一方面上に受光部12を有している。受光部12の表面には、線状又は帯状のバスバー電極13a及びフィンガー電極13bから構成される表面電極13が設けられている。また、図2に示すように、太陽電池セル10の裏面には、例えばアルミペースト焼成層14が形成され、このアルミペースト焼成層14上に線状又は帯状のバスバー電極15aから構成される裏面電極15が設けられている。   As shown in FIG. 1, the solar cell 10 has a light receiving portion 12 on one surface of a flat substrate 11. On the surface of the light receiving unit 12, a surface electrode 13 composed of a linear or strip-like bus bar electrode 13a and finger electrodes 13b is provided. Further, as shown in FIG. 2, for example, an aluminum paste fired layer 14 is formed on the back surface of the solar battery cell 10, and a back electrode composed of a linear or strip-shaped bus bar electrode 15 a on the aluminum paste fired layer 14. 15 is provided.

太陽電池セル10の基板11は、例えばSiの単結晶、多結晶、及び非結晶のうち少なくとも一つによって形成されている。本実施形態では、基板11の受光部12側がn型半導体であってもよく、p型半導体であってもよい。また、表面電極13は、電気的導通を得ることができる公知の材料からなる。表面電極13の材料としては、銀を含有したガラスペースト、接着剤樹脂に各種導電粒子を分散した銀ペースト、金ペースト、カーボンペースト、ニッケルペースト、アルミニウムペースト、及び焼成や蒸着によって形成されるITOなどが挙げられる。これらの中でも、耐熱性、導電性、安定性、及びコストの観点から、銀を含有したガラスペーストを用いることが好ましい。   The substrate 11 of the solar battery cell 10 is formed of at least one of, for example, Si single crystal, polycrystal, and amorphous. In the present embodiment, the light receiving unit 12 side of the substrate 11 may be an n-type semiconductor or a p-type semiconductor. Moreover, the surface electrode 13 consists of a well-known material which can acquire electrical continuity. Examples of the material for the surface electrode 13 include glass paste containing silver, silver paste in which various conductive particles are dispersed in an adhesive resin, gold paste, carbon paste, nickel paste, aluminum paste, and ITO formed by firing or vapor deposition. Is mentioned. Among these, it is preferable to use a glass paste containing silver from the viewpoint of heat resistance, conductivity, stability, and cost.

続いて、上述した太陽電池セル10を用いた太陽電池モジュールの製造方法について説明する。   Then, the manufacturing method of the solar cell module using the photovoltaic cell 10 mentioned above is demonstrated.

この太陽電池モジュールの製造方法は、太陽電池セル10の表面電極13及び裏面電極15に導電性フィルム20を介して配線部材18をそれぞれ接続する配線接続工程を有している。この配線接続工程では、裏面電極15と配線部材18とを接続する際の接続温度が、20℃以上でかつ裏面電極15に塑性変形が生じる塑性変形温度T未満となる範囲から選択される。 This method for manufacturing a solar cell module includes a wiring connection step of connecting the wiring members 18 to the front surface electrode 13 and the back surface electrode 15 of the solar battery cell 10 via the conductive film 20. In this wiring connection process, the connection temperature when connecting the back electrode 15 and the wiring member 18 is selected from a range that is 20 ° C. or higher and lower than the plastic deformation temperature T 0 at which the back electrode 15 undergoes plastic deformation.

接続温度の上限である塑性変形温度Tの決定にあたっては、まず、図3に示すように、配線部材18を接続する前の太陽電池セル10について、温度に対する反り量の変化を測定する。この測定には、例えばAKROMETRIX社製THERMOIRE PS2000を用いる。図3に示す例では、25℃から250℃まで25℃刻みで温度を変化させた場合の各温度における太陽電池セル10の反り量がプロットされている。 In determining the plastic deformation temperature T 0 which is the upper limit of the connection temperature, first, as shown in FIG. 3, the change in the amount of warp with respect to the temperature is measured for the solar battery cell 10 before connecting the wiring member 18. For this measurement, for example, THERMORE PS2000 manufactured by AKROMETRIX is used. In the example shown in FIG. 3, the amount of warpage of the solar battery cell 10 at each temperature when the temperature is changed in increments of 25 ° C. from 25 ° C. to 250 ° C. is plotted.

太陽電池セル10の温度に対する反り量の変化を測定した後、低温領域(例えば25℃〜100℃)における測定結果に最小二乗法を適用して近似直線Aを求める。また、高温領域(例えば150℃〜250℃)における測定結果に最小二乗法を適用して近似直線Bを求める。そして、近似直線Aと近似直線Bとの交点Cに基づいて、上述した塑性変形温度Tを決定する。図3に示す例では、塑性変形温度Tは112℃となる。 After measuring the change in the amount of warp with respect to the temperature of the solar battery cell 10, the approximate straight line A is obtained by applying the least square method to the measurement result in the low temperature region (for example, 25 ° C to 100 ° C). Further, the approximate straight line B is obtained by applying the least square method to the measurement result in a high temperature region (for example, 150 ° C. to 250 ° C.). Then, based on the intersection C between the approximate line A and the approximate line B, the plastic deformation temperature T 0 described above is determined. In the example shown in FIG. 3, the plastic deformation temperature T 0 is 112 ° C.

塑性変形温度Tを決定した後、太陽電池セル10の表面電極13及び裏面電極15に沿って導電性フィルム20を貼り付ける。導電性フィルム20は、図4に示すように、基材16と、接着剤層17とによって、例えば長さ1mm〜300mm、幅0.5mm〜30mm、厚さ4μm〜200μm程度に形成されている。 After determining the plastic deformation temperature T 0 , the conductive film 20 is attached along the front surface electrode 13 and the back surface electrode 15 of the solar battery cell 10. As shown in FIG. 4, the conductive film 20 is formed to have a length of 1 mm to 300 mm, a width of 0.5 mm to 30 mm, and a thickness of about 4 μm to 200 μm, for example, by the base material 16 and the adhesive layer 17. .

太陽電池モジュールの発電効率を向上させる観点からは、導電性フィルム20の幅は、配線部材18の幅と等幅であることが好ましい。また、基材16の幅は、接着剤層17の幅よりも大きいことが好ましい。接着剤層17の厚さは、接着剤成分の種類や配線部材18の形状に合わせて適宜選択されるが、例えば5〜100μm程度であることが好ましい。接着剤層17の幅は、一般には0.5mm〜5.0mm程度である。   From the viewpoint of improving the power generation efficiency of the solar cell module, the width of the conductive film 20 is preferably equal to the width of the wiring member 18. The width of the base material 16 is preferably larger than the width of the adhesive layer 17. The thickness of the adhesive layer 17 is appropriately selected according to the type of the adhesive component and the shape of the wiring member 18, and is preferably about 5 to 100 μm, for example. The width of the adhesive layer 17 is generally about 0.5 mm to 5.0 mm.

基材16は、例えばポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエチレンイソフタレート、ポリブチレンテレフタレート、ポリオレフィン、ポリアセテート、ポリカーボネート、ポリフェニレンサルファイド、ポリアミド、エチレン・酢酸ビニル共重合体、ポリ塩化ビニル、ポリ塩化ビニリデン、合成ゴム系、液晶ポリマーなどによって形成されている。基材16における接着剤層17の形成面には、離型処理がなされていることが好ましい。   The substrate 16 is, for example, polyethylene terephthalate, polyethylene naphthalate, polyethylene isophthalate, polybutylene terephthalate, polyolefin, polyacetate, polycarbonate, polyphenylene sulfide, polyamide, ethylene / vinyl acetate copolymer, polyvinyl chloride, polyvinylidene chloride, synthesis It is made of rubber or liquid crystal polymer. It is preferable that a release treatment is performed on the surface of the base material 16 where the adhesive layer 17 is formed.

また、接着剤層17は、熱硬化性樹脂に導電粒子17aを分散させてなる接着剤成分によって形成されている。熱硬化性樹脂としては、例えば、アクリル樹脂、メタクリル樹脂、ウレタン樹脂、不飽和ポリエステル樹脂、エポキシ樹脂、フェノール樹脂などを用いることができる。熱硬化性樹脂の硬化反応の形態は特に制限されるものではなく、二重結合のラジカル重合、イオン重合、重付加などのいずれであってもよい。   The adhesive layer 17 is formed of an adhesive component in which conductive particles 17a are dispersed in a thermosetting resin. As the thermosetting resin, for example, an acrylic resin, a methacrylic resin, a urethane resin, an unsaturated polyester resin, an epoxy resin, a phenol resin, or the like can be used. The form of the curing reaction of the thermosetting resin is not particularly limited, and may be any of double bond radical polymerization, ionic polymerization, polyaddition and the like.

接着剤層17には、熱硬化性樹脂以外の成分が含まれていてもよい。このような成分には、例えばフィルム形成ポリマー、ラジカル重合開始剤、エポキシ硬化剤、シランカップリング剤、触媒、充填剤などが挙げられる。熱硬化性樹脂、フィルム形成ポリマー、及びその他の成分の種類や配合比の調整により、接着剤層17の硬化温度を制御できる。   The adhesive layer 17 may contain components other than the thermosetting resin. Examples of such components include a film-forming polymer, a radical polymerization initiator, an epoxy curing agent, a silane coupling agent, a catalyst, and a filler. The curing temperature of the adhesive layer 17 can be controlled by adjusting the types and blending ratios of the thermosetting resin, the film-forming polymer, and other components.

一方、導電粒子17aとしては、例えばAu、Ag、Pt、Ni、Cu、W、Sb、Sn、はんだ等の金属やカーボンの粒子を用いることができる。その他、非導電性のガラス、セラミック、プラスチック等を核とし、上記金属やカーボンで核を被覆した粒子を用いることもでき、導電粒子17aを絶縁層で被覆してなる絶縁被覆粒子を用いることもできる。導電粒子17aの平均粒径は、分散性や導電性の観点から、例えば1μm〜18μmであることが好ましい。   On the other hand, as the conductive particles 17a, for example, metal such as Au, Ag, Pt, Ni, Cu, W, Sb, Sn, solder, or carbon particles can be used. In addition, particles having a core made of non-conductive glass, ceramic, plastic, etc. and coated with the above metal or carbon can be used, or insulating coated particles formed by coating the conductive particles 17a with an insulating layer can also be used. it can. The average particle diameter of the conductive particles 17a is preferably 1 μm to 18 μm, for example, from the viewpoint of dispersibility and conductivity.

導電粒子17aの配合割合は、接着剤成分の100体積部に対して0.01体積部〜30体積部であることが好ましく、0.1体積部〜10体積部であることが更に好ましい。この配合割合が0.01体積部未満であると、対向する電極間の接続抵抗が高くなる傾向にあり、30体積部を超えると隣接する電極間の短絡が生じ易くなる傾向がある。   The blending ratio of the conductive particles 17a is preferably 0.01 to 30 parts by volume, more preferably 0.1 to 10 parts by volume with respect to 100 parts by volume of the adhesive component. If the blending ratio is less than 0.01 part by volume, the connection resistance between the opposing electrodes tends to increase, and if it exceeds 30 parts by volume, a short circuit between adjacent electrodes tends to occur.

太陽電池セル10の表面電極13及び裏面電極15に沿って導電性フィルム20を貼り付けた後、熱圧着装置19のステージ19aに載置する。そして、図5(a)に示すように、ステージ19aと熱圧着ヘッド19bとによって導電性フィルム20を表面電極13及び裏面電極15にそれぞれ仮圧着する。仮圧着時の圧力は、例えば0.1MPa〜30.0MPaとすることが好ましく、加圧時間は例えば0.5秒〜120秒とすることが好ましい。仮圧着時の温度は、接着剤層17が実質的に硬化しない温度であればよい。   After the conductive film 20 is attached along the front surface electrode 13 and the back surface electrode 15 of the solar battery cell 10, it is placed on the stage 19 a of the thermocompression bonding device 19. Then, as shown in FIG. 5A, the conductive film 20 is temporarily pressure-bonded to the front electrode 13 and the back electrode 15 by the stage 19a and the thermocompression bonding head 19b, respectively. The pressure at the time of temporary pressure bonding is preferably 0.1 MPa to 30.0 MPa, for example, and the pressing time is preferably 0.5 seconds to 120 seconds, for example. The temperature at the time of temporary press-bonding may be a temperature at which the adhesive layer 17 is not substantially cured.

導電性フィルム20を仮圧着した後、基材16を剥離し、表面電極13上及び裏面電極15上に形成された接着剤層17に沿って配線部材18をそれぞれ配置する。配線部材18としては、例えば長さ150mm、幅2mm、厚さ0.16mmの角型銅リボン線が用いられる。そして、図5(b)に示すように、ステージ19aと熱圧着ヘッド19bとによって接着剤層17を硬化させ、表面電極13及び裏面電極15と配線部材18とをそれぞれ接続する。このときの熱圧着ヘッド19bによる圧力は、配線部材18や太陽電池セル10に損傷を与えない範囲であれば特に制限されないが、例えば0.1MPa〜30.0MPaとすることが好ましい。   After the conductive film 20 is temporarily pressure-bonded, the base material 16 is peeled off, and the wiring members 18 are respectively disposed along the adhesive layer 17 formed on the front electrode 13 and the back electrode 15. As the wiring member 18, for example, a rectangular copper ribbon wire having a length of 150 mm, a width of 2 mm, and a thickness of 0.16 mm is used. And as shown in FIG.5 (b), the adhesive bond layer 17 is hardened with the stage 19a and the thermocompression-bonding head 19b, and the surface electrode 13, the back surface electrode 15, and the wiring member 18 are connected, respectively. Although the pressure by the thermocompression-bonding head 19b at this time is not particularly limited as long as it does not damage the wiring member 18 and the solar battery cell 10, it is preferably, for example, 0.1 MPa to 30.0 MPa.

また、加熱温度は、20℃以上かつ上述した塑性変形温度T未満であることが好ましい。また、加熱温度の下限は、硬化速度を確保する観点から、40℃以上であることがより好ましく、80℃以上であることが更に好ましい。加熱時間は、0.1秒〜180秒であることが好ましい。加熱時間の下限は、0.5秒以上であることがより好ましく、1.0秒以上であることが更に好ましい。 The heating temperature is preferably 20 ° C. or more and less than the plastic deformation temperature T 0 as described above. In addition, the lower limit of the heating temperature is more preferably 40 ° C. or higher, and further preferably 80 ° C. or higher, from the viewpoint of securing the curing rate. The heating time is preferably 0.1 seconds to 180 seconds. The lower limit of the heating time is more preferably 0.5 seconds or more, and further preferably 1.0 seconds or more.

なお、接着剤層17を硬化させるための加熱は、ステージ19aと熱圧着ヘッド19bとの両方を加熱するものであってもよく、いずれか一方のみの加熱であってもよい。また、ステージ19a及び熱圧着ヘッド19bの近傍から熱風を吹き付けるようにしてもよい。   The heating for curing the adhesive layer 17 may be for heating both the stage 19a and the thermocompression bonding head 19b, or only one of them. Alternatively, hot air may be blown from the vicinity of the stage 19a and the thermocompression bonding head 19b.

図6は、配線接続工程を経た後の裏面電極15と配線部材18との接続状態を示す断面図である。同図に示すように、配線接続工程により、互いに対向する裏面電極15と配線部材18との間に接着剤層17中の導電粒子17aが介在し、この導電粒子17aを介して裏面電極15と配線部材18とが電気的に接続される。また、図示しないが、表面電極13と配線部材18との接続状態についても同様となっている。このような接続状態により、表面電極13及び裏面電極15と配線部材18との間の接続抵抗が十分に低減され、良好な電気的接続が実現される。   FIG. 6 is a cross-sectional view showing a connection state between the back electrode 15 and the wiring member 18 after the wiring connection process. As shown in the figure, in the wiring connection process, conductive particles 17a in the adhesive layer 17 are interposed between the back electrode 15 and the wiring member 18 facing each other, and the back electrode 15 and the back electrode 15 are interposed via the conductive particles 17a. The wiring member 18 is electrically connected. Although not shown, the same applies to the connection state between the surface electrode 13 and the wiring member 18. With such a connection state, the connection resistance between the front surface electrode 13 and the back surface electrode 15 and the wiring member 18 is sufficiently reduced, and good electrical connection is realized.

以上説明したように、この太陽電池モジュールの製造方法では、配線接続工程における配線部材18の接続温度が、20℃以上かつ塑性変形温度T未満となっている。このため、太陽電池セル10の基板11と裏面電極15との間の熱膨張差が抑えられ、接続後の太陽電池セル10における反りの発生を抑制することが可能となる。また、この太陽電池セル10の製造方法では、配線接続前の太陽電池セル10について温度に対する反り量の変化を予め測定し、低温領域における測定結果に最小二乗法を適用して求まる近似直線と、高温領域における測定結果に最小二乗法を適用して求まる近似直線との交点に基づいて、接続温度の上限である塑性変形温度Tを決定している。これにより、太陽電池セル10の反りの抑制に有効な接続温度の範囲を精度良く求めることができる。 As described above, in this solar cell module manufacturing method, the connection temperature of the wiring member 18 in the wiring connection step is 20 ° C. or higher and lower than the plastic deformation temperature T 0 . For this reason, the difference in thermal expansion between the substrate 11 and the back electrode 15 of the solar battery cell 10 is suppressed, and the occurrence of warpage in the solar battery cell 10 after connection can be suppressed. Further, in the method for manufacturing the solar cell 10, an approximate straight line obtained by measuring in advance a change in the amount of warp with respect to the temperature of the solar cell 10 before wiring connection, and applying the least square method to the measurement result in the low temperature region, The plastic deformation temperature T 0 , which is the upper limit of the connection temperature, is determined based on the intersection with the approximate straight line obtained by applying the least square method to the measurement result in the high temperature region. Thereby, the range of connection temperature effective in suppression of the curvature of the photovoltaic cell 10 can be calculated | required accurately.

続いて、上述した太陽電池モジュールの製造方法による太陽電池セル10の反り量低減効果の検証結果について説明する。   Then, the verification result of the curvature amount reduction effect of the photovoltaic cell 10 by the manufacturing method of the solar cell module mentioned above is demonstrated.

この検証にあたっては、まず、配線部材18の接続温度を130℃、150℃、170℃、及び200℃として実際に太陽電池セル10と配線部材18との接続を行った。サンプル数は、各温度で3個ずつとした。また、エムエスシーソフトウェア株式会社製Marc2008を用い、裏面電極15の物性をアルミニウム6061−O材と仮定し、その凝固点を応力ゼロ点として反り量のシミュレーションを行った。   In this verification, first, the connection temperature of the wiring member 18 was set to 130 ° C., 150 ° C., 170 ° C., and 200 ° C., and the solar battery cell 10 and the wiring member 18 were actually connected. The number of samples was three at each temperature. Further, using Marc2008 manufactured by MSC Software Co., Ltd., assuming that the physical property of the back electrode 15 is aluminum 6061-O material, the amount of warpage was simulated using the solidification point as a stress zero point.

図7は、配線部材18の接続温度と太陽電池セル10の反り量との検証結果を示す図である。同図に示すように、上記温度範囲では、配線接続後の太陽電池セル10の反り量がいずれも0.1mm以上であり、接続温度が高いほど反り量が大きくなる傾向にあることが確認できた。また、実験結果とシミュレーション結果とが概ね一致していることも確認できた。   FIG. 7 is a diagram illustrating a verification result of the connection temperature of the wiring member 18 and the amount of warpage of the solar battery cell 10. As shown in the figure, in the above temperature range, the warpage amount of the solar battery cell 10 after wiring connection is 0.1 mm or more, and it can be confirmed that the warpage amount tends to increase as the connection temperature increases. It was. It was also confirmed that the experimental results and the simulation results almost coincided.

そこで、20℃以上かつ塑性変形温度T(112℃)未満となる接続温度として、80℃及び100℃の場合のシミュレーションを行ったところ、配線接続後の太陽電池セル10の反り量が0.1mm以下となり、上記温度範囲外で接続を行ったときと比較して反り量が十分に低減されることが確認できた。 Therefore, a simulation was performed in the case of 80 ° C. and 100 ° C. as the connection temperature that is 20 ° C. or more and less than the plastic deformation temperature T 0 (112 ° C.). It was 1 mm or less, and it was confirmed that the amount of warping was sufficiently reduced as compared to when the connection was performed outside the above temperature range.

また、この検証では、アルミニウムよりも熱膨張率の小さい添加物が裏面電極15に付加された太陽電池セル10についても同様の試験を行った。まず、図8に示すように、この太陽電池セル10について温度に対する反り量の変化を測定し、低温領域における測定結果に最小二乗法を適用して近似直線Dを求め、次いで、高温領域における測定結果に最小二乗法を適用して近似直線Eを求めた。そして、近似直線Dと近似直線Eとの交点Fに基づいて、上述した塑性変形温度Tを決定した。図8に示す例では、塑性変形温度Tは150℃となった。 In this verification, the same test was performed on the solar battery cell 10 in which an additive having a smaller coefficient of thermal expansion than aluminum was added to the back electrode 15. First, as shown in FIG. 8, the change in the amount of warp with respect to temperature is measured for the solar cell 10, an approximate straight line D is obtained by applying the least square method to the measurement result in the low temperature region, and then the measurement in the high temperature region is performed. An approximate straight line E was obtained by applying the least square method to the result. Then, based on the intersection F between the approximate straight line E and the approximate straight line D, to determine the plastic deformation temperature T 0 as described above. In the example shown in FIG. 8, the plastic deformation temperature T 0 is 150 ° C.

次に、配線部材18の接続温度を80℃、100℃、130℃、150℃、170℃、及び200℃としてシミュレーションを行った。その結果、図9に示すように、接続温度が20℃以上かつ塑性変形温度T未満である場合には、配線接続後の太陽電池セルの反り量が0.05mm以下であるのに対し、接続温度がこれよりも高い場合には、配線接続後の太陽電池セル10の反り量が0.06mm以上となった。以上のことから、アルミニウムよりも熱膨張率の小さい添加物が裏面電極15に付加された太陽電池セル10についても、本発明が有効であることが確認できた。 Next, the simulation was performed with the connection temperature of the wiring member 18 being 80 ° C, 100 ° C, 130 ° C, 150 ° C, 170 ° C, and 200 ° C. As a result, as shown in FIG. 9, when the connection temperature is 20 ° C. or more and less than the plastic deformation temperature T 0 , the warpage amount of the solar battery cell after wiring connection is 0.05 mm or less, When the connection temperature was higher than this, the warpage amount of the solar battery cell 10 after the wiring connection was 0.06 mm or more. From the above, it was confirmed that the present invention is also effective for the solar battery cell 10 in which an additive having a smaller thermal expansion coefficient than aluminum is added to the back electrode 15.

本発明は、上記実施形態に限られるものではない。例えば上述した実施形態では、導電性フィルム20を用いて配線部材18の接続を行っているが、導電性接続材料には導電性ペーストを用いてもよい。また、その他の導電性接続材料として、低融点合金に導電粒子17aを分散して含有させた導電性フィルム又は導電性ペーストを用いてもよい。この場合、低融点合金としては、例えばBi58Sn42(融点138℃)、In52Sn48(融点117℃)、In51Bi33Sn16(融点60℃)が挙げられる。 The present invention is not limited to the above embodiment. For example, in the above-described embodiment, the wiring member 18 is connected using the conductive film 20, but a conductive paste may be used as the conductive connection material. Moreover, you may use the electroconductive film or electroconductive paste which disperse | distributed and contained the electroconductive particle 17a in the low melting-point alloy as another electroconductive connection material. In this case, examples of the low melting point alloy include Bi 58 Sn 42 (melting point 138 ° C.), In 52 Sn 48 (melting point 117 ° C.), and In 51 Bi 33 Sn 16 (melting point 60 ° C.).

10…太陽電池セル、11…基板、12…受光部、13…表面電極、15…裏面電極、17a…導電粒子、20…導電性フィルム、18…配線部材、A…低温領域における近似直線、B…高温領域における近似直線、C…交点、T…塑性変形温度。
DESCRIPTION OF SYMBOLS 10 ... Solar cell, 11 ... Board | substrate, 12 ... Light-receiving part, 13 ... Front electrode, 15 ... Back electrode, 17a ... Conductive particle, 20 ... Conductive film, 18 ... Wiring member, A ... Approximate straight line in low-temperature area, B ... Approximate straight line in high temperature region, C ... Intersection, T 0 ... Plastic deformation temperature.

Claims (4)

太陽電池セルの受光面側に設けられた表面電極及び裏面側に設けられた裏面電極に、導電性接続材料を介して配線部材をそれぞれ接続する配線接続工程を含む太陽電池モジュールの製造方法であって、
前記配線接続工程における前記配線部材の接続温度が20℃以上かつ前記裏面電極に塑性変形が生じる塑性変形温度未満であり、
配線接続前の前記太陽電池セルについて温度に対する反り量の変化を予め測定し、低温領域における測定結果に最小二乗法を適用して求まる近似直線と、高温領域における測定結果に最小二乗法を適用して求まる近似直線との交点に基づいて、前記塑性変形温度を決定することを特徴とする太陽電池モジュールの製造方法。
A solar cell module manufacturing method including a wiring connection step of connecting a wiring member to a front surface electrode provided on a light receiving surface side of a solar battery cell and a back electrode provided on a back surface side through a conductive connection material. And
The connection temperature of the wiring member in the wiring connection step is 20 ° C. or higher and lower than the plastic deformation temperature at which plastic deformation occurs in the back electrode,
Preliminarily measure the change in the amount of warp with respect to the temperature of the solar cell before wiring connection, apply the least square method to the measurement result in the low temperature region, and apply the least square method to the measurement result in the high temperature region. A method of manufacturing a solar cell module, comprising: determining the plastic deformation temperature based on an intersection with an approximate straight line obtained in this manner.
太陽電池セルの受光面側に設けられた表面電極及び裏面側に設けられた裏面電極に、導電性接続材料を介して配線部材をそれぞれ接続する配線接続工程を含む太陽電池モジュールの製造方法であって、
前記配線接続工程における前記配線部材の接続温度が20℃以上かつ前記裏面電極に塑性変形が生じる塑性変形温度未満であり、
前記塑性変形温度は、配線接続前の前記太陽電池セルについて温度に対する反り量の変化の測定結果において、低温領域における測定結果に最小二乗法を適用して求まる近似直線と、高温領域における測定結果に最小二乗法を適用して求まる近似直線との交点に基づく温度であることを特徴とする太陽電池モジュールの製造方法。
A solar cell module manufacturing method including a wiring connection step of connecting a wiring member to a front surface electrode provided on a light receiving surface side of a solar battery cell and a back electrode provided on a back surface side through a conductive connection material. And
The connection temperature of the wiring member in the wiring connection step is 20 ° C. or higher and lower than the plastic deformation temperature at which plastic deformation occurs in the back electrode,
The plastic deformation temperature is an approximate straight line obtained by applying the least square method to the measurement result in the low temperature region and the measurement result in the high temperature region in the measurement result of the change in the amount of warpage with respect to the temperature of the solar cell before wiring connection. method of manufacturing a solar cell module, wherein the least squares method is the temperature rather based on the intersection of the approximate line obtained by applying.
前記導電性接続材料として、絶縁樹脂に導電粒子を分散して含有させた導電性フィルム又は導電性ペーストを用いることを特徴とする請求項1又は2記載の太陽電池モジュールの製造方法。 The method for manufacturing a solar cell module according to claim 1 or 2, wherein a conductive film or conductive paste in which conductive particles are dispersed and contained in an insulating resin is used as the conductive connection material. 前記導電性接続材料として、低融点合金に導電粒子を分散して含有させた導電性フィルム又は導電性ペーストを用いることを特徴とする請求項1又は2記載の太陽電池モジュールの製造方法。 3. The method of manufacturing a solar cell module according to claim 1, wherein a conductive film or conductive paste in which conductive particles are dispersed and contained in a low melting point alloy is used as the conductive connection material.
JP2010012048A 2010-01-22 2010-01-22 Manufacturing method of solar cell module Expired - Fee Related JP5499729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010012048A JP5499729B2 (en) 2010-01-22 2010-01-22 Manufacturing method of solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010012048A JP5499729B2 (en) 2010-01-22 2010-01-22 Manufacturing method of solar cell module

Publications (3)

Publication Number Publication Date
JP2011151246A JP2011151246A (en) 2011-08-04
JP2011151246A5 JP2011151246A5 (en) 2013-04-04
JP5499729B2 true JP5499729B2 (en) 2014-05-21

Family

ID=44537961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010012048A Expired - Fee Related JP5499729B2 (en) 2010-01-22 2010-01-22 Manufacturing method of solar cell module

Country Status (1)

Country Link
JP (1) JP5499729B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015118952A (en) * 2012-04-12 2015-06-25 日立化成株式会社 Solar cell

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105826418B (en) * 2007-05-09 2017-05-17 日立化成株式会社 Manufacturing method for connecting and manufacturing method for solar cell module
EP2200093A1 (en) * 2007-09-26 2010-06-23 Hitachi Chemical Company, Ltd. Member for conductor connection, method for manufacturing the same, connection structure, and solar cell module
KR101108862B1 (en) * 2007-09-26 2012-01-31 히다치 가세고교 가부시끼가이샤 Conductor-connecting member, method for producing the same, connection structure, and solar cell module

Also Published As

Publication number Publication date
JP2011151246A (en) 2011-08-04

Similar Documents

Publication Publication Date Title
JP5509542B2 (en) Wiring member connection structure and wiring member connection method
KR101180585B1 (en) Solar battery cell connection method and solar battery module
US9748413B2 (en) Solar cell module
JP5690648B2 (en) Anisotropic conductive film, connection method and connection structure
KR101465924B1 (en) Production method for solar cell module, and solar cell module
JP5690637B2 (en) Anisotropic conductive film, connection method and connection structure
JP6043971B2 (en) Solar cell module and method for manufacturing solar cell module
KR101435312B1 (en) Solar cell module, and production method for solar cell module
JPWO2008152865A1 (en) Thin film solar cell and manufacturing method thereof
JP2013055262A (en) Manufacturing method of solar cell module and connection method of solar cell module and tub line
KR20130021374A (en) Solar cell module and method for producing solar cell module
KR102099246B1 (en) Crystal system solar battery module and method for manufacturing same
EP2816612A1 (en) Electrically conductive adhesive agent, solar cell module, and method for producing solar cell module
JP6326890B2 (en) Manufacturing method of solar cell module
EP2667420A1 (en) Solar cell module and method of manufacturing solar cell module
KR102019310B1 (en) Solar cell module and manufacturing method for same
JP5499729B2 (en) Manufacturing method of solar cell module
JP2013197343A (en) Solar cell module and method for manufacturing the same
JP5479222B2 (en) Solar cell module
WO2008041486A1 (en) Solar battery module
KR20140066195A (en) Solar cell conductive adhesive and connection method using same, solar cell module, and method for producing solar cell module
WO2013154188A1 (en) Solar cell
KR20150030700A (en) Method for manufacturing solar cell module, conductive adhesive for solar cell, and solar cell module
JP2012204442A (en) Method for manufacturing solar cell module
JP2015233096A (en) Solar battery unit and method for manufacturing solar battery unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140225

R151 Written notification of patent or utility model registration

Ref document number: 5499729

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees