JP5497214B2 - Reciprocating compressor - Google Patents

Reciprocating compressor Download PDF

Info

Publication number
JP5497214B2
JP5497214B2 JP2013015060A JP2013015060A JP5497214B2 JP 5497214 B2 JP5497214 B2 JP 5497214B2 JP 2013015060 A JP2013015060 A JP 2013015060A JP 2013015060 A JP2013015060 A JP 2013015060A JP 5497214 B2 JP5497214 B2 JP 5497214B2
Authority
JP
Japan
Prior art keywords
valve
suction
suction chamber
chamber
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013015060A
Other languages
Japanese (ja)
Other versions
JP2013100824A (en
Inventor
幸彦 田口
宙史 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Holdings Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2013015060A priority Critical patent/JP5497214B2/en
Publication of JP2013100824A publication Critical patent/JP2013100824A/en
Application granted granted Critical
Publication of JP5497214B2 publication Critical patent/JP5497214B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Description

本発明は、吸入通路開度調整弁を備えた往復動圧縮機に関するものである。 The present invention relates to a reciprocating compressor provided with a suction passage opening adjustment valve.

吸入通路開度調整弁を備えた往復動圧縮機が特許文献1に開示されている。
特許文献1の圧縮機においては、当該圧縮機を備えた空調装置を流れる冷媒の低流量時に、開度調整弁により吸入通路の開度が絞られて、圧縮機吸入弁の自励振動に起因する吸入圧力脈動の蒸発器への伝播が効果的に防止されると共に、開度調整弁の弁体の自励振動も防止される。
A reciprocating compressor provided with a suction passage opening adjustment valve is disclosed in Patent Document 1.
In the compressor of Patent Document 1, when the refrigerant flowing through the air conditioner equipped with the compressor is at a low flow rate, the opening of the suction passage is throttled by the opening adjustment valve, resulting from self-excited vibration of the compressor suction valve. Propagation of the suction pressure pulsation to the evaporator is effectively prevented, and self-excited vibration of the valve body of the opening adjustment valve is also prevented.

特開2006−214396JP 2006-214396 A

特許文献1の圧縮機には以下の問題があった。
(1)圧縮機の外側から吸入ポート24を介して開度調整弁30を吸入室21へ挿入して装着するので、開度調整弁30の装着が容易でない。
(2)吸入室21が環状通路を形成しているので、開度調整弁30からシリンダボア16aまでの距離がシリンダボア毎に異なり、吸入工程においてシリンダボアに取り込まれる冷媒流量がシリンダボア毎にばらつき、圧縮機の作動が不安定化する。
本発明は上記問題に鑑みてなされたものであり、吸入通路開度調整弁を備える往復動圧縮機において、開度調整弁の装着を容易化し、吸入工程において各シリンダボアに取り込まれる冷媒流量を均一化することを目的とする。
The compressor of Patent Document 1 has the following problems.
(1) Since the opening degree adjusting valve 30 is inserted into the suction chamber 21 through the suction port 24 from the outside of the compressor and attached, the opening degree adjusting valve 30 is not easily attached.
(2) Since the suction chamber 21 forms an annular passage, the distance from the opening adjustment valve 30 to the cylinder bore 16a differs for each cylinder bore, and the refrigerant flow rate taken into the cylinder bore in the suction process varies for each cylinder bore. Operation becomes unstable.
The present invention has been made in view of the above problems, and in a reciprocating compressor provided with a suction passage opening adjustment valve, the opening adjustment valve is easily mounted, and the flow rate of refrigerant taken into each cylinder bore in the suction process is made uniform. It aims to become.

上記課題を解決するために、本発明においては、駆動軸と、駆動軸の軸線と同軸の所定円周上に所定間隔を隔てて配設された複数のシリンダボアが形成されたシリンダブロックと、シリンダブロックの一端に一端面を対峙させて配設され、各シリンダボアに対峙して一対の吸入孔と吐出孔とが形成されたバルブプレートと、バルブプレートの他端面に対峙して配設され、バルブプレートの他端面側に環状の吐出室と吐出室の径方向内側に配設された柱状の吸入室とを形成するシリンダヘッドとを備え、吸入室から延びて外部冷媒回路に接続する吸入通路と吐出室から延びて外部冷媒回路に接続する吐出通路とがシリンダヘッドに形成され、更に、吸入通路に接続する入口孔と吸入室に連通する出口孔とを有し、吸入通路と吸入室との圧力差に応答して吸入通路の開度を調整する開度調整弁を備え、開度調整弁は、入口孔が配設された一端をバルブプレートに対峙する吸入室の端壁に係合させ、他端へ向けて吸入室の前記端壁からバルブプレート側へ突出し、駆動軸の軸線に対して傾斜して、吸入室内に配設されていることを特徴とする往復動圧縮機を提供する。
本発明に係る往復動圧縮機においては、環状の吐出室の径方向内側に柱状の吸入室を配設したので、吸入室を大径の広い空間とすることができる。シリンダヘッドを弁板やシリンダブロックに組み付ける前に、吸入室側から吸入室の広い端壁に開度調整弁を係合させることにより、開度調整弁の装着が容易化される。
柱状の吸入室の端壁に開度調整弁を装着することにより、開度調整弁から各シリンダボアまでの距離のばらつきを抑制し、吸入工程において各シリンダボアに取り込まれる冷媒流量のばらつきを抑制して、往復動圧縮機の作動を安定化させることができる。
開度調整弁を駆動軸の軸線に対して傾斜して吸入室内に配設することにより、吸入室の高さに制限がある場合でも吸入室に開度調整弁を配置することが可能となる。
In order to solve the above-described problems, in the present invention, a cylinder block having a drive shaft, a plurality of cylinder bores arranged at predetermined intervals on a predetermined circumference coaxial with the axis of the drive shaft, and a cylinder One end face of the block is arranged to face one end face, a valve plate having a pair of suction holes and discharge holes facing each cylinder bore, and the other end face of the valve plate is placed to face each other. A cylinder head that forms an annular discharge chamber and a columnar suction chamber disposed radially inside the discharge chamber on the other end surface side of the plate; and a suction passage that extends from the suction chamber and connects to an external refrigerant circuit; A discharge passage extending from the discharge chamber and connected to the external refrigerant circuit is formed in the cylinder head, and further includes an inlet hole connected to the suction passage and an outlet hole communicating with the suction chamber. Pressure difference In response, an opening adjustment valve for adjusting the opening of the suction passage is provided. The opening adjustment valve engages one end of the inlet hole with the end wall of the suction chamber facing the valve plate, and the other end. A reciprocating compressor is provided that protrudes from the end wall of the suction chamber toward the valve plate toward the valve plate, is inclined with respect to the axis of the drive shaft, and is disposed in the suction chamber.
In the reciprocating compressor according to the present invention, since the columnar suction chamber is disposed on the radially inner side of the annular discharge chamber, the suction chamber can be a large space having a large diameter. Before the cylinder head is assembled to the valve plate or the cylinder block, the opening adjustment valve is easily engaged with the wide end wall of the suction chamber from the suction chamber side.
By installing an opening adjustment valve on the end wall of the columnar suction chamber, variation in the distance from the opening adjustment valve to each cylinder bore is suppressed, and variation in the refrigerant flow rate taken into each cylinder bore in the intake process is suppressed. The operation of the reciprocating compressor can be stabilized.
By disposing the opening adjustment valve in the suction chamber so as to be inclined with respect to the axis of the drive shaft, it is possible to arrange the opening adjustment valve in the suction chamber even when the height of the suction chamber is limited. .

本発明の参考例に係る可変容量斜板式圧縮機の断面図である。It is sectional drawing of the variable capacity swash plate type compressor which concerns on the reference example of this invention. 図1の部分拡大図であるIt is the elements on larger scale of FIG. 本発明の参考例に係る可変容量斜板式圧縮機が備える吸入通路開度調整弁の断面図である。(a)は開弁時の断面図であり、(b)は弁体が弁座に当接した時の断面図である。It is sectional drawing of the suction passage opening degree adjustment valve with which the variable capacity | capacitance swash plate type compressor which concerns on the reference example of this invention is provided. (A) is sectional drawing at the time of valve opening, (b) is sectional drawing when a valve body contact | abuts to a valve seat. 本発明の実施例に係る可変容量斜板式圧縮機の部分断面図である。1 is a partial cross-sectional view of a variable capacity swash plate compressor according to an embodiment of the present invention.

本発明の参考例に係る往復動圧縮機を説明する。
図1に示すように、可変容量斜板式圧縮機100は、後述する駆動軸106の軸線と同軸の所定円周上に所定間隔を隔てて配設された複数のシリンダボア101aを備えたシリンダブロック101と、シリンダブロック101の一端に設けられた深い有底筒状のフロントハウジング102と、シリンダブロック101の他端に対峙して配設されたバルブプレート103と、シリンダブロック101の前記他端と協働してバルブプレート103を挟持する浅い有底筒状のシリンダヘッド104とを備えている。
シリンダブロック101とフロントハウジング102とによって画成されるクランク室105内を横断して駆動軸106が設けられ、駆動軸106に斜板107が装着されている。斜板107は、駆動軸106に固着されたロータ108と連結部109を介して結合し、駆動軸106に対して傾角可変となっている。ロータ108と斜板107との間には斜板107を最小傾角に向けて付勢するコイルバネ110が配設され、斜板107を挟んで反対側には斜板107の傾角を増大する方向に向けて付勢するコイルバネ111が配設されている。
駆動軸106の一端は、フロントハウジング102のボス部102aを貫通して外側まで延在しており、図示しない動力伝達装置に連結されている。駆動軸106とボス部102aとの間には、軸封装置112が挿入され、クランク室105を外部環境から遮断している。駆動軸106は、ベアリング113、114、115、116によってラジアル方向及びスラスト方向に支持され、外部駆動源から動力伝達装置を介して伝達された動力によって、回転駆動される。
シリンダボア101aにピストン117が挿入され、ピストン117の一端部の窪み117aに一対のシュー118が収容され、前記一対のシュー118が斜板107の外周縁部を摺動可能に挟持して、ピストン117と斜板107とが互いに連動する。この結果、駆動軸106が回転するとピストン117がシリンダボア101a内を往復移動する。
A reciprocating compressor according to a reference example of the present invention will be described.
As shown in FIG. 1, a variable capacity swash plate compressor 100 includes a cylinder block 101 having a plurality of cylinder bores 101a arranged at predetermined intervals on a predetermined circumference coaxial with an axis of a drive shaft 106 to be described later. A deep bottomed cylindrical front housing 102 provided at one end of the cylinder block 101, a valve plate 103 disposed opposite to the other end of the cylinder block 101, and the other end of the cylinder block 101. And a shallow bottomed cylindrical cylinder head 104 that works to sandwich the valve plate 103.
A drive shaft 106 is provided across the crank chamber 105 defined by the cylinder block 101 and the front housing 102, and a swash plate 107 is attached to the drive shaft 106. The swash plate 107 is coupled to a rotor 108 fixed to the drive shaft 106 via a connecting portion 109 so that the tilt angle of the swash plate 107 is variable with respect to the drive shaft 106. A coil spring 110 is disposed between the rotor 108 and the swash plate 107 to urge the swash plate 107 toward the minimum tilt angle, and on the opposite side of the swash plate 107, the tilt angle of the swash plate 107 is increased. A coil spring 111 is provided to urge toward the surface.
One end of the drive shaft 106 extends to the outside through the boss portion 102a of the front housing 102, and is connected to a power transmission device (not shown). A shaft seal device 112 is inserted between the drive shaft 106 and the boss portion 102a to block the crank chamber 105 from the external environment. The drive shaft 106 is supported in a radial direction and a thrust direction by bearings 113, 114, 115, and 116, and is rotationally driven by power transmitted from an external drive source via a power transmission device.
A piston 117 is inserted into the cylinder bore 101a, and a pair of shoes 118 are accommodated in a recess 117a at one end of the piston 117. The pair of shoes 118 slidably sandwich the outer peripheral edge of the swash plate 107, and the piston 117 And the swash plate 107 interlock with each other. As a result, when the drive shaft 106 rotates, the piston 117 reciprocates in the cylinder bore 101a.

シリンダヘッド104は、バルブプレート103と協働して、吸入室119と吐出室120とを区画形成している。吸入室119は、バルブプレート103に形成された連通孔103aと図示しない吸入弁とを介してシリンダボア101aに連通し、吐出室120は、図示しない吐出弁とバルブプレート103に形成された連通孔103bとを介してシリンダボア101aに連通している。
吐出室120は環状に形成され、吸入室119は吐出室120の径方向内側に配設されている。吸入室119は、吐出室120との間の円環状の境界壁が形成する周側壁104eと、バルブプレート103が形成する一方の端壁と、バルブプレート103に対峙するシリンダヘッドの底壁が形成する他方の端壁104fとによって画成された、駆動軸106と同軸の円柱状空間を形成している。
フロントハウジング102とシリンダブロック101との間に図示しないセンターガスケットが配設され、シリンダブロック101とバルブプレート103との間に図示しないシリンダガスケットと図示しない吸入弁形成体とが配設され、バルブプレート103とシリンダヘッド104との間に吐出弁形成体130と図示しないヘッドガスケットとが配設されている。フロントハウジング102、センターガスケット、シリンダブロック101、シリンダガスケット、吸入弁形成体、バルブプレート103、吐出弁形成体130、ヘッドガスケット、シリンダヘッド104は、複数の通しボルト140により締結されて圧縮機ハウジングを形成している。
The cylinder head 104 defines a suction chamber 119 and a discharge chamber 120 in cooperation with the valve plate 103. The suction chamber 119 communicates with the cylinder bore 101a through a communication hole 103a formed in the valve plate 103 and a suction valve (not shown), and the discharge chamber 120 communicates with a discharge hole (not shown) and a communication hole 103b formed in the valve plate 103. And communicates with the cylinder bore 101a.
The discharge chamber 120 is formed in an annular shape, and the suction chamber 119 is disposed on the radially inner side of the discharge chamber 120. The suction chamber 119 is formed with a peripheral side wall 104e formed by an annular boundary wall with the discharge chamber 120, one end wall formed by the valve plate 103, and a bottom wall of the cylinder head facing the valve plate 103. A cylindrical space defined by the other end wall 104f and coaxial with the drive shaft 106 is formed.
A center gasket (not shown) is arranged between the front housing 102 and the cylinder block 101, and a cylinder gasket (not shown) and a suction valve forming body (not shown) are arranged between the cylinder block 101 and the valve plate 103. A discharge valve forming body 130 and a head gasket (not shown) are disposed between the cylinder 103 and the cylinder head 104. The front housing 102, the center gasket, the cylinder block 101, the cylinder gasket, the suction valve forming body, the valve plate 103, the discharge valve forming body 130, the head gasket, and the cylinder head 104 are fastened by a plurality of through bolts 140 to form a compressor housing. Forming.

マフラ121がシリンダブロック101に設けられている。マフラ121は蓋部材122と、シリンダブロック101外面に形成された環状壁101bとが、図示しないシール部材を介して接合することにより形成されている。マフラ空間123には逆止弁200が配置されている。逆止弁200はシリンダヘッド104とシリンダブロック101とに形成された吐出通路124とマフラ空間123との接続部に配置され、上流側の吐出通路124と下流側のマフラ空間123との圧力差に応答して動作し、圧力差が所定値より小さい時に吐出通路124を閉鎖し、圧力差が所定値より大きい時に吐出通路124を開放する。吐出室120は吐出通路124、逆止弁200、マフラ空間123及び吐出ポート122aを介してエアコンシステムの高圧側外部冷媒回路に接続されている。 A muffler 121 is provided on the cylinder block 101. The muffler 121 is formed by joining a lid member 122 and an annular wall 101b formed on the outer surface of the cylinder block 101 via a seal member (not shown). A check valve 200 is disposed in the muffler space 123. The check valve 200 is disposed at a connection portion between the discharge passage 124 formed in the cylinder head 104 and the cylinder block 101 and the muffler space 123, and the pressure difference between the upstream discharge passage 124 and the downstream muffler space 123 is set. It operates in response to closing the discharge passage 124 when the pressure difference is smaller than a predetermined value, and opening the discharge passage 124 when the pressure difference is larger than the predetermined value. The discharge chamber 120 is connected to the high-pressure side external refrigerant circuit of the air conditioner system through the discharge passage 124, the check valve 200, the muffler space 123, and the discharge port 122a.

シリンダヘッド104には、エアコンシステムの低圧側外部冷媒回路に接続する吸入ポート104aが形成されると共に、吸入室119から端壁104fの中心部を貫通して吸入室119外へ延び、端壁104fの外面に添って径方向外方へ延在し、吸入ポート104aに至る吸入通路104bが形成されている。
吸入通路104bと吸入室119との接続部に開度調整弁300が配置されている。開度調整弁300は上流側の吸入通路104bと下流側の吸入室119との圧力差に応答して動作し、圧力差が所定値以下の時、すなわち冷媒流量が非常に少ない時に、吸入通路104bの開度を最小値まで絞り、冷媒流量が増大して、圧力差が所定値を越えて増大すると、吸入通路104bの開度を増大させる。開度調整弁300は、特に冷媒流量が少ない時に、吸入通路104bの開度を絞り、吸入室119の圧力脈動がエアコンシステム側に伝播するのを抑制する。
The cylinder head 104 is formed with a suction port 104a connected to the low-pressure side external refrigerant circuit of the air conditioner system, and extends from the suction chamber 119 through the center of the end wall 104f to the outside of the suction chamber 119. A suction passage 104b is formed that extends radially outward along the outer surface of the suction port 104a and reaches the suction port 104a.
An opening adjustment valve 300 is disposed at the connection between the suction passage 104b and the suction chamber 119. The opening adjustment valve 300 operates in response to a pressure difference between the upstream suction passage 104b and the downstream suction chamber 119. When the pressure difference is less than a predetermined value, that is, when the refrigerant flow rate is very small, the suction passage When the opening of 104b is reduced to the minimum value and the refrigerant flow rate increases and the pressure difference increases beyond a predetermined value, the opening of the suction passage 104b is increased. The opening adjustment valve 300 restricts the pressure pulsation in the suction chamber 119 from propagating to the air conditioner system side, particularly when the refrigerant flow rate is small.

シリンダヘッド104には更に、容量制御弁400が設けられている。容量制御弁400は吐出室120とクランク室105との間の第1連通路125の開度を調整し、クランク室105への吐出ガス導入量を制御する。クランク室105内の冷媒は、ベアリング115、116と駆動軸106との間の隙間と、駆動軸106の端部とバルブプレート103との間の空間101cと、バルブプレート103に形成された固定オリフィス103cとにより形成される第2連通路を介して吸入室119へ流れる。容量制御弁400によりクランク室105への吐出ガス導入量を調整してクランク室105の圧力を変化させ、斜板7の傾斜角、ひいてはピストン117のストロークを変化させて、吐出容量を制御することができる。容量制御弁400は、外部信号により動作する外部制御方式の容量制御弁であり、連通路126により吸入室119の圧力を感知して容量制御弁400のソレノイドへの通電量を調整し、所定の吸入室119の圧力となるように吐出容量を制御する。ソレルノイドへの通電を停止すると、弁体を強制開放して吐出容量を最小にする。 The cylinder head 104 is further provided with a capacity control valve 400. The capacity control valve 400 adjusts the opening of the first communication passage 125 between the discharge chamber 120 and the crank chamber 105 to control the amount of discharge gas introduced into the crank chamber 105. The refrigerant in the crank chamber 105 includes a clearance between the bearings 115 and 116 and the drive shaft 106, a space 101 c between the end of the drive shaft 106 and the valve plate 103, and a fixed orifice formed in the valve plate 103. It flows into the suction chamber 119 through the second communication path formed by 103c. The discharge capacity is controlled by adjusting the amount of discharge gas introduced into the crank chamber 105 by the capacity control valve 400 to change the pressure in the crank chamber 105, and by changing the inclination angle of the swash plate 7 and thus the stroke of the piston 117. Can do. The capacity control valve 400 is an external control type capacity control valve that operates in response to an external signal. The capacity control valve 400 senses the pressure in the suction chamber 119 through the communication passage 126 and adjusts the energization amount to the solenoid of the capacity control valve 400 to obtain a predetermined value. The discharge capacity is controlled so as to be the pressure of the suction chamber 119. When energization of the sorreloid is stopped, the valve body is forcibly opened to minimize the discharge capacity.

図2、3に示すように、開度調整弁300は、入口孔310aと弁座310bとフランジ310cとが形成された円筒状の樹脂製の第1ハウジング310と、弁座310bに当接離間する有底円筒状の樹脂製の弁体320と、弁体320を弁座310bへ向けて付勢する圧縮コイルバネ330と、弁体320と圧縮コイルバネ330とを収容する有底円筒状の樹脂製の第2ハウジング340とを有している。頂点の一つを開放端側へ差し向けた複数の三角形状の出口孔340aが第2ハウジング340の周側壁に形成され、フランジ340bが第2ハウジング340の開放端に形成されている。フランジ340bの内周面に形成された周溝と第1ハウジング310の弁座側端部外周面に形成された周凸部とが弾性嵌合することにより、第2ハウジング340と第1ハウジング310とが一体に組付けられている。第1ハウジング310のフランジ310cと、第2ハウジング340のフランジ340bと、第1ハウジング310の周側壁とが形成する周溝にO−リング350が装着されている。
弁体320は弁座に当接する平坦面320aと、第2ハウジング340の周側壁内周面340cに摺接する周側壁外周面320bとを有する。弁体320の移動に伴って出口孔340aの開口面積が増減する。
図2、3に示すように、開度調整弁300の入口孔310aが形成された一端を、吸入室端壁104fの吸入通路104b貫通部周囲に形成された円形凹部104cに嵌合させ、第2ハウジング340の端壁が形成する他端をバルブプレート103に隣接配置された吐出弁形成体130へ差し向けて、吸入室端壁104fから吐出弁形成板130へ向けて突出して、開度調整弁300は吸入室119内に配設されている。O−リング350が円形凹部104cの周側壁に圧接することにより、開度調整弁300は円形凹部104cに、ひいてはシリンダヘッド104に保持されている。開度調整弁300の出口孔340aは、吸入室119の周側壁104eに対峙している。
図3に示すように、第1ハウジング310の弁座310bの一部には溝310dが形成され、溝310dは出口孔340aの頂角部に連通している。したがって、弁体320の平坦面部320aが弁座310bに着座した時に、吸入通路104bは完全には遮断されず、入口孔310a、溝310d、出口孔340aの頂角部を介して吸入室119と連通する。弁体320の平坦部320aが弁座310bに着座したときの出口孔340aの頂角部の開口面積は、溝310dの流路面積より小さい。したがって出口孔340aの頂角部の面積が出口孔340aの最小開口面積となっている。最小開口面積は、冷媒流量が非常に少ない領域での弁体320の自励振動を防止できる最小の面積として設定されている。
As shown in FIGS. 2 and 3, the opening degree adjusting valve 300 is in contact with and separated from the valve-shaped seat 310b and the cylindrical resin first housing 310 in which the inlet hole 310a, the valve seat 310b, and the flange 310c are formed. A bottomed cylindrical resin valve body 320, a compression coil spring 330 that biases the valve body 320 toward the valve seat 310 b, and a bottomed cylindrical resin resin housing the valve body 320 and the compression coil spring 330. Second housing 340. A plurality of triangular outlet holes 340 a with one of the apexes facing the open end are formed in the peripheral side wall of the second housing 340, and a flange 340 b is formed in the open end of the second housing 340. When the circumferential groove formed on the inner circumferential surface of the flange 340b and the circumferential convex portion formed on the outer peripheral surface of the valve seat side end of the first housing 310 are elastically fitted, the second housing 340 and the first housing 310 are engaged. It is assembled together. An O-ring 350 is mounted in a circumferential groove formed by the flange 310 c of the first housing 310, the flange 340 b of the second housing 340, and the peripheral side wall of the first housing 310.
The valve body 320 has a flat surface 320 a that contacts the valve seat, and a peripheral side wall outer peripheral surface 320 b that slides on the peripheral side wall inner peripheral surface 340 c of the second housing 340. As the valve body 320 moves, the opening area of the outlet hole 340a increases or decreases.
As shown in FIGS. 2 and 3, one end of the opening adjustment valve 300 formed with the inlet hole 310a is fitted into a circular recess 104c formed around the suction passage 104b through the suction chamber end wall 104f. 2 The other end formed by the end wall of the housing 340 is directed toward the discharge valve forming body 130 disposed adjacent to the valve plate 103 and protrudes from the suction chamber end wall 104f toward the discharge valve forming plate 130 to adjust the opening degree. The valve 300 is disposed in the suction chamber 119. When the O-ring 350 is in pressure contact with the peripheral side wall of the circular recess 104 c, the opening adjustment valve 300 is held by the circular recess 104 c and by extension, the cylinder head 104. The outlet hole 340 a of the opening adjustment valve 300 faces the peripheral side wall 104 e of the suction chamber 119.
As shown in FIG. 3, a groove 310d is formed in a part of the valve seat 310b of the first housing 310, and the groove 310d communicates with the apex portion of the outlet hole 340a. Accordingly, when the flat surface portion 320a of the valve body 320 is seated on the valve seat 310b, the suction passage 104b is not completely blocked, and the suction chamber 119 and the suction chamber 119 are connected via the apex corners of the inlet hole 310a, the groove 310d, and the outlet hole 340a. Communicate. When the flat part 320a of the valve body 320 is seated on the valve seat 310b, the opening area of the apex corner of the outlet hole 340a is smaller than the flow path area of the groove 310d. Therefore, the area of the apex corner of the outlet hole 340a is the minimum opening area of the outlet hole 340a. The minimum opening area is set as the minimum area that can prevent the self-excited vibration of the valve body 320 in a region where the refrigerant flow rate is very small.

環状の吐出室120の径方向内側に柱状の吸入室119を配設したので、吸入室119を大径の広い空間とすることができる。シリンダヘッド104を弁板103やシリンダブロック101に組み付ける前に、吸入室119の広い端壁104fに開度調整弁300を係合させることにより、開度調整弁300の装着が容易化される。
吸入室119の広い端壁104fに開度調整弁300を取り付けるので、開度調整弁300の出口孔340aと当該出口孔に対峙する吸入室119の周側壁104eとの間に十分な距離をとることができ、開度調整弁300の出口孔340a近傍に十分な通路面積を確保することができる。
図2に示すように、出口孔340aは、頂角部が吸入室端壁104fから距離Hだけ吸入室119内へ突出するように位置決めされている。前述のごとく、吸入室119を大径の広い空間とすることができる。この場合、吸入室119はマフラとして機能する。空気通路をマフラに接続する場合、マフラ内での空気通路の突出量を調整して、低減対象となる騒音周波数を調整することができる。圧縮機100では、出口孔340aの頂角部と吸入室端壁104fとの間の距離Hが、マフラ内での空気通路の突出量に相当する。従って、前記距離を調整して低減対象となる騒音周波数を吸入圧脈動の周波数に同調させることにより、開度調整弁300の構造を吸入圧力脈動低減の観点から最適化することができる。
開度調整弁300の入口孔310aが形成された一端を吸入室119の端壁104fに形成された円形凹部104cに嵌合させることにより、圧縮機100への開度調整弁300の装着が容易化されている。開度調整弁300の他端が吐出弁形成体130へ差し向けられているので、開度調整弁300を円形凹部104cから離脱させるような力が作用しても、開度調整弁300の他端が吐出弁形成体130に当接し、O−リング350は円形凹部104cから離脱しない。従って、吐出弁形成体130は、開度調整300の抜け止め手段として機能する。
円形凹部104cの軸線、ひいては開度調整弁300の軸線は、各シリンダボア101aの軸線と平行に延在し、かつ各シリンダボア101aの内接円の内側に位置決めされて、駆動軸106の軸線に略一致している。したがって開度調整弁300は、円柱空間である吸入室119のほぼ中心に配置され、各シリンダボア101aからの距離がほぼ等しく配置されている。これにより、吸入工程において各シリンダボア101aに取り込まれる吸入冷媒量のばらつきが小さくなり、各シリンダにおいて適正な圧縮動作が行われ、所望の性能が確保される。
Since the columnar suction chamber 119 is disposed on the radially inner side of the annular discharge chamber 120, the suction chamber 119 can be a large space having a large diameter. Before the cylinder head 104 is assembled to the valve plate 103 or the cylinder block 101, the opening degree adjusting valve 300 is engaged with the wide end wall 104f of the suction chamber 119, whereby the opening degree adjusting valve 300 is easily mounted.
Since the opening adjustment valve 300 is attached to the wide end wall 104f of the suction chamber 119, a sufficient distance is provided between the outlet hole 340a of the opening adjustment valve 300 and the peripheral side wall 104e of the suction chamber 119 facing the outlet hole. And a sufficient passage area can be secured in the vicinity of the outlet hole 340a of the opening adjustment valve 300.
As shown in FIG. 2, the outlet hole 340a is positioned such that the apex portion projects into the suction chamber 119 from the suction chamber end wall 104f by a distance H. As described above, the suction chamber 119 can be a large space having a large diameter. In this case, the suction chamber 119 functions as a muffler. When connecting the air passage to the muffler, the noise frequency to be reduced can be adjusted by adjusting the amount of protrusion of the air passage in the muffler. In the compressor 100, the distance H between the apex portion of the outlet hole 340a and the suction chamber end wall 104f corresponds to the protrusion amount of the air passage in the muffler. Therefore, by adjusting the distance to synchronize the noise frequency to be reduced with the suction pressure pulsation frequency, the structure of the opening adjustment valve 300 can be optimized from the viewpoint of reducing the suction pressure pulsation.
By fitting one end of the opening adjustment valve 300 in which the inlet hole 310 a is formed into a circular recess 104 c formed in the end wall 104 f of the suction chamber 119, the opening adjustment valve 300 can be easily attached to the compressor 100. It has become. Since the other end of the opening degree adjusting valve 300 is directed to the discharge valve forming body 130, even if a force that causes the opening degree adjusting valve 300 to be detached from the circular recess 104c is applied, The end abuts on the discharge valve forming body 130, and the O-ring 350 does not leave the circular recess 104c. Therefore, the discharge valve forming body 130 functions as a retaining means for the opening degree adjustment 300.
The axis of the circular recess 104c, and hence the axis of the opening adjustment valve 300, extends in parallel with the axis of each cylinder bore 101a and is positioned inside the inscribed circle of each cylinder bore 101a, and is substantially aligned with the axis of the drive shaft 106. Match. Therefore, the opening degree adjusting valve 300 is disposed substantially at the center of the suction chamber 119, which is a cylindrical space, and is disposed at substantially the same distance from each cylinder bore 101a. As a result, variations in the amount of refrigerant sucked into each cylinder bore 101a in the suction process are reduced, and an appropriate compression operation is performed in each cylinder to ensure desired performance.

図2 、3に示すように、第2ハウジング340の底壁には小孔340dが形成され、小孔340dは、第2ハウジング340と弁体320とで画成される空間360と吸入室119とを連通させている。
第2ハウジング340の底壁には突起340eが形成されている。開度調整弁300が吐出弁形成体130に当接しても、突起340eにより第2ハウジング340の底壁と吐出形成体130との間に隙間が形成され、吸入室119と小孔340d、ひいては空間360との間の連通が確保され、弁体320の背面側に吸入室119の圧力が確実に作用する。したがって弁体320は弁体320の上流側の吸入通路104bと下流側の吸入室119との圧力差に確実に応答して動作する。弁体320の動作特性は弁体320の圧力受圧面積と圧縮コイルバネ330の付勢力とによって決定される。
As shown in FIGS. 2 and 3, a small hole 340 d is formed in the bottom wall of the second housing 340, and the small hole 340 d has a space 360 defined by the second housing 340 and the valve body 320 and a suction chamber 119. And communicate with each other.
A protrusion 340 e is formed on the bottom wall of the second housing 340. Even when the opening adjustment valve 300 contacts the discharge valve forming body 130, a gap is formed between the bottom wall of the second housing 340 and the discharge forming body 130 by the projection 340e, and the suction chamber 119 and the small hole 340d, and thus Communication with the space 360 is ensured, and the pressure of the suction chamber 119 acts reliably on the back side of the valve body 320. Therefore, the valve body 320 operates in response to the pressure difference between the suction passage 104b on the upstream side of the valve body 320 and the suction chamber 119 on the downstream side. The operating characteristics of the valve body 320 are determined by the pressure receiving area of the valve body 320 and the biasing force of the compression coil spring 330.

上記参考例では開度調整弁300の軸線は駆動軸106の軸線とほぼ一致していたが、図4に示すように、開度調整弁300を駆動軸106の軸線に対して傾斜させて配置しても良い。吸入室119の高さに制限がある場合に、開度調整弁300を傾斜配置することにより吸入室119内に開度調整弁300を配置できる。
開度調整弁300の入口孔310aが形成された一端は傾斜配置された円形凹部104cに収容され、他端はバルブプレート103に隣接配置された吐出弁形成体130に対して傾めに対峙している。複数の出口孔340a中の幾つかは吸入室119の端壁104f又は吐出弁形成体130に対して斜めに対峙し、他の幾つかは吸入室の周側壁104eに対峙している。何れの出口孔340aと当該出口孔に対峙する壁との間にも十分な距離が取られており、開度調整弁300の出口孔340a近傍に十分な通路面積が確保されている。
開度調整弁300が傾斜配置されているので、参考例に示す第2ハウジング340の底部の突起340eが無くても、第2ハウジング340の底壁と吐出弁形成体130との間に隙間が形成され、吸入室と119と小孔340d、ひいては空間360との間の連通が確保される。
本発明が具現化される圧縮機は、可変容量斜板式圧縮機、固定容量斜板式圧縮機、揺動板式圧縮機、その他の往復動圧縮機の何れでも良い。
In the above reference example, the axis of the opening adjustment valve 300 substantially coincides with the axis of the drive shaft 106, but the opening adjustment valve 300 is inclined with respect to the axis of the drive shaft 106 as shown in FIG. You may do it. When the height of the suction chamber 119 is limited, the opening adjustment valve 300 can be arranged in the suction chamber 119 by arranging the opening adjustment valve 300 in an inclined manner.
One end of the opening adjustment valve 300 in which the inlet hole 310 a is formed is accommodated in the circular recess 104 c that is inclined, and the other end is opposed to the discharge valve forming body 130 that is adjacent to the valve plate 103. ing. Some of the plurality of outlet holes 340a face diagonally with respect to the end wall 104f of the suction chamber 119 or the discharge valve forming body 130, and the other several face the peripheral wall 104e of the suction chamber. A sufficient distance is provided between any of the outlet holes 340a and the wall facing the outlet hole, and a sufficient passage area is secured in the vicinity of the outlet hole 340a of the opening adjustment valve 300.
Since the opening adjustment valve 300 is inclined, there is no gap between the bottom wall of the second housing 340 and the discharge valve forming body 130 even without the protrusion 340e at the bottom of the second housing 340 shown in the reference example. Thus, communication between the suction chamber 119, the small hole 340d, and the space 360 is ensured.
The compressor embodying the present invention may be a variable displacement swash plate compressor, a fixed displacement swash plate compressor, a swing plate compressor, or other reciprocating compressors.

本発明は、吸入通路開度調整弁を備える往復動圧縮機に広く利用可能である。 The present invention can be widely used for a reciprocating compressor including a suction passage opening degree adjusting valve.

100 可変容量斜板式圧縮機
101 シリンダブロック
102 フロントハウジング
103 バルブプレート
104 シリンダヘッド
104b 吸入通路
104e 周側壁
104f 端壁
119 吸入室
120 吐出室
130 吐出弁形成体
300 開度調整弁
DESCRIPTION OF SYMBOLS 100 Variable capacity swash plate type compressor 101 Cylinder block 102 Front housing 103 Valve plate 104 Cylinder head 104b Suction passage 104e Peripheral side wall 104f End wall 119 Suction chamber 120 Discharge chamber 130 Discharge valve formation body 300 Opening adjustment valve

Claims (1)

駆動軸と、駆動軸の軸線と同軸の所定円周上に所定間隔を隔てて配設された複数のシリンダボアが形成されたシリンダブロックと、シリンダブロックの一端に一端面を対峙させて配設され、各シリンダボアに対峙して一対の吸入孔と吐出孔とが形成されたバルブプレートと、バルブプレートの他端面に対峙して配設され、バルブプレートの他端面側に環状の吐出室と吐出室の径方向内側に配設された柱状の吸入室とを形成するシリンダヘッドとを備え、吸入室から延びて外部冷媒回路に接続する吸入通路と吐出室から延びて外部冷媒回路に接続する吐出通路とがシリンダヘッドに形成され、更に、吸入通路に接続する入口孔と吸入室に連通する出口孔とを有し、吸入通路と吸入室との圧力差に応答して吸入通路の開度を調整する開度調整弁を備え、開度調整弁は、入口孔が配設された一端をバルブプレートに対峙する吸入室の端壁に係合させ、他端へ向けて吸入室の前記端壁からバルブプレート側へ突出し、駆動軸の軸線に対して傾斜して、吸入室内に配設されていることを特徴とする往復動圧縮機。 A drive shaft, a cylinder block having a plurality of cylinder bores arranged at predetermined intervals on a predetermined circumference coaxial with the axis of the drive shaft, and one end surface of the cylinder block facing each other. A valve plate formed with a pair of suction holes and discharge holes facing each cylinder bore, and disposed opposite the other end surface of the valve plate, and an annular discharge chamber and discharge chamber on the other end surface side of the valve plate A cylinder head that forms a columnar suction chamber disposed radially inward of the cylinder, and a suction passage that extends from the suction chamber and connects to the external refrigerant circuit, and a discharge passage that extends from the discharge chamber and connects to the external refrigerant circuit Is formed in the cylinder head, and further has an inlet hole connected to the suction passage and an outlet hole communicating with the suction chamber, and adjusts the opening degree of the suction passage in response to the pressure difference between the suction passage and the suction chamber. Open the opening adjustment valve The opening adjustment valve is engaged with the end wall of the suction chamber facing the valve plate at one end where the inlet hole is disposed, and protrudes from the end wall of the suction chamber toward the valve plate toward the other end. A reciprocating compressor characterized in that the reciprocating compressor is disposed in the suction chamber so as to be inclined with respect to the axis of the drive shaft.
JP2013015060A 2013-01-30 2013-01-30 Reciprocating compressor Active JP5497214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013015060A JP5497214B2 (en) 2013-01-30 2013-01-30 Reciprocating compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013015060A JP5497214B2 (en) 2013-01-30 2013-01-30 Reciprocating compressor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009177470A Division JP5325041B2 (en) 2009-07-30 2009-07-30 Reciprocating compressor

Publications (2)

Publication Number Publication Date
JP2013100824A JP2013100824A (en) 2013-05-23
JP5497214B2 true JP5497214B2 (en) 2014-05-21

Family

ID=48621616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013015060A Active JP5497214B2 (en) 2013-01-30 2013-01-30 Reciprocating compressor

Country Status (1)

Country Link
JP (1) JP5497214B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170467A1 (en) * 2016-03-31 2017-10-05 株式会社ヴァレオジャパン Variable displacement compressor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3587012B2 (en) * 1996-03-12 2004-11-10 株式会社豊田自動織機 Clutchless compressor
JP3932659B2 (en) * 1998-03-30 2007-06-20 株式会社豊田自動織機 Refrigerant suction structure in compressor
JP2000265948A (en) * 1999-03-15 2000-09-26 Toyota Autom Loom Works Ltd Variable capacity compressor
JP4429931B2 (en) * 2005-02-07 2010-03-10 サンデン株式会社 Opening adjustment valve
JP4330576B2 (en) * 2005-10-28 2009-09-16 サンデン株式会社 Compressor
JP4864657B2 (en) * 2006-11-21 2012-02-01 サンデン株式会社 Clutchless variable capacity compressor

Also Published As

Publication number Publication date
JP2013100824A (en) 2013-05-23

Similar Documents

Publication Publication Date Title
JP4330576B2 (en) Compressor
US9670914B2 (en) Check valve for compressor
JP4429931B2 (en) Opening adjustment valve
JP5325041B2 (en) Reciprocating compressor
JP5497214B2 (en) Reciprocating compressor
US10815980B2 (en) Variable displacement swash plate type compressor
JP2011111984A (en) Reciprocating compressor
JP7185560B2 (en) variable capacity compressor
JP6469994B2 (en) Compressor
JP6192369B2 (en) Reciprocating compressor
JP5075425B2 (en) Volume control valve for variable capacity compressor
JP6747813B2 (en) Compressor
CN112334653B (en) Variable displacement compressor
JP6899296B2 (en) Compressor
US20160195077A1 (en) Compressor
JP6039969B2 (en) Compressor
JP4498988B2 (en) Opening adjustment valve
JP2009257149A (en) Intake flow path changing adaptor
JP2021038703A (en) Reciprocation type compressor
JP2014139417A (en) Variable displacement compressor
JP2018066290A (en) Compressor
WO2014073668A1 (en) Compressor
JP2018150916A (en) Compressor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140305

R150 Certificate of patent or registration of utility model

Ref document number: 5497214

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350