JP5493407B2 - Battery pack capacity adjustment device - Google Patents

Battery pack capacity adjustment device Download PDF

Info

Publication number
JP5493407B2
JP5493407B2 JP2009063943A JP2009063943A JP5493407B2 JP 5493407 B2 JP5493407 B2 JP 5493407B2 JP 2009063943 A JP2009063943 A JP 2009063943A JP 2009063943 A JP2009063943 A JP 2009063943A JP 5493407 B2 JP5493407 B2 JP 5493407B2
Authority
JP
Japan
Prior art keywords
cell
secondary battery
capacity
voltage
full charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009063943A
Other languages
Japanese (ja)
Other versions
JP2010220380A (en
Inventor
誠 加藤
浩昭 橋ケ谷
幸一 赤堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2009063943A priority Critical patent/JP5493407B2/en
Publication of JP2010220380A publication Critical patent/JP2010220380A/en
Application granted granted Critical
Publication of JP5493407B2 publication Critical patent/JP5493407B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、組電池の容量調整装置に関するものである。   The present invention relates to an assembled battery capacity adjustment device.

複数の二次電池セルを直列に組み合わせてなる組電池において、各二次電池セルの電圧がばらついた場合に、二次電池セルの最低電圧や平均電圧を基準にして二次電池セルの電圧を均一にすることが行われている(特許文献1)。 In a battery pack in which a plurality of secondary battery cells are combined in series, when the voltage of each secondary battery cell varies, the voltage of the secondary battery cell is determined based on the minimum voltage or average voltage of the secondary battery cells. Making it uniform (patent document 1).

特開2000−83327号公報JP 2000-83327 A

しかしながら、セル電圧に基づいて容量調整を実行すると、満充電容量Ahの小さい二次電池セルが他の二次電池セルより残容量割合SOCが大きい場合には、この満充電容量が小さい二次電池セルに対しても放電処理が実行される。   However, when the capacity adjustment is performed based on the cell voltage, if the secondary battery cell having a small full charge capacity Ah has a larger remaining capacity ratio SOC than the other secondary battery cells, the secondary battery having a small full charge capacity is obtained. The discharge process is also performed on the cell.

したがって、一時的に残容量割合が均一になったとしても、その後の使用で満充電容量が小さい二次電池セルが早い時期に下限電圧に到達するので、結果的に組電池の使用可能時間が短くなるという問題があった。 Therefore, even if the remaining capacity ratio becomes temporarily uniform, the secondary battery cell having a small full charge capacity in the subsequent use reaches the lower limit voltage at an early stage. There was a problem of shortening.

本発明が解決しようとする課題は、組電池の使用可能時間の短縮を抑制できる組電池の容量調整装置を提供することである。 The problem to be solved by the present invention is to provide an assembled battery capacity adjusting device capable of suppressing a reduction in the usable time of the assembled battery.

本発明は、満充電容量が最小の二次電池セルの電圧より大きい電圧を示す二次電池セルのみに対し放電処理を実行することによって上記課題を解決する。 This invention solves the said subject by performing a discharge process only with respect to the secondary battery cell which shows a voltage larger than the voltage of the secondary battery cell with the full charge capacity being the minimum.

本発明によれば、満充電容量が最小の二次電池セルの電圧より大きい電圧を示す二次電池セルのみに対し放電処理を実行するので、満充電容量が小さい二次電池セルの放電が抑制され、これにより当該二次電池セルが早期に下限電圧に到達するのを抑制できる。その結果、組電池の使用可能時間が短くなるのを抑制することができる。 According to the present invention, since the discharge process is executed only for the secondary battery cell that exhibits a voltage larger than the voltage of the secondary battery cell having the minimum full charge capacity, the discharge of the secondary battery cell having a small full charge capacity is suppressed. Thus, it is possible to suppress the secondary battery cell from reaching the lower limit voltage early. As a result, it is possible to suppress a reduction in the usable time of the assembled battery.

発明の一実施の形態を適用した電気自動車の駆動系システムを示すブロック図である。1 is a block diagram showing a drive system of an electric vehicle to which an embodiment of the invention is applied. 図1の組電池廻りの構成を詳細に示すブロック図である。FIG. 2 is a block diagram illustrating in detail a configuration around the assembled battery in FIG. 1. 二次電池セルの電流量Ahと残容量割合SOCとの関係を示すグラフである。It is a graph which shows the relationship between the electric current amount Ah of a secondary battery cell, and remaining capacity ratio SOC. 二次電池セルの電圧がばらついた場合の容量調整法を説明するための電流量−残容量割合のグラフである。It is a graph of the electric current amount-remaining capacity ratio for demonstrating the capacity | capacitance adjustment method when the voltage of a secondary battery cell varies. 二次電池セルの電圧に加えて満充電容量もばらついた場合の容量調整法を説明するための電流量−残容量割合のグラフである。It is a graph of the amount of electric current-remaining capacity for demonstrating the capacity | capacitance adjustment method when the full charge capacity | capacitance varies in addition to the voltage of a secondary battery cell. 図5の場合に二次電池セルの電圧のみに基づいて容量調整を実行した場合の問題点を説明するための電流量−残容量割合のグラフである。6 is a graph of current amount-remaining capacity ratio for explaining a problem when capacity adjustment is executed based only on the voltage of the secondary battery cell in the case of FIG. 図5の場合に満充電容量が最小の二次電池セルの電圧に基づいて容量調整を実行した場合の効果を説明するための電流量−残容量割合のグラフである。6 is a graph of current amount-remaining capacity ratio for explaining the effect when capacity adjustment is executed based on the voltage of the secondary battery cell having the minimum full charge capacity in the case of FIG. 5. 図5以外の場合に満充電容量が最小の二次電池セルの電圧に基づいて容量調整を実行した場合の効果を説明するための電流量−残容量割合のグラフである。6 is a graph of current amount-remaining capacity ratio for explaining an effect when capacity adjustment is executed based on the voltage of a secondary battery cell having a minimum full charge capacity in a case other than FIG. 図1のバッテリコントローラで実行される制御手順を示すフローチャートである。It is a flowchart which shows the control procedure performed with the battery controller of FIG. 図9のステップS1のサブルーチンを示すフローチャートである。10 is a flowchart showing a subroutine of step S1 of FIG. 図9のステップS2のサブルーチンを示すフローチャートである。10 is a flowchart showing a subroutine of step S2 of FIG. 図9のステップS3のサブルーチンを示すフローチャートである。10 is a flowchart showing a subroutine of step S3 of FIG. 図9のステップS4のサブルーチンを示すフローチャートである。10 is a flowchart showing a subroutine of step S4 in FIG. 9. 残容量割合と電圧との関係を示すグラフである。It is a graph which shows the relationship between a remaining capacity ratio and voltage.

以下、発明の一実施の形態を適用した電気自動車用組電池の制御装置につき、図1〜図14を参照しながら説明する。ただし、本発明は以下の電気自動車用組電池の制御装置以外の組電池の容量調整装置にも適用することができる。   Hereinafter, a control apparatus for an assembled battery for an electric vehicle to which an embodiment of the invention is applied will be described with reference to FIGS. However, the present invention can also be applied to an assembled battery capacity adjusting device other than the following assembled battery control device for an electric vehicle.

図1は発明の一実施の形態を適用した電気自動車の駆動系システムを示すブロック図であり、組電池1は、電気自動車を駆動するエネルギを蓄えている。組電池1には各種センサが設けられ、バッテリコントローラ5に検出信号を出力する。すなわち、電圧センサ2は組電池1の総電圧を検出し、電流センサ3は組電池1からの入出力電流を検出して電池の残容量などを演算するのに利用される。温度センサ4は組電池1の温度を検出し、電池性能の温度感度補正や異常発熱を監視するためなどに利用される。 FIG. 1 is a block diagram showing a drive system of an electric vehicle to which an embodiment of the invention is applied. An assembled battery 1 stores energy for driving the electric vehicle. The assembled battery 1 is provided with various sensors and outputs a detection signal to the battery controller 5. That is, the voltage sensor 2 detects the total voltage of the assembled battery 1, and the current sensor 3 is used to detect the input / output current from the assembled battery 1 and calculate the remaining capacity of the battery. The temperature sensor 4 is used to detect the temperature of the assembled battery 1 and monitor temperature sensitivity correction of battery performance and abnormal heat generation.

バッテリコントローラ5は、各種センサ2,3,4の検出信号に基づき組電池1の入出力可能電力を演算し、また組電池1を安全に使用するための診断などを実施し、これらを車両コントローラ7へ出力する。 The battery controller 5 calculates the input / output possible power of the assembled battery 1 based on the detection signals of the various sensors 2, 3, 4, and performs a diagnosis for safely using the assembled battery 1, and these are used as a vehicle controller. 7 is output.

アクセルポジションセンサ6は、アクセルの踏み込み量、すなわちドライバの車速制御要求を検出し車両コントローラ7へ出力する。車両コントローラ7は、アクセルポジションセンサ6とバッテリコントローラ5からの出力信号に基づき、車両の各種制御目標値を演算する。 The accelerator position sensor 6 detects an accelerator depression amount, that is, a driver's vehicle speed control request, and outputs it to the vehicle controller 7. The vehicle controller 7 calculates various control target values of the vehicle based on output signals from the accelerator position sensor 6 and the battery controller 5.

インバータ8は、車両コントローラ7から出力された要求トルクに基づいて組電池1の直流電力を三相交流電力に変換して、モータ9へ供給する電力を制御する。モータ9は、インバータ8により変換された電力により駆動し、ドライブシャフトを介してタイヤ10を駆動する。 The inverter 8 converts the DC power of the assembled battery 1 into three-phase AC power based on the required torque output from the vehicle controller 7 and controls the power supplied to the motor 9. The motor 9 is driven by the electric power converted by the inverter 8 and drives the tire 10 via the drive shaft.

図2は、図1の組電池廻りの構成をより詳しく示すブロック図である。   FIG. 2 is a block diagram showing the configuration around the assembled battery of FIG. 1 in more detail.

組電池1を構成する二次電池セル201は、互いに直列および/または並列に接続され、例えばインバータ8の入力電圧の許容幅に応じて二次電池セルの直列数が決定され、また例えば目標航続距離に応じて二次電池セルの並列数が決定される。本例においては、並列数を1列として説明する。 The secondary battery cells 201 constituting the assembled battery 1 are connected in series and / or in parallel to each other, for example, the number of secondary battery cells in series is determined according to the allowable width of the input voltage of the inverter 8, and for example, the target cruising range The number of parallel secondary battery cells is determined according to the distance. In this example, the parallel number will be described as one column.

バッテリコントローラ5のAD変換ポートには、セル電圧検出線202を介して各二次電池セル201の両端電圧が入力され、バッテリコントローラ5で二次電池セル201の電圧を直接検出する。 The voltage across the secondary battery cell 201 is input to the AD conversion port of the battery controller 5 via the cell voltage detection line 202, and the battery controller 5 directly detects the voltage of the secondary battery cell 201.

また、各二次電池セル201にはバイパススイッチ203とバイパス抵抗204が接続され、バッテリコントローラ5によって各二次電池セル201のばらつき調整が必要と判断されたときには、バイパススイッチON/OFF信号205によってバイパススイッチ203をONにしてバイパス抵抗204に通電し、各二次電池セル201の放電処理を実行する。各二次電池セル201の放電量は、バイパススイッチ203のON時間により制御される。 Further, each secondary battery cell 201 is connected to a bypass switch 203 and a bypass resistor 204. When the battery controller 5 determines that variation adjustment of each secondary battery cell 201 is necessary, a bypass switch ON / OFF signal 205 is used. The bypass switch 203 is turned on to energize the bypass resistor 204, and the discharge process of each secondary battery cell 201 is executed. The discharge amount of each secondary battery cell 201 is controlled by the ON time of the bypass switch 203.

図3は、二次電池セル201の容量特性を示すグラフであって、横軸に二次電池セルの電流量Ah、縦軸に残容量割合(残容量/満充電容量)SOCをプロットした関係を示すグラフである。同図に示すように、電流量と残容量割合は比例関係にある。また、残容量割合SOCと電圧Vには、図14に示すように二次電池の種類に固有の相関があり、残容量割合SOCは、電流量の積算値または電圧から算出することができる。   FIG. 3 is a graph showing the capacity characteristics of the secondary battery cell 201, in which the horizontal axis represents the secondary battery cell current amount Ah, and the vertical axis represents the remaining capacity ratio (remaining capacity / full charge capacity) SOC. It is a graph which shows. As shown in the figure, the current amount and the remaining capacity ratio are in a proportional relationship. Further, as shown in FIG. 14, the remaining capacity ratio SOC and the voltage V have a correlation inherent to the type of the secondary battery, and the remaining capacity ratio SOC can be calculated from the integrated value or voltage of the current amount.

実際に組電池1を使用する場合に、組電池1の残容量割合SOC(State of Charge)は、過放電や過充電を防止するために0〜100%の範囲内で使用する必要がある。このため、図3に示すように例えば残容量割合SOC=0%は過放電となる下限電圧に設定され、残容量割合SOC=100%は過充電となる上限電圧に設定される。この上下限電圧には、例えば制御マージンやセンサ誤差などを考慮してマージンを持たせてもよい。組電池1は、このような特徴を持つ二次電池セル201が複数個組み合わせて構成されている。 When the assembled battery 1 is actually used, the remaining capacity ratio SOC (State of Charge) of the assembled battery 1 needs to be used within a range of 0 to 100% in order to prevent overdischarge and overcharge. For this reason, as shown in FIG. 3, for example, the remaining capacity ratio SOC = 0% is set to the lower limit voltage causing overdischarge, and the remaining capacity ratio SOC = 100% is set to the upper limit voltage causing overcharge. The upper and lower limit voltages may have a margin in consideration of, for example, a control margin and a sensor error. The assembled battery 1 is configured by combining a plurality of secondary battery cells 201 having such characteristics.

図4は、組電池1において二次電池セル201のセル電圧がばらついたときの組電池の特性を示すグラフである。組電池1は、図3に示す特性を有する二次電池セル201が複数個組み合わせて構成されているので、理想的には全ての二次電池セルの特性と状態が全く同じであれば、組電池1としての性能を最大限に利用することができる。しかしながら、実際には個々の二次電池セル間で製造上の個体差(バラツキ)があり、例えばセル電圧(つまり残容量割合SOCや残容量)がばらつくことがある。 FIG. 4 is a graph showing characteristics of the assembled battery when the cell voltage of the secondary battery cell 201 varies in the assembled battery 1. Since the assembled battery 1 is configured by combining a plurality of secondary battery cells 201 having the characteristics shown in FIG. 3, if the characteristics and states of all the secondary battery cells are ideally the same, the assembled battery 1 The performance as the battery 1 can be utilized to the maximum. However, actually, there are individual differences (variations) in manufacturing among individual secondary battery cells, and for example, the cell voltage (that is, the remaining capacity ratio SOC and the remaining capacity) may vary.

図4に示すようにセル電圧がばらつくと、つまり各二次電池セルの容量が、ある時点で異なる場合に、さらに放電を継続していくと、セル電圧が最も低いセル(同図のセルα)が先にSOC=0%に達し、逆に充電を継続していくと、セル電圧が最も高いセル(同図のセルγ)が先にSOC=100%に達してしまう。 As shown in FIG. 4, when the cell voltage varies, that is, when the capacities of the secondary battery cells are different at a certain point in time, if the discharge is further continued, the cell with the lowest cell voltage (cell α in the figure). ) Reaches SOC = 0% first, and when charging is continued, the cell with the highest cell voltage (cell γ in the figure) reaches SOC = 100% first.

つまり、組電池1として使用できる容量としては、同図のA)充電可能容量と、B)放電可能容量の和となるので、理想的な組電池1の満充電容量より小さくなる。 That is, the capacity that can be used as the assembled battery 1 is the sum of A) rechargeable capacity and B) dischargeable capacity in FIG.

さらに図5に示すように、二次電池セル201の満充電容量にもばらつきがある場合は、こうしたセル電圧のばらつきの影響はさらに助長される。図5において、セルαの残容量割合SOC=100%のときの電流量は、他のセルβ,γよりも小さいので満充電容量が最も小さいセルである。これに対し、セルβの残容量割合SOC=100%のときの電流量は、他のセルα,γよりも大きいので満充電容量が最も大きいセルである。こうした二次電池セルの満充電容量のばらつきは、製造上の個体差以外にも電池要素の劣化度の違いによって生じることがある。 Furthermore, as shown in FIG. 5, when the full charge capacity of the secondary battery cell 201 also varies, the influence of such variation in cell voltage is further promoted. In FIG. 5, since the amount of current when the remaining capacity ratio SOC of the cell α is 100% is smaller than the other cells β and γ, the cell has the smallest full charge capacity. On the other hand, the current amount when the remaining capacity ratio SOC of the cell β is 100% is larger than that of the other cells α and γ, so that the cell has the largest full charge capacity. Such a variation in the full charge capacity of the secondary battery cell may be caused by a difference in the deterioration degree of the battery element in addition to the individual difference in manufacturing.

図6は、本例の比較例であって従来の問題点を説明するためのグラフである。すなわち、二次電池セル201の電圧のみに基づいて容量調整を実行した場合の問題点を説明するための電流量−残容量割合のグラフであり、組電池1の中で最低セル電圧を示す二次電池セル201の電圧Vに他の二次電池セル201の電圧Vを揃える場合について説明する。 FIG. 6 is a comparative example of this example and is a graph for explaining the conventional problems. That is, it is a graph of current amount-remaining capacity ratio for explaining a problem when capacity adjustment is executed based only on the voltage of the secondary battery cell 201, and shows the lowest cell voltage in the assembled battery 1. It will be described to align the voltage V m of the voltage V 0 to the other secondary battery cells 201 in the next battery cell 201.

ここで、満充電容量の大小関係は同図のグラフの傾きに示すようにα<γ<βとし、ばらつき調整前のセル電圧の大小関係はβ<α<γとし、ばらつき調整前の残容量の大小関係はα<β<γであるとする。 Here, the magnitude relationship of the full charge capacity is α <γ <β, and the magnitude relationship of the cell voltage before variation adjustment is β <α <γ, as shown in the slope of the graph in FIG. It is assumed that α <β <γ.

この状態において、最低セル電圧を示すセルβのセル電圧Vを目標電圧として、他のセルα、γのセル電圧をVに揃えることでばらつき調整を行う。このとき、当然ではあるが満充電容量が最も小さいセルαからも放電するので、ばらつき調整後の各セルの電圧V(残容量割合SOCや残容量)は均一になったとしても、その後の走行によってセルαがSOC=0%に到達する時期が早まってしまう。つまり、走行距離および燃費が悪化し、航続距離が問題となっている電気自動車にとっては深刻な問題である。 In this state, the cell voltage V 0 of the cell β indicating the lowest cell voltage is set as the target voltage, and the cell voltages of the other cells α and γ are adjusted to V 0 to adjust the variation. At this time, since the discharge is performed from the cell α having the smallest full charge capacity as a matter of course, the voltage V 0 (remaining capacity ratio SOC and remaining capacity) of each cell after the variation adjustment becomes uniform. The time when the cell α reaches SOC = 0% by traveling is advanced. That is, it is a serious problem for an electric vehicle in which the mileage and fuel consumption are deteriorated and the cruising distance is a problem.

これに対し、図7は、本例のばらつき調整方法を適用した一例を示す図である。二次電池セル201のばらつき状況は前述の図6と同じく、満充電容量の大小関係はα<γ<βとし、ばらつき調整前のセル電圧の大小関係はβ<α<γとし、ばらつき調整前の残容量の大小関係はα<β<γとする。   On the other hand, FIG. 7 is a diagram showing an example to which the variation adjustment method of this example is applied. Similar to FIG. 6 described above, the variation state of the secondary battery cell 201 is such that the relationship between the full charge capacities is α <γ <β, and the cell voltage before the variation adjustment is β <α <γ, before the variation adjustment. The relationship of the remaining capacity of α is assumed to be α <β <γ.

本例では、最小満充電容量セルに着目し、満充電容量が最も小さいセルαよりセル電圧が大きいセルγのみばらつき調整を行い、満充電容量が小さいセルαおよび当該セルαよりセル電圧が低いセルβからの放電を行わない。 In this example, paying attention to the cell with the minimum full charge capacity, only the cell γ having a larger cell voltage than the cell α having the smallest full charge capacity is adjusted for variation, and the cell voltage having a smaller full charge capacity and the cell voltage lower than the cell α are adjusted. The cell β is not discharged.

これにより、セルαよりセル電圧が大きい二次電池セルのセル電圧は均一になると同時に、最小満充電容量のセルαの放電は行わないので当該セルαがSOC=0%に到達する時期が早まることも防止される。その結果、組電池1としてばらつき調整後に放電可能な電力低下を抑制でき、航続距離を延ばすことができる。なお、セルβについてはばらつき調整を行わないが、放電や充電を行ったとしてもセルβの残容量割合SOCが他のセルα,γより先に0%や100%に達することはないので、組電池1としての性能は最大限利用することができる。 As a result, the cell voltage of the secondary battery cell having a cell voltage larger than that of the cell α becomes uniform, and at the same time, the cell α having the minimum full charge capacity is not discharged, so that the time when the cell α reaches SOC = 0% is advanced. This is also prevented. As a result, it is possible to suppress a decrease in power that can be discharged after variation adjustment as the assembled battery 1, and to extend the cruising distance. Although variation adjustment is not performed for the cell β, the remaining capacity ratio SOC of the cell β does not reach 0% or 100% before the other cells α and γ even if discharging or charging is performed. The performance as the assembled battery 1 can be utilized to the maximum.

図8は本例のばらつき調整方法を適用した他の一例を示す図である。二次電池セル201のばらつき状況は、満充電容量の大小関係はα<γ<βとし、ばらつき調整前のセル電圧の大小関係はβ<α<γとするが、ばらつき調整前の残容量Ahの大小関係は、図6および図7とは異なりβ<α<γであるとする。 FIG. 8 is a diagram showing another example to which the variation adjustment method of this example is applied. Regarding the variation state of the secondary battery cell 201, the relationship between the full charge capacities is α <γ <β, and the cell voltage before the variation adjustment is β <α <γ, but the remaining capacity Ah before the variation adjustment is Unlike FIG. 6 and FIG. 7, it is assumed that β <α <γ.

このような特異な状況は、たとえば満充電容量が大きくても自己放電が大きい二次電池セル201が存在する組電池1を長期放置した場合に発生することが考えられる。 Such a unique situation may occur, for example, when the assembled battery 1 having the secondary battery cell 201 having a large self-discharge even if the full charge capacity is large is left for a long period of time.

この状態において、本例では残容量が最も小さいセルβのセル電圧Vまで他の二次電池セルα、γのセル電圧を下げてばらつき調整する。通常起こりやすい、満充電容量が最も小さい二次電池セルの残容量が最も小さい場合には、この放電処理によって容量調整による不要な放電を抑制しながら、満充電容量が最も小さい二次電池セルの残容量より残容量が小さい二次電池セルが存在する特異なばらつきが発生したときにでも、組電池1の満充電容量の低下を抑制することができる。 In this state, in this example, the cell voltage V 0 of the cell β having the smallest remaining capacity is lowered to adjust the variation by reducing the cell voltages of the other secondary battery cells α and γ. When the remaining capacity of the secondary battery cell with the smallest full charge capacity, which is likely to occur normally, is the smallest, the secondary battery cell with the smallest full charge capacity is suppressed while suppressing unnecessary discharge due to capacity adjustment by this discharge treatment. Even when a unique variation occurs in which secondary battery cells having a remaining capacity smaller than the remaining capacity are present, it is possible to suppress a decrease in the full charge capacity of the assembled battery 1.

以下、本例の制御手順を、フローチャートを参照しながら詳細に説明する。   Hereinafter, the control procedure of this example will be described in detail with reference to a flowchart.

図9は本例の制御全体の概要を示すフローチャートである。ステップS1のセル電圧取得ステップでは、起動時や停止時に組電池1を構成する全ての二次電池セル201のセル電圧を計測する。ステップS2の最小満充電容量セル判断ステップでは、ステップS1で計測したセル電圧に基づき満充電容量が最も小さい二次電池セルを判断する。ステップS3の最小残容量セル演算ステップでは、走行前後の電流積算量とセル電圧変動幅に応じて各二次電池セルの満充電容量と残容量を演算し、残容量が最も小さい二次電池セルを判断する。ステップS4のばらつき調整ステップでは、各二次電池セルに対してばらつき調整量の目標値演算やバイパススイッチ203のON/OFF指令を演算する。   FIG. 9 is a flowchart showing an overview of the overall control of this example. In the cell voltage acquisition step of step S1, the cell voltages of all the secondary battery cells 201 constituting the assembled battery 1 are measured at the time of starting and stopping. In the minimum full charge capacity cell determination step of step S2, the secondary battery cell having the smallest full charge capacity is determined based on the cell voltage measured in step S1. In the minimum remaining capacity cell calculation step of step S3, the full charge capacity and the remaining capacity of each secondary battery cell are calculated according to the current accumulated amount before and after traveling and the cell voltage fluctuation range, and the secondary battery cell with the smallest remaining capacity is calculated. Judging. In the variation adjustment step in step S4, a variation adjustment amount target value calculation and an ON / OFF command for the bypass switch 203 are calculated for each secondary battery cell.

図10は、図9のセル電圧取得ステップS1の詳細を示すフローチャートである。最初にステップS11にて、バッテリシステムが起動時かどうかを判断する。起動時であれば、ステップS12で全二次電池セルの起動時セル電圧SVn(nはセル番号)を1回計測してこれを記憶する。起動時でなければ起動時セル電圧SVnの記憶処理は行わない。   FIG. 10 is a flowchart showing details of the cell voltage acquisition step S1 of FIG. First, in step S11, it is determined whether or not the battery system is activated. If it is at the time of starting, in step S12, the starting cell voltage SVn (n is a cell number) of all the secondary battery cells is measured once and stored. If the cell voltage SVn is not activated, the memory cell SVn is not stored.

つぎにステップS13にて停止時かどうかを判断する。停止時であれば、ステップS14で全二次電池セルの停止時セル電圧EVn(nはセル番号)を1回計測してこれを記憶する。停止時でなければ停止時セル電圧EVnの処理は行わない。以上でセル電圧取得ステップS1の処理を終了し、次の最小満充電容量セル判断ステップS2へ進む。   Next, in step S13, it is determined whether or not the vehicle is stopped. If it is a stop time, the cell voltage EVn (n is a cell number) at the time of a stop of all the secondary battery cells is measured once at step S14, and this is memorize | stored. If it is not a stop, the cell voltage EVn at the time of stop is not processed. The process of the cell voltage acquisition step S1 is thus completed, and the process proceeds to the next minimum full charge capacity cell determination step S2.

図11は、図9の最小満充電容量セル判断ステップS2の詳細を示すフローチャートである。最初にステップS11にて、停止時かどうかを判断する。停止時であれば、セル電圧取得ステップS1において今回のシステム稼動の起動時セル電圧SVnと停止時セル電圧EVnが今回のシステム稼動での値に更新されているので、ステップS22において下記式1にしめすようにこれらの差の絶対値を演算して、各二次電池セルの電圧変動ΔVnを得る。   FIG. 11 is a flowchart showing details of the minimum full charge capacity cell determination step S2 of FIG. First, in step S11, it is determined whether or not the vehicle is stopped. If it is a stop time, the cell voltage SVn at the start of the current system operation and the cell voltage EVn at the time of the stop operation are updated to the values at the current system operation in the cell voltage acquisition step S1, so The absolute value of these differences is calculated so as to obtain the voltage fluctuation ΔVn of each secondary battery cell.

[式1]セル電圧変動ΔVn=|SVn−EVn|
ステップS21で停止時でないと判断された場合は、まだバッテリシステムは稼働中であり停止時セル電圧EVnが更新されていないので、以降の処理をパスして最小満充電容量セル判断を行わずに終了する。
[Formula 1] Cell voltage fluctuation ΔVn = | SVn−EVn |
If it is determined at step S21 that the battery is not stopped, the battery system is still in operation and the cell voltage EVn at the time of stop is not updated. Therefore, the subsequent processing is passed and the minimum full charge capacity cell determination is not performed. finish.

ステップS22でセル電圧変動ΔVnを演算したら、つぎにステップS23で最小満充電容量セルの判断を行う。最小満充電容量セルの判断は、ステップS22で求めたセル電圧変動ΔVnの値がもっとも大きいセルであることで判断し、そのセル番号を最小満充電容量セル番号(MINFCAP)とする。   After the cell voltage fluctuation ΔVn is calculated in step S22, the minimum fully charged capacity cell is determined in step S23. The determination of the minimum full charge capacity cell is made based on the cell having the largest cell voltage fluctuation ΔVn obtained in step S22, and the cell number is set to the minimum full charge capacity cell number (MINFCAP).

以上で最小満充電容量セル判断ステップS2の処理を終了し、次の最小算容量セル判断ステップS3へ進む。   The process of the minimum full charge capacity cell determination step S2 is thus completed, and the process proceeds to the next minimum calculation capacity cell determination step S3.

図12は、図9の最小残容量セル判断ステップS3の詳細を示すフローチャートである。最初にステップS31にて起動時かどうかを判断する。起動時であれば、ステップS32で今回のシステム稼動の電流積算量ΔAhtrpをリセットする。起動時でなければステップS32の処理をパスしてリセットを行わない。 FIG. 12 is a flowchart showing details of the minimum remaining capacity cell determination step S3 of FIG. First, in step S31, it is determined whether or not it is a start time. If it is during startup, the current integrated amount ΔAh trp of the current system operation is reset in step S32. If it is not the time of starting, the process of step S32 is passed and reset is not performed.

つぎに、ステップS33でシステム稼働中の組電池の入出力電流を計測し、ステップS34では計測した電流値に基づいて組電池(各二次電池セル)の今回のシステム稼動の電流積算量ΔAhtrpを演算する。電流積算量の演算は、計測した電流値Iにコントローラの演算ステップ時間T(例えば10msや1msなど)を乗じた値に、計測したコントローラの前回ステップの電流積算量ΔAhtrp zを加えることで実施される。 Next, in step S33, the input / output current of the assembled battery during system operation is measured. In step S34, the current integrated amount ΔAh trp of the assembled battery (each secondary battery cell) for the current system operation based on the measured current value. Is calculated. The calculation of the integrated current amount is performed by adding the measured integrated current value ΔAh trp z of the previous step of the controller to the value obtained by multiplying the measured current value I by the calculation step time T (for example, 10 ms or 1 ms) of the controller. Is done.

つぎにステップS35で停止時かどうかを判断し、停止時でなければその後の処理をパスして、最小残容量セル判断ステップS3の処理を終える。停止時であれば、ステップS36で各二次電池セルの満充電容量FCAPnを求める。各二次電池セルの満充電容量FCAPnは、例えばセル電圧変動ΔVnと、電流積算量ΔAhtrpと、図14に示す電圧−SOC特性にもとづき、つぎに説明する手順で求めることができる。 Next, in step S35, it is determined whether or not it is stopped. If it is not stopped, the subsequent process is passed and the process of minimum remaining capacity cell determination step S3 is completed. If it is a stop time, the full charge capacity FCAPn of each secondary battery cell is calculated | required by step S36. The full charge capacity FCAPn of each secondary battery cell can be obtained by the procedure described below based on, for example, the cell voltage fluctuation ΔVn, the current integration amount ΔAh trp, and the voltage-SOC characteristics shown in FIG.

すなわち、計測したセル電圧変動ΔVnと、あらかじめバッテリコントローラに記憶させた電圧−SOC特性図から、各二次電池セルの今回のシステム稼働中に変動したSOC(ΔSOCn)を求める。つぎに、SOCの定義は満充電容量に対する残容量の割合であるので、ΔSOCnとステップS34で求めた今回のシステム稼動の電流積算量ΔAhtrpの値に基づき、下記式2によって求める。 That is, from the measured cell voltage fluctuation ΔVn and the voltage-SOC characteristic diagram stored in advance in the battery controller, the SOC (ΔSOCn) that fluctuated during the current system operation of each secondary battery cell is obtained. Next, since the SOC is defined as the ratio of the remaining capacity to the full charge capacity, it is obtained by the following equation 2 based on ΔSOCn and the current integrated amount ΔAh trp of the current system operation obtained in step S34.

[式2]満充電容量FCAPn=ΔAhtrp÷ΔSOCn
つぎにステップS37において、各二次電池セルの残容量RCAPnを演算する。残容量RCAPnは、例えば停止時のセル電圧EVnと電圧−SOC特性から停止時の各二次電池セルのSOCを求め、つぎに各二次電池セルのSOCにステップS36で求めた各二次電池セルの満充電容量FCAPnを乗じることで求めることができる。
[Formula 2] Full charge capacity FCAPn = ΔAh trp ÷ ΔSOCn
Next, in step S37, the remaining capacity RCAPn of each secondary battery cell is calculated. The remaining capacity RCAPn is obtained, for example, by determining the SOC of each secondary battery cell at the time of stoppage from the cell voltage EVn at the time of stoppage and the voltage-SOC characteristic, and then determining the SOC of each secondary battery cell at step S36. It can be obtained by multiplying the full charge capacity FCAPn of the cell.

つぎにステップS38において、最小残容量セルの判断を行う。最小残容量セルの判断は、ステップS37で求めた各セルの残容量RCAPnが最も小さい二次電池セルであることで判断し、そのセル番号を最小残容量セル番号(MINRCAP)として記憶する。以上により、最小残容量セル判断ステップS3の処理を終了し、次のばらつき調整ステップS4へ進む。   Next, in step S38, the minimum remaining capacity cell is determined. The determination of the minimum remaining capacity cell is performed by determining that the remaining capacity RCAPn of each cell obtained in step S37 is the smallest secondary battery cell, and the cell number is stored as the minimum remaining capacity cell number (MINRCAP). Thus, the process of the minimum remaining capacity cell determination step S3 is finished, and the process proceeds to the next variation adjustment step S4.

図14は、ばらつき調整ステップS4の詳細を示すフローチャートである。最初に、ステップS41で停止時かどうかを判断する。停止時でない場合は、ステップS42〜S48のステップをパスしてステップS49へ進む。   FIG. 14 is a flowchart showing details of the variation adjustment step S4. First, in step S41, it is determined whether or not the vehicle is stopped. If it is not at the time of stop, the steps S42 to S48 are passed and the process proceeds to step S49.

停止時である場合は、ステップS42において最小満充電容量セル番号(MINFCAP)と最小残容量セル番号(MINRCAP)が一致しているかどうかを判断する。一致している場合は、ステップS43において最小満充電容量セルのセル電圧より高いセル電圧を示している二次電池セルをばらつき調整対象セルと判断し、ステップS44でばらつき調整対象セルのセル電圧と最小満充電容量セルのセル電圧の差をばらつき調整対象セルの目標セル電圧調整量とする。このステップS43,S44のばらつき調整が既述した図7に示す例に相当する。   If it is a stop time, it is determined in step S42 whether the minimum full charge capacity cell number (MINFCAP) matches the minimum remaining capacity cell number (MINRCAP). If they match, in step S43, the secondary battery cell showing a cell voltage higher than the cell voltage of the minimum fully charged capacity cell is determined as the variation adjustment target cell, and in step S44, the cell voltage of the variation adjustment target cell is determined. The difference between the cell voltages of the minimum fully charged capacity cells is set as the target cell voltage adjustment amount of the variation adjustment target cell. The variation adjustment in steps S43 and S44 corresponds to the example shown in FIG.

逆に最小満充電容量セル番号(MINFCAP)と最小残容量セル番号(MINRCAP)が一致していない場合は、ステップS45において最小残容量セルのセル電圧より高いセル電圧を示している二次電池セルをばらつき調整対象セルと判断し、ステップS46でばらつき調整対象セルのセル電圧と最小残容量セルのセル電圧の差をばらつき調整対象セルの目標セル電圧調整量とする。このステップS45,S46のばらつき調整が既述した図8に示す例に相当する。   Conversely, if the minimum full charge capacity cell number (MINFCAP) and the minimum remaining capacity cell number (MINRCCAP) do not match, the secondary battery cell showing a cell voltage higher than the cell voltage of the minimum remaining capacity cell in step S45. Is determined as the variation adjustment target cell, and the difference between the cell voltage of the variation adjustment target cell and the cell voltage of the minimum remaining capacity cell is set as the target cell voltage adjustment amount of the variation adjustment target cell in step S46. The variation adjustment in steps S45 and S46 corresponds to the example shown in FIG.

ばらつき調整対象セルの目標セル電圧調整量が演算されたら、つぎにステップS47にて各ばらつき調整対象セルの目標バイパススイッチON時間を演算する。目標バイパススイッチON時間は、例えばセル電圧1mVあたりのバイパススイッチON時間を実験的に求めてバッテリコントローラ5に記憶させておき、この値に各ばらつき調整対象セルの目標セル電圧調整量を乗じることで演算する。   When the target cell voltage adjustment amount of the variation adjustment target cell is calculated, next, in step S47, the target bypass switch ON time of each variation adjustment target cell is calculated. For the target bypass switch ON time, for example, the bypass switch ON time per cell voltage of 1 mV is experimentally obtained and stored in the battery controller 5, and this value is multiplied by the target cell voltage adjustment amount of each variation adjustment target cell. Calculate.

つぎにステップS48において、ステップS47で演算した各ばらつき対象セルの目標バイパススイッチON時間を記憶する。記憶する場所(バッテリコントローラ5の記憶領域)は、バッテリコントローラの電源を切っても消えない場所であり、例えばバックアップRAMやEEPROMに記憶する。その理由は、ばらつき調整を次回起動時から開始する場合にはバッテリコントローラ5を一度停止するためであり、もし通常のRAM領域に保存すると次回起動時には前回演算した目標バイパススイッチON時間が消去されて使用できなくなるからである。   Next, in step S48, the target bypass switch ON time of each variation target cell calculated in step S47 is stored. The storage location (storage area of the battery controller 5) is a location that does not disappear even if the battery controller is turned off, and is stored in, for example, a backup RAM or EEPROM. The reason is that the battery controller 5 is stopped once when the variation adjustment is started from the next activation. If the variable controller is stored in the normal RAM area, the previously calculated target bypass switch ON time is erased at the next activation. This is because it cannot be used.

つぎにステップS49において、今回起動中に各二次電池セルのバイパススイッチ203をONした時間をカウントする。そしてステップS50で、バイパススイッチON時間が目標ばらつき調整時間を超えていない二次電池セルに対してはバイパススイッチ203をONに、超えている場合はOFFにする判断を行う。そして、ステップS51で、バイパススイッチ203のON/OFF指令を出力し、ばらつき調整ステップS4を終了する。   Next, in step S49, the time when the bypass switch 203 of each secondary battery cell is turned on during the current activation is counted. In step S50, a determination is made to turn on the bypass switch 203 for a secondary battery cell whose bypass switch ON time does not exceed the target variation adjustment time, and turn it off if it exceeds. In step S51, an ON / OFF command for the bypass switch 203 is output, and the variation adjustment step S4 is terminated.

以上の実施形態は本発明の一例を説明したものに過ぎず、これらに限定されずさらに変形することができる。   The above embodiments are merely examples of the present invention, and the present invention is not limited to these and can be further modified.

例えば長期放置を行わない組電池に対して本発明を適用する場合や、各二次電池セルの自己放電特性のばらつきがほとんどない場合などのように、最小満充電容量セル(MINFCAP)が最小残容量セル(MINRCAP)と常に一致すると言えるのであれば、最小残容量セル判断ステップS3や、ばらつき調整対象セル判断ステップS45、目標セル電圧調整量演算ステップS46を省略することもできる。これにより開発期間の短縮やコントローラのROM領域の削減と演算負荷の低減などが期待できる。   For example, when the present invention is applied to an assembled battery that is not left for a long time, or when there is almost no variation in the self-discharge characteristics of each secondary battery cell, the minimum full charge capacity cell (MINFCAP) is the minimum remaining. If it can be said that it always matches the capacity cell (MINRCAP), the minimum remaining capacity cell determination step S3, the variation adjustment target cell determination step S45, and the target cell voltage adjustment amount calculation step S46 can be omitted. This can be expected to shorten the development period, reduce the ROM area of the controller, and reduce the computation load.

また、満充電要量演算ステップS36と、最小残容量セル判断ステップS38と、ばらつき調整ステップS4のうちステップS41〜S48を前回起動時のセル電圧情報と今回起動時セル電圧の偏差に基づいて演算してもよい。これにより、停止中に安定した後のセル電圧情報に基づき演算ができるため、精度良く各種演算を実施することができる。   Further, the full charge requirement calculation step S36, the minimum remaining capacity cell determination step S38, and the steps S41 to S48 of the variation adjustment step S4 are calculated based on the deviation between the cell voltage information at the previous activation and the cell voltage at the current activation. May be. As a result, the calculation can be performed based on the cell voltage information after being stabilized during the stop, so that various calculations can be performed with high accuracy.

また、二次電池セル201の内部抵抗と温度と閉回路電圧CCVを用いて、負荷が取り外されているときの開回路電圧OCVを推定し、所定時間間隔前後に推定した開回路電圧OCVを用いて最小満充電容量や最小残容量を求めて、各種演算を行いばらつき調整を実施してもよい。   Further, the open circuit voltage OCV when the load is removed is estimated using the internal resistance and temperature of the secondary battery cell 201 and the closed circuit voltage CCV, and the open circuit voltage OCV estimated before and after the predetermined time interval is used. Then, the minimum full charge capacity and the minimum remaining capacity may be obtained, and various calculations may be performed to adjust the variation.

また、各種センサ誤差や演算誤差を考慮した閾値を設定してもよい。その他、満充電容量演算、残容量演算、ばらつき調整方法、電圧計測、電流計測、などの実施方法については従来技術の多くを組み合わせてもよい。   Further, a threshold value considering various sensor errors and calculation errors may be set. In addition, many of the conventional techniques may be combined with respect to implementation methods such as full charge capacity calculation, remaining capacity calculation, variation adjustment method, voltage measurement, and current measurement.

以上のように、本例の容量調整装置によれば、満充電容量が最も小さい二次電池セルを基準に容量調整を行うので、満充電容量が小さい二次電池セルの不用意な放電を抑制することができる。このように容量調整することで満充電容量が小さい二次電池セルが放電末期において早期に下限電圧に到達することが抑制できるため、容量調整後の組電池の利用可能な残容量を向上することができる。   As described above, according to the capacity adjustment device of the present example, the capacity adjustment is performed based on the secondary battery cell having the smallest full charge capacity, so that inadvertent discharge of the secondary battery cell having the small full charge capacity is suppressed. can do. By adjusting the capacity in this way, it is possible to suppress the secondary battery cell having a small full charge capacity from reaching the lower limit voltage early at the end of discharge, thereby improving the available remaining capacity of the assembled battery after capacity adjustment. Can do.

また、満充電容量が最も小さい二次電池セルよりセル電圧が高い二次電池セルのみ容量調整を行うので(図7参照)、満充電容量が小さい二次電池セルの放電を抑制できる。   Further, since the capacity adjustment is performed only for the secondary battery cell having a cell voltage higher than that of the secondary battery cell having the smallest full charge capacity (see FIG. 7), the discharge of the secondary battery cell having a small full charge capacity can be suppressed.

また、満充電容量が最も小さい二次電池セルの残容量がもっとも小さいときに満充電容量が小さい二次電池セルを基準に容量調整を行うので、満充電容量が小さい二次電池セルの放電を抑制できる。   In addition, when the remaining capacity of the secondary battery cell with the smallest full charge capacity is the smallest, the capacity is adjusted based on the secondary battery cell with the smallest full charge capacity. Can be suppressed.

また、満充電容量が最も小さい二次電池セルの残容量より残容量が小さい二次電池セルが存在する場合には、残容量が最も小さい二次電池セルを基準に容量調整を行うので、放電末期に満充電容量が小さい二次電池セルが先に下限電圧に到達するように調整できる。これにより、通常起こりやすい満充電容量が最も小さい二次電池セルの残容量が最も小さい場合には容量調整による不要な放電を抑制しながら、満充電容量が最も小さいセルの残容量より残容量が小さいセルが存在する特異なばらつきが発生したときにでも、組電池の満充電容量の低下を抑制することができる。   In addition, when there is a secondary battery cell with a remaining capacity smaller than the remaining capacity of the secondary battery cell with the smallest full charge capacity, the capacity is adjusted based on the secondary battery cell with the smallest remaining capacity. It can adjust so that a secondary battery cell with a small full charge capacity may reach a lower limit voltage first at the end. As a result, when the remaining capacity of the secondary battery cell with the smallest full charge capacity that is likely to occur is the smallest, the remaining capacity is less than the remaining capacity of the cell with the smallest full charge capacity while suppressing unnecessary discharge due to capacity adjustment. Even when a unique variation in which a small cell exists occurs, it is possible to suppress a decrease in the full charge capacity of the assembled battery.

1…組電池
2…総電圧センサ
3…電流センサ
4…温度センサ
5…バッテリコントローラ
6…アクセルポジションセンサ
7…車両コントローラ
8…インバータ
9…モータ
201…二次電池セル
203…バイパススイッチ
204…バイパス抵抗
DESCRIPTION OF SYMBOLS 1 ... Assembly battery 2 ... Total voltage sensor 3 ... Current sensor 4 ... Temperature sensor 5 ... Battery controller 6 ... Accelerator position sensor 7 ... Vehicle controller 8 ... Inverter 9 ... Motor 201 ... Secondary battery cell 203 ... Bypass switch 204 ... Bypass resistance

Claims (3)

複数の二次電池セルを直列に組み合わせて構成される組電池の、前記二次電池セルの電圧を検出する電圧検出手段と、
前記二次電池セルの放電処理を実行して当該二次電池セルのばらつきを調整するばらつき調整手段と、
前記二次電池セルの満充電容量が最も小さい二次電池セルを判断する最小満充電容量セル判断手段と、を有する組電池の容量調整装置において、
前記ばらつき調整手段は、前記最小満充電容量セル判断手段により判断された最小満充電容量セルの電圧より大きい電圧を示す二次電池セルのみに対し放電処理を実行することを特徴とする組電池の容量調整装置。
Voltage detection means for detecting a voltage of the secondary battery cell of a battery pack configured by combining a plurality of secondary battery cells in series;
A variation adjusting means for adjusting the variation of the secondary battery cells by executing a discharge process of the secondary battery cells;
In a battery pack capacity adjustment device comprising: a minimum full charge capacity cell determination means for determining a secondary battery cell having the smallest full charge capacity of the secondary battery cell;
The variation adjusting means performs a discharge process only on a secondary battery cell having a voltage larger than the voltage of the minimum full charge capacity cell determined by the minimum full charge capacity cell determination means. Capacity adjustment device.
請求項1に記載の組電池の容量調整装置において、
前記二次電池セルの入出力電流を検出する電流検出手段と、
前記二次電池セルの残容量を演算する残容量演算手段と、を有し、
前記ばらつき調整手段は、前記最小満充電容量セルの残容量が最も小さい場合に、前記最小満充電容量セルの電圧より大きいセル電圧を示すセルのみに対し放電処理を実行することを特徴とする組電池の容量調整装置。
The capacity adjustment apparatus for an assembled battery according to claim 1 ,
Current detecting means for detecting an input / output current of the secondary battery cell;
And a remaining capacity calculating means for calculating the remaining capacity of the secondary battery cell,
The variation adjusting means performs a discharge process only on a cell having a cell voltage larger than the voltage of the minimum full charge capacity cell when the remaining capacity of the minimum full charge capacity cell is the smallest. Battery capacity adjustment device.
請求項に記載の組電池の容量調整装置において、
前記ばらつき調整手段は、前記最小満充電容量セルの残容量より残容量が小さい他の二次電池セルが存在する場合に、前記最小満充電容量セルの電圧に代えて、残容量が最も小さい二次電池セルの電圧より高い電圧を示す二次電池セルのみに対して放電処理を実行することを特徴とする組電池の容量調整装置。
The capacity adjustment device for an assembled battery according to claim 2 ,
When there is another secondary battery cell having a remaining capacity smaller than the remaining capacity of the minimum fully charged capacity cell, the variation adjusting means replaces the voltage of the minimum fully charged capacity cell with the smallest remaining capacity. A capacity adjustment device for a battery pack, wherein a discharge process is performed only on a secondary battery cell exhibiting a voltage higher than that of a secondary battery cell.
JP2009063943A 2009-03-17 2009-03-17 Battery pack capacity adjustment device Expired - Fee Related JP5493407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009063943A JP5493407B2 (en) 2009-03-17 2009-03-17 Battery pack capacity adjustment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009063943A JP5493407B2 (en) 2009-03-17 2009-03-17 Battery pack capacity adjustment device

Publications (2)

Publication Number Publication Date
JP2010220380A JP2010220380A (en) 2010-09-30
JP5493407B2 true JP5493407B2 (en) 2014-05-14

Family

ID=42978606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009063943A Expired - Fee Related JP5493407B2 (en) 2009-03-17 2009-03-17 Battery pack capacity adjustment device

Country Status (1)

Country Link
JP (1) JP5493407B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9438059B2 (en) 2010-12-16 2016-09-06 Honda Motor Co., Ltd. Battery control apparatus and battery control method
WO2012091075A1 (en) * 2010-12-28 2012-07-05 三洋電機株式会社 Battery system
JP5803518B2 (en) * 2011-09-29 2015-11-04 トヨタ自動車株式会社 Vehicle and vehicle control method
JP5704063B2 (en) * 2011-12-06 2015-04-22 株式会社デンソー Equalized discharge device for battery pack
US20130257381A1 (en) * 2012-03-29 2013-10-03 Steven Diamond Peak-equalized battery charge balancing
JP5987512B2 (en) * 2012-07-10 2016-09-07 三菱自動車工業株式会社 Vehicle battery control device
JP2014039434A (en) * 2012-08-20 2014-02-27 Toyota Industries Corp Soc estimation device and soc estimation method
JP6234127B2 (en) * 2012-10-11 2017-11-22 株式会社Gsユアサ Power storage device
KR101752038B1 (en) * 2014-11-07 2017-06-28 주식회사 엘지화학 Apparatus and method for controlling charge and discharge of battery
JP6885840B2 (en) * 2017-09-27 2021-06-16 トヨタ自動車株式会社 Battery control system
DE102017009850B4 (en) * 2017-10-23 2020-04-02 Benning CMS Technology GmbH Method for charging and discharging an energy store
JP2024063964A (en) * 2022-10-27 2024-05-14 株式会社Gsユアサ POWER STORAGE DEVICE, METHOD FOR CONTROLLING MULTIPLE CELLS, AND METHOD FOR CONTROLLING POWER STORAGE DEVICE

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09182307A (en) * 1995-12-27 1997-07-11 Nissan Motor Co Ltd Power distribution controller for pack battery
JP2009081981A (en) * 2007-09-27 2009-04-16 Sanyo Electric Co Ltd Charge state optimizing apparatus and battery pack system provided therewith

Also Published As

Publication number Publication date
JP2010220380A (en) 2010-09-30

Similar Documents

Publication Publication Date Title
JP5493407B2 (en) Battery pack capacity adjustment device
CN107817450B (en) Storage element pack, management device, SOC estimation method, medium, and panel system
US9219377B2 (en) Battery charging apparatus and battery charging method
JP5050325B2 (en) Battery control device
JP4806558B2 (en) Secondary battery control device and secondary battery deterioration judgment method
US10286806B2 (en) Electrical storage system
US9438059B2 (en) Battery control apparatus and battery control method
EP2058891B1 (en) Charging control device for a storage battery
US8674659B2 (en) Charge control device and vehicle equipped with the same
US20180313905A1 (en) Method for estimating state of charge and on-vehicle battery system
JP5397013B2 (en) Battery control device
JP6531784B2 (en) Storage element management device, and SOC estimation method for storage element
US20150137763A1 (en) Electrical storage system and equalizing method
JP6565446B2 (en) Battery deterioration determination device, battery deterioration determination method, and vehicle
WO2001018938A1 (en) Apparatus for battery capacity measurement and for remaining capacity calculation
JP2000324702A (en) Method and apparatus for detecting discharge capacity of battery and controller for car battery
JP2000357541A (en) Battery management device
JP4050914B2 (en) Secondary battery deterioration judgment method
JP2018050373A (en) Battery system
JP2007151334A (en) Battery control device
JP2000221249A (en) Detecting apparatus for charging state of battery
JP5831217B2 (en) Voltage balance control device
JP3628912B2 (en) Battery charge state detection device
US20190377030A1 (en) Control apparatus of power supply system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140217

R151 Written notification of patent or utility model registration

Ref document number: 5493407

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees