JP5493997B2 - Converter refining method - Google Patents

Converter refining method Download PDF

Info

Publication number
JP5493997B2
JP5493997B2 JP2010040312A JP2010040312A JP5493997B2 JP 5493997 B2 JP5493997 B2 JP 5493997B2 JP 2010040312 A JP2010040312 A JP 2010040312A JP 2010040312 A JP2010040312 A JP 2010040312A JP 5493997 B2 JP5493997 B2 JP 5493997B2
Authority
JP
Japan
Prior art keywords
blowing
amount
feo
oxygen
hot metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010040312A
Other languages
Japanese (ja)
Other versions
JP2011174153A (en
Inventor
泰志 小笠原
直樹 菊池
章敏 松井
真導 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010040312A priority Critical patent/JP5493997B2/en
Publication of JP2011174153A publication Critical patent/JP2011174153A/en
Application granted granted Critical
Publication of JP5493997B2 publication Critical patent/JP5493997B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、転炉内の溶銑に対し、石灰系の脱リン剤を含む副原料を入れ、底側から撹拌ガスを吹き込みながら、ランスを介して上側から酸素を吹き付ける吹錬を行うことにより、溶銑を精錬する転炉精錬方法に関する。   This invention, for hot metal in the converter, by adding a secondary raw material containing a lime-based dephosphorization agent, while blowing a stirring gas from the bottom side, blowing by blowing oxygen from the upper side through the lance, The present invention relates to a converter refining method for refining hot metal.

リン含有率の低い鋼を得る方法としては、転炉精錬時に十分な脱リンが行われるようにする方法と、転炉精錬前に溶銑予備処理として脱リン処理を行う方法がある。石灰系の脱リン剤を用いた吹錬(酸化)による溶銑の脱リン反応は、溶銑の酸化で生じたFeOと溶銑中のリン(P)と脱リン剤のCaOとにより、下記の(1)式に従って進行する。
2[P]+5FeO+3CaO→3CaO・P2 5 +5[Fe]‥‥(1)
この式から分かるように、吹錬中のFeO生成量が多い程、脱リン反応が進行し易くなり、CaOの滓化が進む。そして、吹錬中のFeO生成量は、吹錬中の炉内における酸素供給量OINと酸素排出量OOUT との差ΔWO2(=OIN−OOUT )に比例した量になると考えることができる。
As a method for obtaining steel having a low phosphorus content, there are a method in which sufficient dephosphorization is performed during converter refining and a method in which dephosphorization is performed as a hot metal pretreatment before converter refining. The dephosphorization reaction of hot metal by blowing (oxidation) using a lime-based dephosphorizing agent is carried out by the following (1) by FeO generated by oxidation of hot metal, phosphorus (P) in hot metal and CaO of the dephosphorizing agent. ) Follow the formula.
2 [P] + 5FeO + 3CaO → 3CaO · P 2 O 5 +5 [Fe] (1)
As can be seen from this equation, the greater the amount of FeO produced during blowing, the easier the dephosphorization reaction proceeds and the CaO hatching proceeds. The amount of FeO generated during blowing is considered to be an amount proportional to the difference ΔW O2 (= O IN −O OUT ) between the oxygen supply amount O IN and the oxygen discharge amount O OUT in the furnace during blowing. Can do.

下記の特許文献1には、転炉精錬(吹錬)時の脱リン反応を促進するために、転炉内に導入される総酸素量と排ガス中に出て行く総酸素量との差(ΔWO2)から、スラグ中に蓄積された酸素量(スラグ中蓄積酸素量)を逐次算出し、この値が目標値となるように、吹錬時の送酸素流量、ランスの高さ、および副原料投入量の1以上を調整する方法が記載されている。 In Patent Document 1 below, in order to promote the dephosphorization reaction during converter refining (blowing), the difference between the total oxygen amount introduced into the converter and the total oxygen amount exiting into the exhaust gas ( The amount of oxygen accumulated in the slag (the amount of oxygen accumulated in the slag) is sequentially calculated from ΔW O2 ), and the oxygen flow rate during blowing, the height of the lance, A method for adjusting one or more of the raw material inputs is described.

下記の特許文献2には、溶銑脱リン炉で適正なリン濃度になるまで吹錬による脱リン処理を行い、スラグを除いた後に、精錬炉で所望の炭素濃度となるまで脱炭処理を行う方法により、リン含有率の低い鋼を得ることが記載されている。具体的には、溶銑脱リン炉での吹錬による脱リンに際して、吹錬中の炉内における酸素供給量OINと酸素排出量OOUT との差ΔWO2(=OIN−OOUT )を逐次算出し、その算出値から炉内のFeO生成量を推定し、この推定値に基づいて、上吹きランス高さ、酸素ガス流量、および底吹きガス流量のうちの少なくともいずれか一つを調整することにより、処理後のリン濃度を0.015mass%以下まで低減すると記載されている。 In Patent Document 2 below, dephosphorization treatment is performed by blowing until an appropriate phosphorus concentration is achieved in a hot metal dephosphorization furnace, and after removing slag, decarburization treatment is performed until a desired carbon concentration is achieved in a refining furnace. The method describes obtaining a steel with a low phosphorus content. Specifically, the difference ΔW O2 (= O IN −O OUT ) between the oxygen supply amount O IN and the oxygen discharge amount O OUT in the furnace during blowing during dephosphorization by hot metal dephosphorization furnace. Calculate sequentially, estimate the amount of FeO generated in the furnace from the calculated value, and adjust at least one of the top blowing lance height, oxygen gas flow rate, and bottom blowing gas flow rate based on this estimated value By doing so, it is described that the phosphorus concentration after the treatment is reduced to 0.015 mass% or less.

下記の特許文献3には、脱リン剤の反応効率を向上させるために、上吹きランスおよび底吹き羽口を備える転炉を溶銑予備処理容器として用い、吹錬中の炉内における酸素供給量OINと酸素排出量OOUT との差ΔWO2(=OIN−OOUT )を逐次算出し、その算出値から炉内のFeO生成量を推定し、この推定値に基づいて、吹錬中のFeO/CaOを0.5〜3.5に維持できるように、脱リン剤の投入を行う方法が記載されている。 In Patent Document 3 below, in order to improve the reaction efficiency of the dephosphorization agent, a converter equipped with a top blowing lance and a bottom blowing tuyere is used as a hot metal pretreatment vessel, and the oxygen supply amount in the furnace during blowing The difference ΔW O2 (= O IN −O OUT ) between O IN and oxygen discharge amount O OUT is sequentially calculated, and the amount of FeO generated in the furnace is estimated from the calculated value. Based on this estimated value, Describes a method of introducing a dephosphorizing agent so that the FeO / CaO can be maintained at 0.5 to 3.5.

特公昭59−568号公報Japanese Patent Publication No.59-568 特開2006−206930号公報JP 2006-206930 A 特開2006−152426号公報JP 2006-152426 A

特許文献1の方法は、転炉精錬時に十分な脱リンが行われるようにすることを目的とする方法であるが、効率的に十分な脱リンを行うという点で改善の余地がある。特許文献2および3の方法は、転炉精錬前の溶銑予備処理として行う脱リン方法である。
この発明の課題は、転炉精錬前の溶銑予備処理として脱リン処理を行わずに、転炉精錬時に効率的に十分な脱リンが行われる方法を提供することである。
The method of Patent Document 1 is a method intended to ensure that sufficient dephosphorization is performed during converter refining, but there is room for improvement in terms of efficient and sufficient dephosphorization. The methods of Patent Documents 2 and 3 are dephosphorization methods performed as hot metal pretreatment before converter refining.
An object of the present invention is to provide a method in which sufficient dephosphorization is efficiently performed during converter refining without performing dephosphorization as a hot metal pretreatment before converter refining.

上記課題を解決するために、この発明の転炉精錬方法は、転炉内の溶銑に対し、石灰系の脱リン剤を含む副原料を入れ、底側から撹拌ガスを吹き込みながら、ランスを介して上側から酸素を吹き付ける吹錬を行うことにより、溶銑を精錬する方法であって、下記の構成(a) 〜(c) を有することを特徴とする。
(a):吹錬進行度80%以降に行う溶鋼の成分および温度測定時点で溶鋼のリン濃度が所定値以下(吹錬終了時点での目標値に応じて設定される値)となるための、吹錬進行度40%の時点でのFeO生成量を、FeO生成量目標値として設定すること。このFeO生成量目標値は、吹錬進行度40%の時点でのFeO生成量そのものでもよいし、この時点までに吹錬した溶銑の質量で除算した値(例えば、溶銑1トン当たりの値)でもよい。
In order to solve the above-described problems, the converter refining method of the present invention is a method in which an auxiliary material containing a lime-based dephosphorizing agent is added to hot metal in a converter and a stirring gas is blown from the bottom side through a lance. A method of refining molten iron by blowing oxygen from the upper side and having the following configurations (a) to (c).
(a): To make the phosphorus concentration of the molten steel below a predetermined value (value set according to the target value at the end of blowing) at the time of measuring the composition and temperature of the molten steel performed after the blowing progress of 80% The amount of FeO generated at the point of 40% blowing progress is set as the target amount of FeO generation. The target value for the amount of FeO produced may be the amount of FeO produced at the time of 40% blowing progress, or the value divided by the mass of hot metal blown up to this point (for example, the value per ton of hot metal). But you can.

また、吹錬進行度とは、吹錬開始時点を0とし終了時点を100%とした時の吹錬進行度合いの比率(%)であり、吹錬終了時点までに吹き込む酸素量に対する、各時点までの吹き込み酸素量の比率として算出される。
(b):吹錬中の炉内における酸素供給量OINと酸素排出量OOUT との差ΔWO2(=OIN−OOUT )を逐次算出し、その算出値に基づいてFeO生成量を推定すること。
(c): (b)で推定されたFeO生成量推定値が(a) で設定されたFeO生成量目標値となるように、吹き付ける酸素の流量、ランスの湯面からの高さ、脱リン剤の投入量、および吹き込む撹拌ガスの流量のいずれか1以上の条件を調整し、調整された条件で吹錬を行うこと。
Blowing progress is a ratio (%) of the degree of progress of blowing when the start time is 0 and the end time is 100%. It is calculated as a ratio of the amount of oxygen blown up to.
(b): The difference ΔW O2 (= O IN −O OUT ) between the oxygen supply amount O IN and the oxygen discharge amount O OUT in the furnace during blowing is sequentially calculated, and the amount of FeO generated is calculated based on the calculated value. To estimate.
(c): The flow rate of oxygen to be blown, the height of the lance from the molten metal surface, dephosphorization so that the estimated FeO production amount estimated in (b) becomes the target FeO production amount set in (a). Adjust the condition of any one or more of the amount of the agent to be added and the flow rate of the stirring gas to be blown, and perform blowing under the adjusted conditions.

転炉精錬前の溶銑予備処理として行う脱リン処理と、転炉精錬時に脱炭と同時に行う脱リン処理とでは、吹錬の進行に伴う溶銑(および溶鋼)のリン濃度の変化に違いがある。溶銑予備処理としての脱リンの場合は、図2に示すように、吹錬が進むにつれて溶銑のリン濃度が単調に減少する。
転炉精錬時の脱リンの場合は、図3に示すように、吹錬進行度が40%までは、溶銑に供給された酸素によりFeOが生成されて、前記(1)式に示す脱リン反応が進行するため、溶銑のリン濃度は急速に低下する。吹錬進行度が40%に達した後は、供給された酸素のほとんどが脱炭反応に消費されるため、脱リン反応が進まず溶銑のリン濃度はあまり低下しない。吹錬進行度が90%に達すると、炭素濃度はかなり低下していて、脱炭反応が酸素供給律速から撹拌律速に変化するため、供給された酸素が脱リンや鉄の燃焼に使用されるようになって、再びリン濃度の低下速度が速くなる。
There is a difference in the phosphorus concentration change of hot metal (and molten steel) with the progress of blowing between dephosphorization treatment as hot metal pretreatment before converter refining and dephosphorization treatment performed simultaneously with decarburization during converter refining . In the case of dephosphorization as the hot metal preliminary treatment, as shown in FIG. 2, the phosphorus concentration in the hot metal decreases monotonously as the blowing progresses.
In the case of dephosphorization during converter refining, as shown in FIG. 3, FeO is generated by oxygen supplied to the hot metal until the blowing progress is up to 40%. As the reaction proceeds, the phosphorus concentration in the hot metal decreases rapidly. After the blowing progress reaches 40%, most of the supplied oxygen is consumed for the decarburization reaction, so the dephosphorization reaction does not proceed and the hot metal phosphorus concentration does not decrease so much. When the blowing progress reaches 90%, the carbon concentration decreases considerably, and the decarburization reaction changes from the oxygen supply-controlled rate to the stirring-controlled rate, so the supplied oxygen is used for dephosphorization and iron combustion. As a result, the rate of decrease in the phosphorus concentration is increased again.

また、吹錬前の溶銑の組成により異なるが、吹錬進行度80%以降に行う溶鋼の成分および温度測定時点(以下「途中測定時」と称する)での溶鋼のリン濃度と、吹錬進行度が100%の時点(終点)での溶鋼のリン濃度は、例えば図4に示す関係にある。また、途中測定時の溶鋼のリン濃度と、吹錬進行度40%の時点でのFeO生成量(この時点までに吹錬した溶銑1トン当たりの値)は、例えば図5に示す関係にある。なお、図4および図5のグラフは、吹錬前の溶銑の組成が、炭素(C)含有率4.01質量%、シリコン(Si)含有率0.23質量%、マンガン(Mn)含有率0.28質量%、リン(P)含有率0.105質量%の場合を示す。   Also, depending on the composition of the hot metal before blowing, the composition of the molten steel and the phosphorus concentration of the molten steel at the time of temperature measurement (hereinafter referred to as “intermediate measurement”) and the progress of blowing The phosphorus concentration of the molten steel at the time point (end point) at which the degree is 100% has a relationship shown in FIG. 4, for example. Moreover, the phosphorus concentration of the molten steel at the time of measurement on the way and the amount of FeO produced at the point of 40% blowing progress (value per ton of hot metal blown up to this point) have the relationship shown in FIG. 5, for example. . In addition, the graph of FIG. 4 and FIG. 5 is the composition of the hot metal before blowing, carbon (C) content rate 4.01 mass%, silicon (Si) content rate 0.23 mass%, manganese (Mn) content rate The case of 0.28 mass% and phosphorus (P) content of 0.105 mass% is shown.

したがって、転炉精錬時に脱炭と同時に行う脱リン処理の場合には、「途中測定時での溶鋼のリン濃度が所定値(終点での目標値に応じて設定される値:例えば0.030mass%)以下となるための、吹錬進行度40%の時点でのFeO生成量」を、FeO生成量目標値として設定すること(前記構成(a) )により、終点での溶鋼のリン濃度が目標値(例えば0.015mass%以下)を満たすようにすることができる。   Accordingly, in the case of dephosphorization treatment performed simultaneously with decarburization during converter refining, “the phosphorus concentration of molten steel at the time of midway measurement is a predetermined value (a value set according to the target value at the end point: for example, 0.030 mass. %), The amount of FeO produced when the degree of progress of blowing is 40% ”is set as the target value for the amount of FeO produced (the configuration (a)), so that the phosphorus concentration of the molten steel at the end point is reduced. A target value (for example, 0.015 mass% or less) can be satisfied.

また、吹錬進行度40%の時点では下記の(A)式で示す脱炭酸素効率が90%以上となるため、「脱炭酸素効率が90%以上となる時点でのFeO生成量」を「吹錬進行度40%の時点でのFeO生成量」に代えてFeO生成量目標値として設定することによっても、終点での溶鋼のリン濃度が目標値を満たすようにすることができる。
脱炭酸素効率(%)=(脱炭反応に消費された酸素量/供給された酸素量)×100
‥‥(A)
Moreover, since the decarbonation efficiency shown by the following formula (A) is 90% or more at the time of 40% of the blowing progress, the “FeO generation amount at the time when the decarbonation efficiency becomes 90% or more” is set. The phosphorus concentration of the molten steel at the end point can be made to satisfy the target value also by setting it as the target value of the FeO generation amount instead of “the amount of FeO generation at the time when the degree of progress of blowing is 40%”.
Decarbonation efficiency (%) = (amount of oxygen consumed in the decarburization reaction / amount of supplied oxygen) × 100
(A)

この発明の方法によれば、前記構成(b) で推定されたFeO生成量推定値が前記構成(a) で設定されたFeO生成量目標値となるように、吹き付ける酸素の流量、ランスの湯面からの高さ、脱リン剤の投入量、および吹き込む撹拌ガスの流量のいずれか1以上の条件を調整し、調整された条件で吹錬を行うため、転炉精錬時に効率的に十分な脱リンを行うことができる。   According to the method of the present invention, the flow rate of oxygen to be blown, the lance hot water so that the estimated FeO generation amount estimated in the configuration (b) becomes the FeO generation amount target value set in the configuration (a). Adjusting any one or more of the height from the surface, the amount of dephosphorization agent, and the flow rate of the stirring gas to be blown, and performing the blowing under the adjusted conditions, it is efficient enough at the refining of the converter Dephosphorization can be performed.

この発明の方法によれば、転炉精錬前の溶銑予備処理として脱リン処理を行わずに、転炉精錬時に効率的に十分な脱リンを行うことができる。   According to the method of the present invention, sufficient dephosphorization can be efficiently performed at the time of converter refining without performing dephosphorization as a hot metal pretreatment before converter refining.

この発明の方法が実施可能な転炉精錬装置を示す概略構成図である。It is a schematic block diagram which shows the converter refining apparatus which can implement the method of this invention. 転炉精錬前の溶銑予備処理として行う脱リン処理における、吹錬進行度と溶銑のリン濃度との関係を示すグラフである。It is a graph which shows the relationship between blowing progress and the phosphorus density | concentration of hot metal in the dephosphorization process performed as hot metal pretreatment before converter refining. 転炉精錬時に脱炭と同時に行う脱リン処理における、吹錬進行度と溶銑および溶鋼のリン濃度との関係を示すグラフである。It is a graph which shows the relationship between the blowing progress, the hot metal, and the phosphorus concentration of molten steel in the dephosphorization process performed simultaneously with decarburization during converter refining. 途中測定時(吹錬進行度80%以降に行う溶鋼の成分および温度測定時点)での溶鋼のリン濃度と、終点(吹錬進行度が100%の時点)での溶鋼のリン濃度との関係を示すグラフである。Relationship between molten steel phosphorus concentration at the time of intermediate measurement (melting steel composition and temperature measurement after 80% progress of blowing) and molten steel phosphorus concentration at the end point (when blowing progress is 100%) It is a graph which shows. 途中測定時(吹錬進行度80%以降)の溶鋼のリン濃度と、吹錬進行度40%の時点でのFeO生成量(この時点までに吹錬した溶銑1トン当たりの値)との関係を示すグラフである。Relationship between the phosphorus concentration of molten steel at the time of intermediate measurement (after 80% of blowing progress) and the amount of FeO produced at the point of 40% blowing (value per ton of hot metal blown up to this point) It is a graph which shows.

以下、この発明の実施形態について説明する。
図1は、この実施形態の方法が実施可能な転炉精錬装置を示す概略構成図である。
図1の装置において、転炉1は、内側に耐火材の被覆11を有し、上側からランス2が挿入され、底に底吹きノズル3が形成されている。転炉1の上側がフード4で覆われ、このフード4の上方に、排気ダクト41とホッパー42が形成されている。排気ダクト41は、転炉1の炉口12から上昇した気体を排気口に導くものである。ホッパー42は、副原料のうち生石灰(CaO)と鉄鉱石を転炉1内に投入するものである。
Embodiments of the present invention will be described below.
FIG. 1 is a schematic configuration diagram showing a converter refining apparatus in which the method of this embodiment can be performed.
In the apparatus of FIG. 1, the converter 1 has a coating 11 of a refractory material on the inside, a lance 2 is inserted from the upper side, and a bottom blowing nozzle 3 is formed at the bottom. An upper side of the converter 1 is covered with a hood 4, and an exhaust duct 41 and a hopper 42 are formed above the hood 4. The exhaust duct 41 guides the gas rising from the furnace port 12 of the converter 1 to the exhaust port. The hopper 42 inputs quick lime (CaO) and iron ore among the auxiliary materials into the converter 1.

ランス2には、酸素導入配管21と粉体導入配管22が接続されている。酸素導入配管21のランス2に近い位置に、流量計21aが取り付けられている。粉体導入配管22の上方に生石灰(CaO)供給用のホッパー5と焼結粉(焼結鉱の粉末)供給用のホッパー6が配置されている。各ホッパー5,6の供給管51,61が、粉体導入配管22に流量調節弁51a,61aを介して接続されている。各ホッパー5,6内の粉体は、粉体導入配管22に供給されるキャリアガスとともにランス2を通って転炉1内に導入される。   An oxygen introduction pipe 21 and a powder introduction pipe 22 are connected to the lance 2. A flow meter 21 a is attached at a position near the lance 2 of the oxygen introduction pipe 21. A hopper 5 for supplying quicklime (CaO) and a hopper 6 for supplying sintered powder (sintered ore powder) are arranged above the powder introduction pipe 22. Supply pipes 51 and 61 of the hoppers 5 and 6 are connected to the powder introduction pipe 22 via flow rate control valves 51a and 61a. The powder in each hopper 5, 6 is introduced into the converter 1 through the lance 2 together with the carrier gas supplied to the powder introduction pipe 22.

底吹きノズル3にはArガス(撹拌ガス)導入配管31が接続されている。撹拌ガス導入配管31には流量計31aが取り付けられている。
排気ダクト41のフード4に近い側に、分析装置7に向かう配管41aが接続されている。分析装置7は制御装置8に接続されている。排気ダクト41の排気口に近い側に流量計41bが取り付けられている。
An Ar gas (stirring gas) introduction pipe 31 is connected to the bottom blowing nozzle 3. A flow meter 31 a is attached to the stirring gas introduction pipe 31.
A pipe 41 a toward the analyzer 7 is connected to the exhaust duct 41 on the side close to the hood 4. The analysis device 7 is connected to the control device 8. A flow meter 41b is attached to the side of the exhaust duct 41 close to the exhaust port.

制御装置8には、流量計21aからの酸素供給量を示す信号S2 と、流量調節弁51aからのCaO投入量を示す信号S5 と、流量調節弁61aからの焼結粉投入量を示す信号S6 と、流量計31aからの撹拌ガス導入量を示す信号S3 と、分析装置7からの排ガスの組成を示す信号S7 と、流量計41bからの排ガス流量を示す信号S41と、ホッパー42からの石灰石投入量と鉄鉱石投入量を示す信号S42が入力される。 The control device 8 illustrates a signal S 2 indicating the amount of oxygen supplied from the flow meter 21a, a signal S 5 indicating the CaO input amount from the flow control valve 51a, the sintered powder input amount from the flow control valve 61a the signal S 6, a signal S 3 indicating the stirring gas introduction rate from the flow meter 31a, a signal S 7 which shows the composition of the exhaust gas from the analyzer 7, a signal S 41 indicating the exhaust gas flow rate from the flow meter 41b, A signal S 42 indicating the input amount of limestone and the input amount of iron ore from the hopper 42 is input.

制御装置8は、設定された吹錬条件に基づいて、各条件が達成されるための信号(酸素導入配管21への酸素供給装置に向かう信号S21、ランス2の高さ駆動装置に向かう信号Sh 、底吹きノズル3への撹拌ガス吹き込み装置に向かう信号S31、CaOの流量調節弁51aに向かう信号S51、焼結粉の流量調節弁61aに向かう信号S61)を出力するように構成されている。
制御装置8は、また、前述の入力信号に基づいて、下記の(2)式のA〜Fを逐次算出するとともに、算出された各値を用いて(2)式により逐次ΔWO2を算出し、さらに(3)式を用いてFeO生成量推定値を逐次算出するように構成されている。
Based on the set blowing conditions, the control device 8 is a signal for achieving each condition (signal S 21 directed to the oxygen supply device to the oxygen introduction pipe 21, signal directed to the height driving device of the lance 2). S h, the signal S 31 toward the stirring gas injection device into the bottom blowing nozzle 3, CaO signal S 51 towards the flow control valve 51a, so as to output a signal S 61) toward the flow control valve 61a of the sintered powder It is configured.
The control device 8 also sequentially calculates A to F in the following equation (2) based on the above-described input signal, and sequentially calculates ΔW O2 by the equation (2) using each calculated value. Further, the estimated amount of FeO generation is calculated sequentially using equation (3).

Figure 0005493997
Figure 0005493997

(2)式中、
A:ランスからのO2 ガス供給量(Nm3 /t)
なお、「/t」は溶銑1トン当たりを意味する。
B:投入副原料に含まれて供給されるO2 ガス量(Nm3 /t)であり、下記の式で表される。
B(Nm3 /t)=W1(kg/t)×0.15+W2(kg/t)×0.20
(上記式中、W1は投入される焼結粉の溶銑1トン当たりの質量、W2は投入される鉄鉱石の溶銑1トン当たりの質量。)
C:巻き込み空気として導入されるO2 ガス量(Nm3 /t)
D:炉口から排出されるCOガス量(Nm3 /t)
E:炉口から排出されるCO2 ガス量(Nm3 /t)
F:溶銑成分(Si,Mn,P)の酸化で消費されるO2 ガス量(Nm3 /t)
i :吹錬開始時点からi回目の計算を行った時刻までの時間(s)
FeO(kg/t)=(ΔWO2/22.4)×71.85×2‥‥(3)
(2) where
A: O 2 gas supply from the lance (Nm 3 / t)
“/ T” means per ton of hot metal.
B: The amount of O 2 gas (Nm 3 / t) supplied and contained in the input auxiliary raw material, and is represented by the following formula.
B (Nm 3 / t) = W1 (kg / t) × 0.15 + W2 (kg / t) × 0.20
(In the above formula, W1 is the mass per ton of hot metal of the charged sintered powder, and W2 is the mass per ton of iron ore to be charged.)
C: Amount of O 2 gas introduced as entrained air (Nm 3 / t)
D: CO gas discharged from the furnace port (Nm 3 / t)
E: CO 2 gas discharged from the furnace port (Nm 3 / t)
F: O 2 gas amount (Nm 3 / t) consumed by oxidation of hot metal components (Si, Mn, P)
t i : Time from the start of blowing to the time when the i-th calculation is performed (s)
FeO (kg / t) = (ΔW O2 /22.4)×71.85×2 (3)

(2)式のAは、ランス2の流量計21aから入力された信号S2 に基づいて算出される。Bは、ホッパー42の秤量器から入力された信号S42に基づく鉄鉱石の値と、流量調節弁61aから入力された信号S6 に基づく焼結粉の投入量の値から算出される。Cは、分析装置7から入力された信号S7 に基づく排ガスの分析値から、N2 ガス排出量に基づいて算出される。DおよびEは、分析装置7から入力された信号S7 に基づく排ガスの分析値と、流量計41bから入力された信号S41に基づく排ガスの流量とに基づいて算出される。Fは、吹錬中の実績値から予め作成したモデル式に基づいて算出される。 A in equation (2) is calculated based on the signal S 2 input from the flow meter 21 a of the lance 2. B is calculated and the value of the iron ore based on the signal S 42 which is input from the weighing device of the hopper 42, from input of a value of Shoyuiko based on the signal S 6 inputted from the flow control valve 61a. C is calculated based on the N 2 gas emission amount from the analysis value of the exhaust gas based on the signal S 7 input from the analyzer 7. D and E are the analytical values of the exhaust gas based on the signals S 7 inputted from the analysis device 7 is calculated based on the flow rate of the exhaust gas based on the signal S 41 which is input from the flow meter 41b. F is calculated based on a model formula created in advance from the actual value during blowing.

なお、(3)式は、吹錬中の炉内に留まった酸素(ΔWO2)が全てFeO生成に使用されると見做して導出された式である。この式により算出したFeO生成量推定値と、吹錬中および吹錬後に採取したスラグサンプルの分析値から求めたFeO生成量実績値とを比較したところ、±5%以内の誤差で一致した。
この実施形態の方法では、先ず、図1の装置を用い、250トンの溶銑を転炉1内に入れて、下記の吹錬条件1の範囲で条件を変えて多数回の吹錬を行い、吹錬進行度0(吹錬開始時点)〜40%におけるFeO生成量を測定した。また、吹錬進行度80%および100%の時点で、炉内にサブランスを投入してサンプルを採取し、溶鋼の成分測定を行った。
In addition, (3) Formula is a formula derived on the assumption that all the oxygen (ΔW O2 ) remaining in the furnace during blowing is used for FeO generation. When the estimated amount of FeO generation calculated by this equation was compared with the actual value of FeO generation obtained from the analytical value of the slag sample collected during and after blowing, the values were consistent within an error of ± 5%.
In the method of this embodiment, first, using the apparatus of FIG. 1, 250 tons of hot metal is put into the converter 1, and the conditions are changed within the range of the following blowing conditions 1 to perform a number of times of blowing. The amount of FeO produced at a blowing progress of 0 (starting of blowing) to 40% was measured. Moreover, when the progress of blowing was 80% and 100%, a sub lance was put into the furnace, a sample was taken, and the components of the molten steel were measured.

<吹錬条件1>
ランス2から吹き付ける酸素の流量:20000〜50000(Nm3 /hr)
ランス2の湯面からの高さh:1.5〜3.0(m)
底吹きノズル3から吹き込む撹拌ガスの流量:400〜2000(Nm3 /hr)
ホッパー42からのCaOの投入量:5〜40(kg/t)
ホッパー5からのCaOの投入量:0〜20(kg/t)
焼結粉の投入量:0〜20(kg/t)
鉄鉱石の投入量:0〜30(kg/t)
この吹錬の結果、下記の表1に示す組成(平均値)の溶鋼が得られた。表1には吹錬前の溶銑の組成(平均値)も示す。
<Blowing condition 1>
Flow rate of oxygen blown from lance 2: 20000 to 50000 (Nm 3 / hr)
Height of lance 2 from hot water h: 1.5 to 3.0 (m)
Flow rate of stirring gas blown from the bottom blowing nozzle 3: 400 to 2000 (Nm 3 / hr)
Input amount of CaO from the hopper 42: 5 to 40 (kg / t)
Input amount of CaO from the hopper 5: 0 to 20 (kg / t)
Input amount of sintered powder: 0 to 20 (kg / t)
Iron ore input: 0-30 (kg / t)
As a result of this blowing, molten steel having the composition (average value) shown in Table 1 below was obtained. Table 1 also shows the composition (average value) of hot metal before blowing.

Figure 0005493997
Figure 0005493997

また、この吹錬の結果から図4および図5のグラフを得た。図4のグラフから、途中測定時の溶鋼のリン濃度が0.03mass%以下であれば、終点(吹錬進行度100%の時点)での溶鋼のリン濃度を0.015mass%程度まで低減できると考え、0.03mass%以下を途中測定時の溶鋼のリン濃度の目標値とした。そして、図5のグラフから、このリン濃度目標値を満たすため(途中測定時の溶鋼のリン濃度が0.03mass%以下となるため)には、「吹錬進行度40%の時点でのFeO生成量(この時点までに吹錬した溶銑1トン当たりの値)」を、10kg/t以上にすべきであることが分かる。よって、「吹錬進行度40%の時点でのFeO生成量10kg/t以上」をFeO生成量目標値に設定した。   Moreover, the graph of FIG. 4 and FIG. 5 was obtained from the result of this blowing. From the graph of FIG. 4, if the phosphorus concentration of the molten steel at the time of intermediate measurement is 0.03 mass% or less, the phosphorus concentration of the molten steel at the end point (at the time of 100% blowing progress) can be reduced to about 0.015 mass%. Therefore, 0.03 mass% or less was set as the target value of the phosphorus concentration of the molten steel during the measurement. From the graph of FIG. 5, in order to satisfy this phosphorus concentration target value (because the phosphorus concentration of molten steel at the time of midway measurement is 0.03 mass% or less), “FeO at the time of 40% blowing progressing degree” It can be seen that the production amount (value per ton of hot metal blown by this time) should be 10 kg / t or more. Therefore, “FeO generation amount of 10 kg / t or more at 40% blowing progress” was set as the FeO generation target value.

次に、図1の装置を用い、設定されたFeO生成量目標値「吹錬進行度40%の時点でのFeO生成量10kg/t以上」を制御装置8に入力して、250トンの溶銑を転炉1内に入れて、前記吹錬条件1の範囲内の条件で吹錬を開始した。
これにより、制御装置8は吹錬中に、FeO生成量推定値を逐次算出し、その算出値が吹錬進行度40%の時点で10kg/t以上となるように、ランス2から吹き付ける酸素の流量、ランス2の湯面からの高さh、底吹きノズル3から吹き込むArガス(撹拌ガス)の流量、およびホッパー5からのCaO投入量とホッパー6からの焼結粉投入量のいずれか1以上の条件を調整する計算を行う。
Next, using the apparatus of FIG. 1, the set FeO production target value “FeO production of 10 kg / t or more at the time of 40% blowing progress” is input to the control device 8 and 250 tons of hot metal is produced. Was put in the converter 1 and the blowing was started under conditions within the range of the blowing condition 1 described above.
As a result, the control device 8 sequentially calculates the estimated amount of FeO generation during blowing, and the oxygen blown from the lance 2 so that the calculated value becomes 10 kg / t or more at the time of 40% of the blowing progress. Any one of the flow rate, the height h from the molten metal surface of the lance 2, the flow rate of Ar gas (stirring gas) blown from the bottom blowing nozzle 3, and the amount of CaO charged from the hopper 5 and the amount of sintered powder charged from the hopper 6 Calculation to adjust the above conditions is performed.

また、この計算の結果に基づいて、制御装置8は、酸素導入配管21への酸素供給装置に向かう信号S21、ランス2の高さ駆動装置に向かう信号Sh 、底吹きノズル3への撹拌ガス吹き込み装置に向かう信号S31、およびCaOの流量調節弁51aに向かう信号S51と焼結粉の流量調節弁61aに向かう信号S61を出力する。
これに伴って、吹錬中に、制御装置8で逐次算出されたFeO生成量推定値が吹錬進行度40%の時点で10kg/t以上となるように、ランス2から吹き付ける酸素の流量、ランス2の湯面からの高さh、底吹きノズル3から吹き込むArガス(撹拌ガス)の流量、およびホッパー5からのCaO投入量とホッパー6からの焼結粉投入量のいずれか1以上の条件が調整された。よって、この吹錬はこの発明の実施例に相当する。
Further, based on the result of this calculation, the control device 8, agitation of the signal S h, bottom blowing nozzle 3 toward the height drive signals S 21, the lance 2 toward the oxygenator to the oxygen introduction pipe 21 A signal S 31 directed to the gas blowing device, a signal S 51 directed to the CaO flow rate regulating valve 51a, and a signal S 61 directed to the sintered powder flow rate regulating valve 61a are output.
Accordingly, during the blowing, the flow rate of oxygen blown from the lance 2 so that the estimated amount of FeO generated sequentially calculated by the control device 8 becomes 10 kg / t or more at the time of the blowing progress of 40%, The height h of the lance 2 from the molten metal surface, the flow rate of Ar gas (stirring gas) blown from the bottom blowing nozzle 3, and the amount of CaO introduced from the hopper 5 and the amount of sintered powder introduced from the hopper 6 Conditions have been adjusted. Therefore, this blowing corresponds to an embodiment of the present invention.

この吹錬を100回行ったところ、全ての吹錬で溶鋼のリン濃度を0.015mass%以下にすることができた。そして、得られた溶鋼の組成および温度は、平均値で下記の表2に示すものとなった。表2には吹錬前の溶銑の組成および温度も示す。
また、比較例として、図1の装置を用い、設定されたFeO生成量目標値「吹錬進行度40%の時点でのFeO生成量6kg/t」を制御装置8に入力して、250トンの溶銑を転炉1内に入れて、前述の吹錬条件1の範囲内の条件で吹錬を行った。この吹錬を100回行ったところ、5回の吹錬で溶鋼のリン濃度を0.015mass%以下にすることができなかった。そして、得られた溶鋼の組成および温度は、平均値で下記の表2に示すものとなった。表2には吹錬前の溶銑の組成および温度も示す。
When this blowing was performed 100 times, the phosphorus concentration of the molten steel could be reduced to 0.015 mass% or less in all blowing. And the composition and temperature of the obtained molten steel became what was shown in following Table 2 by an average value. Table 2 also shows the composition and temperature of the hot metal before blowing.
In addition, as a comparative example, using the apparatus of FIG. 1, the set FeO generation amount target value “FeO generation amount 6 kg / t at 40% of blowing progress” is input to the control device 8 and 250 tons Was put into the converter 1 and blown under conditions within the range of the above-mentioned blowing condition 1. When this blowing was performed 100 times, the phosphorus concentration of the molten steel could not be reduced to 0.015 mass% or less after 5 times of blowing. And the composition and temperature of the obtained molten steel became what was shown in following Table 2 by an average value. Table 2 also shows the composition and temperature of the hot metal before blowing.

Figure 0005493997
Figure 0005493997

この結果から分かるように、この実施形態の方法によれば、転炉精錬時に効率的に十分な脱リンを行うことができ、リン濃度の低い溶鋼を安定的に得ることができる。   As can be seen from this result, according to the method of this embodiment, sufficient dephosphorization can be efficiently performed during converter refining, and a molten steel having a low phosphorus concentration can be stably obtained.

1 転炉
11 耐火材の被覆
12 炉口
2 ランス
21 酸素導入配管
21a 流量計
22 粉体導入配管
3 底吹きノズル
31 撹拌ガス導入配管
31a 流量計
4 フード
41 排気ダクト
41a 配管
41b 流量計
42 ホッパー
5 CaO供給用のホッパー
51 供給管
51a 流量調節弁
6 焼結粉供給用のホッパー
61 供給管
61a 流量調節弁
7 分析装置
8 制御装置
DESCRIPTION OF SYMBOLS 1 Converter 11 Cover of refractory material 12 Furnace 2 Lance 21 Oxygen introduction piping 21a Flow meter 22 Powder introduction piping 3 Bottom blowing nozzle 31 Stirring gas introduction piping 31a Flow meter 4 Hood 41 Exhaust duct 41a Piping 41b Flow meter 42 Hopper 5 CaO Supply Hopper 51 Supply Pipe 51a Flow Control Valve 6 Sintered Powder Supply Hopper 61 Supply Pipe 61a Flow Control Valve
7 Analyzer 8 Controller

Claims (1)

転炉内の溶銑に対し、石灰系の脱リン剤を含む副原料を入れ、底側から撹拌ガスを吹き込みながら、ランスを介して上側から酸素を吹き付ける吹錬を行うことにより、溶銑を精錬する方法であって、
吹錬進行度80%以降に行う溶鋼の成分および温度測定時点で溶鋼のリン濃度が所定値以下となるための、吹錬進行度40%の時点でのFeO生成量をFeO生成量目標値として設定し、
吹錬中の炉内における酸素供給量OINと酸素排出量OOUT との差ΔWO2(=OIN−OOUT )を逐次算出し、その算出値に基づいてFeO生成量を推定し、このFeO推定値が前記FeO生成量目標値となるように、吹き付ける酸素の流量、ランスの湯面からの高さ、脱リン剤の投入量、および吹き込む撹拌ガスの流量のいずれか1以上の条件を調整し、調整された条件で吹錬を行うことを特徴とする転炉精錬方法。
The hot metal in the converter is smelted by adding auxiliary materials containing a lime-based dephosphorization agent and blowing the oxygen from the upper side through the lance while blowing the stirring gas from the bottom side. A method,
The amount of FeO produced at the point of 40% blowing progress is set as the target value for the amount of FeO produced so that the phosphorus concentration of the molten steel is less than the predetermined value at the time of measuring the components and temperature of the molten steel after the degree of blowing progressing 80%. Set,
The difference ΔW O2 (= O IN −O OUT ) between the oxygen supply amount O IN and the oxygen discharge amount O OUT in the furnace during blowing is sequentially calculated, and the FeO generation amount is estimated based on the calculated value. One or more of the conditions of the flow rate of oxygen to be blown, the height from the hot water surface of the lance, the amount of dephosphorization agent introduced, and the flow rate of the stirring gas to be blown so that the estimated value of FeO becomes the target value of FeO production A converter refining method characterized by adjusting and blowing under adjusted conditions.
JP2010040312A 2010-02-25 2010-02-25 Converter refining method Active JP5493997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010040312A JP5493997B2 (en) 2010-02-25 2010-02-25 Converter refining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010040312A JP5493997B2 (en) 2010-02-25 2010-02-25 Converter refining method

Publications (2)

Publication Number Publication Date
JP2011174153A JP2011174153A (en) 2011-09-08
JP5493997B2 true JP5493997B2 (en) 2014-05-14

Family

ID=44687264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010040312A Active JP5493997B2 (en) 2010-02-25 2010-02-25 Converter refining method

Country Status (1)

Country Link
JP (1) JP5493997B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101490187B1 (en) 2013-07-04 2015-02-05 주식회사 포스코 Method of refining molten steel
DE102013111059A1 (en) * 2013-10-07 2015-04-09 Thyssenkrupp Steel Europe Ag Method for determining the effectiveness of the supply of inert gas via a soil purging in a converter process
CN104480251B (en) * 2014-12-05 2016-03-30 中冶京诚工程技术有限公司 The pretreatment unit of molten iron simultaneously desulfurization, desiliconization, dephosphorization and application and smelting method
KR102232483B1 (en) * 2017-08-24 2021-03-29 닛폰세이테츠 가부시키가이샤 Method for estimating phosphorus concentration in molten steel, converter blowing control device, program and recording medium
CN109609718B (en) * 2019-01-08 2020-07-24 山东钢铁股份有限公司 Steelmaking process material distribution method based on gas analysis

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59568B2 (en) * 1979-05-31 1984-01-07 新日本製鐵株式会社 Oxygen converter blowing control method
JP4779388B2 (en) * 2004-03-25 2011-09-28 Jfeスチール株式会社 How to remove hot metal
JP4701727B2 (en) * 2005-01-25 2011-06-15 Jfeスチール株式会社 Melting method of high carbon ultra low phosphorus steel

Also Published As

Publication number Publication date
JP2011174153A (en) 2011-09-08

Similar Documents

Publication Publication Date Title
KR101152676B1 (en) Production of stainless steel of aisi 4xx grade ferritic steel in an aod converter
JP5493997B2 (en) Converter refining method
JP5950133B2 (en) Hot metal pretreatment method
JP6536520B2 (en) Pretreatment method of hot metal in same converter
JP6028755B2 (en) Method for melting low-sulfur steel
JP2012136767A (en) Method for estimating phosphorus concentration in converter
JP5924186B2 (en) Method of decarburizing and refining hot metal in converter
JP2013108153A (en) Converter refining method
JP5678718B2 (en) Method of decarburizing and refining hot metal in converter
JP5630324B2 (en) Method of decarburizing and refining hot metal in converter
JP2011144431A (en) Dephosphorizing method for preparing extra-low phosphorus steel by melting
JP2010013685A (en) Method for dephosphorizing molten iron
JP5999157B2 (en) Method of refining hot metal in the converter
JP5790607B2 (en) Hot metal dephosphorization method, hot metal dephosphorization system, low phosphorus hot metal manufacturing method and low phosphorus hot metal manufacturing apparatus
JP5333542B2 (en) Desulfurization method for molten steel and molten iron alloy
JP4686917B2 (en) Melting method of molten steel in vacuum degassing equipment
JP5438543B2 (en) Dephosphorization method
RU2465337C1 (en) Method of steelmaking in basic oxygen converter
JP7424350B2 (en) Molten steel denitrification method and steel manufacturing method
JP5673485B2 (en) Hot metal decarburization blowing method
JP6645231B2 (en) Hot metal desiliconization method
JP5463797B2 (en) Method of melting high manganese ultra-low carbon steel
JPH036312A (en) Method for controlling blowing in converter
JP5388805B2 (en) Dephosphorization method using decarburized slag
JPH0578725A (en) Method for automatically controlling desulfurizing treatment on casting floor in blast furnace and device therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140217

R150 Certificate of patent or registration of utility model

Ref document number: 5493997

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250