JP5492427B2 - Microbial detection method - Google Patents

Microbial detection method Download PDF

Info

Publication number
JP5492427B2
JP5492427B2 JP2009049193A JP2009049193A JP5492427B2 JP 5492427 B2 JP5492427 B2 JP 5492427B2 JP 2009049193 A JP2009049193 A JP 2009049193A JP 2009049193 A JP2009049193 A JP 2009049193A JP 5492427 B2 JP5492427 B2 JP 5492427B2
Authority
JP
Japan
Prior art keywords
genus
detection
sample
yeast
dairy product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009049193A
Other languages
Japanese (ja)
Other versions
JP2010200668A (en
Inventor
淳治 藤本
康久 島川
和仁 早川
幸一 渡辺
正理 中野
進 水澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yakult Honsha Co Ltd
Original Assignee
Yakult Honsha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yakult Honsha Co Ltd filed Critical Yakult Honsha Co Ltd
Priority to JP2009049193A priority Critical patent/JP5492427B2/en
Publication of JP2010200668A publication Critical patent/JP2010200668A/en
Application granted granted Critical
Publication of JP5492427B2 publication Critical patent/JP5492427B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

本発明は、検体中の対象微生物検出方法及び当該検出方法を利用する検体の品質判定方法に関する。   The present invention relates to a method for detecting a target microorganism in a sample and a method for determining the quality of a sample using the detection method.

検体中の対象微生物の検出は、食品検査、臨床検査、環境検査など種々の分野の検査に利用されている。当該検出の方法としては、例えば、検体を一定時間、適当な寒天平板培地で培養して出現してきたコロニー数を検出・計測する方法、蛍光色素で微生物を特異的に染色してフローサイトメトリーや顕微鏡で検出・計測する方法、微生物数は直接カウントできないものの微生物の代謝産物から間接的にその存在を検出する方法などが知られている。   Detection of target microorganisms in a sample is used in various fields of inspection such as food inspection, clinical inspection, and environmental inspection. As the detection method, for example, a method of detecting and measuring the number of colonies that have appeared after culturing a specimen on an appropriate agar plate medium for a certain period of time, a flow cytometry by specifically staining a microorganism with a fluorescent dye, There are known a method of detecting and measuring with a microscope, a method of indirectly detecting the presence of microorganisms from metabolites of microorganisms although the number of microorganisms cannot be directly counted.

当該検出方法のうち、死菌と生菌を判別して菌数を計測する方法としては、対象微生物を培養して検出する寒天平板法が有用とされている。当該寒天平板法は、食品衛生検査指針や微生物検査必携で微生物検出の公定法として広く用いられている。
しかしながら、この方法は、培養後に寒天平板上に出現してきたコロニーを検出することから、培地を濁らせるような夾雑物を含む検体の場合、コロニーと夾雑物の判別に時間を要すること、検出が不正確になること等の問題がある。具体的には、乳製品中の微生物の検出においては、乳蛋白質が存在することにより、微小コロニーと蛋白質顆粒の判別が困難で、寒天平板を長時間培養して夾雑物と区別できるまでコロニーが十分に大きくなってから判断しなければならず、培養時間は一般細菌で2日程度、真菌(カビ、酵母)で3〜7日必要であること、長時間培養したとしても、コロニーと夾雑物を正確かつ迅速に判別するには、高度な熟練技術が必要であること等の問題がある。
Among the detection methods, an agar plate method in which a target microorganism is cultured and detected is useful as a method for measuring the number of bacteria by discriminating between dead and live bacteria. The agar plate method is widely used as an official method for detecting microorganisms as a food hygiene inspection guideline and microbiological inspection indispensable.
However, since this method detects colonies that have appeared on the agar plate after culturing, in the case of a sample containing contaminants that make the medium turbid, it takes time to distinguish between colonies and contaminants. There are problems such as inaccuracy. Specifically, in the detection of microorganisms in dairy products, the presence of milk protein makes it difficult to distinguish between microcolonies and protein granules, and colonies remain until the agar plates are cultured for a long time and can be distinguished from contaminants. It must be judged after it has become sufficiently large. The culture time is about 2 days for general bacteria and 3-7 days for fungi (mold, yeast). Even if cultured for a long time, colonies and contaminants In order to accurately and quickly discriminate, there is a problem that a highly skilled technique is necessary.

かかる問題を解決するため、夾雑物の影響を低減する技術として、蛍光色素で微生物を特異的に染色してフローサイトメトリーや顕微鏡で検出・計測する方法が知られている(特許文献1及び2)。しかしながら、煩雑な操作が必要であること、検出コストが高価であること、検出感度が低いこと等の問題があり、寒天平板法に適用できるものではなく、医療現場や食品産業における日常検査等で実用的に利用できるものではなかった。   In order to solve this problem, as a technique for reducing the influence of contaminants, a method is known in which microorganisms are specifically stained with a fluorescent dye and detected and measured by flow cytometry or a microscope (Patent Documents 1 and 2). ). However, there are problems such as complicated operation required, high detection cost, low detection sensitivity, etc., and it is not applicable to the agar plate method. It was not practically available.

特許第3406608号Japanese Patent No. 3406608 特許第4127846号Japanese Patent No. 4127646

従って本発明は、検体中に夾雑物等が含まれる場合であっても、検体中の対象微生物を迅速に検出する方法を提供することを課題とする。   Accordingly, an object of the present invention is to provide a method for rapidly detecting a target microorganism in a sample even when a contaminant or the like is contained in the sample.

本発明者らは、上記課題を解決するため鋭意検討した結果、検体中に含まれる検出阻害因子を低減し、対象微生物の増殖コロニーを検出することにより、検体中の対象微生物を迅速に検出できることを見出し、本発明を完成した。   As a result of intensive studies to solve the above problems, the present inventors are able to rapidly detect the target microorganism in the sample by reducing the detection inhibitory factor contained in the sample and detecting the growing colonies of the target microorganism. The present invention has been completed.

すなわち、本発明は、増殖培地を用いた検体中の対象微生物検出方法であって、培養工程における検体中の検出阻害因子を低減し、当該対象微生物の増殖コロニーを検出することを特徴とする対象微生物検出方法を提供するものである。   That is, the present invention is a method for detecting a target microorganism in a specimen using a growth medium, wherein the detection inhibitory factor in the specimen in the culturing step is reduced and a growth colony of the target microorganism is detected. A method for detecting microorganisms is provided.

また、本発明は、前記検出方法を利用することを特徴とする検体の品質判定方法を提供するものである。   The present invention also provides a specimen quality determination method using the detection method.

本発明の検出方法によれば、検体中の対象微生物を迅速、高感度かつ簡便に検出することができる。従って、本発明の品質判定方法は、検体、特に飲食品中の汚染微生物の有無を極めて迅速かつ高感度に判定できるものであり、飲食品の品質判定をする際等において有用である。   According to the detection method of the present invention, the target microorganism in the sample can be detected quickly, with high sensitivity and simply. Therefore, the quality determination method of the present invention can determine the presence or absence of contaminating microorganisms in a specimen, particularly food or drink, extremely quickly and with high sensitivity, and is useful when determining the quality of food or drink.

0.1%のプロテアーゼで乳製品を処理したときの濁度の経時変化を示すグラフである。It is a graph which shows a time-dependent change of turbidity when processing a dairy product with 0.1% protease. 0.5%のプロテアーゼで乳製品を処理したときの濁度の経時変化を示すグラフである。It is a graph which shows a time-dependent change of turbidity when processing a dairy product with 0.5% protease.

本発明は、増殖培地を用いた検体中の対象微生物検出方法であって、培養工程における検体中の検出阻害因子を低減し、当該対象微生物の増殖コロニーを検出することを特徴とするものである。   The present invention is a method for detecting a target microorganism in a specimen using a growth medium, characterized in that the detection inhibitory factor in the specimen in the culturing step is reduced and a growth colony of the target microorganism is detected. .

本発明において、検体としては、微生物を含有する可能性があるものであれば特に限定されないが、例えば、結膜ぬぐい液、歯石、歯垢、喀痰、咽頭ぬぐい液、唾液、鼻汁、肺胞洗浄液、胸水、胃液、胃洗浄液、尿、子宮頸管粘液、膣分泌物、皮膚病巣、糞便、血液、腹水、組織、髄液、関節液、患部ぬぐい液などの生体由来試料、乳製品などの飲食品、医薬品、化粧品、微生物培養液、植物、土壌、活性汚泥、排水等が挙げられ、飲食品が好ましく、乳製品が特に好ましい。ここで、乳製品としては、乳由来成分を含むものであれば特に限定されず、例えば、牛乳、加工乳、乳飲料、クリーム、発酵乳、乳酸菌飲料、練乳、濃縮乳、粉乳、バター、チーズ、アイスクリーム、バターミルク等が挙げられ、最終製品のみならず、カゼイン、ホエー蛋白質、乳ペプチド、ラクトフェリン等の乳由来原料、乳酸菌による培養物等の中間加工処理物等も含まれる。   In the present invention, the specimen is not particularly limited as long as it may contain microorganisms, for example, conjunctival swab, tartar, plaque, sputum, throat swab, saliva, nasal discharge, alveolar lavage, Pleural effusion, gastric juice, gastric lavage fluid, urine, cervical mucus, vaginal discharge, skin lesions, feces, blood, ascites, tissue, cerebrospinal fluid, joint fluid, swabs of affected areas, food and drinks such as dairy products, Examples include pharmaceuticals, cosmetics, microbial cultures, plants, soil, activated sludge, drainage, etc., preferably foods and drinks, and particularly preferably dairy products. Here, the dairy product is not particularly limited as long as it contains milk-derived components. For example, milk, processed milk, milk beverage, cream, fermented milk, lactic acid bacteria beverage, condensed milk, concentrated milk, powdered milk, butter, cheese Ice cream, buttermilk and the like, and not only the final product but also milk-derived raw materials such as casein, whey protein, milk peptide, lactoferrin, and intermediate processed products such as cultures by lactic acid bacteria.

本発明において、対象微生物としては、特に限定されないが、例えば、アエロモナス(Aeromonas)属、アシネトバクター(Acinetobacter)属、アスペルギルス(Aspergillus)属、アリサイクロバチルス(Alicyclobacillus)属、アルカリゲネス(Alcaligenes)属、イサチェンキア(Issatchenkia)属、エシェリキア(Escherichia)属、エルウィニア(Erwinia)属、エルシニア(Yersinia)属、エンテロコッカス(Enteroccocus)属、エンテロバクター(Enterobacter)属、オエノコッカス(Oenococcus)属、ガードネレラ(Gardnerella)属、カンジダ(Candida)属、キャンピロバクター(Campylobacter)属、クラビスポラ(Clavispora)属、クリプトコッカス(Cryptococcus)属、クリベロミセス(Kluyveromyces)属、クレブシエラ(Klebsiella)属、クロストリジウム(Clostridium)属、サルモネラ(Salmonella)属、シトロバクター(Citrobacter)属、シュードモナス(Pseudomonas)属、スタフィロコッカス(Staphylococcus)属、ストレプトコッカス(Streptococcus)属、ストレプトミセス(Streptomyces)属、セラチア(Serratia)属、チゴサッカロミセス(Zygosaccharomyces)属、テトラジェノコッカス(Tetragenococcus)属、   In the present invention, the target microorganism is not particularly limited, and examples thereof include, for example, the genus Aeromonas, the genus Acinetobacter, the genus Aspergillus, the genus Alicyclobacillus, the genus Alcaligenes, the genus Isachenchia ( Issatchenkia genus, Escherichia genus, Erwinia genus, Yersinia genus, Enteroccocus genus, Enterobacter genus, Oenococcus genus, Gardnerella C and ida ) Genus, Campylobacter genus, Clavispora genus, Cryptococcus genus, Kluyveromyces genus, Klebsiella genus, Clostridium genus, Salmonella genus Citrobacter genus, Pseudomonas genus, Staphylococcus genus, Streptococcus genus, Streptomyces genus, Serratia genus, Zygosaccharomy genus Zygosaccharom Genus Tetragenococcus,

デバリオミセス(Debaryomyces)属、トリコスポロン(Trichosporon)属、トルラスポラ(Torulaspora)属、ナイセリア(Neisseria)属、ノカルディア(Nocardia)属、パエニバチルス(Paenibacillus)属、バクテロイデス(Bacteroides)属、バークホールデリア(Burkholderia)属、バチルス(Bacillus)属、ピキア(Pichia)属、ビフィドバクテリウム(Bifidobacterium)属、ビブリオ(Vibrio)属、フゾバクテリウム(Fusobacterium)属、フラボバクテリウム(Flavobacterium)属、プレボテラ(Prevotella)属、プロピオニバクテリウム(Propionibacterium)属、プロテウス(Proteus)属、ヘリコバクター(Helicobacter)属、ベイロネラ(Veillonella)属、ペディオコッカス(Pediococcus)属、ペプトストレプトコッカス(Peptostreptococcus)属、ヘモフィルス(Haemophilus)属、ミコバクテリウム(Mycobacterium)属、モラキセラ(Moraxella)属、ユーバクテリウム(Eubacterium)属、ラクトコッカス(Lactococcus)属、ラクトバチルス(Lactobacillus)属、リステリア(Listeria)属、ルミノコッカス(Ruminococcus)属、レジオネラ(Legionella)属、ロイコノストック(Leuconostoc)属、ロドトルラ(Rhodotorula)属、ワイセラ(Weissella)属などの微生物が挙げられる。 Debaryomyces genus, Trichosporon genus, Torulaspora genus, Neisseria genus, Nocardia genus, Paenibacillus genus, Bacteroides genus, Burkholderia genus (Burkholderia genus) Bacillus genus, Pichia genus, Bifidobacterium genus, Vibrio genus, Fusobacterium genus, Flavobacterium genus, Prevotella genus, Propioni Propionibacterium genus, Proteus genus, Helicobacter genus, Veillonella genus, Pediococcus genus, Peptostreptococcus genus, Haemophilus genus, Mycobacterium (Mycobacterium) genus , Moraxella genus, Eubacterium genus, Lactococcus genus, Lactobacillus genus, Listeria genus, Ruminococcus genus, Legionella genus, Leucono Examples include microorganisms such as the genus Leuconostoc, the genus Rhodotorula, and the genus Weissella.

このうち、当該対象微生物を増殖させることができる増殖培地が確立されている点で、トルラスポラ・デルブルエキ(Torulaspora delbruekii)、トルラスポラ・グロボーサ(Torulaspora globosa)等のトルラスポラ属;クラビスポラ・ルシタニア(Clavispora lusitaniae)、クラビスポラ・オクンティア(Clavispora opuntiae)等のクラビスポラ属;ピキア・アノマラ(Pichia anomala)、ピキア・グイリエルモンディ(Pichia guilliermondii)等のピキア属;カンジダ・スパンドベンシス(Candida spandovensis)、カンジダ・ボイデニ(Candida boidinii)等のカンジダ属;デバリオミセス・ハンゼニ(Debaryomyces hansenii)、デバリオミセス・ロベルチエ(Debaryomyces robertsiae)等のデバリオミセス属;イサチェンキア・オリエンタリス(Issatchenkia orientalis)、イサチェンキア・テリコラ(Issatchenkia terricola)等のイサチェンキア属;チゴサッカロミセス ハンゼニ(Zygosaccharomyces hansenii)、チゴサッカロミセス ロキシ(Zygosaccharomyces rouxii)等のチゴサッカロミセス属;ロドトルラ・ムシラジナーサ(Rhodotorula mucilaginosa)等のロドトルラ属;スタフィロコッカス・アウレウス(Staphylococcus aureus)、スタフィロコッカス・アガラクティア(Staphylococcus agalactiae)等のスタフィロコッカス属;シュードモナス・エルギノーザ(Pseudomonas aeruginosa)、シュードモナス・アルカリジェネス(Pseudomonas alkaligenes)等のシュードモナス属;サルモネラ・エンテリカ(Salmonella enterica)、サルモネラ・コレラスイス(Salmonella cholerasuis)等のサルモネラ属;クロストリジウム・パーフリンジェンス(Clostridium perfringens)、クロストリジウム・ディフィシル(Clostridium difficile)等のクロストリジウム属などの微生物が好ましく、トルラスポラ属、クラビスポラ属、ピキア属、カンジダ属、デバリオミセス属などの微生物がより好ましい。このうち、具体的には、トルラスポラ・デルブルエキ、クラビスポラ・ルシタニア、ピキア・アノマラ、ピキア・グイリエルモンディ、カンジダ・スパンドベンシス、カンジダ・ボイデニ、デバリオミセス・ハンゼニが好ましい。   Among these, the growth medium capable of growing the target microorganism has been established, and Torlasaspora delbruekii, Torulaspora globosa and other Torlaspora genus; Clavispora lusitaniae, Clavispora opuntiae such as Clavispora opuntiae; Pichia anomala, Pichia guilliermondii and other Pichia genera; Candida spandovensis, Candida boyid Candida genus; Debaryomyces hansenii, Debaryomyces robertsiae, etc .; Issatchenkia orientalis, Isachenchia terricola cola), etc .; Zygosaccharomyces hansenii, Zygosaccharomyces rouxii, and other genus; Rhodotorula mucilaginus Staphylococcus genus such as Staphylococcus agalactiae; Pseudomonas aeruginosa, Pseudomonas alkaligenes such as Pseudomonas alkaligenes; Salmonella enterica Salmonella genus such as Salmonella cholerasuis; Cross such as Clostridium perfringens, Clostridium difficile Microorganisms are preferred, such as Rijiumu genus Torulaspora genus Kurabisupora, Pichia, Candida, more preferably microorganisms such as Debaryomyces genus. Of these, specifically, Torlaspola del Bruecki, Clavispora lucitania, Pichia anomala, Pichia guiliermondi, Candida spandbensis, Candida boydeni, and Debariomyces Hanseni are preferred.

また、上記対象微生物のうち、検体の品質や性状に対して望ましくない作用を有する微生物(汚染微生物)に対しても、本発明の方法を好適に利用することができる。当該汚染微生物としては、例えば、検体が血液の場合は、スタフィロコッカス・アウレウス、シュードモナス・エルギノーザ等、検体が食肉類の場合はサルモネラ・エンテリカ、クロストリジウム・パーフリンジェンス等、検体が乳製品の場合は、大腸菌群、真菌(カビ、酵母)等が挙げられる。   In addition, among the above target microorganisms, the method of the present invention can be suitably used for microorganisms (contaminated microorganisms) that have an undesirable effect on the quality and properties of the specimen. Examples of the contaminating microorganism include Staphylococcus aureus and Pseudomonas aeruginosa when the sample is blood, Salmonella enterica and Clostridium perfringens when the sample is meat, and the sample is a dairy product. Examples include coliform bacteria, fungi (mold, yeast) and the like.

また、増殖培地としては、対象微生物を増殖させることができるものであれば特に限定されないが、対象微生物を特異的に増殖させることができるものが好ましい。対象微生物が、トルラスポラ属、クラビスポラ属、ピキア属、カンジダ属等の酵母やアスペルギルス・フラバス等のカビ等の場合は、YC培地、クロラムフェニコール添加YM培地、クロラムフェニコール添加ポテトデキストロース培地が好ましく、ビブリオ属の場合は、2%食塩コリスチンブイヨン培地が好ましく、スタフィロコッカス属の場合は、マンニット食塩培地が好ましく、エシェリキア・コリ等の大腸菌群の場合は、デソキシコーレイト培地が好ましく、ラクトバチルス・カゼイ等の乳酸菌の場合は、BCP培地が好ましく、ビフィドバクテリウム・ブレーベ等のビフィズス菌の場合は、TOSプロピオン酸培地が好ましい。   The growth medium is not particularly limited as long as the target microorganism can be grown, but a growth medium capable of specifically growing the target microorganism is preferable. When the target microorganism is yeast such as Torlaspola, Clavispora, Pichia, Candida, or mold such as Aspergillus flavus, YC medium, YM medium supplemented with chloramphenicol, potato dextrose medium supplemented with chloramphenicol Preferably, in the case of Vibrio, a 2% salt colistin broth medium is preferable, in the case of Staphylococcus, a mannitol salt medium is preferable, and in the case of Escherichia coli and other coliforms, a desoxycholate medium is preferable. In the case of lactic acid bacteria such as Lactobacillus casei, BCP medium is preferable, and in the case of Bifidobacterium such as Bifidobacterium breve, TOS propionic acid medium is preferable.

本発明において、「検出阻害因子」とは、増殖培地を用いて検体中の対象微生物を培養し、増殖コロニーを検出する際、目視や顕微鏡による増殖コロニーの検出を物理的に阻害する因子をいう。検出阻害因子は、検体に元来含まれる因子であり、増殖コロニーの検出を物理的に阻害する因子であれば特に制限はないが、具体的には検体中に存在する蛋白質、脂質、多糖類、果汁・果皮・種子等の果実由来成分、体細胞等の生体由来成分等を含む夾雑物等が挙げられ、より具体的には、蛋白質、脂質、多糖類等が挙げられる。   In the present invention, the “detection inhibitory factor” refers to a factor that physically inhibits detection of proliferating colonies visually or under a microscope when culturing target microorganisms in a specimen using a growth medium and detecting proliferating colonies. . The detection inhibitory factor is a factor that is originally contained in the sample, and is not particularly limited as long as it is a factor that physically inhibits the detection of the growing colonies, but specifically, proteins, lipids, and polysaccharides present in the sample. In addition, impurities such as fruit-derived components such as fruit juice, pericarp, and seeds, and biologically-derived components such as somatic cells, and the like, and more specifically, proteins, lipids, polysaccharides, and the like.

本発明において、「検出阻害因子の低減」としては、当該検出阻害因子の性質に応じて、当該検出阻害因子を低減できる公知の方法を適宜適用すればよく、例えば、ろ過、デカンテーション、遠心分離、酵素分解等が挙げられる。
具体的には、検出阻害因子が果実の種子等のある程度の大きさを有するものである場合は、ろ過、遠心分離等をするのが好ましく、検出阻害因子が、蛋白質、脂質、或いは多糖類等である場合は、これらの検出阻害因子分解酵素を検体に作用させるのが好ましい。当該酵素としては、具体的には、検出阻害因子が蛋白質である場合は、蛋白質分解酵素、検出阻害因子が脂質である場合は、リパーゼ、ホスホリパーゼ等の脂質分解酵素、検出阻害因子が多糖類である場合は、セルラーゼ、アミラーゼ等の多糖類分解酵素が好ましい。
In the present invention, as the “reduction of detection inhibitory factor”, a known method capable of reducing the detection inhibitory factor may be applied as appropriate according to the nature of the detection inhibitory factor. For example, filtration, decantation, centrifugation, etc. And enzymatic degradation.
Specifically, when the detection inhibitor has a certain size such as a fruit seed, it is preferable to perform filtration, centrifugation, etc., and the detection inhibitor is a protein, lipid, polysaccharide, or the like. In this case, it is preferable to cause these detection inhibitory factor-degrading enzymes to act on the specimen. Specifically, the enzyme includes a proteolytic enzyme when the detection inhibitor is a protein, a lipolytic enzyme such as lipase and phospholipase when the detection inhibitor is a lipid, and a polysaccharide as the detection inhibitor. In some cases, polysaccharide-degrading enzymes such as cellulase and amylase are preferred.

上記の蛋白質分解酵素としては、検体中の蛋白質の種類に応じて適宜選択すればよいが、対象微生物の増殖を阻害しない酵素が好ましい。蛋白質分解酵素の具体例としては、プロテアーゼ、ペプチダーゼ、パパイン、トリプシン、キモトリプシン、プロナーゼ等が挙げられ、アルカリ性領域、中性領域又は酸性領域で反応至適pHを示すいずれの蛋白質分解酵素であってもよいが、中性領域で反応至適pHを示す蛋白質分解酵素が好ましい。
また、力価(U/g)とは、カゼインを基質とし、酵素の反応至適pH・温度において、1分間に1μmolのチロシンを遊離する活性をいい、当該蛋白質分解酵素の力価としては、増殖コロニーの検出の点で、90(U/g)以上が好ましく、1000(U/g)以上がより好ましい。
The above-mentioned proteolytic enzyme may be appropriately selected according to the type of protein in the specimen, but an enzyme that does not inhibit the growth of the target microorganism is preferable. Specific examples of proteolytic enzymes include protease, peptidase, papain, trypsin, chymotrypsin, pronase, etc., and any proteolytic enzyme that exhibits an optimum pH in the alkaline region, neutral region or acidic region. A proteolytic enzyme that exhibits an optimum reaction pH in the neutral region is preferred.
The titer (U / g) refers to the activity of releasing 1 μmol of tyrosine per minute at the optimum pH and temperature of the enzyme using casein as a substrate. The titer of the proteolytic enzyme is as follows: 90 (U / g) or more is preferable and 1000 (U / g) or more is more preferable in terms of detection of the growing colonies.

上記検出阻害因子分解酵素は、溶媒に希釈して使用してもよく、当該溶媒としては、例えば、水、希薄塩溶液、一般的な緩衝液が挙げられる。当該緩衝液としては、リン酸緩衝液、トリス−塩酸緩衝液、クエン酸−リン酸緩衝液、クエン酸緩衝液、MOPS緩衝液、酢酸緩衝液、グリシン緩衝液等が挙げられるが、検出阻害因子分解酵素が蛋白質分解酵素の場合は、トリス−塩酸緩衝液が好ましい。
なお、緩衝液のpHは2〜10が好ましく、検出阻害因子分解酵素が蛋白質分解酵素、検体が乳製品である場合は、中性付近のpHが好ましい。緩衝液の濃度は0.1〜10Mが好ましく、0.5〜2Mがより好ましい。
The detection inhibitory factor-degrading enzyme may be used after diluted in a solvent. Examples of the solvent include water, dilute salt solution, and general buffer solution. Examples of the buffer include phosphate buffer, Tris-HCl buffer, citrate-phosphate buffer, citrate buffer, MOPS buffer, acetate buffer, glycine buffer, etc. When the degrading enzyme is a proteolytic enzyme, Tris-HCl buffer is preferred.
The pH of the buffer is preferably 2 to 10, and when the detection inhibitory enzyme is a proteolytic enzyme and the sample is a dairy product, a pH near neutral is preferable. The concentration of the buffer is preferably 0.1 to 10M, and more preferably 0.5 to 2M.

検出阻害因子分解酵素の検体への作用は、検体中の検出阻害因子に検出阻害因子分解酵素が作用できれば特に限定されるものではない。当該検出阻害因子分解酵素の検体への作用は、培養工程の前、培養工程中、いずれにおいて行ってもよく、双方行なってもよい。   The action of the detection inhibitor degrading enzyme on the specimen is not particularly limited as long as the detection inhibitor degrading enzyme can act on the detection inhibitor in the specimen. The action of the detection inhibitory factor-degrading enzyme on the specimen may be performed either before or during the culturing step, or both.

検出阻害因子分解酵素の検体への作用が培養工程中である場合において、検出阻害因子分解酵素の検体への作用方法の具体例としては、検出阻害因子分解酵素を培養工程に添加すればよいが、培養工程の初期段階から検出阻害因子分解酵素を作用させることが好ましく、迅速に対象微生物の増殖コロニーを検出可能な点で、検体、増殖培地及び検出阻害因子分解酵素を混釈することがより好ましい。
ここで、混釈とは、培養工程前に、希釈しないか或いは適宜希釈した検体を、増殖培地及び検出阻害因子分解酵素と混合することをいい、増殖培地中の寒天が固化するまでを含む。なお、検体、増殖培地及び検出阻害因子分解酵素を同時に混合してもよく、予め検出阻害因子分解酵素を添加した増殖培地に検体を添加して混合してもよい。検出阻害因子分解酵素を培養工程に添加した後、pH調整等の煩雑な操作は必要なく、通常の培養工程を行なえばよい。
In the case where the action of the detection inhibitory factor enzyme on the specimen is in the culture process, as a specific example of the method of the action of the detection inhibitory factor enzyme on the specimen, the detection inhibitory factor enzyme may be added to the culture process. The detection inhibitory factor-degrading enzyme is preferably allowed to act from the initial stage of the culturing process, and the specimen, the growth medium and the detection inhibitory factor-degrading enzyme are more preferably mixed in terms of the ability to rapidly detect the growth colonies of the target microorganism. preferable.
Here, the term “pour” refers to mixing an undiluted or appropriately diluted specimen with a growth medium and a detection inhibitory factor-degrading enzyme before the culturing step, and includes until the agar in the growth medium is solidified. Note that the specimen, the growth medium, and the detection inhibitory factor-degrading enzyme may be mixed simultaneously, or the specimen may be added and mixed in the growth medium to which the detection inhibitory factor-degrading enzyme has been added in advance. After adding the detection inhibitor-degrading enzyme to the culture process, a complicated operation such as pH adjustment is not necessary, and a normal culture process may be performed.

また、検出阻害因子分解酵素の検体への作用が、培養工程の前である場合は、培養工程開始前の検体に検出阻害因子分解酵素を添加すればよい。   When the action of the detection inhibitory factor-degrading enzyme on the specimen is before the culture process, the detection inhibitory factor-degrading enzyme may be added to the specimen before the start of the culture process.

また、検出阻害因子分解酵素の使用量は、検体に対し、0.001〜20容量%程度である。
検体が乳製品、対象微生物が酵母、検出阻害因子分解酵素が蛋白質分解酵素であり、検出阻害因子分解酵素の検体への作用を培養工程中に行う場合は、酵素の使用量は、0.001〜10容量%程度であり、0.01〜1容量%が好ましく、0.1〜1容量%がより好ましい。また、検出阻害因子分解酵素の検体への作用を培養工程の前に行う場合は、0.1〜1容量%程度であり、0.1〜0.5容量%が好ましい。
Moreover, the usage-amount of a detection inhibitory factor-degrading enzyme is about 0.001-20 volume% with respect to a test substance.
When the sample is a dairy product, the target microorganism is yeast, the detection inhibitory factor-degrading enzyme is a proteolytic enzyme, and the action of the detection inhibitory factor-degrading enzyme on the sample is performed during the culture process, the amount of enzyme used is 0.001. About 10 to 10% by volume, preferably 0.01 to 1% by volume, and more preferably 0.1 to 1% by volume. Moreover, when the action of the detection inhibitory factor-degrading enzyme on the specimen is performed before the culture step, it is about 0.1 to 1% by volume, preferably 0.1 to 0.5% by volume.

処理温度、処理時間は、特に限定されるものではなく、検出阻害因子分解酵素の検体への作用を培養工程中に行う場合は、通常の培養工程で用いられる培養温度、培養時間を、そのまま検出阻害因子分解酵素の処理温度、処理時間とすればよい。また、検出阻害因子分解酵素の検体への作用を培養工程の前に行う場合は、例えば、25〜60℃、10分〜24時間等であり、好適な組み合わせとしては、酵素を0.1容量%使用する場合は、37℃、30分、酵素を0.3容量%使用する場合は、37℃、25分、酵素を0.5容量%使用する場合は、37℃、20分が挙げられ、特に酵素0.1容量%、37℃、30分処理が好ましい。   The treatment temperature and treatment time are not particularly limited. When the detection inhibitor-degrading enzyme acts on the specimen during the culture process, the culture temperature and culture time used in the normal culture process are detected as they are. The treatment temperature and treatment time of the inhibitory factor-degrading enzyme may be used. Further, when the action of the detection inhibitor-degrading enzyme on the specimen is performed before the culturing step, it is, for example, 25 to 60 ° C., 10 minutes to 24 hours, and a suitable combination is 0.1 volume of enzyme. When using 30%, 37 ° C for 30 minutes, when using 0.3% enzyme by volume, 37 ° C for 25 minutes, and when using 0.5% enzyme by volume, 37 ° C for 20 minutes. In particular, treatment with 0.1% by volume of enzyme, 37 ° C., and 30 minutes is preferable.

また、上記検体としては、濃縮処理をしたものを用いてもよく、濃縮処理の手段としては遠心分離、ろ過等の公知の方法を適用すればよい。
特に、培養工程の前に検出阻害因子分解酵素を作用させて検出阻害因子を低減させた検体に濃縮処理を施すことにより、より多くの検体量を反映した対象微生物の検出が可能となる。
検出阻害因子分解酵素が蛋白質分解酵素、検体が乳製品、対象微生物が酵母である場合、遠心分離の条件としては500〜3000×g、5〜30分が好ましく、1000〜2000×g 、10〜15分がより好ましい。遠心分離後の沈殿物(濃縮検体)をそのまま、あるいは適宜、水や一般的な緩衝液に懸濁して増殖培地に添加して、対象微生物の増殖コロニーの検出をすればよい。
Further, as the sample, a sample subjected to a concentration treatment may be used, and as a means for the concentration treatment, a known method such as centrifugation or filtration may be applied.
In particular, by applying a concentration treatment to a sample in which a detection inhibitory factor-degrading enzyme is allowed to act to reduce the detection inhibitory factor before the culture step, it is possible to detect a target microorganism that reflects a larger amount of the sample.
When the detection inhibitory factor-degrading enzyme is a proteolytic enzyme, the sample is a dairy product, and the target microorganism is yeast, the centrifugation conditions are preferably 500 to 3000 × g, 5 to 30 minutes, preferably 1000 to 2000 × g, 10 15 minutes is more preferable. The precipitate after the centrifugation (concentrated specimen) may be added as it is, or appropriately suspended in water or a general buffer and added to the growth medium to detect the growth colonies of the target microorganism.

ろ過としてはフィルターろ過が好適に用いられ、対象微生物を通過させず、検体による目詰まりを起こさない程度のポアサイズを有するフィルターを適宜選択することが好ましい。フィルターの種類としては混合セルロース製、ポリカーボネート製などが挙げられるが、目的に合わせてどちらを使用してもよい。検出阻害因子分解酵素が蛋白質分解酵素、検体が乳製品、対象微生物が酵母である場合、フィルター処理の条件としてはポアサイズ0.22〜0.8μmが好ましく、特に0.8μmが好ましい。フィルターろ過して濃縮した検体(ろ過後フィルター)をそのまま増殖培地上に載せて、対象微生物の増殖コロニーの検出をすればよい。   As filtration, filter filtration is suitably used, and it is preferable to appropriately select a filter having a pore size that does not allow the target microorganism to pass through and does not clog the sample. Examples of the filter include mixed cellulose and polycarbonate, whichever may be used depending on the purpose. When the detection inhibitory factor-degrading enzyme is a proteolytic enzyme, the specimen is a dairy product, and the target microorganism is yeast, the filter treatment condition is preferably a pore size of 0.22 to 0.8 μm, particularly preferably 0.8 μm. The sample (filter after filtration) that has been filtered and concentrated may be placed on the growth medium as it is to detect the growth colonies of the target microorganism.

また、微生物の「検出」とは、検体中に対象微生物が存在することを確認すること又は検体中に対象微生物が存在しないことを確認することをいい、検体中の対象微生物の同定、定量を含む。   In addition, “detection” of a microorganism refers to confirming that the target microorganism is present in the sample or confirming that the target microorganism is not present in the sample, and identifying and quantifying the target microorganism in the sample. Including.

対象微生物の増殖コロニーの検出は、目視あるいは市販の実体顕微鏡やディジタル光学顕微鏡の使用により行えばよいが、微小なコロニーの検出が容易になること点で、ディジタル光学顕微鏡の使用が好ましい。本発明の方法を適用することで、従来の寒天平板培養法では検出までに長時間を要していた対象微生物の検出をより短時間で行なうことができる。例えば、対象微生物が酵母の場合、クラビスポラ・ルシタニアは培養工程開始から16時間、ピキア・アノマラは18時間、カンジダ・ボイデニは18時間、トルラスポラ・デルブルエキは20時間等で、大部分の酵母は20時間以内に検出が終了できる。また、従来の寒天平板培養法の培養時間が比較的短い微生物(一般細菌、大腸菌群)の場合でも、増殖コロニーの検出までの時間を短縮することができる。対象微生物によって異なるが、本発明の方法により、従来の寒天平板培養法で増殖コロニーの検出までに要していた時間を、半分以下に短縮することが可能となる。   The growth colonies of the target microorganism may be detected visually or by using a commercially available stereomicroscope or digital optical microscope. However, the use of a digital optical microscope is preferred in terms of facilitating detection of minute colonies. By applying the method of the present invention, it is possible to detect the target microorganisms that required a long time until detection in the conventional agar plate culture method in a shorter time. For example, when the target microorganism is yeast, Clavispora lucitania is 16 hours from the start of the culturing process, Pichia Anomala is 18 hours, Candida Boydeni is 18 hours, Torlaspola del Bruequi is 20 hours, and most yeasts are 20 hours. Detection can be completed within. Further, even in the case of a microorganism (general bacteria, coliform group) having a relatively short culture time in the conventional agar plate culture method, the time until detection of the growing colonies can be shortened. Although it differs depending on the target microorganism, the method of the present invention makes it possible to reduce the time required to detect the growing colonies by the conventional agar plate culture method to half or less.

また、本発明の方法は、従来の寒天平板培養法と比較して対象微生物を高感度に検出でき、検体1mL当たりの対象微生物が1個未満でも検出可能である。例えば、対象微生物が酵母の場合、従来の寒天平板培養法では検体1mL当たりの対象微生物が1個以上で検出可能であったが、本発明の方法では検体1mL当たりの対象微生物が1個未満、さらに検体10mL当たりの対象微生物が1個未満、さらに検体65mL当たりの対象微生物が1個未満でも検出可能であり、また、製品に限らず発酵タンクにおける汚染菌の検出も可能であり、従来の寒天平板培養法と比較して格段に優れた検出感度を有する。   In addition, the method of the present invention can detect the target microorganism with higher sensitivity than the conventional agar plate culture method, and can detect even less than one target microorganism per 1 mL of the sample. For example, when the target microorganism is yeast, the conventional agar plate culture method was able to detect one or more target microorganisms per mL of specimen, but the method of the present invention has less than one target microorganism per mL of specimen, Furthermore, it is possible to detect even less than one target microorganism per 10 mL of sample and less than one target microorganism per 65 mL of sample, and it is possible to detect contaminating bacteria in fermentation tanks as well as products. Compared to the plate culture method, the detection sensitivity is much better.

本発明の方法は、従来の寒天平板培養法と比較して、検体中の対象微生物を迅速、高感度に検出することができるため、検体、特に飲食品の品質判定方法として好適に利用できる。本発明の方法を利用することで、飲食品中の汚染微生物の有無やその個数を極めて迅速かつ高感度に判定できるため、例えば、飲食品の製造後、短時間で品質判定を実施することができ、飲食品の品質判定において有用である。また、飲食品が乳製品、汚染微生物が酵母である場合、本発明の方法で24時間以内に検出できない酵母がまれに存在する。詳細な理由は不明であるが、本発明の方法で24時間以内に検出できない酵母は、保存中の乳製品中で増殖しないことが明らかとなっているため、乳製品の品質に影響を及ぼす可能性のある酵母は全て24時間以内に検出可能となり、乳製品の品質判定に要する時間を大幅に短縮することができる。   Compared with the conventional agar plate culture method, the method of the present invention can detect a target microorganism in a sample quickly and with high sensitivity, and thus can be suitably used as a method for determining the quality of a sample, particularly food and drink. By using the method of the present invention, the presence or absence of contaminating microorganisms in foods and drinks and the number thereof can be determined very quickly and with high sensitivity.For example, quality determination can be performed in a short time after the production of foods and drinks. This is useful in determining the quality of food and drink. In addition, when the food or drink is a dairy product and the contaminating microorganism is yeast, there are rare yeasts that cannot be detected within 24 hours by the method of the present invention. Although the detailed reason is unknown, it has been shown that yeast that cannot be detected within 24 hours by the method of the present invention does not grow in the dairy product during storage, which may affect the quality of the dairy product All the characteristic yeasts can be detected within 24 hours, and the time required for determining the quality of dairy products can be greatly reduced.

以下、実施例を挙げて本発明の内容をさらに詳細に説明するが、本発明はこれらにより何ら制約されるものではない。   Hereinafter, the content of the present invention will be described in more detail with reference to examples, but the present invention is not limited by these.

実施例1 蛋白質分解酵素処理が乳製品中の酵母の検出に及ぼす影響
トルラスポラ・デルブルエキを26℃、24時間、YM斜面培地(1Lあたりの組成:酵母エキス3g、麦芽エキス3g、ペプトン5g、ブドウ糖10g、寒天20g)を用いて培養後、その菌体の1白金耳分をYM液体培地に接種して26℃、24時間、ロータリーシェイカー(20rpm、タイテック社 ROTOR RT50)を用いて培養した。
この培養菌液を0.85%NaClを用いて希釈し、表1のa〜hの条件で、YC寒天平板(1Lあたりの組成:酵母エキス10g、ブドウ糖10g、クロラムフェニコール0.1g、寒天20g)に塗布もしくは混釈した。試験試料として、酵母のコロニー検出の障害となる果皮や乳蛋白質を含む市販の発酵乳製品であるジョアブルーベリー(無脂乳固形分8.2%、乳脂肪分0.1%、ヤクルト本社製)を用いた。プロテアーゼ処理は、ジョアブルーベリーに0.45μmのポアサイズのフィルターでろ過除菌したプロテアーゼN(天野エンザイム社製、1381U/g、1Mトリス塩酸緩衝液(pH8.0)で溶解、表4参照)を0.1%となるように無菌的に添加し、37℃、30分保温して行った(表1:条件e及び条件f)。あるいは、混釈する検体に対して0.1%(表1:条件g)、1%(表1:条件h)となるようにプロテアーゼNをYC寒天平板に添加してから検体を混釈して、28℃で保温することにより、培養とプロテアーゼ処理を並行して行う方法も実施した。
次に、上記した実施例1の作動を説明する。
Example 1 Effect of Proteolytic Enzyme Treatment on Detection of Yeast in Dairy Products Torlaspola delbruecki was prepared at 26 ° C. for 24 hours in a YM slant medium (composition per liter: yeast extract 3 g, malt extract 3 g, peptone 5 g, glucose 10 g After incubation with agar 20 g), one platinum loop of the cells was inoculated into a YM liquid medium and cultured at 26 ° C. for 24 hours using a rotary shaker (20 rpm, Taitec ROTOR RT50).
The culture broth was diluted with 0.85% NaCl, and subjected to the conditions of a to h in Table 1. YC agar plates (composition per liter: yeast extract 10 g, glucose 10 g, chloramphenicol 0.1 g, Agar 20 g) was applied or mixed. As a test sample, Joa Blueberry, a commercial fermented dairy product containing pericarp and milk protein that hinders the detection of yeast colonies (non-fat milk solid content 8.2%, milk fat content 0.1%, manufactured by Yakult Honsha) Was used. For protease treatment, protease N (manufactured by Amano Enzyme, 1381 U / g, dissolved in 1 M Tris-HCl buffer (pH 8.0), see Table 4), which was sterilized by filtration with a 0.45 μm pore size filter on Joa Blueberry, 0 It was aseptically added to 1% and kept at 37 ° C. for 30 minutes (Table 1: Condition e and Condition f). Alternatively, protease N is added to the YC agar plate so that it becomes 0.1% (Table 1: Condition g) and 1% (Table 1: Condition h) with respect to the sample to be mixed, and then the sample is mixed. In addition, a method of carrying out culture and protease treatment in parallel by keeping the temperature at 28 ° C. was also carried out.
Next, the operation of the first embodiment will be described.

Figure 0005492427
Figure 0005492427

条件a〜hで検体をプレーティングしたYC寒天平板を、市販のディジタル顕微鏡装置(マイクロバイオ社製)を用いて28℃で培養し、酵母の検出時間を比較した。表2に各条件における酵母の検出開始時間、検出終了時間および検出終了時の菌数を示した。検出開始時間は、酵母のコロニーが検出され始めた時間で、検出終了時間は、出現コロニーのカウントを完了した時間である。
ジョアブルーベリーを混釈培養した場合、トルラスポラ・デルブルエキの純粋培養菌株を表面塗抹培養した場合(条件a)に比べコロニーの検出時間は、プロテアーゼ処理を行わない従来法(条件c、d)では、検出開始で2〜3時間(約20%)、検出終了時間で7〜8時間(約40%)遅延し、検出終了に24時間以上(26.7時間〜27.7時間)を要した。しかし、培養前(条件e、f)或いは培養中(条件g、h)にプロテアーゼ処理を行うことで混釈培地の透明度が高まり、ジョアブルーベリー中のトルラスポラ・デルブルエキは、純培養菌液を表面塗抹した場合と同様の20時間程度で検出を終了することが可能となった。また、ろ過工程はコロニー検出の障害となる大きな夾雑物を除くのに有効であり、この工程が酵母の検出に悪影響を与えることはなく、検出菌数は、すべての処理条件でほぼ同じであった。
YC agar plates plated with specimens under conditions a to h were cultured at 28 ° C. using a commercially available digital microscope apparatus (manufactured by Microbio Inc.), and yeast detection times were compared. Table 2 shows the yeast detection start time, detection end time, and the number of bacteria at the end of detection under each condition. The detection start time is the time at which yeast colonies have started to be detected, and the detection end time is the time at which the count of appearing colonies has been completed.
Compared to the case where Joa Blueberry was mixed with pour culture and the pure culture strain of Torlas pora del Bruecki was smeared (condition a), the colony detection time was detected in the conventional method (conditions c and d) without protease treatment. The start was delayed for 2 to 3 hours (about 20%), the end of detection was 7 to 8 hours (about 40%), and the detection was over 24 hours (26.7 to 27.7 hours). However, by treating with protease before culture (conditions e and f) or during culture (conditions g and h), the transparency of the pour medium is increased, and Truluspola del Bruequi in Joa Blueberry is smeared with a pure culture solution. The detection can be completed in about 20 hours as in the case of the above. In addition, the filtration process is effective in removing large contaminants that hinder colony detection, and this process does not adversely affect yeast detection, and the number of bacteria detected is almost the same under all treatment conditions. It was.

Figure 0005492427
Figure 0005492427

以上、トルラスポラ・デルブルエキについて検討結果を例示したが、さらに18属77種83株の酵母について、同様に検討したところ、クラビスポラ・ルシタニアは16時間、ピキア・アノマラは18時間、カンジダ・ボイデニは18時間等で、大部分の酵母は20時間以内に検出が終了した。しかし、少数ながら24時間以内に検出されない菌株も確認された。   As mentioned above, although the examination result was illustrated about Torlas pora del Brueki, when the yeast of 18 genera 77 species 83 strain was examined similarly, it is 16 hours for Clavispora lucitania, 18 hours for Pichia Anomala, 18 hours for Candida boydeni. Etc., most yeasts were detected within 20 hours. However, a small number of strains that were not detected within 24 hours were also confirmed.

そこで、24時間以内に検出されなかった酵母6菌株について、乳製品中での消長を確認した。乳製品には市販のヤクルト(無脂乳固形分3.1%、乳脂肪分0.1%、ヤクルト本社製)を使用した。各酵母がヤクルト65mLあたり10cfu程度となるように添加し、10℃14日間保存した際の酵母菌数変化を確認した。その結果、表3に示したようにディジタル顕微鏡で24時間以内に検出されない酵母は、乳製品(ヤクルト)中でも増殖は認められなかった。以上から、検出に24時間以上を要する酵母は、製品中でも増殖せず、乳製品の品質には影響を及ぼさないものと考えられる。   Therefore, the change in the dairy product was confirmed for 6 yeast strains that were not detected within 24 hours. Commercially available Yakult (non-fat milk solid content 3.1%, milk fat content 0.1%, manufactured by Yakult Honsha) was used for dairy products. Each yeast was added at about 10 cfu per 65 mL of Yakult, and changes in the number of yeast cells were confirmed when stored at 10 ° C. for 14 days. As a result, as shown in Table 3, the yeast that was not detected by the digital microscope within 24 hours did not grow even in the dairy product (Yakult). From the above, it is considered that yeast that requires 24 hours or more for detection does not grow in the product and does not affect the quality of the dairy product.

Figure 0005492427
Figure 0005492427

実施例2 蛋白質分解酵素の処理条件の検討
ヤクルト3.3mLに対し、表4に示したアロアーゼNP−10(ヤクルト薬品工業)、パンチダーゼMP(ヤクルト薬品工業)、ニューラーゼF3G(天野エンザイム)、プロテアーゼM(天野エンザイム)、プロテアーゼA(天野エンザイム)、プロテアーゼN(天野エンザイム)、プロテアーゼP(天野エンザイム)、あるいはプロテアーゼP7026(シグマ)を0.1あるいは0.5%添加して、37℃で保温し、クレット値(濁度)の変化から可溶化の進行を測定した。酸性プロテアーゼは水に、中性プロテアーゼは1Mトリス塩酸緩衝液(pH8.0)に溶解し、0.45μmポアサイズのフィルターでろ過除菌して用いた。
Example 2 Examination of processing conditions of proteolytic enzyme With respect to 3.3 mL of Yakult, alloase NP-10 (Yakult Pharmaceutical Co., Ltd.), punchase MP (Yakult Pharmaceutical Co., Ltd.), Newase F3G (Amano Enzyme), protease shown in Table 4 M (Amano Enzyme), Protease A (Amano Enzyme), Protease N (Amano Enzyme), Protease P (Amano Enzyme), or Protease P7026 (Sigma) is added at 0.1 or 0.5% and kept at 37 ° C. The progress of solubilization was measured from the change in the kret value (turbidity). The acidic protease was dissolved in water, and the neutral protease was dissolved in 1M Tris-HCl buffer (pH 8.0), and sterilized by filtration with a 0.45 μm pore size filter.

Figure 0005492427
Figure 0005492427

1)カタログ値
2)カゼインを基質とし、pH7〜8、50〜55℃、1分間に1μgのチロシンを遊離する活性を1Uとする。
3)カゼインを基質とし、pH7.0、45〜50℃、1分間に1μgのチロシンを遊離する活性を1Uとする。
4)カゼインを基質とし、pH3.0、37℃、60分間に100μgのチロシンを遊離する活性を1Uとする。
5)カゼインを基質とし、pH7.0、37℃、60分間に100μgのチロシンを遊離する活性を1Uとする。
6)カゼインを基質とし、pH7.5、37℃、1分間に1μmol(181μg)のチロシンを遊離する活性を1Uとする。
7)本発明の力価への換算値(カゼインを基質とし、酵素の反応至適pH・温度において、1分間に1μmolのチロシンを遊離する活性)
1) Catalog value 2) Casein is used as a substrate, pH 7-8, 50-55 ° C., 1 U of activity to release 1 μg of tyrosine in 1 minute.
3) Casein is used as a substrate, and the activity of releasing 1 μg of tyrosine per minute at pH 7.0, 45 to 50 ° C. is defined as 1 U.
4) Using casein as a substrate, the activity of releasing 100 μg of tyrosine in 60 minutes at pH 3.0 and 37 ° C. is defined as 1 U.
5) Casein is used as a substrate, and the activity of releasing 100 μg of tyrosine in 60 minutes at pH 7.0 and 37 ° C. is defined as 1 U.
6) Casein is used as a substrate, and the activity to release 1 μmol (181 μg) tyrosine per minute at pH 7.5, 37 ° C. is defined as 1 U.
7) Conversion value to the titer of the present invention (casein is used as a substrate, and the activity of releasing 1 μmol of tyrosine per minute at the optimum pH and temperature of the enzyme reaction)

その結果、図1、図2に示したように平板寒天培地におけるコロニー検出の障害となる蛋白質の白濁は大幅に低減された。特に中性領域で反応至適pHを示すプロテアーゼが良好で、0.5%添加、20分の処理で十分可溶化した。特にプロテアーゼNが良好であった。
104cfuの酵母を添加し、プロテアーゼP7026あるいはプロテアーゼNを0.5%となるように添加し、それぞれ37℃で60分処理した。結果を表5に例示するが、プロテアーゼ処理を行っても酵母の菌数に影響を与えないことが確認された。
As a result, as shown in FIGS. 1 and 2, the white turbidity of the protein that hinders colony detection in the plate agar medium was greatly reduced. In particular, the protease exhibiting the optimum pH in the neutral region was good, and it was sufficiently solubilized by adding 0.5% and treating for 20 minutes. Protease N was particularly good.
10 4 cfu of yeast was added, protease P7026 or protease N was added to 0.5%, and each was treated at 37 ° C. for 60 minutes. The results are exemplified in Table 5, and it was confirmed that even if protease treatment was performed, the number of yeasts was not affected.

Figure 0005492427
Figure 0005492427

実施例3 濃縮処理検体からの酵母の検出
ピキア・グイリエルモンディ Y 50938を 156cfu添加したヤクルト65mLに、検体に対して0.1%となるようにプロテアーゼN溶液(1Mトリス緩衝液(pH8.0)に溶解後、0.45μmのフィルターろ過したもの)を加え、37℃、30分処理した。1,100 ×g、10分間、遠心分離後、上清を除去し、沈殿を0.1mLの生理食塩水で懸濁し、0.01%クロラムフェニコールを含むYM寒天平板に塗布し、培養後のコロニーをカウントした。その結果、94%の高い回収率で酵母が検出された(表6)。
Example 3 Detection of Yeast from Concentrated Samples Into Yakult 65 mL to which 156 cfu of Pichia Guilliermondi Y 50938 was added, a protease N solution (1 M Tris buffer (pH 8. 0) and then filtered through a 0.45 μm filter) and treated at 37 ° C. for 30 minutes. After centrifugation at 1,100 × g for 10 minutes, the supernatant was removed, the precipitate was suspended in 0.1 mL of physiological saline, applied to a YM agar plate containing 0.01% chloramphenicol, and cultured. Later colonies were counted. As a result, yeast was detected with a high recovery rate of 94% (Table 6).

Figure 0005492427
Figure 0005492427

ピキア・グイリエルモンディ Y 50938を23cfu添加したヤクルト30mLに、検体に対して0.3%となるようにプロテアーゼP7026溶液(1Mトリス緩衝液(pH8.0)に溶解後、0.45μmのフィルターろ過したもの)を加え、37℃、30分処理した。処理後の溶液を滅菌済み混合セルロースフィルター(ADVANTEC製、ポアサイズ0.8μm)でろ過した。ろ過後のフィルターを0.01%クロラムフェニコールを含むYM寒天平板にのせ、培養後のフィルター上のコロニーをカウントした。その結果、100%の高い回収率で酵母が検出された(表7)。   After dissolving in 30 ml of Yakult with 23 cfu of Pichia Guiliermondi Y 50938 in 0.3% of the sample in protease P7026 solution (1M Tris buffer (pH 8.0), 0.45 μm filter Filtered) and treated at 37 ° C. for 30 minutes. The solution after the treatment was filtered through a sterilized mixed cellulose filter (manufactured by ADVANTEC, pore size: 0.8 μm). The filtered filter was placed on a YM agar plate containing 0.01% chloramphenicol, and colonies on the filter after culture were counted. As a result, yeast was detected with a high recovery rate of 100% (Table 7).

Figure 0005492427
Figure 0005492427

本発明は、増殖培地を用いた寒天平板培養法において、検出阻害因子を低減し、対象微生物の増殖コロニーを検出するものであるため、新たな設備等を要せず簡便に使用することができる。   In the agar plate culture method using a growth medium, the present invention reduces detection-inhibitory factors and detects a growing colony of a target microorganism, and thus can be easily used without requiring new equipment. .

Claims (5)

増殖培地を用いた乳製品中の酵母の検出方法であって、乳製品、増殖培地及び90〜1381(U/g)の力価を有する蛋白質分解酵素を混釈して蛋白質分解酵素を乳製品に作用させることで、培養工程における乳製品中の蛋白質を低減し、当該酵母の増殖コロニーを検出し、蛋白質分解酵素の使用量が、検体である乳製品に対して0.01〜1容量%であることを特徴とする酵母の検出方法。 A method for detecting yeast in a dairy product using a growth medium, wherein the dairy product, the growth medium and a proteolytic enzyme having a titer of 90 to 1381 (U / g) are mixed to produce the proteolytic enzyme in the dairy product By acting on the dairy product, the protein in the dairy product in the culturing process is reduced, the growing colonies of the yeast are detected, and the amount of proteolytic enzyme used is 0.01 to 1% by volume relative to the dairy product as the sample. A method for detecting yeast, characterized in that 蛋白質分解酵素が、中性領域で反応至適pHを示す蛋白質分解酵素である請求項1記載の方法。   The method according to claim 1, wherein the proteolytic enzyme is a proteolytic enzyme exhibiting an optimum reaction pH in a neutral region. 蛋白質分解酵素の使用量が、検体である乳製品に対して0.1〜1容量%である請求項1又は2記載の方法。   The method according to claim 1 or 2, wherein the amount of proteolytic enzyme used is 0.1 to 1% by volume with respect to the dairy product as a sample. 酵母の検出が寒天平板培養法によるものである請求項1〜3のいずれか1項記載の方法。   The method according to any one of claims 1 to 3, wherein the yeast is detected by an agar plate culture method. 請求項1〜のいずれか1項記載の方法を利用することを特徴とする検体の品質判定方法。 A method for judging the quality of a specimen, characterized in that the method according to any one of claims 1 to 4 is used.
JP2009049193A 2009-03-03 2009-03-03 Microbial detection method Active JP5492427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009049193A JP5492427B2 (en) 2009-03-03 2009-03-03 Microbial detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009049193A JP5492427B2 (en) 2009-03-03 2009-03-03 Microbial detection method

Publications (2)

Publication Number Publication Date
JP2010200668A JP2010200668A (en) 2010-09-16
JP5492427B2 true JP5492427B2 (en) 2014-05-14

Family

ID=42962828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009049193A Active JP5492427B2 (en) 2009-03-03 2009-03-03 Microbial detection method

Country Status (1)

Country Link
JP (1) JP5492427B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5851092B2 (en) * 2010-12-24 2016-02-03 株式会社明治 Peptide composition and method for producing the same
WO2020085420A1 (en) * 2018-10-25 2020-04-30 日水製薬株式会社 Cell collection method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4888275A (en) * 1972-02-28 1973-11-19
JP2890128B2 (en) * 1990-01-31 1999-05-10 キング醸造株式会社 Yeast viable cell count method
JPH07112439B2 (en) * 1991-02-27 1995-12-06 ヒゲタ醤油株式会社 Method for measuring viable yeast count
JPH05168464A (en) * 1991-12-24 1993-07-02 Toppan Printing Co Ltd Liquid culture medium for detecting mold or yeast and its preparation
JP3441779B2 (en) * 1994-01-18 2003-09-02 キヤノン株式会社 Microbial counting method
JPH07194394A (en) * 1993-12-28 1995-08-01 Yakult Honsha Co Ltd Medium for examining yeasts in lactic acid bacterium-containing substance and examining method
JP2004222643A (en) * 2003-01-24 2004-08-12 Kikkoman Corp Method for detecting yeast in material containing lactic bacterium
JP4726548B2 (en) * 2004-07-29 2011-07-20 日清食品ホールディングス株式会社 Yeast and mold detection primer, yeast and mold detection method, and yeast and mold detection kit
JP4217795B2 (en) * 2007-11-30 2009-02-04 国立大学法人九州大学 Microorganism detection method and microorganism detection kit

Also Published As

Publication number Publication date
JP2010200668A (en) 2010-09-16

Similar Documents

Publication Publication Date Title
Liu et al. First study on the formation and resuscitation of viable but nonculturable state and beer spoilage capability of Lactobacillus lindneri
EP2465939B1 (en) Medium for the specific detection of resistant organisms
JP4621919B2 (en) Multiplex detection method for microorganisms
US11261476B2 (en) Method for recovering microbial cells
JP5814262B2 (en) Multiple pathogen detection method
JP5492427B2 (en) Microbial detection method
JP6979269B2 (en) Method for measuring dead cells and / or inactivated viruses of microorganisms
Teider et al. Pseudomonas spp. and other psychrotrophic microorganisms in inspected and non-inspected Brazilian Minas Frescal cheese: Proteolytic, lipolytic and AprX production potential
Gueimonde et al. Stability of lactic acid bacteria in foods and supplements
JP6153461B2 (en) Microbial recovery method
Matoulková et al. Microbiology of brewery production–bacteria of the order Enterobacterales
CN109929903B (en) Culture medium for detecting mold and saccharomycetes as well as preparation method and application thereof
WO2019188553A1 (en) Method for measuring cells of microorganisms
EP1211947B1 (en) Use of strains of streptococcus thermophilus which are incapable of hydrolyzing urea in dairy products
EP2670858B1 (en) Culture medium for microorganisms including para-aminobenzoic acid as a selective agent
JPH08140697A (en) Selective culture medium for detecting thermotolerant acid-fast bacillus and its detection
JP5658973B2 (en) Medium for detecting lactic acid bacteria
Al Musa et al. Study of the chemical content and antimicrobial activity of Iraqi butter milk of cows and buffaloes
JP4986302B2 (en) Method for producing difficult-to-cultivate beer cloudy lactic acid bacteria and test medium for beer clouded lactic acid bacteria
JP5751546B2 (en) Lactic acid bacteria
Ngo et al. Identification of Biofilm Formation Bacterial Strains Isolated from Raw Milk in Bentre Province-Vietnam
Junior et al. Pseudomonas spp. and other psychrotrophic microorganisms in inspected and non-inspected Brazilian Minas Frescal cheese: proteolytic, lipolytic and AprX production potential1
Kubizniaková et al. Brewing microbiology–Lactic acid bacteria and cultivation methods of detection–part II
WO2019188552A1 (en) Method for measuring cells of microorganisms and/or viruses
RU2329304C1 (en) Method of determining decarboxylase activity of lactic acid bacteria

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140303

R151 Written notification of patent or utility model registration

Ref document number: 5492427

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151