JP5489621B2 - Photoelectric conversion element and photovoltaic device using the photoelectric conversion element - Google Patents

Photoelectric conversion element and photovoltaic device using the photoelectric conversion element Download PDF

Info

Publication number
JP5489621B2
JP5489621B2 JP2009225230A JP2009225230A JP5489621B2 JP 5489621 B2 JP5489621 B2 JP 5489621B2 JP 2009225230 A JP2009225230 A JP 2009225230A JP 2009225230 A JP2009225230 A JP 2009225230A JP 5489621 B2 JP5489621 B2 JP 5489621B2
Authority
JP
Japan
Prior art keywords
photoelectric conversion
layer
conversion element
porous semiconductor
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009225230A
Other languages
Japanese (ja)
Other versions
JP2011076791A (en
Inventor
秀章 上原
直樹 長谷川
省吾 伊藤
翼 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YAEGAKI BIO-INDUSTRY, INC.
Hyogo Prefectural Government
Original Assignee
YAEGAKI BIO-INDUSTRY, INC.
Hyogo Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YAEGAKI BIO-INDUSTRY, INC., Hyogo Prefectural Government filed Critical YAEGAKI BIO-INDUSTRY, INC.
Priority to JP2009225230A priority Critical patent/JP5489621B2/en
Publication of JP2011076791A publication Critical patent/JP2011076791A/en
Application granted granted Critical
Publication of JP5489621B2 publication Critical patent/JP5489621B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、高い光電変換効率が得られ、量産に適し、しかも低コストに製造可能な光電変換素子およびその光電変換素子を用いた光発電装置に関する。   The present invention relates to a photoelectric conversion element that can obtain high photoelectric conversion efficiency, is suitable for mass production, and can be manufactured at low cost, and a photovoltaic device using the photoelectric conversion element.

我々の高度な文化生活は資源によって支えられているが、長期間によって使い続けてきた資源は枯渇してきている。石油・天然ガスの可採年数はそれぞれ45年・64年と言われている。このように使えば補うことができない化石燃料の問題など、森林資源の減少による地球環境の問題などの人類が未来のために解決しなければならない問題が発生している。そこで、再生可能な自然エネルギー資源である太陽光、風力、波力、および地熱などが注目されている。これらのエネルギー資源は、化石燃料などに比べて、枯渇の心配がない、資源量が多い、環境への負荷が小さいなどの特徴がある。特に、自然エネルギーの中でも太陽光は、地球に降り注ぐ総エネルギー量が他の再生可能エネルギーに比べて数ケタ大きく、地球上のどこででも利用可能なことから注目が集まっている。しかし、従来の太陽電池発電システムは非常に高額で、政府の補助無しでは普及出来ない状態である。低価格な次世代太陽電池の開発は人類の損方に対し急務である。   Our advanced cultural life is supported by resources, but the resources we have been using for a long time have been depleted. It is said that oil and natural gas are available for 45 years and 64 years, respectively. Problems such as fossil fuels that cannot be compensated if used in this way, such as global environmental problems due to the decrease in forest resources, have to be solved for the future by humans. Thus, renewable natural energy resources such as sunlight, wind power, wave power, and geothermal heat have attracted attention. Compared to fossil fuels and the like, these energy resources have features such as no fear of depletion, a large amount of resources, and a small environmental load. In particular, among natural energies, sunlight attracts attention because the total amount of energy falling on the earth is several orders of magnitude larger than other renewable energies and can be used anywhere on the earth. However, conventional solar power generation systems are very expensive and cannot be used without government assistance. The development of low-cost next-generation solar cells is an urgent need for humanity damage.

ところで、低コストの太陽電池として色素増感型太陽電池に注目があつまっている。色素増感型太陽電池は、グレッツェル電池とも呼ばれ、1988 年にスイスのグレッツェル博士らが開発したもので、従来のシリコン太陽電池に代わる次世代の太陽光発電と期待されている。色素増感型電池は、色素を使って太陽の光を電気に変えるといった、安価で電気への変換効率も高い新しいタイプの太陽電池である。また、製作に大掛かりな設備を必要とせず、低コストの太陽電池として期待され研究開発がなされている。   By the way, attention has been focused on dye-sensitized solar cells as low-cost solar cells. Dye-sensitized solar cells, also called Gretzels cells, were developed by Dr. Gretzels in Switzerland in 1988 and are expected to be the next generation of solar power generation to replace conventional silicon solar cells. The dye-sensitized battery is a new type of solar cell that is inexpensive and has high conversion efficiency to electricity, such as using a dye to convert sunlight into electricity. In addition, large-scale equipment is not required for production, and research and development are expected as a low-cost solar cell.

上記のような色素増感型太陽電池に関する先行技術として、つぎのような文献がある。   There are the following documents as prior art relating to the dye-sensitized solar cell as described above.

色素増感型太陽電池において、光電変換材料には、半導体表面に可視光領域に吸収を持つ分光増感色素を吸着させたものが用いられている。例えば、金属酸化物半導体の表面に、遷移金属錯体等の分光増感色素層を有する太陽電池を記載しているもの(例えば、特許文献1参照)、また、金属イオンでドープした酸化チタン半導体層の表面に、遷移金属錯体等の分光増感色素層を有する太陽電池を記載しているもの(例えば、特許文献2参照)が提案されている。   In a dye-sensitized solar cell, a photoelectric conversion material in which a spectral sensitizing dye having absorption in the visible light region is adsorbed on a semiconductor surface is used. For example, a solar cell having a spectral sensitizing dye layer such as a transition metal complex on the surface of a metal oxide semiconductor is described (for example, see Patent Document 1), or a titanium oxide semiconductor layer doped with metal ions A solar cell having a spectral sensitizing dye layer such as a transition metal complex on its surface is described (for example, see Patent Document 2).

特開平1−220380号公報Japanese Patent Laid-Open No. 1-220380 特表平5−504023号公報Japanese National Patent Publication No. 5-504023

高効率の色素増感型太陽電池のための色素には、Ru錯体色素が使用されているが、Ru金属は高額なために、それを使用した色素増感型太陽電池の低コスト化を妨げている。そこで、Ru金属を使用しない色素の開発が急務である。   Ru complex dyes are used as dyes for high-efficiency dye-sensitized solar cells. However, since Ru metal is expensive, it has hindered cost reduction of dye-sensitized solar cells using the same. ing. Therefore, there is an urgent need to develop a pigment that does not use Ru metal.

Ru色素以外の選択肢としては、金属錯体を使用しない有機色素を使う方法が考えられる。2009年9月現在では、日本の三菱製紙(株)が変換効率9.5%を記録する有機色素を、また中国のPeng Wang博士が変換効率9.8%を記録する有機色素を報
告している。
As an alternative to the Ru dye, a method using an organic dye that does not use a metal complex may be considered. As of September 2009, Mitsubishi Paper Industries in Japan reported organic dyes that recorded a conversion efficiency of 9.5%, and Dr. Peng Wang in China reported an organic dye that recorded a conversion efficiency of 9.8%. Yes.

しかし、有機色素も合成過程が複雑であればやはり高額となるため、より安価な方法で色素を製造するプロセスが必要である。また、有害な試薬を使用することが多く、環境負荷も大きいことが問題である。   However, since organic dyes are also expensive if the synthesis process is complicated, a process for producing dyes by a cheaper method is necessary. In addition, harmful reagents are often used, and the environmental load is also a problem.

そこで考えられたことが、バイオプロセスによる色素の製造である。生物が育つ過程はプロセスの多い有機色素の合成のように複雑ではなく、また無毒なプロセスで目的とする生物が育成する。さらに、必要な段階になったところで乾燥・破砕・抽出を行うだけなので、非常に簡便なプロセスである。このバイオプロセスによる色素の合成は、色素増感型太陽電池製造が大規模プロセスになった場合、安全・安価なプロセスとして非常に重要である。   What was considered there was the production of pigments by bioprocesses. The process of growing an organism is not as complicated as the synthesis of organic pigments with many processes, and the target organism is grown in a non-toxic process. Furthermore, it is a very simple process because it is only dried, crushed and extracted at the required stage. The synthesis of dyes by this bioprocess is very important as a safe and inexpensive process when dye-sensitized solar cell production becomes a large-scale process.

従って、本発明は、上記従来の問題点に鑑みて完成されたものであり、その目的は、天然有機色素を使用して色素増感型太陽電池の光電変換特性を向上させた光電変換素子を提供することである。   Accordingly, the present invention has been completed in view of the above-mentioned conventional problems, and its purpose is to provide a photoelectric conversion element that improves the photoelectric conversion characteristics of a dye-sensitized solar cell using a natural organic dye. Is to provide.

本発明の光電変換素子は、一主面に透光性基板と、この透光性基板上に形成された透光性導電層と、この透光性導電層上に形成された多孔質半導体層と、この多孔質半導体層上に配置されたベニコウジ黄色素と、このベニコウジ黄色素と多孔質半導体で形成された光電変換層と、この光電変換層と間隔をあけて対向するよう配置された対極と、前記光電変換層と前記対極との間に設けられた電荷輸送層と、前記光電変換層と前記電荷輸送層と対極の周囲を取り囲んで形成された封止部材とで形成されていることを特徴とするものである。   The photoelectric conversion element of the present invention includes a translucent substrate on one main surface, a translucent conductive layer formed on the translucent substrate, and a porous semiconductor layer formed on the translucent conductive layer A beige yellow violet arranged on the porous semiconductor layer, a photoelectric conversion layer formed of the beige yellow oxen and a porous semiconductor, and a counter electrode arranged to face the photoelectric conversion layer with a space therebetween And a charge transport layer provided between the photoelectric conversion layer and the counter electrode, and a sealing member formed surrounding the photoelectric conversion layer, the charge transport layer and the counter electrode. It is characterized by.

本発明の光電変換素子は請求項2に記載のように、前記透光性基板が、透明なガラス板またはプラスチック板から成ることが好ましい。   As for the photoelectric conversion element of this invention, it is preferable that the said translucent board | substrate consists of a transparent glass plate or a plastic plate.

本発明の光電変換素子は請求項3に記載のように、前記透光性導電層が、フッ素ドープ錫酸化物、インジウム錫酸化物、ガリウムドープ亜鉛酸化物、アルミドープ亜鉛酸化物、またはニオブドープチタン酸化物から成ることが好ましい。   In the photoelectric conversion element of the present invention, the light-transmitting conductive layer may be fluorine-doped tin oxide, indium tin oxide, gallium-doped zinc oxide, aluminum-doped zinc oxide, or niobium-doped. It is preferably made of titanium oxide.

本発明の光電変換素子は請求項4に記載のように、前記多孔質半導体層が、TiO、WO、ZnO、Nb、Ta、またはSrTiOから成ることが好ましい。 As the photoelectric conversion element of the present invention according to claim 4, wherein the porous semiconductor layer preferably made of TiO 2, WO 3, ZnO, Nb 2 O 5, Ta 2 O 5 or SrTiO 3,.

また本発明の光電変換素子は請求項5に記載のように、沃化物、コバルト錯体、鉄錯体、CuI、CuSCN、または有機ホール輸送材から成ることが好ましい。
本発明の光電変換素子は請求項6に記載のように、使用される触媒層が、白金,パラジウム,ロジウム,カーボンまたはポリチオフェンから成ることが好ましい。
The photoelectric conversion element of the present invention is preferably made of an iodide, a cobalt complex, an iron complex, CuI, CuSCN, or an organic hole transport material.
As for the photoelectric conversion element of this invention, it is preferable that the catalyst layer used consists of platinum, palladium, rhodium, carbon, or polythiophene.

本発明の光電変換素子は請求項7に記載のように、請求項1〜6のいずれか1項に記載の前記光電変換素子を発電手段として用い、前記発電手段の発電電力を負荷へ供給するように成すことができる。   As described in claim 7, the photoelectric conversion element of the present invention uses the photoelectric conversion element described in any one of claims 1 to 6 as a power generation means, and supplies the generated power of the power generation means to a load. Can be done as follows.

本発明の光電変換素子は、一主面に透光性基板と、透光性基板上に形成された透光性導電層と、透光性導電層上に形成された多孔質半導体層と、多孔質半導体層上に配置されたベニコウジ黄色素と、上記ベニコウジ黄色素と多孔質半導体で形成された光電変換層と間
隔をあけて対向するよう配置された対極と、光電変換層と対極との間に設けられた電荷輸送層と、光電変換層と電荷輸送層と対極の周囲を取り囲んで形成された封止部材とで形成されていることから、前記ベニコウジ黄色素が吸収した光エネルギーを電気エネルギーに効率良く変換することが出来る。
The photoelectric conversion element of the present invention includes a translucent substrate on one main surface, a translucent conductive layer formed on the translucent substrate, a porous semiconductor layer formed on the translucent conductive layer, A counter electrode disposed on the porous semiconductor layer so as to face the photoelectric conversion layer formed with a space between the photoelectric conversion layer and the photoelectric conversion layer, and the counter electrode It is formed by a charge transport layer provided therebetween, and a photoelectric conversion layer, a charge transport layer, and a sealing member formed so as to surround the periphery of the counter electrode. It can be efficiently converted into energy.

また、本発明の本発明の光電変換素子は好ましくは、透光性基板をガラスまたはプラスチックから構成することにより、前記透光性基板が光をベニコウジ黄色素に導入するための窓層となり得る。   Moreover, the photoelectric conversion element of this invention of this invention, Preferably, when a translucent board | substrate is comprised from glass or a plastics, the said translucent board | substrate can become a window layer for introduce | transducing light into Beniculosi yellow.

また、本発明の本発明の光電変換素子は好ましくは、透光性導電層をフッ素ドープ錫酸化物、インジウム錫酸化物、ガリウムドープ亜鉛酸化物、アルミドープ亜鉛酸化物またはニオブドープチタン酸化物から構成することにより、前記透光性導電層がベニコウジ黄色素に導入するための窓層となり、かつベニコウジ黄色素から得られた電力を効率的に取り出すことができる。   In the photoelectric conversion element of the present invention of the present invention, preferably, the translucent conductive layer is made of fluorine-doped tin oxide, indium tin oxide, gallium-doped zinc oxide, aluminum-doped zinc oxide, or niobium-doped titanium oxide. By comprising, the said translucent conductive layer becomes a window layer for introduce | transducing into a white beetle yellow dye, and the electric power obtained from the red beetle yellow dye can be taken out efficiently.

また、本発明の本発明の光電変換素子は好ましくは、多孔質半導体層をTiO、WO、ZnO、Nb、TaまたはSrTiOから構成することにより、前記多孔質半導体層がベニコウジ黄色素をその表面に効率的に吸着担持し、かつ透光性であるためにベニコウジ黄色素に光を導入するための窓層となり、かつベニコウジ黄色素から効率良く電子を受け取る電極となる。 In the photoelectric conversion element of the present invention of the present invention, preferably, the porous semiconductor layer is composed of TiO 2 , WO 3 , ZnO, Nb 2 O 5 , Ta 2 O 5, or SrTiO 3 , thereby forming the porous semiconductor layer. The layer efficiently adsorbs and supports the yellow beetle on its surface, and since it is translucent, it becomes a window layer for introducing light into the beige yellow and is an electrode that efficiently receives electrons from the beige yellow Become.

また、本発明の本発明の光電変換素子は好ましくは、電荷輸送層を沃化物、コバルト錯体、鉄錯体、CuI、CuSCNまたは有機ホール輸送材から構成することにより、前記多孔質半導体層に電子を渡したベニコウジ黄色素に効率良く電子を導入することができる。   In the photoelectric conversion element of the present invention of the present invention, preferably, the charge transport layer is composed of iodide, cobalt complex, iron complex, CuI, CuSCN, or organic hole transport material, whereby electrons are transferred to the porous semiconductor layer. Electrons can be efficiently introduced into the handed yellow beetle.

さらに、本発明の本発明の光電変換素子は好ましくは、対極に使用される触媒層を白金,パラジウム,ロジウム,カーボンまたはポリチオフェンから構成することにより、電子を電荷輸送層に効率良く供給することができる。
また、本発明の光発電装置は、上記本発明の光電変換素子を発電手段として用い、発電手段の発電電力を負荷へ供給するようにしたことから、光電変換特性が向上したものとなる。
Furthermore, the photoelectric conversion element of the present invention of the present invention is preferably configured to efficiently supply electrons to the charge transport layer by constituting the catalyst layer used for the counter electrode from platinum, palladium, rhodium, carbon, or polythiophene. it can.
In addition, the photovoltaic device of the present invention uses the photoelectric conversion element of the present invention as a power generation means and supplies the generated power of the power generation means to a load, so that the photoelectric conversion characteristics are improved.

本発明の光電変換素子について実施の形態の一例を示す断面図である。It is sectional drawing which shows an example of embodiment about the photoelectric conversion element of this invention. 本発明の光電変換素子について用いられたベニコウジ黄色素の構造式である。ただし、ベニコウジ黄色素は図面内部の二つの構造異性体をもつ混合物である。It is a structural formula of Benikouji yellow used for the photoelectric conversion element of the present invention. However, Beniculosi yellow is a mixture having two structural isomers in the drawing.

図1に示すように、1は光電変換素子、2は透明なガラス板やプラスチック板から成る透光性基板、3はITO(スズドープインジウム酸化物)層もしくはFTO(フッ素ドープスズ酸化物)層等から成る透光性導電層、4は多孔質の半導体層、5はベニコウジ黄色素、6は透光性基板2と透光性導電層3と多孔質半導体層4とベニコウジ黄色素5とを備えた光電変換電極、7は電荷輸送層(電解質層)、8は封止部材、9は触媒層、10は透光性導電層、11は基板、12は触媒層9と透光性導電層10と基板11とを備えた対極としての光電変換電極である。なお、Sは太陽光である。     As shown in FIG. 1, 1 is a photoelectric conversion element, 2 is a translucent substrate made of a transparent glass plate or plastic plate, 3 is an ITO (tin doped indium oxide) layer or FTO (fluorine doped tin oxide) layer, etc. 4 is a porous semiconductor layer, 5 is a beige powder, 6 is a light-transmitting substrate 2, a light-transmitting conductive layer 3, a porous semiconductor layer 4, and a beige powder. 7 is a charge transport layer (electrolyte layer), 8 is a sealing member, 9 is a catalyst layer, 10 is a translucent conductive layer, 11 is a substrate, 12 is a catalyst layer 9 and a translucent conductive layer 10. And a photoelectric conversion electrode as a counter electrode provided with a substrate 11. S is sunlight.

光電変換素子1は、図1に示すように一主面としての上面側に、本実施形態では透明なガラス板からなる透光性基板2が配置され、この透光性基板2の底面に透光性導電層3が形成されている。透光性基板2および透光性導電層3を含んで上面側の光電変換電極6が構成され、この光電変換電極6に対し一定間隔をあけて下面側に対向するように配置され
た光電変換電極としての対極12が設けられている。対極としての光電変換電極12は透明なガラス板からなる透光性を有する基板あるいは透光性のない基板11が配置され、この基板11の底面に透光性導電層10が形成され、透光性導電層10上には触媒層9が配装されている。これらの光電変換電極6と12の間には電荷輸送層7が設けられ、この電荷輸送層7は光電変換電極6・12の長手方向に沿って一定距離ごとに封止部材8により分離されている。透光性導電層3の下面側の電荷輸送層7中には、多数の球体状の多孔質半導体層4が配置されている。そして、各半導体層4の球面上に多数(例えば数十個)のベニコウジ黄色素5が吸着担持されている。なお、導電層10には金属箔などの透光性を具備しない導電層を用いてもよい。
In the photoelectric conversion element 1, as shown in FIG. 1, a translucent substrate 2 made of a transparent glass plate in the present embodiment is disposed on the upper surface side as one main surface. A photoconductive layer 3 is formed. A photoelectric conversion electrode 6 on the upper surface side is configured including the translucent substrate 2 and the translucent conductive layer 3, and the photoelectric conversion is arranged so as to face the lower surface side with a predetermined interval from the photoelectric conversion electrode 6. A counter electrode 12 is provided as an electrode. The photoelectric conversion electrode 12 as a counter electrode is provided with a light-transmitting substrate made of a transparent glass plate or a non-light-transmitting substrate 11, and a light-transmitting conductive layer 10 is formed on the bottom surface of the substrate 11. A catalyst layer 9 is disposed on the conductive conductive layer 10. A charge transport layer 7 is provided between the photoelectric conversion electrodes 6 and 12, and the charge transport layer 7 is separated by a sealing member 8 at regular intervals along the longitudinal direction of the photoelectric conversion electrodes 6 and 12. Yes. A large number of spherical porous semiconductor layers 4 are arranged in the charge transport layer 7 on the lower surface side of the translucent conductive layer 3. Then, a large number (for example, several tens of pieces) of B. niger yellow 5 is adsorbed and supported on the spherical surface of each semiconductor layer 4. The conductive layer 10 may be a conductive layer that does not have translucency, such as a metal foil.

本実施形態の光電変換素子1は上記の構成により、ベニコウジ黄色素5からその多孔質半導体層4を通じ透光性導電層3に向かって電子が移動し、酸化状態のベニコウジ黄色素5に対して電子が導電層3から触媒層9および電荷輸送層7を通じて供給されることから、高い光電変換効率を達成できる。   In the photoelectric conversion element 1 according to the present embodiment, electrons move from the beige white yellow 5 through the porous semiconductor layer 4 toward the translucent conductive layer 3 with respect to the oxidized white beige 5 in the oxidized state. Since electrons are supplied from the conductive layer 3 through the catalyst layer 9 and the charge transport layer 7, high photoelectric conversion efficiency can be achieved.

ここで、ベニコウジ黄色素5は、図2に示すとおり、2種の構造異性体である色素の混合物として、紅麹から抽出される天然色素である。   Here, Benikouji Oki 5 is a natural pigment extracted from red yeast as a mixture of two types of structural isomers as shown in FIG.

透光性基板2は、上記したとおり透明なガラス板やプラスチック板から成り、厚みは0.1〜5mm程度である。   The translucent substrate 2 is made of a transparent glass plate or plastic plate as described above, and has a thickness of about 0.1 to 5 mm.

透光性導電層3は、ITO,酸化スズ等から成り、厚みは0.3〜2μm程度がよい。0.3μm未満では、シート抵抗が高くなり、光電変換素子1のシリーズ抵抗が高くなるため、FF特性が悪くなる傾向があるからである。一方、2μmを超えると、透光性導電層3の表面の凹凸が第1導電型非晶質シリコン半導体層4の厚みよりも大きくなり、第1導電型非晶質シリコン半導体層4で透光性導電層3の全面を安定してカバーするのが困難となる傾向がある。透光性導電層3は、CVD法、スパッタリング法、スプレー法等によって形成される。   The translucent conductive layer 3 is made of ITO, tin oxide or the like, and the thickness is preferably about 0.3 to 2 μm. This is because if the thickness is less than 0.3 μm, the sheet resistance increases and the series resistance of the photoelectric conversion element 1 increases, so that the FF characteristics tend to deteriorate. On the other hand, when the thickness exceeds 2 μm, the unevenness of the surface of the translucent conductive layer 3 becomes larger than the thickness of the first conductive amorphous silicon semiconductor layer 4, and the first conductive amorphous silicon semiconductor layer 4 transmits light. It tends to be difficult to stably cover the entire surface of the conductive conductive layer 3. The translucent conductive layer 3 is formed by a CVD method, a sputtering method, a spray method or the like.

図1に示す光電変換電極6は、透光性基板2と、その上に形成された透光性導電層3と、その上に形成された、ベニコウジ黄色素5で増感された多孔質の半導体層(色素増感型光電変換体)4を有する。   The photoelectric conversion electrode 6 shown in FIG. 1 is a porous substrate sensitized with a translucent substrate 2, a translucent conductive layer 3 formed thereon, and Benikouji yellow element 5 formed thereon. It has a semiconductor layer (dye-sensitized photoelectric converter) 4.

多孔質の半導体層4の材料や組成としては、酸化チタン(TiO)が最適であり、他の材料としては、チタン(Ti),亜鉛(Zn),スズ(Sn),ニオブ(Nb),インジウム(In),イットリウム(Y),ランタン(La),ジルコニウム(Zr),タンタル(Ta),ハフニウム(Hf),ストロンチウム(Sr),バリウム(Ba),カルシウム(Ca),バナジウム(V),タングステン(W)等の金属元素の少なくとも1種以上の金属酸化物半導体がよく、また窒素(N),炭素(C),弗素(F),硫黄(S),塩素(Cl),リン(P)等の非金属元素の1種以上を含有していてもよい。酸化チタン等はいずれも電子エネルギーバンドギャップが可視光のエネルギーより大きい2〜5eVの範囲にあり、好ましい。また、多孔質の半導体層4は、電子エネルギー準位においてその伝導帯がベニコウジ黄色素5の伝導帯よりも低いn型半導体がよい。 The material and composition of the porous semiconductor layer 4 is optimally titanium oxide (TiO 2 ), and other materials include titanium (Ti), zinc (Zn), tin (Sn), niobium (Nb), Indium (In), Yttrium (Y), Lanthanum (La), Zirconium (Zr), Tantalum (Ta), Hafnium (Hf), Strontium (Sr), Barium (Ba), Calcium (Ca), Vanadium (V), A metal oxide semiconductor of at least one metal element such as tungsten (W) is preferable, and nitrogen (N), carbon (C), fluorine (F), sulfur (S), chlorine (Cl), phosphorus (P 1) or more of non-metallic elements such as Titanium oxide or the like is preferable because it has an electron energy band gap in the range of 2 to 5 eV, which is larger than the energy of visible light. In addition, the porous semiconductor layer 4 is preferably an n-type semiconductor whose conduction band is lower than the conduction band of Beniculium yellow 5 at the electron energy level.

多孔質の半導体層4としては、二酸化チタン等からなるとともに内部に微細な空孔(空孔径が好ましくは10〜40nm程度のものであり、22nmのときに光電変換効率がピークを示す)を多数有する多孔質のn型酸化物半導体層等であるのがよい。多孔質の半導体層10の空孔径が10nm未満の場合、ベニコウジ黄色素5の浸透および吸着が阻害され、十分なベニコウジ黄色素5の吸着量が得られにくく、また、電解質の拡散が妨げられるために拡散抵抗が増大することから、光電変換効率が低下する傾向がある。40nmを
超えると、多孔質の半導体層4の比表面積が減少するため、ベニコウジ黄色素5の吸着量を確保するためには厚みを厚くしなければならなくなり、厚みを厚くしすぎると光が透過しにくくなり、ベニコウジ黄色素5が光を吸収できないこと、また、多孔質の半導体層4に注入された電荷の移動距離が長くなるため電荷の再結合によるロスが大きくなること、さらに、電解質の拡散距離も増大するため拡散抵抗が増大することから、やはり光電変換効率が低下する傾向がある。
The porous semiconductor layer 4 is made of titanium dioxide or the like and includes a large number of fine pores (having a pore diameter of preferably about 10 to 40 nm, and a peak in photoelectric conversion efficiency at 22 nm). A porous n-type oxide semiconductor layer or the like is preferable. When the pore diameter of the porous semiconductor layer 10 is less than 10 nm, the penetration and adsorption of the beige mushroom yellow 5 are hindered, and it is difficult to obtain a sufficient amount of adsorption of the beige mushroom yellow 5 and the diffusion of the electrolyte is hindered. Since the diffusion resistance increases, the photoelectric conversion efficiency tends to decrease. If the thickness exceeds 40 nm, the specific surface area of the porous semiconductor layer 4 decreases, so that it is necessary to increase the thickness in order to secure the amount of adsorption of Beniculium chlorophyll 5, and if the thickness is increased too much, light is transmitted. And the loss of light due to recombination of charges increases because the distance of movement of charges injected into the porous semiconductor layer 4 becomes longer. Since the diffusion distance also increases and the diffusion resistance increases, the photoelectric conversion efficiency also tends to decrease.

多孔質の半導体層4は、粒状体、または針状体,チューブ状体,柱状体等の線状体またはこれら種々の線状体が集合してなるものであって、多孔質体であることにより、ベニコウジ黄色素5を吸着する表面積が増え、光電変換効率を高めることができる。多孔質の半導体層4は、空孔率が20〜80%、より好適には40〜60%である多孔質体であるのがよい。多孔質化により、緻密体である場合と比較して、光作用極層としての表面積を1000倍以上に高めることができ、光吸収と光電変換と電子伝導を効率よく行うことができる。   The porous semiconductor layer 4 is a granular body, or a linear body such as a needle-shaped body, a tubular body, a columnar body, or a collection of these various linear bodies, and is a porous body. Thereby, the surface area which adsorb | sucks the beige mushroom yellow 5 increases, and a photoelectric conversion efficiency can be improved. The porous semiconductor layer 4 may be a porous body having a porosity of 20 to 80%, more preferably 40 to 60%. By making porous, the surface area as the light working electrode layer can be increased by 1000 times or more compared to the case of a dense body, and light absorption, photoelectric conversion, and electron conduction can be performed efficiently.

なお、多孔質の半導体層4の空孔率は、ガス吸着測定装置を用いて窒素ガス吸着法によって試料の等温吸着曲線を求め、BJH(Barrett-Joyner-Halenda)法,CI(Chemical
Ionization)法,DH(Dollimore-Heal)法等によって空孔容積を求め、これと試料の粒子密度から得ることができる。
The porosity of the porous semiconductor layer 4 is determined by obtaining an isothermal adsorption curve of the sample by a nitrogen gas adsorption method using a gas adsorption measuring device, and using a BJH (Barrett-Joyner-Halenda) method, a CI (Chemical).
The void volume can be obtained by the ionization method, the DH (Dollimore-Heal) method, and the like, and obtained from this and the particle density of the sample.

多孔質の半導体層4の形状は、その表面積が大きくなりかつ電気抵抗が小さいのがよく、例えば微細粒子もしくは微細線状体からなるのがよい。その平均粒径もしくは平均線径は5〜500nmであるのがよく、より好適には10〜200nmがよい。ここで、平均粒径もしくは平均線径の5〜500nmにおける下限値は、これ未満になると材料の微細化ができず、上限値は、これを超えると接合面積が小さくなり、光電流が著しく小さくなることによる。   The shape of the porous semiconductor layer 4 should have a large surface area and a small electrical resistance, and is preferably composed of fine particles or fine linear bodies, for example. The average particle diameter or average wire diameter is preferably 5 to 500 nm, and more preferably 10 to 200 nm. Here, if the lower limit of the average particle diameter or the average wire diameter of 5 to 500 nm is less than this, the material cannot be miniaturized, and if the upper limit exceeds this, the junction area becomes smaller and the photocurrent is remarkably reduced. By becoming.

また、半導体層4を球状の多孔質体とすることにより、この半導体層4の球面上にベニコウジ黄色素5を吸着させて担持することにより、色素増感型光電変換体としての表面が凹凸状となり、光閉じ込め効果をもたらして、光電変換効率をより高めることができる。   Further, by making the semiconductor layer 4 a spherical porous body, the surface of the semiconductor layer 4 is adsorbed and supported on the spherical surface of the semiconductor layer 4 so that the surface as the dye-sensitized photoelectric converter is uneven. Thus, a light confinement effect is brought about, and the photoelectric conversion efficiency can be further increased.

また、多孔質の半導体層4の厚みは1〜50μmが好ましく、より好適には10〜30μmがよい。ここで、1〜50μmにおける下限値はこれより厚みが小さくなると、光電変換作用が著しく小さくなって実用に適さず、上限値はこれを超えて厚みが厚くなると、光が透過しなくなって光が入射しにくくなることによる。   The thickness of the porous semiconductor layer 4 is preferably 1 to 50 μm, more preferably 10 to 30 μm. Here, the lower limit value at 1 to 50 μm is not suitable for practical use when the thickness is smaller than this, and the upper limit value is not suitable for practical use. This is because it becomes difficult to enter.

例えば多孔質の半導体層4が酸化チタンからなる場合、以下のようにして形成される。まず、TiOのアナターゼ粉末にアセチルアセトンを添加した後、脱イオン水とともに混練し、界面活性剤で安定化させた酸化チタンのペーストを作製する。作製したペーストをドクターブレード法やバーコート法等によって、透光性基板2上の透光性導電層3上に一定速度で塗布し、大気中で300〜600℃、好適には400〜500℃で、10〜60分、好適には20〜40分加熱処理することにより、多孔質の半導体層4を形成する。この手法は簡便であり、好ましい。 For example, when the porous semiconductor layer 4 is made of titanium oxide, it is formed as follows. First, acetylacetone is added to TiO 2 anatase powder, and then kneaded with deionized water to prepare a titanium oxide paste stabilized with a surfactant. The prepared paste is applied at a constant speed onto the light-transmitting conductive layer 3 on the light-transmitting substrate 2 by a doctor blade method, a bar coating method, or the like, and is 300 to 600 ° C., preferably 400 to 500 ° C. in the atmosphere. The porous semiconductor layer 4 is formed by heat treatment for 10 to 60 minutes, preferably 20 to 40 minutes. This method is simple and preferable.

多孔質の半導体層4の低温成長法としては、電析法、泳動電着法、水熱合成法等が好ましく、電子輸送特性を高めるための後処理としては、マイクロ波処理、CVD法によるプラズマ処理や熱触媒処理等、UV照射処理等がよい。低温成長法による多孔質の半導体層4としては、電析法による多孔質ZnO層、泳動電着法による多孔質TiO層等からなるものがよい。 As the low temperature growth method of the porous semiconductor layer 4, an electrodeposition method, an electrophoretic electrodeposition method, a hydrothermal synthesis method or the like is preferable. As a post-treatment for improving electron transport properties, a microwave treatment or a plasma by a CVD method is used. UV irradiation treatment, etc., such as treatment and thermal catalyst treatment are preferred. The porous semiconductor layer 4 formed by the low temperature growth method is preferably composed of a porous ZnO layer formed by the electrodeposition method, a porous TiO 2 layer formed by the electrophoretic electrodeposition method, and the like.

また、多孔質の半導体層4の多孔質体の表面に、TiCl処理、即ちTiCl、溶液に70℃度で30分間浸漬し、水洗し、450℃で30分間焼成する処理を施すとよく、電子電導性がよくなって光電変換効率が高まる。 Further, the surface of the porous body of the porous semiconductor layer 4 may be treated with TiCl 4 treatment, that is, TiCl, immersed in a solution at 70 ° C. for 30 minutes, washed with water, and fired at 450 ° C. for 30 minutes. Electronic conductivity is improved and photoelectric conversion efficiency is increased.

また、多孔質の半導体層4と透光性導電層3の間に、n型酸化物半導体から成る極薄(厚み200nm程度)の緻密層を挿入するとよく、逆電流が抑制できるので光電変換効率が高まる。   In addition, an ultrathin (thickness: about 200 nm) dense layer made of an n-type oxide semiconductor may be inserted between the porous semiconductor layer 4 and the translucent conductive layer 3, and the reverse current can be suppressed, so that the photoelectric conversion efficiency can be suppressed. Will increase.

また、多孔質の半導体層4は、酸化物半導体微粒子の焼結体から成るとともに、酸化物半導体微粒子の平均粒径が透光性基板3側より厚み方向に漸次大きくなっていることが好ましく、例えば多孔質の半導体層4が酸化物半導体微粒子の平均粒径が異なる2層の積層体からなるものとするのがよい。具体的には、透光性導電層3側に平均粒径が小さい酸化物半導体微粒子を用い、対極12側に平均粒径が大きい酸化物半導体微粒子(散乱粒子)を用いることで、平均粒径が大きい多孔質の半導体層4によって光散乱と光反射による光閉じ込め効果が生じ、光電変換効率を高めることができる。   The porous semiconductor layer 4 is preferably composed of a sintered body of oxide semiconductor fine particles, and the average particle size of the oxide semiconductor fine particles is preferably gradually increased in the thickness direction from the translucent substrate 3 side. For example, the porous semiconductor layer 4 is preferably composed of a two-layer laminate in which the average particle diameters of the oxide semiconductor particles are different. Specifically, by using oxide semiconductor fine particles having a small average particle diameter on the translucent conductive layer 3 side, and using oxide semiconductor fine particles (scattering particles) having a large average particle diameter on the counter electrode 12 side, the average particle diameter is obtained. The porous semiconductor layer 4 having a large thickness produces a light confinement effect due to light scattering and light reflection, and can increase the photoelectric conversion efficiency.

より具体的には、平均粒径が小さい酸化物半導体微粒子として、平均粒径が約20nmのものを100wt%(重量%)使用し、平均粒径が大きい酸化物半導体微粒子として、平均粒径が約10nmのものを10wt%及び平均粒径が約400nmのものを90wt%混合して使用すればよい。これらの重量比、平均粒径、それぞれの膜厚を変えることによって、最適な光閉じ込め効果が得られる。また、積層数を2層から3層以上の複数層に増やしたり、これらの境界が生じないように塗布形成したりすることにより、平均粒径を透光性導電層3側から厚み方向に漸次大きくなるように形成することができる。   More specifically, as oxide semiconductor fine particles having a small average particle diameter, 100 wt% (wt%) having an average particle diameter of about 20 nm is used, and as the oxide semiconductor fine particles having a large average particle diameter, the average particle diameter is What is necessary is just to use 10 wt% of about 10 nm, and 90 wt% of those having an average particle diameter of about 400 nm. By changing the weight ratio, the average particle diameter, and the respective film thicknesses, an optimum light confinement effect can be obtained. Further, by increasing the number of laminated layers from two layers to three or more layers, or by coating and forming such that these boundaries do not occur, the average particle diameter is gradually increased from the translucent conductive layer 3 side in the thickness direction. It can be formed to be large.

多孔質の半導体層4にベニコウジ黄色素5を吸着させる方法としては、例えば透光性基板3上に形成された多孔質の半導体層4を、ベニコウジ黄色素5を溶解した溶液に浸漬する方法が挙げられる。   An example of a method for adsorbing B. niger 5 on the porous semiconductor layer 4 is a method of immersing the porous semiconductor layer 4 formed on the translucent substrate 3 in a solution in which the B. subtilis 5 is dissolved. Can be mentioned.

多孔質の半導体層4にベニコウジ黄色素5を吸着させる際のベニコウジ黄色素5を溶解させる溶液の溶媒としては、水、エタノール等のアルコール類,アセトン等のケトン類,ジエチルエーテル等のエーテル類,アセトニトリル等の窒素化合物等を1種または2種以上混合したものが挙げられる。溶液中の色素5の濃度は5×10-5〜2×10-3mol/l(l(リットル):1000cm3)程度が好ましい。 Examples of the solvent of the solution for dissolving Bencoccus aureus 5 when adsorbing it on the porous semiconductor layer 4 include water, alcohols such as ethanol, ketones such as acetone, ethers such as diethyl ether, Examples thereof include one or a mixture of two or more nitrogen compounds such as acetonitrile. The concentration of the dye 5 in the solution is preferably about 5 × 10 −5 to 2 × 10 −3 mol / l (l (liter): 1000 cm 3 ).

多孔質の半導体層4にベニコウジ黄色素5を吸着させる際のベニコウジ黄色素5を溶解させる溶液への吸着添加剤として、酢酸、硝酸、塩酸、硫酸、等の酸が添加されていることが好ましい。溶液中の酸の濃度は0.02〜10重量パーセント程度が好ましい。   It is preferable that an acid such as acetic acid, nitric acid, hydrochloric acid, sulfuric acid, or the like is added as an adsorbing additive to a solution for dissolving Beniculium chlorophyll 5 at the time of adsorbing Beniculium chlorophyll 5 on porous semiconductor layer 4. . The concentration of the acid in the solution is preferably about 0.02 to 10 weight percent.

多孔質の半導体層4にベニコウジ黄色素5を吸着させる際、溶液および雰囲気の温度の条件は特に限定するものではなく、例えば、大気圧下もしくは真空中、室温もしくは加熱の条件が挙げられる。ベニコウジ黄色素5の吸着にかける時間はベニコウジ黄色素5および溶液の種類、溶液の濃度、ベニコウジ黄色素5の溶液の循環量等により適宜調整することができる。これにより、ベニコウジ黄色素5を多孔質の半導体層4に吸着させることができる。   When adsorbing B. niger yellow 5 on the porous semiconductor layer 4, the temperature conditions of the solution and the atmosphere are not particularly limited, and examples thereof include atmospheric pressure or vacuum, room temperature, or heating conditions. The time required for the adsorption of Beniculium chlorophyll 5 can be adjusted as appropriate according to the type of Beniculium radix 5 and the type of solution, the concentration of the solution, the circulation amount of the solution of Beniculium chlorophyll 5 and the like. This makes it possible to adsorb the beige white yellow 5 to the porous semiconductor layer 4.

封止部材8は、厚み(高さ)が1〜1000μm程度であることが好ましい。1μm未満では、多孔質半導体層4の厚みよりも薄くなってしまうため、対極12と共に電荷輸送層7を封止することが難しくなる。1000μmを超えると、電荷輸送層7が厚くなりすぎて内部抵抗が増加することにより、光電変換素子1の光電変換効率が低下する傾向があるからである。   The sealing member 8 preferably has a thickness (height) of about 1 to 1000 μm. If it is less than 1 μm, the thickness of the porous semiconductor layer 4 becomes thinner, so that it becomes difficult to seal the charge transport layer 7 together with the counter electrode 12. If the thickness exceeds 1000 μm, the charge transport layer 7 becomes too thick and the internal resistance increases, so that the photoelectric conversion efficiency of the photoelectric conversion element 1 tends to decrease.

封止部材8は、ポリエチレン,ポリプロピレン,エポキシ樹脂,フッ素樹脂またはシリコーン樹脂等の樹脂接着剤、もしくはガラスフリット,セラミックス等の無機接着剤からなる。   The sealing member 8 is made of a resin adhesive such as polyethylene, polypropylene, epoxy resin, fluororesin or silicone resin, or an inorganic adhesive such as glass frit or ceramics.

封止部材8によって電荷輸送層7を封止することから、光電変換素子1の光照射および高温加熱に対する耐久性及び信頼性を有効に保持できる。即ち、電荷輸送層7が光照射および高温加熱によって光電変換素子から漏出するのを有効に抑えることができる。   Since the charge transport layer 7 is sealed by the sealing member 8, the durability and reliability of the photoelectric conversion element 1 against light irradiation and high-temperature heating can be effectively maintained. That is, leakage of the charge transport layer 7 from the photoelectric conversion element due to light irradiation and high-temperature heating can be effectively suppressed.

また、電荷輸送層7は液状電解質もしくはゲル状電解質であることがよい。電荷の輸送特性に優れる液状電解質もしくはゲル状電解質を用いることによって、光電変換効率が向上する。また、電荷輸送層7は、ポリマー電解質等の固体電解質、ポリチオフェン・ポリピロール,ポリフェニレンビニレン等の導電性ポリマー、またはフラーレン誘導体,ペンタセン誘導体,ペリレン誘導体,トリフェニルジアミン誘導体等の有機分子電子輸送剤から成るものであってもよい。   The charge transport layer 7 is preferably a liquid electrolyte or a gel electrolyte. Photoelectric conversion efficiency is improved by using a liquid electrolyte or a gel electrolyte excellent in charge transport characteristics. The charge transport layer 7 is made of a solid electrolyte such as a polymer electrolyte, a conductive polymer such as polythiophene / polypyrrole or polyphenylene vinylene, or an organic molecular electron transport agent such as a fullerene derivative, a pentacene derivative, a perylene derivative, or a triphenyldiamine derivative. It may be a thing.

また、電荷輸送層7は、ヨウ素/ヨウ化物塩,臭素/臭化物塩,コバルト錯体およびフェロシアン化カリウム等を含む。   The charge transport layer 7 contains iodine / iodide salt, bromine / bromide salt, cobalt complex, potassium ferrocyanide, and the like.

電荷輸送層7の厚みは0.001〜500μm程度がよい。0.001μm未満では、光電変換電極6側と対極12側が接してショートするおそれがある。500μmを超えると、抵抗成分である電荷輸送層7の増加による光電変換効率の低下を招き易く、また、電荷輸送層7が液状電解質である場合、液体部分の増量による封止の不具合が生じ易い。   The thickness of the charge transport layer 7 is preferably about 0.001 to 500 μm. If it is less than 0.001 μm, the photoelectric conversion electrode 6 side and the counter electrode 12 side may come into contact with each other to cause a short circuit. If it exceeds 500 μm, the photoelectric conversion efficiency is likely to decrease due to an increase in the charge transport layer 7 that is a resistance component, and if the charge transport layer 7 is a liquid electrolyte, a sealing failure due to an increase in the liquid portion is likely to occur. .

Pt等から成る触媒層9は、その好適な厚みが0.5〜20nm程度と非常に薄いものであるため、図1に示すように、複数の島状に形成される。   Since the suitable thickness of the catalyst layer 9 made of Pt or the like is as very thin as about 0.5 to 20 nm, it is formed in a plurality of island shapes as shown in FIG.

触媒層9は、導電層3上に複数の島状に形成されるが、その厚みは0.5〜100nm程度がよい。0.5nm未満では、島状の触媒層7同士の間の距離が離れすぎて、触媒効果が得られにくくなる。   The catalyst layer 9 is formed in a plurality of islands on the conductive layer 3, and the thickness is preferably about 0.5 to 100 nm. If the thickness is less than 0.5 nm, the distance between the island-shaped catalyst layers 7 is too large, and it becomes difficult to obtain a catalytic effect.

また、本実施形態の光電変換素子1は、触媒層9が、白金,パラジウム,ロジウム,カーボンまたはポリチオフェンから成ることがよい。これらの材料は、電荷輸送層7に対して過電圧の低い触媒である。過電圧を下げる触媒層9は、電荷輸送層7と透光性導電層10との電荷の授受を容易にするための層であり、電荷輸送層7と透光性導電層10とのオーミック接合を確保するための層である。なお、過電圧とは、光電変換素子1を動作させるために最初に印加する大きな電圧のことをいう。   In the photoelectric conversion element 1 of the present embodiment, the catalyst layer 9 is preferably made of platinum, palladium, rhodium, carbon, or polythiophene. These materials are catalysts having a low overvoltage with respect to the charge transport layer 7. The catalyst layer 9 that lowers the overvoltage is a layer for facilitating transfer of charges between the charge transport layer 7 and the translucent conductive layer 10, and provides an ohmic junction between the charge transport layer 7 and the translucent conductive layer 10. It is a layer for securing. Note that the overvoltage refers to a large voltage that is first applied to operate the photoelectric conversion element 1.

また、本実施形態の光電変換素子1は、図1に示すように、対極12が、導電層10を具備した基板11と、この基板11上に形成された触媒層9を有していることが好ましい。この場合、対極12の出力を、触媒層9を通じて導電層10側に効率的に取り出すことができる。導電層10を具備した基板11が金属基板から成る場合、チタン,モリブデン,タングステン,ニッケル等から成るものを用いることができる。導電性基板11が、透光性導電層10にて表面に形成された透光性導電基板から成る場合、ガラス板またはプラスチック板から成る透光性基板11上に、ITO層、酸化スズ層等から成る透光性導電層10を形成したものを用いることができる。   In the photoelectric conversion element 1 of the present embodiment, the counter electrode 12 has a substrate 11 having a conductive layer 10 and a catalyst layer 9 formed on the substrate 11 as shown in FIG. Is preferred. In this case, the output of the counter electrode 12 can be efficiently taken out to the conductive layer 10 side through the catalyst layer 9. When the substrate 11 having the conductive layer 10 is made of a metal substrate, a substrate made of titanium, molybdenum, tungsten, nickel, or the like can be used. When the conductive substrate 11 is made of a light-transmitting conductive substrate formed on the surface with the light-transmitting conductive layer 10, an ITO layer, a tin oxide layer or the like is formed on the light-transmitting substrate 11 made of a glass plate or a plastic plate. What formed the translucent conductive layer 10 which consists of can be used.

本発明の光発電装置は、上記本発明の光電変換素子1を発電手段として用い、発電手段の発電電力を負荷へ供給するように成した構成である。具体的には、光発電装置は、光電変換素子1、光電変換素子1から出力された直流電流を交流電流に変換するインバータ装
置、電気モーターや照明装置等の負荷等を有する構成であり、建築物の屋根や壁面に設置される太陽電池等として使用される。
The photovoltaic device of the present invention has a configuration in which the photoelectric conversion element 1 of the present invention is used as a power generation means, and the generated power of the power generation means is supplied to a load. Specifically, the photovoltaic device has a configuration including a photoelectric conversion element 1, a load such as an inverter device that converts a direct current output from the photoelectric conversion device 1 into an alternating current, an electric motor, a lighting device, and the like. Used as a solar cell or the like installed on the roof or wall of an object.

以下、本発明の光電変換素子1の実施例について説明する。図1に示される構成の光電変換素子を以下のようにして作製した。   Hereinafter, the Example of the photoelectric conversion element 1 of this invention is described. A photoelectric conversion element having the configuration shown in FIG. 1 was produced as follows.

透光性導電層3を具備した透光性基板2として、シート抵抗10Ω/□(スクエア)の厚み1μmのSnO:F層(フッ素ドープSnO層)から成る透光性導電層3が一主面(例えば表面)に形成されたガラス基板(サイズ2cm×2cm、厚み4mm)を準備した。 As the translucent substrate 2 provided with the translucent conductive layer 3, a translucent conductive layer 3 made of a SnO 2 : F layer (fluorine-doped SnO 2 layer) having a sheet resistance of 10Ω / □ (square) and a thickness of 1 μm is used. A glass substrate (size 2 cm × 2 cm, thickness 4 mm) formed on the main surface (for example, the surface) was prepared.

この透光性導電層3の上に、酸化チタンからなる多孔質の半導体層4を形成した。酸化チタンは平均粒径20nmおよび400nmのナノ粒子からなる2種のペーストを順次スクリーン印刷法により積層塗布して、450℃で30分加熱処理した。   A porous semiconductor layer 4 made of titanium oxide was formed on the translucent conductive layer 3. As for titanium oxide, two types of paste composed of nanoparticles having an average particle diameter of 20 nm and 400 nm were sequentially laminated and applied by screen printing, followed by heat treatment at 450 ° C. for 30 minutes.

他方、対極12側の導電層10を具備した基板11として、シート抵抗15Ω/□(スクエア)の厚み1μmのSnO:F層(フッ素ドープSnO層)から成る導電層11が一主面(表面)に形成されたガラス基板(サイズ2cm×2cm、厚み2mm)を準備した。 On the other hand, as a substrate 11 having a conductive layer 10 on the counter electrode 12 side, a conductive layer 11 made of a SnO 2 : F layer (fluorine-doped SnO 2 layer) having a sheet resistance of 15 Ω / □ (square) and a thickness of 1 μm is formed on one main surface ( A glass substrate (size 2 cm × 2 cm, thickness 2 mm) formed on the surface) was prepared.

この透光性導電層10の上に、触媒層9としてのPt(白金)層を、厚み2nmとなるように、HPtCl塗布・熱分解法によって形成した。このとき、Pt層は、厚みが非常に薄いために島状に成膜された。 On this translucent conductive layer 10, a Pt (platinum) layer as the catalyst layer 9 was formed by H 2 PtCl 6 coating / pyrolysis so as to have a thickness of 2 nm. At this time, since the Pt layer was very thin, it was formed into an island shape.

ベニコウジ黄色素5としては、ハイムーンイエローS-200A(ヤヱガキ醗酵技研(株)製)を用いた。このハイムーンイエローSA200を水に10倍で希釈し、酢酸を0.25重量パーセント加え、酸化チタンから成る多孔質の半導体層4に吸着させた。   As the beige white yellow 5, High Moon Yellow S-200A (manufactured by Yakigaki Fermentation Technology Co., Ltd.) was used. This high moon yellow SA200 was diluted 10 times with water, 0.25 weight percent of acetic acid was added, and adsorbed on the porous semiconductor layer 4 made of titanium oxide.

ベニコウジ黄色素5は、図2のとおり、二つの色素の混合体としてベニコウジから抽出される天然色素である。   As shown in FIG. 2, the white beetle yellow dye 5 is a natural color extracted from the white beetle as a mixture of two dyes.

次に、透光性導電層2上に形成された、ベニコウジ黄色素5が吸着した多孔質半導体層4の外周部と、導電層10上に形成された触媒層9の外周部とを、フィルム状の封止部材8である熱可塑性接着剤(三井-デュポンポリケミカル社製、商品名「ハイミラン」)を介して、貼り合わせて気密に封止した。透光性基板2と基板11の間の間隔(電荷輸送層7の厚みに相当する)は35μmであった。   Next, an outer peripheral portion of the porous semiconductor layer 4 formed on the translucent conductive layer 2 and adsorbed with the brown beetle yellow 5 and an outer peripheral portion of the catalyst layer 9 formed on the conductive layer 10 are formed into a film. The sealing member 8 was bonded and hermetically sealed through a thermoplastic adhesive (trade name “HIMILAN”, manufactured by Mitsui-DuPont Polychemical Co., Ltd.). The distance between the translucent substrate 2 and the substrate 11 (corresponding to the thickness of the charge transport layer 7) was 35 μm.

その後、基板11に予め形成していた貫通孔から、電荷輸送層7となる液状電解質として、沃素(I),沃化リチウム(LiI),テトラブチルピリジンを含む液状電解質を注入して、光電変換素子1を作製した。 Thereafter, a liquid electrolyte containing iodine (I 2 ), lithium iodide (LiI), and tetrabutylpyridine is injected as a liquid electrolyte to be the charge transport layer 7 from a through-hole formed in the substrate 11 in advance. A conversion element 1 was produced.

また、比較例として、表1に示すように、他の天然色素である、ムラサキイモ色素、ムラサキトウモロコシ色素、アカダイコン色素、アカキャベツ色素、ブドウ果皮色素、ブドウ果汁色素、クチナシ黄色素、クチナシ青色素、クチナシ赤色素、エルダベリー色素、ウコン色素、ベニコウジ色素、ベニバナ黄色素、アナトー色素、ビートレッド、シソ色素、コチニール色素、トウガラシ色素を使用した光電変換素子を作製した。
As a comparative example, as shown in Table 1, other natural pigments such as purple potato pigment, purple corn pigment, red radish pigment, red cabbage pigment, grape skin pigment, grape juice pigment, gardenia yellow, and garden blue A photoelectric conversion element using a pigment, a gardenia red pigment, an elderberry pigment, a turmeric pigment, a beech powder, a safflower yellow, an anato pigment, a beet red, a perilla pigment, a cochineal pigment, and a red pepper pigment was produced.

Figure 0005489621
Figure 0005489621

実施例および比較例の光電変換素子について、AM1.5のソーラーシミュレータの光(100mW/cm2)を照射し、光電特性の測定を行った。図1に示す本実施形態のベニコウジ黄色素5を使用した光電変換素子1は、短絡光電流密度が3.12mA/cm2、開放起電力が530mV、曲線因子(FF:Fill Factor)が0.715、変換効率が1.19%であった。 About the photoelectric conversion element of an Example and a comparative example, the light (100 mW / cm < 2 >) of the solar simulator of AM1.5 was irradiated, and the photoelectric characteristic was measured. The photoelectric conversion element 1 using the beige-white yellow element 5 of this embodiment shown in FIG. 1 has a short-circuit photocurrent density of 3.12 mA / cm 2 , an open electromotive force of 530 mV, and a fill factor (FF) of 0. 715, conversion efficiency was 1.19%.

これに対して、表1に示される比較例の光電変換素子は、短絡光電流密度が全て1%以下の変換効率であった。ベニコウジ黄色素5以外で最も高かったのはウコン色素の0.86%であった、
本実施例の光電変換素子1は比較例の光電変換素子と比較して光電変換効率が38%以上も高いものであった。これは、ベニコウジ黄色素5の特性によるものであり、比較例に比べて高い光電変換効率を与える天然色素が見出された。
On the other hand, the photoelectric conversion elements of the comparative examples shown in Table 1 all had a conversion efficiency with a short-circuit photocurrent density of 1% or less. The highest value other than B. niger yellow 5 was 0.86% of the turmeric pigment,
The photoelectric conversion element 1 of this example had a photoelectric conversion efficiency as high as 38% or more as compared with the photoelectric conversion element of the comparative example. This is due to the characteristics of Benicorium oxyne 5 and a natural pigment that gives a higher photoelectric conversion efficiency than the comparative example was found.

本発明の光発電装置は、上記光電変換素子1を発電手段として用い、発電手段の発電電力を負荷へ供給するように成した構成で、より具体的には光電変換素子1から出力された直流電流を交流電流に変換するインバータ装置、電気モーターや照明装置等の負荷等を有する構成であり、建築物の屋根や壁面に設置される太陽電池等として利用される。   The photovoltaic device according to the present invention has a configuration in which the photoelectric conversion element 1 is used as a power generation means and the generated power of the power generation means is supplied to a load. More specifically, the direct current output from the photoelectric conversion element 1 is provided. An inverter device that converts an electric current into an alternating current, a load such as an electric motor or a lighting device, and the like are used as a solar cell or the like installed on the roof or wall of a building.

1:光電変換素子
2:透光性基板
3:透光性導電層
4:多孔質の半導体層
5:ベニコウジ黄色素
6:光電変換電極
7:電荷輸送層(電解質層)
8:封止部材
9: 触媒層
10:透光性導電層
11:基板
12:対極(触媒層9・透光性導電層10・基板11)
S:入射光
1: Photoelectric conversion element 2: Translucent substrate 3: Translucent conductive layer 4: Porous semiconductor layer 5: Benikouji yellow 6: Photoelectric conversion electrode 7: Charge transport layer (electrolyte layer)
8: Sealing member 9: Catalyst layer 10: Translucent conductive layer 11: Substrate 12: Counter electrode (catalyst layer 9, translucent conductive layer 10, substrate 11)
S: Incident light

Claims (7)

一主面に透光性基板と、透光性基板上に形成された透光性導電層と、透光性導電層上に形成された多孔質半導体層と、多孔質半導体層上に配置されたベニコウジ黄色素と、上記ベニコウジ黄色素と多孔質半導体で形成された光電変換層と間隔をあけて対向するよう配置された対極と、光電変換層と対極との間に設けられた電荷輸送層と、光電変換層と電荷輸送層と対極の周囲を取り囲んで形成された封止部材とで形成されていることを特徴とする光電変換素子。   A light-transmitting substrate on one main surface, a light-transmitting conductive layer formed on the light-transmitting substrate, a porous semiconductor layer formed on the light-transmitting conductive layer, and disposed on the porous semiconductor layer A counter electrode disposed to be opposed to the photoelectric conversion layer formed of a porous semiconductor, and a charge transport layer provided between the photoelectric conversion layer and the counter electrode And a photoelectric conversion layer, a charge transport layer, and a sealing member formed so as to surround the counter electrode. 前記透光性基板は、透明なガラス板またはプラスチック板から成ることを特徴とする請求項1記載の光電変換素子。   The photoelectric conversion element according to claim 1, wherein the translucent substrate is made of a transparent glass plate or a plastic plate. 前記透光性導電層は、フッ素ドープ錫酸化物、インジウム錫酸化物、ガリウムドープ亜鉛酸化物、アルミドープ亜鉛酸化物、またはニオブドープチタン酸化物から成ることを特徴とする請求項1または2のいずれか記載の光電変換素子。   3. The light-transmitting conductive layer is made of fluorine-doped tin oxide, indium tin oxide, gallium-doped zinc oxide, aluminum-doped zinc oxide, or niobium-doped titanium oxide. Any one of the photoelectric conversion elements. 前記多孔質半導体層は、TiO、WO、ZnO、Nb、Ta、またはSrTiOから成ることを特徴とする請求項1〜3のいずれか1項に記載の光電変換素子。 4. The photoelectric conversion according to claim 1, wherein the porous semiconductor layer is made of TiO 2 , WO 3 , ZnO, Nb 2 O 5 , Ta 2 O 5 , or SrTiO 3. element. 前記電荷輸送層は、沃化物、コバルト錯体、鉄錯体、CuI、CuSCN、または有機ホール輸送材から成ることを特徴とする請求項1〜4のいずれか1項に記載の光電変換素子。   5. The photoelectric conversion element according to claim 1, wherein the charge transport layer is made of an iodide, a cobalt complex, an iron complex, CuI, CuSCN, or an organic hole transport material. 前記対極に使用される触媒層は、白金,パラジウム,ロジウム,カーボンまたはポリチオフェンから成ることを特徴とする請求項1〜5のいずれか1項に記載の光電変換素子。   The photoelectric conversion element according to claim 1, wherein the catalyst layer used for the counter electrode is made of platinum, palladium, rhodium, carbon, or polythiophene. 請求項1〜6のいずれか1項に記載の光電変換素子を発電手段として用い、前記発電手段の発電電力を負荷へ供給することを特徴とする光発電装置。   A photovoltaic device using the photoelectric conversion element according to any one of claims 1 to 6 as a power generation means, and supplying the generated power of the power generation means to a load.
JP2009225230A 2009-09-29 2009-09-29 Photoelectric conversion element and photovoltaic device using the photoelectric conversion element Active JP5489621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009225230A JP5489621B2 (en) 2009-09-29 2009-09-29 Photoelectric conversion element and photovoltaic device using the photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009225230A JP5489621B2 (en) 2009-09-29 2009-09-29 Photoelectric conversion element and photovoltaic device using the photoelectric conversion element

Publications (2)

Publication Number Publication Date
JP2011076791A JP2011076791A (en) 2011-04-14
JP5489621B2 true JP5489621B2 (en) 2014-05-14

Family

ID=44020593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009225230A Active JP5489621B2 (en) 2009-09-29 2009-09-29 Photoelectric conversion element and photovoltaic device using the photoelectric conversion element

Country Status (1)

Country Link
JP (1) JP5489621B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013004238A (en) * 2011-06-14 2013-01-07 Kobe Steel Ltd Optical response element
GB201208793D0 (en) 2012-05-18 2012-07-04 Isis Innovation Optoelectronic device
ES2566914T3 (en) 2012-05-18 2016-04-18 Isis Innovation Limited Photovoltaic device comprising perovskites
EP3029696B1 (en) 2012-05-18 2018-11-14 Oxford University Innovation Limited Optoelectronic device comprising porous scaffold material and perovskites
JP6263186B2 (en) 2012-09-18 2018-01-17 オックスフォード ユニヴァーシティ イノヴェーション リミテッド Optoelectronic device
CN103280325A (en) * 2013-06-06 2013-09-04 山东大学 Sensitized solar cell based on natural organic dye and TiO2 monocrystal nano array
IT201900006939A1 (en) * 2019-05-17 2020-11-17 Vinicola Serena S R L In Forma Breve V S S R L PROCEDURE FOR THE REALIZATION OF PHOTOELECTROCHEMICAL CELLS WITH THE USE OF DYES EXTRACTED FROM WINE MAKING RESIDUES.

Also Published As

Publication number Publication date
JP2011076791A (en) 2011-04-14

Similar Documents

Publication Publication Date Title
KR100696529B1 (en) Electrode for photoelectric conversion device including metal elements and dye sensitized solar cell using the same
JP5489621B2 (en) Photoelectric conversion element and photovoltaic device using the photoelectric conversion element
Yang et al. Novel tandem structure employing mesh-structured Cu2S counter electrode for enhanced performance of quantum dot-sensitized solar cells
Zhang et al. Noble-metal-free perovskite–BiVO4 tandem device with simple preparation method for unassisted solar water splitting
Lin et al. Flexible dye-sensitized solar cells with one-dimensional ZnO nanorods as electron collection centers in photoanodes
JP4925605B2 (en) Photoelectric conversion device and photovoltaic device using the same
JP4969046B2 (en) Photoelectric conversion device and photovoltaic device using the same
JP2012059599A (en) Carbon based electrode and electrochemical device
JP5586489B2 (en) Electrode substrate for dye-sensitive solar cell and dye-sensitive solar cell comprising the same
JP4966525B2 (en) Dye-sensitized solar cell, its photoelectrode substrate, and method for producing the photoelectrode substrate
JP2009009936A (en) Photoelectric conversion device
JP2011165580A (en) Photoelectric conversion element, and photovoltaic generator device using the photoelectric conversion element
Rong et al. Monolithic all-solid-state dye-sensitized solar cells
Alfa et al. Fabrication and Characterisation of Titanium Dioxide Based Dye Sensitized Solar Cell using Flame of the Forest Dye
Effendi et al. Studies on graphene zinc-oxide nanocomposites photoanodes for high-efficient dye-sensitized solar cells
KR101447618B1 (en) Light sensitized Solar Cell and Method for manufacturing the same
JP2008244258A (en) Photoelectric conversion device and photovoltaic generator
CN101262019A (en) Photoelectrical chemical solar battery for silicon nano line
Orebiyi et al. Dye-sensitized solar cells
KR100670331B1 (en) Plastic electrode and solar cells using the same
Tuc Altaf et al. Recent Advances in Photochargeable Integrated and All-in-One Supercapacitor Devices
JP5153248B2 (en) Photoelectric conversion device and photovoltaic power generation device
KR101462356B1 (en) Dye sensitized solar cell and method of fabricating the same
Nursam et al. Low-cost monolithic dye-sensitized solar cells fabricated on single conductive substrate
Albadi’ah et al. Progress on integrated supercapacitors and DSSC structure and performance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140225

R150 Certificate of patent or registration of utility model

Ref document number: 5489621

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250