JP5484277B2 - System and method for measuring total organic carbon content in ultrapure water - Google Patents

System and method for measuring total organic carbon content in ultrapure water Download PDF

Info

Publication number
JP5484277B2
JP5484277B2 JP2010209234A JP2010209234A JP5484277B2 JP 5484277 B2 JP5484277 B2 JP 5484277B2 JP 2010209234 A JP2010209234 A JP 2010209234A JP 2010209234 A JP2010209234 A JP 2010209234A JP 5484277 B2 JP5484277 B2 JP 5484277B2
Authority
JP
Japan
Prior art keywords
ultrapure water
hydrogen peroxide
conductivity
organic carbon
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010209234A
Other languages
Japanese (ja)
Other versions
JP2012063302A (en
Inventor
雅美 村山
一重 高橋
広 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2010209234A priority Critical patent/JP5484277B2/en
Publication of JP2012063302A publication Critical patent/JP2012063302A/en
Application granted granted Critical
Publication of JP5484277B2 publication Critical patent/JP5484277B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1826Water organic contamination in water
    • G01N33/1846Total carbon analysis

Description

本発明は、超純水中の全有機炭素含有量の測定システム及び方法に関する。   The present invention relates to a system and method for measuring the total organic carbon content in ultrapure water.

半導体分野で多く用いられる超純水の水質要求は、年々厳しくなってきている。超純水の水質指標の一つである全有機炭素成分(以下、TOCという)濃度は、現在1ppb以下が求められることが多い。しかし、今後より低いTOC濃度が求められる可能性もあり、高精度なTOC濃度測定方法が即急に求められている。   Water quality requirements for ultrapure water, which is often used in the semiconductor field, are becoming stricter year by year. Currently, the total organic carbon component (hereinafter referred to as TOC) concentration, which is one of the water quality indicators of ultrapure water, is often required to be 1 ppb or less. However, there is a possibility that a lower TOC concentration will be required in the future, and a highly accurate TOC concentration measurement method is urgently required.

超純水等における低いTOC濃度の測定方法として、紫外線(UV)照射によりTOCが分解され発生した二酸化炭素をガス透過膜を介して脱イオン水に取込み、脱イオン水の導電率の変化からTOC濃度を算出する方法(UV−ガス透過膜式導電率測定法)が知られている。この方法では、サンプルのpH調整やTOC分解効率の促進のためにリン酸や酸化剤を使用しており、有機物の高い分解効率が得られる。しかし、リン酸や酸化剤などの薬剤に含まれるTOCもサンプルと一緒に測定されるため、測定誤差が生じる可能性がある。また、炭素ガスを取り込んだ脱イオン水はイオン交換樹脂に通して循環使用される。イオン交換樹脂からの炭酸イオンのブレーク防止のため、定期的な交換が必要となる。   As a method for measuring a low TOC concentration in ultrapure water or the like, TOC is decomposed by ultraviolet (UV) irradiation and carbon dioxide generated is taken into deionized water through a gas permeable membrane. A method of calculating the concentration (UV-gas permeable membrane type conductivity measuring method) is known. In this method, phosphoric acid and an oxidizing agent are used for adjusting the pH of the sample and promoting the TOC decomposition efficiency, and a high decomposition efficiency of organic matter can be obtained. However, since the TOC contained in a medicine such as phosphoric acid and an oxidizing agent is also measured together with the sample, there is a possibility that a measurement error occurs. In addition, deionized water incorporating carbon gas is circulated through an ion exchange resin. Periodic replacement is required to prevent breakage of carbonate ions from the ion exchange resin.

低いTOC濃度を測定する他の方法として、紫外線(UV)照射により光酸化反応を生じさせ超純水の導電率の変化を直接測定する方法(UV光酸化−直接導電率測定方式)が知られている(特許文献1)。この方法では、超純水に紫外線を照射し、光酸化触媒を用いてOHフリーラジカルを生成させ、TOCを水と二酸化炭素に分解する。このときCO2+H2O⇔H++HCO3-で表わされる平衡状態が生じ、TOCの分解が進行するに伴い導電率が増加する。従って、導電率の変化を測定することによって超純水中のTOC濃度を求めることができる。この方法は被測定水の超純水に薬剤等を添加せず、直接被測定水の導電率の変化を測定するため、他の有機炭素成分が混入する可能性が低く、超純水などに含まれる微量のTOC濃度を高精度で測定することができる。 As another method for measuring a low TOC concentration, there is known a method (UV photooxidation-direct conductivity measurement method) in which a photo-oxidation reaction is caused by ultraviolet (UV) irradiation to directly measure a change in conductivity of ultrapure water. (Patent Document 1). In this method, ultrapure water is irradiated with ultraviolet rays, OH free radicals are generated using a photooxidation catalyst, and TOC is decomposed into water and carbon dioxide. At this time, an equilibrium state represented by CO 2 + H 2 O⇔H + + HCO 3 is generated, and the conductivity increases as the decomposition of TOC proceeds. Therefore, the TOC concentration in ultrapure water can be determined by measuring the change in conductivity. This method does not add chemicals to the ultrapure water to be measured and directly measures the change in the conductivity of the water to be measured, so it is unlikely that other organic carbon components will be mixed. The trace amount of TOC contained can be measured with high accuracy.

特開2001-153828号公報Japanese Patent Laid-Open No. 2001-153828

超純水は一般的に10〜50ppb程度の濃度で過酸化水素を含んでいる。また、超純水製造工程において、TOCの除去効率向上のために、あらかじめ超純水に過酸化水素を添加することがある。このような工程を含む場合、超純水中により高濃度の過酸化水素が存在している可能性がある。従って、超純水の製造供給装置のライン内で超純水中のTOC濃度を測定する場合、通常は過酸化水素を含んだ状態でTOC濃度が測定される。   Ultrapure water generally contains hydrogen peroxide at a concentration of about 10 to 50 ppb. In the ultrapure water production process, hydrogen peroxide may be added to ultrapure water in advance in order to improve the TOC removal efficiency. When such a process is included, there is a possibility that a high concentration of hydrogen peroxide is present in the ultrapure water. Therefore, when measuring the TOC concentration in the ultrapure water in the line of the ultrapure water production and supply apparatus, the TOC concentration is usually measured in a state containing hydrogen peroxide.

本願発明者はUV光酸化−直接導電率測定方式では、過酸化水素の影響によりTOC濃度がばらつくことを見出した。TOC濃度のばらつきは測定の信頼性を大きく低下させるだけでなく、ばらつきが大きいと、超純水がTOC濃度の要求値を満たしていることの確認すら困難となる。特に10ppb以下の極微量のTOC濃度を測定する場合には、測定値に対する誤差の割合が大きくなる。超純水製造プロセスにおいては、測定誤差を考慮して必要以上にTOC濃度を低下させる必要が生じる。   The inventor of the present application has found that the TOC concentration varies due to the influence of hydrogen peroxide in the UV photooxidation-direct conductivity measurement method. The variation in the TOC concentration not only greatly reduces the reliability of the measurement, but if the variation is large, it is difficult to even confirm that the ultrapure water satisfies the required value of the TOC concentration. In particular, when measuring a very small amount of TOC concentration of 10 ppb or less, the ratio of error to the measured value increases. In the ultrapure water production process, it is necessary to reduce the TOC concentration more than necessary in consideration of measurement errors.

本発明は、超純水に含まれる過酸化水素による影響を抑え、超純水中のTOC濃度を安定して測定することが可能なTOCの測定システム及び測定方法を提供することを目的とする。   An object of the present invention is to provide a TOC measurement system and a measurement method capable of suppressing the influence of hydrogen peroxide contained in ultrapure water and stably measuring the TOC concentration in the ultrapure water. .

本発明による超純水中の全有機炭素成分濃度の測定システムは、過酸化水素を含む超純水から少なくとも一部の過酸化水素を除去することができる過酸化水素分解触媒と、過酸化水素分解触媒の後段に設けられた全有機炭素成分濃度測定装置と、を有している。全有機炭素成分濃度測定装置は、超純水を導入し超純水を保持する保持チャンバーと、保持チャンバーに保持されている超純水に紫外線を照射する紫外線照射部と、保持チャンバーに保持されている超純水が紫外線照射部による紫外線の照射を受けて導電率の時間変化率が所定の値以下となったときの、保持チャンバーに保持されている超純水の導電率を測定する導電率測定部と、導電率測定部で測定した導電率から、紫外線照射部による紫外線の照射を受ける前に超純水に含まれていた全有機炭素成分濃度を算出するデータ処理部と、を備えている。   A system for measuring the concentration of total organic carbon components in ultrapure water according to the present invention includes a hydrogen peroxide decomposition catalyst capable of removing at least a portion of hydrogen peroxide from ultrapure water containing hydrogen peroxide, And a total organic carbon component concentration measuring device provided at a subsequent stage of the cracking catalyst. The total organic carbon component concentration measuring device is held in a holding chamber that introduces ultrapure water and holds ultrapure water, an ultraviolet irradiation unit that irradiates ultrapure water held in the holding chamber with ultraviolet rays, and a holding chamber. Conductivity to measure the conductivity of ultrapure water held in the holding chamber when the ultrapure water is irradiated with ultraviolet rays from the ultraviolet irradiation unit and the time change rate of the conductivity is below a predetermined value. And a data processing unit that calculates the total organic carbon component concentration contained in the ultrapure water before receiving the ultraviolet irradiation from the ultraviolet irradiation unit from the conductivity measured by the conductivity measuring unit. ing.

本発明による超純水中の全有機炭素成分濃度の測定方法は、過酸化水素を濃度Xで含み全有機炭素成分濃度が10ppb以下である超純水から少なくとも一部の過酸化水素を除去する過酸化水素除去ステップと、過酸化水素除去ステップに続き、過酸化水素を含まずまたは過酸化水素を濃度X未満の濃度で含む超純水を保持チャンバーに保持し、保持チャンバーに保持されている超純水に紫外線を照射しながら、保持チャンバーに保持されている超純水の導電率を測定し、導電率の時間変化率が所定の値以下となったときの導電率を求めるステップと、導電率の時間変化率が所定の値以下となったときの導電率から、紫外線の照射を受ける前に超純水に含まれていた全有機炭素成分濃度を算出するステップと、を有している。   The method for measuring the total organic carbon component concentration in ultrapure water according to the present invention removes at least a portion of hydrogen peroxide from ultrapure water containing hydrogen peroxide at a concentration X and having a total organic carbon component concentration of 10 ppb or less. Following the hydrogen peroxide removal step and the hydrogen peroxide removal step, ultrapure water that does not contain hydrogen peroxide or contains hydrogen peroxide at a concentration less than X is held in the holding chamber and held in the holding chamber. Measuring the conductivity of ultrapure water held in the holding chamber while irradiating the ultrapure water with ultraviolet rays, and determining the conductivity when the time change rate of the conductivity is a predetermined value or less; Calculating the total organic carbon component concentration contained in the ultrapure water before being irradiated with ultraviolet rays from the conductivity when the time change rate of the conductivity is equal to or lower than a predetermined value. Yes.

過酸化水素は超純水の導電率を増加させるように作用する。従って、超純水を全有機炭素成分濃度測定装置に導入する前に、あらかじめ過酸化水素分解触媒に通し、過酸化水素の濃度を下げた状態で全有機炭素成分濃度を測定することで、過酸化水素が導電率に与える影響を抑え、その結果、全有機炭素成分濃度を安定して測定することができる。   Hydrogen peroxide acts to increase the conductivity of ultrapure water. Therefore, before introducing ultrapure water into the total organic carbon component concentration measuring device, the total organic carbon component concentration is measured by passing the hydrogen peroxide decomposition catalyst in advance and reducing the hydrogen peroxide concentration. The influence of hydrogen oxide on conductivity is suppressed, and as a result, the total organic carbon component concentration can be measured stably.

なお、「超純水」は一般に極めて純度の高い水を意味し、不純物の成分や濃度によって規定されるものではないが、本明細書ではTOC濃度が10ppb以下の条件を満たす水を「超純水」とする。   Note that “ultra pure water” generally means extremely high purity water and is not defined by the impurity component or concentration, but in this specification, “ultra pure water” refers to water that satisfies a TOC concentration of 10 ppb or less. “Water”.

本発明によれば、超純水に含まれる過酸化水素による影響を抑え、超純水中のTOC濃度を安定して測定することが可能なTOCの測定システム及び測定方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the measurement system and measurement method of TOC which can suppress the influence by the hydrogen peroxide contained in ultrapure water and can measure the TOC density | concentration in ultrapure water stably can be provided. .

本発明の一実施形態に係る超純水中の全有機炭素成分濃度の測定システムを示す概略構成図である。It is a schematic block diagram which shows the measurement system of the total organic carbon component density | concentration in the ultrapure water which concerns on one Embodiment of this invention. TOC濃度測定装置の概略構成図である。It is a schematic block diagram of a TOC density | concentration measuring apparatus. 実施例で用いた実験装置の概略構成図である。It is a schematic block diagram of the experimental apparatus used in the Example. 導電率と過酸化水素の関係を示すグラフである。It is a graph which shows the relationship between electrical conductivity and hydrogen peroxide. 実施例で用いた他の実験装置の概略構成図である。It is a schematic block diagram of the other experimental apparatus used in the Example.

以下、図面を参照して本発明の実施形態を説明する。図1は、本発明の一実施形態に係る超純水中の全有機炭素成分濃度の測定システム(以下、TOC濃度測定システムという)を示す概略構成図である。TOC濃度測定システム1は、超純水製造装置、超純水供給装置などの超純水が製造ないし使用される装置において、TOC濃度の測定が必要な部位に設置することができる。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram illustrating a total organic carbon component concentration measurement system (hereinafter referred to as a TOC concentration measurement system) in ultrapure water according to an embodiment of the present invention. The TOC concentration measurement system 1 can be installed at a site where measurement of the TOC concentration is required in an apparatus in which ultrapure water is manufactured or used, such as an ultrapure water production apparatus or an ultrapure water supply apparatus.

TOC濃度測定システム1は、過酸化水素分解触媒2と、過酸化水素分解触媒2の後段に設けられた全有機炭素濃度測定装置(以下、TOC濃度測定装置3という)と、を有している。TOC濃度測定システム1は、元弁11の設けられた導入配管12を介して、超純水製造装置の母管13等と接続されている。TOC濃度測定装置3は市販の装置でもよく、例えばA−1000XP(Anatel社製)などが挙げられる。市販の装置を用いる場合も、TOC濃度測定装置3の前段に過酸化水素分解触媒2を設けることで、本発明のTOC濃度測定システム1を構成することができる。   The TOC concentration measurement system 1 includes a hydrogen peroxide decomposition catalyst 2 and a total organic carbon concentration measurement device (hereinafter referred to as a TOC concentration measurement device 3) provided at a subsequent stage of the hydrogen peroxide decomposition catalyst 2. . The TOC concentration measurement system 1 is connected to a mother pipe 13 of an ultrapure water production apparatus or the like via an introduction pipe 12 provided with a main valve 11. The TOC concentration measuring device 3 may be a commercially available device, such as A-1000XP (manufactured by Anatel). Even when a commercially available apparatus is used, the TOC concentration measuring system 1 of the present invention can be configured by providing the hydrogen peroxide decomposition catalyst 2 in the previous stage of the TOC concentration measuring apparatus 3.

過酸化水素分解触媒2は、超純水から、超純水に含まれている少なくとも一部の過酸化水素を除去する。過酸化水素分解触媒2は過酸化水素を分解除去可能である限り種類を問わないが、Pt(白金)、Pd(パラジウム)等の白金族金属であることが好ましい。白金族金属はそれ自体過酸化水素の分解能力を有しており、超純水中の過酸化水素が白金族金属触媒と接触することで、過酸化水素を触媒の分解作用によって除去することができる。   The hydrogen peroxide decomposition catalyst 2 removes at least a part of hydrogen peroxide contained in the ultrapure water from the ultrapure water. The hydrogen peroxide decomposition catalyst 2 is not limited as long as hydrogen peroxide can be decomposed and removed, but is preferably a platinum group metal such as Pt (platinum) or Pd (palladium). The platinum group metal itself has the ability to decompose hydrogen peroxide, and hydrogen peroxide in ultrapure water can be removed by the catalytic action of the catalyst by contacting the platinum group metal catalyst. it can.

過酸化水素分解触媒2は、アニオン交換体に白金族金属が担持された触媒金属担持体であることがより好ましい。一例として、粒状のアニオン交換樹脂にPt、Pd等の過酸化水素分解能力を有する触媒金属を担持させた触媒樹脂が挙げられる。過酸化水素分解触媒2は、モノリス状有機多孔質アニオン交換体に白金族金属が担持された触媒金属担持体であることがさらに好ましい。これらのアニオン交換体に白金族金属触媒を担持することにより、高い触媒能力の発揮と、触媒からの溶出物の低減を実現することができる。   The hydrogen peroxide decomposition catalyst 2 is more preferably a catalyst metal carrier in which a platinum group metal is supported on an anion exchanger. As an example, a catalyst resin in which a catalytic metal having an ability to decompose hydrogen peroxide such as Pt and Pd is supported on a granular anion exchange resin. The hydrogen peroxide decomposition catalyst 2 is more preferably a catalyst metal carrier in which a platinum group metal is supported on a monolithic organic porous anion exchanger. By supporting a platinum group metal catalyst on these anion exchangers, it is possible to realize high catalytic ability and reduce the amount of eluate from the catalyst.

大きな空間速度(SV)を得るためには、モノリス状有機多孔質アニオン交換体に白金族金属が担持された触媒金属担持体を用いることが望ましい。モノリス状有機多孔質アニオン交換体は、アニオン交換樹脂が一体成形されたアニオン交換体である。この触媒金属担持体は好ましくは200〜20000h-1さらに好ましくは2000〜20000h-1のSVで超純水を通水させることができる。特にPdをモノリス状有機多孔質アニオン交換体に担持させたPdモノリスは、高速で超純水を通水させることができるため、TOC濃度測定システム1の小型化が容易である。SVが大きいため、触媒自体からのTOC溶出を抑えることができる。TOC濃度測定システム1の立ち上げ時に触媒自身から溶出したTOCが残留している場合も、高SVのため、残留しているTOCは速やかに排除され、装置の立ち上げ時間が短縮される。 In order to obtain a large space velocity (SV), it is desirable to use a catalyst metal carrier in which a platinum group metal is supported on a monolithic organic porous anion exchanger. The monolithic organic porous anion exchanger is an anion exchanger in which an anion exchange resin is integrally formed. The catalytic metal carrier is preferably more preferably 200~20000H -1 can be passed through the ultra-pure water at SV of 2000~20000h -1. In particular, a Pd monolith in which Pd is supported on a monolithic organic porous anion exchanger can pass ultrapure water at a high speed, so that the TOC concentration measurement system 1 can be easily downsized. Since SV is large, TOC elution from the catalyst itself can be suppressed. Even when TOC eluted from the catalyst itself remains when the TOC concentration measurement system 1 is started up, the remaining TOC is quickly eliminated because of the high SV, and the start-up time of the apparatus is shortened.

図2に、TOC濃度測定装置3の概略構成図を示す。TOC濃度測定装置3は、過酸化水素分解触媒2と隣接して設けられている。図1,2を併せて参照すると、TOC濃度測定装置3は、超純水が導入される保持チャンバー4を備えている。TOC濃度測定装置3の後段にはバルブ14が設けられており、バルブ14を閉めることによって保持チャンバー4の入口から導入された超純水を保持チャンバー4内に保持することができる。   In FIG. 2, the schematic block diagram of the TOC density | concentration measuring apparatus 3 is shown. The TOC concentration measuring device 3 is provided adjacent to the hydrogen peroxide decomposition catalyst 2. 1 and 2 together, the TOC concentration measurement device 3 includes a holding chamber 4 into which ultrapure water is introduced. A valve 14 is provided at the subsequent stage of the TOC concentration measuring device 3, and the ultrapure water introduced from the inlet of the holding chamber 4 can be held in the holding chamber 4 by closing the valve 14.

保持チャンバー4の一方の壁面には、紫外線ランプを備え保持チャンバー4に保持された超純水に紫外線を照射する紫外線照射部5が位置している。紫外線ランプとしては、少なくとも波長185nm及び波長254nmの成分の光を発生する低圧紫外線ランプを用いることが好ましい。保持チャンバー4は、紫外線ランプから出射した紫外線が所定の時間照射される紫外線照射領域(図示せず)を有している。保持チャンバー4の内部には、超純水と接する表面がTiO2でその下層がTiで形成された光触媒(図示せず)が設けられている。光触媒は保持チャンバー4に充填してもよいし、保持チャンバー4の内壁にコーティングしてもよい。波長185nm及び波長254nmの光はTOCの化学結合を解離させ、波長185nmの光は、光触媒の触媒作用のもとで超純水からOHフリーラジカルを生成する。生成されたOHフリーラジカルは、TOCを酸化反応によってCO2とH2Oとに分解する。 On one wall surface of the holding chamber 4, an ultraviolet irradiation unit 5 that includes an ultraviolet lamp and irradiates the ultrapure water held in the holding chamber 4 with ultraviolet rays is located. As the ultraviolet lamp, it is preferable to use a low-pressure ultraviolet lamp that generates light having components of at least a wavelength of 185 nm and a wavelength of 254 nm. The holding chamber 4 has an ultraviolet irradiation region (not shown) in which ultraviolet rays emitted from the ultraviolet lamp are irradiated for a predetermined time. Inside the holding chamber 4 is provided a photocatalyst (not shown) in which the surface in contact with ultrapure water is TiO 2 and the lower layer is formed of Ti. The photocatalyst may be filled in the holding chamber 4 or may be coated on the inner wall of the holding chamber 4. Light having a wavelength of 185 nm and light having a wavelength of 254 nm dissociates a chemical bond of TOC, and light having a wavelength of 185 nm generates OH free radicals from ultrapure water under the catalytic action of a photocatalyst. The generated OH free radical decomposes TOC into CO 2 and H 2 O by an oxidation reaction.

保持チャンバー4に面して、保持チャンバー4に保持された超純水の導電率を測定する導電率測定部7が設けられている。導電率測定部7は、UV照射前の超純水の導電率C1と、酸化反応終了時の導電率C2を測定することができる。前述の通り、TOCの酸化反応によって生じたCO2及びH2Oは、CO2+H2O⇔H++HCO3-で表わされる平衡状態のもとで超純水中に存在する。従って、TOCの分解が進行すると、H+及びHCO3-の量が増え、超純水の導電率が増加する。導電率測定部7で測定された導電率はデータ処理部9に送られる。また、保持チャンバー4には温度センサー8が設けられており、保持チャンバー4の超純水の温度を測定することができる。温度センサー8は例えば導電率測定部7に隣接して設けることができる。温度センサー8で測定された温度もデータ処理部9に送られる。 Facing the holding chamber 4, a conductivity measuring unit 7 that measures the conductivity of the ultrapure water held in the holding chamber 4 is provided. The conductivity measuring unit 7 can measure the conductivity C1 of ultrapure water before UV irradiation and the conductivity C2 at the end of the oxidation reaction. As described above, CO 2 and H 2 O generated by the TOC oxidation reaction exist in ultrapure water under an equilibrium state represented by CO 2 + H 2 O⇔H + + HCO 3 . Therefore, as the decomposition of TOC proceeds, the amount of H + and HCO 3 increases, and the conductivity of ultrapure water increases. The conductivity measured by the conductivity measuring unit 7 is sent to the data processing unit 9. In addition, a temperature sensor 8 is provided in the holding chamber 4 so that the temperature of the ultrapure water in the holding chamber 4 can be measured. The temperature sensor 8 can be provided, for example, adjacent to the conductivity measuring unit 7. The temperature measured by the temperature sensor 8 is also sent to the data processing unit 9.

データ処理部9は導電率測定部7で測定されたUV照射前の超純水の導電率C1と、同じく導電率測定部7で測定された酸化反応終了時の導電率C2の差分C2−C1から、超純水に含まれていたTOC濃度を算出する。導電率とTOC濃度の間には相関性があり、この相関データはあらかじめデータ処理部9に記憶されている。得られた導電率を用いてTOC濃度を算出することができる。導電率は超純水の水温に依存するため、測定された温度を用いて導電率を補正し、TOC濃度を算出することができる。TOC濃度測定装置3はさらにコントローラー6を有している。コントローラー6は、紫外線ランプのオンオフ、バルブ14の開閉、導電率測定部7の作動などを制御する。   The data processing unit 9 is a difference C2-C1 between the conductivity C1 of ultrapure water before UV irradiation measured by the conductivity measuring unit 7 and the conductivity C2 at the end of the oxidation reaction measured by the conductivity measuring unit 7 in the same manner. From the above, the TOC concentration contained in the ultrapure water is calculated. There is a correlation between the conductivity and the TOC concentration, and this correlation data is stored in the data processing unit 9 in advance. The TOC concentration can be calculated using the obtained conductivity. Since the conductivity depends on the water temperature of the ultrapure water, the TOC concentration can be calculated by correcting the conductivity using the measured temperature. The TOC concentration measuring device 3 further has a controller 6. The controller 6 controls on / off of the ultraviolet lamp, opening / closing of the bulb 14, operation of the conductivity measuring unit 7, and the like.

次に、以上説明したTOC濃度測定システム1を用いて超純水中のTOC濃度を測定する方法について説明する。測定対象とする超純水のTOC濃度は10ppb以下、過酸化水素は濃度がXであるとする。測定対象とする超純水の電気抵抗率はTOC濃度測定装置3の仕様にも依存するが、一例では15MΩ・cm以上であることが望ましい。なお、「過酸化水素濃度X」とは、ある決まった値を指すものではなく、任意の超純水製造工程において超純水中に含まれている過酸化水素の濃度をいう。   Next, a method for measuring the TOC concentration in ultrapure water using the TOC concentration measuring system 1 described above will be described. It is assumed that the TOC concentration of ultrapure water to be measured is 10 ppb or less and the concentration of hydrogen peroxide is X. Although the electrical resistivity of the ultrapure water to be measured depends on the specifications of the TOC concentration measuring device 3, it is preferably 15 MΩ · cm or more in one example. “Hydrogen peroxide concentration X” does not indicate a certain value, but refers to the concentration of hydrogen peroxide contained in ultrapure water in an arbitrary ultrapure water production process.

まず、紫外線照射部5の紫外線ランプが消灯し、元弁11とバルブ14が開いている状態で、超純水を保持チャンバー4内に導入し、TOC濃度測定装置3の全てのラインを洗浄する。一定の時間が経過するとコントローラー6の制御により元弁11とバルブ14が閉じられ、測定対象である超純水を、導入配管12を介して保持チャンバー4内に保持する。この際、超純水は過酸化水素分解触媒2と接触し、超純水から少なくとも一部の過酸化水素が除去される(過酸化水素除去ステップ)。これによって、超純水は過酸化水素を含まないか、または過酸化水素の濃度がX未満の状態で保持チャンバー4に導入される。バルブ14が閉じられているため、保持チャンバー4内に導入された超純水はそのまま保持チャンバー4内に保持される。なお、TOC濃度測定装置3は、過酸化水素分解触媒2と隣接して設けられることが望ましいが、超純水が過酸化水素を含まないか、または過酸化水素の濃度がX未満の状態で保持チャンバー4に導入される限り、TOC濃度測定装置3と過酸化水素分解触媒2の間に他の要素が介在していてもよい。   First, with the ultraviolet lamp of the ultraviolet irradiation unit 5 turned off and the main valve 11 and the valve 14 opened, ultrapure water is introduced into the holding chamber 4 and all lines of the TOC concentration measuring device 3 are washed. . When a certain time elapses, the main valve 11 and the valve 14 are closed under the control of the controller 6, and the ultrapure water to be measured is held in the holding chamber 4 via the introduction pipe 12. At this time, the ultrapure water comes into contact with the hydrogen peroxide decomposition catalyst 2, and at least a part of the hydrogen peroxide is removed from the ultrapure water (hydrogen peroxide removal step). As a result, the ultrapure water does not contain hydrogen peroxide or is introduced into the holding chamber 4 in a state where the concentration of hydrogen peroxide is less than X. Since the valve 14 is closed, the ultrapure water introduced into the holding chamber 4 is held in the holding chamber 4 as it is. The TOC concentration measuring device 3 is desirably provided adjacent to the hydrogen peroxide decomposition catalyst 2, but the ultrapure water does not contain hydrogen peroxide or the concentration of hydrogen peroxide is less than X. As long as it is introduced into the holding chamber 4, another element may be interposed between the TOC concentration measuring device 3 and the hydrogen peroxide decomposition catalyst 2.

この状態で導電率測定部7は、コントローラー6の制御により、保持チャンバー4内に保持された超純水の導電率C1を測定する。導電率C1は、紫外線照射部5による紫外線の照射を受ける前の、保持チャンバー4内に保持されている超純水の導電率である。超純水は微量の金属イオンなど導電性を有する物質を含有している場合があり、このような物質はTOCの分解に伴う導電率を測定する際のバックグラウンド導電率となる。従って、TOCの分解に伴う導電率の変化を測定するため、バックグラウンド導電率C1をあらかじめ測定しておくことが望ましい。   In this state, the conductivity measuring unit 7 measures the conductivity C1 of ultrapure water held in the holding chamber 4 under the control of the controller 6. The conductivity C <b> 1 is the conductivity of ultrapure water held in the holding chamber 4 before being irradiated with ultraviolet rays from the ultraviolet irradiation unit 5. Ultrapure water may contain a conductive material such as a small amount of metal ions, and such a material becomes a background conductivity when measuring the conductivity associated with the decomposition of the TOC. Accordingly, it is desirable to measure the background conductivity C1 in advance in order to measure the change in conductivity accompanying the decomposition of the TOC.

次に、紫外線ランプを点灯する。保持チャンバー4内に保持された超純水に、少なくとも185nmと254nmの波長を含んだ紫外線が照射される。波長185nmと254nmの光の照射によって、超純水中に含まれる有機物の化学結合が解離される。波長185nmの光は超純水からOHフリーラジカルを生成する。OHフリーラジカル等の酸化反応により、有機物は二酸化炭素と水に分解される。この間、超純水の導電率は測定されている。酸化反応の進行に従い導電率が徐々に増加し、漸近値(飽和状態)に近づいてくる。コントローラー6の制御により、導電率の時間変化率(単位時間当たりの導電率の変化量)が所定の値以下となったときの(すなわち酸化反応が実質的に終了したときの)導電率C2を求める。導電率C2の測定が完了すると、コントローラー6の制御により紫外線ランプが消灯する。その後、コントローラー6の制御により元弁11およびバルブ14が開けられ、酸化反応が完了した超純水が排出された後、測定前と同様に一定時間、ラインの洗浄が行われる。   Next, the ultraviolet lamp is turned on. The ultrapure water held in the holding chamber 4 is irradiated with ultraviolet rays including wavelengths of at least 185 nm and 254 nm. The chemical bonds of the organic substances contained in the ultrapure water are dissociated by irradiation with light having wavelengths of 185 nm and 254 nm. Light having a wavelength of 185 nm generates OH free radicals from ultrapure water. An organic substance is decomposed into carbon dioxide and water by an oxidation reaction such as OH free radical. During this time, the conductivity of ultrapure water has been measured. As the oxidation reaction proceeds, the conductivity gradually increases and approaches an asymptotic value (saturated state). By the control of the controller 6, the conductivity C2 when the time change rate of the conductivity (the amount of change in conductivity per unit time) becomes a predetermined value or less (that is, when the oxidation reaction is substantially finished) Ask. When the measurement of the conductivity C2 is completed, the ultraviolet lamp is turned off under the control of the controller 6. Thereafter, the main valve 11 and the valve 14 are opened under the control of the controller 6, and after the ultrapure water having undergone the oxidation reaction is discharged, the line is washed for a certain period of time as before the measurement.

次に、導電率C1と導電率C2の差分から、超純水に含まれていたTOC濃度を算出する。具体的にはデータ処理部9は、酸化反応が実質的に終了した後の導電率C2から紫外線照射前(酸化反応前)の導電率C1を引いた値ΔC(ΔC=C2−C1)を基にTOC濃度を算出する。これによって、TOCの酸化反応に起因する導電率の変動量を検出することができ、よって、超純水中に含まれていたTOC濃度を高精度でかつ安定して測定することができる。この際、超純水の温度測定結果を用いて、TOC濃度を補正することが望ましい。   Next, the TOC concentration contained in the ultrapure water is calculated from the difference between the conductivity C1 and the conductivity C2. Specifically, the data processing unit 9 is based on a value ΔC (ΔC = C2−C1) obtained by subtracting the conductivity C1 before ultraviolet irradiation (before the oxidation reaction) from the conductivity C2 after the oxidation reaction is substantially finished. Calculate the TOC concentration. As a result, it is possible to detect the amount of change in conductivity caused by the oxidation reaction of TOC, and thus it is possible to measure the TOC concentration contained in ultrapure water with high accuracy and stability. At this time, it is desirable to correct the TOC concentration using the temperature measurement result of ultrapure water.

導電率C1が非常に小さいことが分かっている場合は導電率C1の測定を省略することもできる。すなわちΔC=C2として、導電率C2だけを用いて超純水に含まれていたTOC濃度を算出することもできる。   If it is known that the conductivity C1 is very small, the measurement of the conductivity C1 can be omitted. That is, assuming that ΔC = C2, the TOC concentration contained in the ultrapure water can be calculated using only the conductivity C2.

(モノリス状有機多孔質アニオン交換体に白金族金属が担持された触媒金属担持体についての詳細な説明)
過酸化水素分解触媒2についてさらに詳細に説明する。過酸化水素分解触媒2は、活性炭、合成炭素系吸着材、イオン交換樹脂などを用いることもできるが、より好ましくは触媒金属担持体が好ましい。触媒金属担持体としては、アニオン交換樹脂にPt(白金)、Pd(パラジウム)等の過酸化水素分解能力を有する触媒金属を担持させた触媒樹脂が利用できるが、空間速度(SV)を得るためには、モノリス状有機多孔質アニオン交換体(以下、「モノリスアニオン交換体」という場合がある。)に白金族金属が担持された触媒金属担持体を用いることが望ましい。この触媒金属担持体は200〜20000h-1好ましくは2000〜20000h-1のSVで被処理水を通水させることができる。
(Detailed description of a catalyst metal carrier in which a platinum group metal is supported on a monolithic organic porous anion exchanger)
The hydrogen peroxide decomposition catalyst 2 will be described in more detail. As the hydrogen peroxide decomposition catalyst 2, activated carbon, a synthetic carbon-based adsorbent, an ion exchange resin, or the like can be used, but a catalytic metal carrier is more preferable. As the catalyst metal carrier, a catalyst resin in which a catalyst metal having an ability to decompose hydrogen peroxide such as Pt (platinum) or Pd (palladium) is supported on an anion exchange resin can be used, but in order to obtain a space velocity (SV). It is desirable to use a catalyst metal carrier in which a platinum group metal is supported on a monolithic organic porous anion exchanger (hereinafter sometimes referred to as “monolith anion exchanger”). The catalytic metal carrier is 200~20000H -1 preferably can be passed through the treated water at SV of 2000~20000h -1.

特にPdをモノリス状有機多孔質アニオン交換体に担持させたPdモノリスは、高速で被測定水を通水させることができるため、装置の小型化が容易である。モノリスアニオン交換体として特に好ましいのは、以下に述べるAタイプ及びBタイプである。   In particular, a Pd monolith in which Pd is supported on a monolithic organic porous anion exchanger can pass water to be measured at a high speed, so that the apparatus can be easily downsized. Particularly preferred as the monolith anion exchanger are the A type and B type described below.

(1)Aタイプのモノリスアニオン交換体
Aタイプのモノリスアニオン交換体は、モノリスにアニオン交換基を導入することで得られるものであり、気泡状のマクロポア同士が重なり合い、この重なる部分が水湿潤状態で平均直径30〜300μm、好ましくは30〜200μm、特に好ましくは40〜100μmの開口(メソポア)となる連続マクロポア構造体である。Aタイプのモノリスアニオン交換体の開口の平均直径は、モノリスにアニオン交換基を導入する際、モノリス全体が膨潤するため、モノリスの開口の平均直径よりも大となる。水湿潤状態での開口の平均直径が30μm未満であると、通水時の圧力損失が大きくなってしまうため好ましくなく、水湿潤状態での開口の平均直径が大き過ぎると、被処理水とAタイプのモノリスアニオン交換体および担持された白金族金属ナノ粒子との接触が不十分となり、その結果、過酸化水素分解特性が低下してしまうため好ましくない。なお、乾燥状態のモノリス中間体の開口の平均直径、乾燥状態のモノリスの開口の平均直径及び乾燥状態のモノリスアニオン交換体の開口の平均直径は、水銀圧入法により測定される値を意味する。また、水湿潤状態のAタイプのモノリスアニオン交換体の開口の平均直径は、乾燥状態のAタイプのモノリスアニオン交換体の開口の平均直径に、膨潤率を乗じて算出される値である。また、アニオン交換基導入前の乾燥状態のモノリスの開口の平均直径、及びその乾燥状態のモノリスにアニオン交換基導入したときの乾燥状態のモノリスに対する水湿潤状態のAタイプのモノリスアニオン交換体の膨潤率がわかる場合は、乾燥状態のモノリスの開口の平均直径に、膨潤率を乗じて、水湿潤状態のAタイプのモノリスアニオン交換体の開口の平均直径を算出することもできる。
(1) A-type monolith anion exchanger An A-type monolith anion exchanger is obtained by introducing an anion-exchange group into a monolith, and bubble-like macropores overlap each other, and this overlapping portion is in a wet state. The continuous macropore structure is an opening (mesopore) having an average diameter of 30 to 300 μm, preferably 30 to 200 μm, particularly preferably 40 to 100 μm. The average diameter of the A-type monolith anion exchanger opening is larger than the average diameter of the monolith opening because the entire monolith swells when an anion exchange group is introduced into the monolith. If the average diameter of the openings in the water-wet state is less than 30 μm, the pressure loss during water flow increases, which is not preferable. If the average diameter of the openings in the water-wet state is too large, the water to be treated and A The contact between the monolith anion exchanger of the type and the supported platinum group metal nanoparticles becomes insufficient, and as a result, the hydrogen peroxide decomposition property is lowered, which is not preferable. The average diameter of the opening of the monolith intermediate in the dry state, the average diameter of the opening of the monolith in the dry state, and the average diameter of the opening of the monolith anion exchanger in the dry state mean values measured by the mercury intrusion method. Further, the average diameter of the openings of the A-type monolith anion exchanger in the wet state is a value calculated by multiplying the average diameter of the openings of the A-type monolith anion exchanger in the dry state by the swelling rate. Further, the average diameter of the opening of the dried monolith before the introduction of the anion exchange group, and the swelling of the water-type A type monolith anion exchanger with respect to the dried monolith when the anion exchange group is introduced into the dried monolith When the ratio is known, the average diameter of the opening of the dry monolith can be multiplied by the swelling ratio to calculate the average diameter of the opening of the A-type monolith anion exchanger in the wet state.

Aタイプのモノリスアニオン交換体において、連続マクロポア構造体の切断面のSEM画像において、断面に表れる骨格部面積が、画像領域中、25〜50%、好ましくは25〜45%である。断面に表れる骨格部面積が、画像領域中、25%未満であると、細い骨格となり、機械的強度が低下して、特に高流速で通水した際にモノリスアニオン交換体が大きく変形してしまうため好ましくない。更に、被処理水とAタイプのモノリスアニオン交換体およびそれに担持された白金族金属ナノ粒子との接触効率が低下し、触媒効果が低下するため好ましくなく、50%を超えると、骨格が太くなり過ぎ、通水時の圧力損失が増大するため好ましくない。   In the A-type monolith anion exchanger, in the SEM image of the cut surface of the continuous macropore structure, the skeleton part area appearing in the cross section is 25 to 50%, preferably 25 to 45% in the image region. When the area of the skeletal part appearing in the cross section is less than 25% in the image region, the skeleton becomes a thin skeleton, the mechanical strength is lowered, and the monolith anion exchanger is greatly deformed particularly when water is passed at a high flow rate. Therefore, it is not preferable. Furthermore, the contact efficiency between the water to be treated and the A-type monolith anion exchanger and the platinum group metal nanoparticles supported thereon is lowered, and the catalytic effect is lowered, which is not preferable. If it exceeds 50%, the skeleton becomes thick. This is not preferable because the pressure loss during water passage increases.

また、Aタイプのモノリスアニオン交換体の全細孔容積は、0.5〜5ml/g、好ましくは0.8〜4ml/gである。全細孔容積が0.5ml/g未満であると、通水時の圧力損失が大きくなってしまうため好ましくなく、更に、単位断面積当りの透過流体量が小さくなり、処理能力が低下してしまうため好ましくない。一方、全細孔容積が5ml/gを超えると、機械的強度が低下して、特に高流速で通水した際にAタイプのモノリスアニオン交換体が大きく変形してしまうため好ましくない。更に、被処理水とAタイプのモノリスアニオン交換体およびそれに担持された白金族金属ナノ粒子との接触効率が低下、触媒効果も低下してしまうため好ましくない。なお、モノリス(モノリス中間体、モノリス、モノリスアニオン交換体)の全細孔容積は、水銀圧入法により測定される値を意味する。また、モノリス(モノリス中間体、モノリス、モノリスアニオン交換体)の全細孔容積は、乾燥状態でも、水湿潤状態でも、同じである。 The total pore volume of the A type monolith anion exchanger is 0.5 to 5 ml / g, preferably 0.8 to 4 ml / g. If the total pore volume is less than 0.5 ml / g, the pressure loss during water flow will increase, which is not preferable. Further, the amount of permeated fluid per unit cross-sectional area decreases, and the processing capacity decreases. Therefore, it is not preferable. On the other hand, if the total pore volume exceeds 5 ml / g, the mechanical strength is lowered, and the A-type monolith anion exchanger is greatly deformed particularly when water is passed at a high flow rate. Furthermore, the contact efficiency between the water to be treated, the A-type monolith anion exchanger and the platinum group metal nanoparticles supported thereon is lowered, and the catalytic effect is also lowered, which is not preferable. The total pore volume of the monolith (monolith intermediate, monolith, monolith anion exchanger) means a value measured by mercury porosimetry. In addition, the total pore volume of the monolith (monolith intermediate, monolith, monolith anion exchanger) is the same both in the dry state and in the water wet state.

なお、Aタイプのモノリスアニオン交換体に水を透過させた際の圧力損失は、これを1m充填したカラムに通水線速度(LV)1m/hで通水した際の圧力損失(以下、「差圧係数」と言う。)で示すと、0.001〜0.1MPa/m・LVの範囲、特に0.005〜0.05MPa/m・LVであることが好ましい。   The pressure loss when water is permeated through the A-type monolith anion exchanger is the pressure loss when water is passed through a column packed with 1 m at a water flow velocity (LV) of 1 m / h (hereinafter, “ In this case, it is preferably in the range of 0.001 to 0.1 MPa / m · LV, particularly 0.005 to 0.05 MPa / m · LV.

Aタイプのモノリスアニオン交換体は、水湿潤状態での体積当りのアニオン交換容量が0.4〜1.0mg当量/mlである。体積当りのアニオン交換容量が0.4mg当量/ml未満であると、体積当りの白金族金属のナノ粒子担持量が低下してしまうため好ましくない。一方、体積当りのアニオン交換容量が1.0mg当量/mlを超えると、通水時の圧力損失が増大してしまうため好ましくない。なお、Aタイプのモノリスアニオン交換体の重量当りのアニオン交換容量は特に限定されないが、アニオン交換基が多孔質体の表面及び骨格内部にまで均一に導入しているため、3.5〜4.5mg当量/gである。   The A type monolith anion exchanger has an anion exchange capacity per volume in a water-wet state of 0.4 to 1.0 mg equivalent / ml. If the anion exchange capacity per volume is less than 0.4 mg equivalent / ml, the amount of platinum group metal nanoparticles supported per volume will be unfavorable. On the other hand, if the anion exchange capacity per volume exceeds 1.0 mg equivalent / ml, the pressure loss at the time of passing water increases, which is not preferable. The anion exchange capacity per weight of the A type monolith anion exchanger is not particularly limited. However, since the anion exchange group is uniformly introduced to the surface of the porous body and the inside of the skeleton, it is 3.5 to 4. 5 mg equivalent / g.

Aタイプのモノリスアニオン交換体において、連続マクロポア構造体の骨格を構成する材料は、架橋構造を有する有機ポリマー材料である。該ポリマー材料の架橋密度は特に限定されないが、ポリマー材料を構成する全構成単位に対して、0.3〜10モル%、好適には0.3〜5モル%の架橋構造単位を含んでいることが好ましい。架橋構造単位が0.3モル%未満であると、機械的強度が不足するため好ましくなく、一方、10モル%を越えると、アニオン交換基の導入が困難になる場合があるため好ましくない。該ポリマー材料の種類に特に制限はなく、例えば、ポリスチレン等の芳香族ビニルポリマーが挙げられる。上記ポリマーは、単独のビニルモノマーと架橋剤を共重合させて得られるポリマーでも、複数のビニルモノマーと架橋剤を重合させて得られるポリマーであってもよく、また、二種類以上のポリマーがブレンドされたものであってもよい。これら有機ポリマー材料の中で、連続マクロポア構造形成の容易さ、アニオン交換基導入の容易性と機械的強度の高さ、および酸又はアルカリに対する安定性の高さから、芳香族ビニルポリマーの架橋重合体が好ましく、特に、スチレン−ジビニルベンゼン共重合体やビニルベンジルクロライド−ジビニルベンゼン共重合体が好ましい材料として挙げられる。   In the A type monolith anion exchanger, the material constituting the skeleton of the continuous macropore structure is an organic polymer material having a crosslinked structure. Although the crosslinking density of the polymer material is not particularly limited, it contains 0.3 to 10 mol%, preferably 0.3 to 5 mol% of crosslinked structural units with respect to all structural units constituting the polymer material. It is preferable. If the cross-linking structural unit is less than 0.3 mol%, the mechanical strength is insufficient, which is not preferable. On the other hand, if it exceeds 10 mol%, it may be difficult to introduce an anion exchange group. There is no restriction | limiting in particular in the kind of this polymer material, For example, aromatic vinyl polymers, such as a polystyrene, are mentioned. The polymer may be a polymer obtained by copolymerizing a single vinyl monomer and a crosslinking agent, a polymer obtained by polymerizing a plurality of vinyl monomers and a crosslinking agent, or a blend of two or more types of polymers. It may be what was done. Among these organic polymer materials, the cross-linking weight of the aromatic vinyl polymer is easy due to the ease of forming a continuous macropore structure, the ease of introducing an anion exchange group and the high mechanical strength, and the high stability to acids or alkalis. A styrene-divinylbenzene copolymer and a vinylbenzyl chloride-divinylbenzene copolymer are particularly preferable materials.

Aタイプのモノリスアニオン交換体のアニオン交換基としては、トリメチルアンモニウム基、トリエチルアンモニウム基、トリブチルアンモニウム基、ジメチルヒドロキシエチルアンモニウム基、ジメチルヒドロキシプロピルアンモニウム基、メチルジヒドロキシエチルアンモニウム基等の四級アンモニウム基等が挙げられる。   As anion exchange groups of the A type monolith anion exchanger, quaternary ammonium groups such as trimethylammonium group, triethylammonium group, tributylammonium group, dimethylhydroxyethylammonium group, dimethylhydroxypropylammonium group, methyldihydroxyethylammonium group, etc. Is mentioned.

導入されたアニオン交換基は、多孔質体の表面のみならず、多孔質体の骨格内部にまで均一に分布している。ここで言う「アニオン交換基が均一に分布している」とは、アニオン交換基の分布が少なくともμmオーダーで表面および骨格内部に均一に分布していることを指す。アニオン交換基の分布状況は、対アニオンを塩化物イオン、臭化物イオンなどにイオン交換した後、EPMAを用いることで、比較的簡単に確認することができる。また、アニオン交換基が、モノリスの表面のみならず、多孔質体の骨格内部にまで均一に分布していると、表面と内部の物理的性質及び化学的性質を均一にできるため、膨潤及び収縮に対する耐久性が向上する。   The introduced anion exchange groups are uniformly distributed not only on the surface of the porous body but also within the skeleton of the porous body. Here, “anion exchange groups are uniformly distributed” means that the distribution of anion exchange groups is uniformly distributed on the surface and inside the skeleton in the order of at least μm. The distribution state of the anion exchange group can be confirmed relatively easily by using EPMA after ion exchange of the counter anion with chloride ion, bromide ion or the like. In addition, if the anion exchange groups are uniformly distributed not only on the surface of the monolith but also within the skeleton of the porous body, the physical and chemical properties of the surface and the interior can be made uniform, so that the swelling and shrinking The durability against is improved.

Aタイプのモノリスアニオン交換体は、骨太のモノリスにアニオン交換基が導入されるため、例えば骨太モノリスの1.4〜1.9倍のように大きく膨潤する。このため、骨太モノリスの開口径が小さいものであっても、モノリスイオン交換体の開口径は概ね、上記倍率で大きくなる。また、開口径が膨潤で大きくなっても全細孔容積は変化しない。従って、Aタイプのモノリスイオン交換体は、開口径が格段に大きいにもかかわらず、骨太骨格を有するため機械的強度が高い。   The A type monolith anion exchanger swells greatly, for example, 1.4 to 1.9 times that of the thick monolith, since an anion exchange group is introduced into the thick monolith. For this reason, even if the opening diameter of the thick monolith is small, the opening diameter of the monolith ion exchanger generally increases at the above magnification. In addition, the total pore volume does not change even when the opening diameter increases due to swelling. Therefore, the A-type monolith ion exchanger has a high mechanical strength because it has a thick bone skeleton even though the opening diameter is remarkably large.

(2)Bタイプのモノリスアニオン交換体
Bタイプのモノリスアニオン交換体は、アニオン交換基が導入された全構成単位中、架橋構造単位を0.3〜5.0モル%含有する芳香族ビニルポリマーからなる平均太さが水湿潤状態で1〜60μmの三次元的に連続した骨格と、その骨格間に平均直径が水湿潤状態で10〜100μmの三次元的に連続した空孔とからなる共連続構造体であって、全細孔容積が0.5〜5ml/gであり、水湿潤状態での体積当りのイオン交換容量が0.3〜1.0mg当量/mlであり、アニオン交換基が該多孔質イオン交換体中に均一に分布している。
(2) B-type monolith anion exchanger The B-type monolith anion exchanger is an aromatic vinyl polymer containing 0.3 to 5.0 mol% of a cross-linking structural unit in all constituent units into which an anion exchange group has been introduced. A three-dimensional continuous skeleton having an average thickness of 1 to 60 μm in a water-wet state and three-dimensional continuous pores having an average diameter of 10 to 100 μm in a water-wet state between the skeletons. A continuous structure having a total pore volume of 0.5 to 5 ml / g, an ion exchange capacity per volume in a water-wet state of 0.3 to 1.0 mg equivalent / ml, and an anion exchange group Are uniformly distributed in the porous ion exchanger.

Bタイプのモノリスアニオン交換体は、アニオン交換基が導入された平均太さが水湿潤状態で1〜60μm、好ましくは3〜58μmの三次元的に連続した骨格と、その骨格間に平均直径が水湿潤状態で10〜100μm、好ましくは15〜90μm、特に好ましくは20〜80μmの三次元的に連続した空孔とからなる共連続構造体である。すなわち、共連続構造は、連続する骨格相と連続する空孔相とが絡み合ってそれぞれが共に3次元的に連続する構造である。この連続した空孔は、従来の連続気泡型モノリスや粒子凝集型モノリスに比べて空孔の連続性が高くてその大きさに偏りがないため、極めて均一なイオンの吸着挙動を達成できる。また、骨格が太いため機械的強度が高い。   The B-type monolith anion exchanger has a three-dimensional continuous skeleton having an average thickness of 1 to 60 μm, preferably 3 to 58 μm in an wet state in which an anion exchange group is introduced, and an average diameter between the skeletons. A co-continuous structure composed of three-dimensionally continuous pores of 10 to 100 μm, preferably 15 to 90 μm, particularly preferably 20 to 80 μm in a wet state. That is, the co-continuous structure is a structure in which a continuous skeleton phase and a continuous vacancy phase are intertwined and both are three-dimensionally continuous. These continuous vacancies have higher continuity of the vacancies than the conventional open-cell monolith and particle aggregation monolith, and the size of the vacancies is not biased, so that extremely uniform ion adsorption behavior can be achieved. Moreover, since the skeleton is thick, the mechanical strength is high.

Bタイプのモノリスアニオン交換体の骨格の太さ及び空孔の直径は、モノリスにアニオン交換基を導入する際、モノリス全体が膨潤するため、モノリスの骨格の太さ及び空孔の直径よりも大となる。この連続した空孔は、従来の連続気泡型モノリス状有機多孔質アニオン交換体や粒子凝集型モノリス状有機多孔質アニオン交換体に比べて空孔の連続性が高くてその大きさに偏りがないため、極めて均一なアニオンの吸着挙動を達成できる。三次元的に連続した空孔の平均直径が水湿潤状態で10μm未満であると、通水時の圧力損失が大きくなってしまうため好ましくなく、100μmを超えると、被処理水と有機多孔質アニオン交換体との接触が不十分となり、その結果、被処理水中の溶存酸素の除去が不十分となるため好ましくない。また、骨格の平均太さが水湿潤状態で1μm未満であると、体積当りのアニオン交換容量が低下するといった欠点のほか、機械的強度が低下して、特に高流速で通水した際にBタイプのモノリスアニオン交換体が大きく変形してしまうため好ましくない。更に、被処理水とBタイプのモノリスアニオン交換体との接触効率が低下し、触媒効果が低下するため好ましくない。一方、骨格の太さが60μmを越えると、骨格が太くなり過ぎ、通水時の圧力損失が増大するため好ましくない。   The skeleton thickness and pore diameter of the B type monolith anion exchanger are larger than the monolith skeleton thickness and pore diameter because the entire monolith swells when an anion exchange group is introduced into the monolith. It becomes. These continuous pores have higher continuity of the pores than the conventional open-cell type monolithic organic porous anion exchanger and particle aggregation type monolithic organic porous anion exchanger, and the size thereof is not biased. Therefore, an extremely uniform anion adsorption behavior can be achieved. If the average diameter of the three-dimensionally continuous pores is less than 10 μm in a water-wet state, it is not preferable because the pressure loss at the time of water flow increases, and if it exceeds 100 μm, the water to be treated and the organic porous anion The contact with the exchanger becomes insufficient, and as a result, the removal of dissolved oxygen in the water to be treated becomes insufficient, which is not preferable. In addition, when the average thickness of the skeleton is less than 1 μm in a water-wet state, the anion exchange capacity per volume decreases, and the mechanical strength decreases. This is not preferable because the type of monolith anion exchanger is greatly deformed. Furthermore, the contact efficiency between the water to be treated and the B-type monolith anion exchanger is lowered, and the catalytic effect is lowered. On the other hand, if the thickness of the skeleton exceeds 60 μm, the skeleton becomes too thick and pressure loss during water passage increases, which is not preferable.

上記連続構造体の空孔の水湿潤状態での平均直径は、水銀圧入法で測定した乾燥状態のモノリスアニオン交換体の空孔の平均直径に、膨潤率を乗じて算出される値である。また、アニオン交換基導入前の乾燥状態のモノリスの空孔の平均直径、及びその乾燥状態のモノリスにアニオン交換基導入したときの乾燥状態のモノリスに対する水湿潤状態のBタイプのモノリスアニオン交換体の膨潤率がわかる場合は、乾燥状態のモノリスの空孔の平均直径に、膨潤率を乗じて、水湿潤状態のBタイプのモノリスアニオン交換体の空孔の平均直径を算出することもできる。また、上記連続構造体の骨格の水湿潤状態での平均太さは、乾燥状態のBタイプのモノリスアニオン交換体のSEM観察を少なくとも3回行い、得られた画像中の骨格の太さを測定し、その平均値に、膨潤率を乗じて算出される値である。また、アニオン交換基導入前の乾燥状態のモノリスの骨格の平均太さ、及びその乾燥状態のモノリスにアニオン交換基導入したときの乾燥状態のモノリスに対する水湿潤状態のBタイプのモノリスアニオン交換体の膨潤率がわかる場合は、乾燥状態のモノリスの骨格の平均太さに、膨潤率を乗じて、水湿潤状態のBタイプのモノリスアニオン交換体の骨格の平均太さを算出することもできる。なお、骨格は棒状であり円形断面形状であるが、楕円断面形状等異径断面のものが含まれていてもよい。この場合の太さは短径と長径の平均である。   The average diameter of the pores of the continuous structure in the water-wet state is a value calculated by multiplying the average diameter of the pores of the monolith anion exchanger in the dry state measured by the mercury intrusion method and the swelling ratio. In addition, the average diameter of the pores of the dried monolith before the introduction of the anion exchange group, and the water-wet state B type monolith anion exchanger of the dried monolith when the anion exchange group is introduced into the dried monolith. When the swelling ratio is known, the average diameter of the pores of the B-type monolith anion exchanger in the water-wet state can be calculated by multiplying the average diameter of the pores of the dry monolith by the swelling ratio. The average thickness of the skeleton of the continuous structure in the water-wet state is determined by performing SEM observation of the dry B-type monolith anion exchanger at least three times and measuring the thickness of the skeleton in the obtained image. The average value is calculated by multiplying the swelling ratio. Further, the average thickness of the skeleton of the dried monolith before the introduction of the anion exchange group, and the water-wet state B type monolith anion exchanger of the dried monolith when the anion exchange group is introduced into the dried monolith. When the swelling ratio is known, the average thickness of the skeleton of the monolith anion exchanger in the water-wet state can be calculated by multiplying the average thickness of the skeleton of the monolith in the dry state by the swelling ratio. The skeleton has a rod-like shape and a circular cross-sectional shape, but may have a cross-section with a different diameter such as an elliptical cross-sectional shape. The thickness in this case is the average of the minor axis and the major axis.

また、Bタイプのモノリスアニオン交換体の全細孔容積は、0.5〜5ml/gである。全細孔容積が0.5ml/g未満であると、通水時の圧力損失が大きくなってしまうため好ましくなく、更に、単位断面積当りの透過水量が小さくなり、処理水量が低下してしまうため好ましくない。一方、全細孔容積が5ml/gを超えると、体積当りのアニオン交換容量が低下し、白金族金属ナノ粒子の担持量も低下し触媒効果が低下するため好ましくない。また、機械的強度が低下して、特に高流速で通水した際にBタイプのモノリスアニオン交換体が大きく変形してしまうため好ましくない。更に、被処理水とBタイプのモノリスアニオン交換体との接触効率が低下して、過酸化水素分解効果も低下してしまうため好ましくない。三次元的に連続した空孔の大きさ及び全細孔容積が上記範囲にあれば、被処理水との接触が極めて均一で接触面積も大きく、かつ低圧力損失下での通水が可能となる。なお、モノリス(モノリス中間体、モノリス、モノリスアニオン交換体)の全細孔容積は、乾燥状態でも、水湿潤状態でも、同じである。   The total pore volume of the B type monolith anion exchanger is 0.5 to 5 ml / g. If the total pore volume is less than 0.5 ml / g, the pressure loss at the time of water flow is increased, which is not preferable. Further, the amount of permeated water per unit cross-sectional area is decreased, and the amount of treated water is decreased. Therefore, it is not preferable. On the other hand, if the total pore volume exceeds 5 ml / g, the anion exchange capacity per volume decreases, the amount of platinum group metal nanoparticles supported decreases, and the catalytic effect decreases. Further, the mechanical strength is lowered, and the B-type monolith anion exchanger is greatly deformed particularly when water is passed at a high flow rate, which is not preferable. Furthermore, the contact efficiency between the water to be treated and the B-type monolith anion exchanger is lowered, and the hydrogen peroxide decomposition effect is also lowered. If the three-dimensional continuous pore size and total pore volume are within the above ranges, the contact with the water to be treated is extremely uniform, the contact area is large, and water can flow through under low pressure loss. Become. Note that the total pore volume of the monolith (monolith intermediate, monolith, monolith anion exchanger) is the same in both the dry state and the water wet state.

なお、Bタイプのモノリスアニオン交換体に水を透過させた際の圧力損失は、多孔質体を1m充填したカラムに通水線速度(LV)1m/hで通水した際の圧力損失(以下、「差圧係数」と言う。)で示すと、0.001〜0.5MPa/m・LVの範囲、特に0.005〜0.1MPa/m・LVである。   The pressure loss when water is allowed to permeate through the B-type monolith anion exchanger is the pressure loss when water is passed through a column filled with 1 m of a porous material at a water flow rate (LV) of 1 m / h (hereinafter referred to as “pressure loss”). , “Differential pressure coefficient”), the range is 0.001 to 0.5 MPa / m · LV, particularly 0.005 to 0.1 MPa / m · LV.

Bタイプのモノリスアニオン交換体において、共連続構造体の骨格を構成する材料は、全構成単位中、0.3〜5モル%、好ましくは0.5〜3.0モル%の架橋構造単位を含んでいる芳香族ビニルポリマーであり疎水性である。架橋構造単位が0.3モル%未満であると、機械的強度が不足するため好ましくなく、一方、5モル%を越えると、多孔質体の構造が共連続構造から逸脱しやすくなる。該芳香族ビニルポリマーの種類に特に制限はなく、例えば、ポリスチレンが挙げられる。上記ポリマーは、単独のビニルモノマーと架橋剤を共重合させて得られるポリマーでも、複数のビニルモノマーと架橋剤を重合させて得られるポリマーであってもよく、また、二種類以上のポリマーがブレンドされたものであってもよい。これら有機ポリマー材料の中で、共連続構造形成の容易さ、アニオン交換基導入の容易性と機械的強度の高さ、および酸又はアルカリに対する安定性の高さから、スチレン−ジビニルベンゼン共重合体やビニルベンジルクロライド−ジビニルベンゼン共重合体が好ましい。   In the B-type monolith anion exchanger, the material constituting the skeleton of the co-continuous structure is 0.3 to 5 mol%, preferably 0.5 to 3.0 mol% of the crosslinked structural unit in all the structural units. It is an aromatic vinyl polymer containing and is hydrophobic. If the cross-linking structural unit is less than 0.3 mol%, the mechanical strength is insufficient, which is not preferable. On the other hand, if it exceeds 5 mol%, the structure of the porous body tends to deviate from the bicontinuous structure. There is no restriction | limiting in particular in the kind of this aromatic vinyl polymer, For example, a polystyrene is mentioned. The polymer may be a polymer obtained by copolymerizing a single vinyl monomer and a crosslinking agent, a polymer obtained by polymerizing a plurality of vinyl monomers and a crosslinking agent, or a blend of two or more types of polymers. It may be what was done. Among these organic polymer materials, a styrene-divinylbenzene copolymer is obtained because of the ease of forming a co-continuous structure, the ease of introducing an anion exchange group, the high mechanical strength, and the high stability to acids or alkalis. And vinylbenzyl chloride-divinylbenzene copolymer is preferred.

Bタイプのモノリスアニオン交換体は、水湿潤状態での体積当りのアニオン交換容量が0.3〜1.0mg当量/mlのイオン交換容量を有する。Bタイプのモノリスアニオン交換体は、三次元的に連続した空孔の連続性や均一性が高いため、全細孔容積を低下させても圧力損失はさほど増加しない。そのため、圧力損失を低く押さえたままで体積当りのアニオン交換容量を飛躍的に大きくすることができる。体積当りのアニオン交換容量が0.3mg当量/ml未満であると、体積当りの白金族金属のナノ粒子担持量が低下してしまうため好ましくない。一方、体積当りのアニオン交換容量が1.0mg当量/mlを超えると、通水時の圧力損失が増大してしまうため好ましくない。なお、Bタイプのモノリスアニオン交換体の乾燥状態における重量当りのアニオン交換容量は特に限定されないが、イオン交換基が多孔質体の骨格表面及び骨格内部にまで均一に導入しているため、3.5〜4.5mg当量/gである。   The B type monolith anion exchanger has an ion exchange capacity of 0.3 to 1.0 mg equivalent / ml of anion exchange capacity per volume under water wet condition. Since the B type monolith anion exchanger has high continuity and uniformity of three-dimensionally continuous pores, the pressure loss does not increase so much even if the total pore volume is reduced. Therefore, the anion exchange capacity per volume can be dramatically increased while keeping the pressure loss low. If the anion exchange capacity per volume is less than 0.3 mg equivalent / ml, the amount of platinum group metal nanoparticles supported per volume will be unfavorable. On the other hand, if the anion exchange capacity per volume exceeds 1.0 mg equivalent / ml, the pressure loss at the time of passing water increases, which is not preferable. In addition, the anion exchange capacity per weight in the dry state of the B type monolith anion exchanger is not particularly limited, but the ion exchange groups are uniformly introduced to the skeleton surface and the skeleton inside the porous body. 5-4.5 mg equivalent / g.

Bタイプのモノリスアニオン交換体のアニオン交換基としては、Aタイプのモノリスアニオン交換体の説明で挙げたものと同様のものを挙げることができる。また、アニオン交換基の分布状態や、「アニオン交換基が均一に分布している」ことの意味内容や、アニオン交換基分布状態の確認方法や、アニオン交換基がモノリスの表面のみならず多孔質体の骨格内部にまで均一に分布することの効果もAタイプのモノリスアニオン交換体と同様である。   Examples of the anion exchange group of the B type monolith anion exchanger include the same as those mentioned in the description of the A type monolith anion exchanger. In addition, the distribution of anion exchange groups, the meaning of “anion exchange groups are uniformly distributed”, the method for confirming the distribution of anion exchange groups, and the anion exchange groups are porous as well as the surface of the monolith. The effect of even distribution within the body skeleton is the same as that of the A-type monolith anion exchanger.

モノリス中間体のポリマー材料の種類は、Aタイプのモノリスアニオン交換体のモノリス中間体のポリマー材料の種類と同様であり、その説明を省略する。   The type of the polymer material of the monolith intermediate is the same as the type of the polymer material of the monolith intermediate of the A type monolith anion exchanger, and the description thereof is omitted.

モノリス中間体の全細孔容積は、16ml/gを超え、30ml/g以下、好適には16ml/gを超え、25ml/g以下である。すなわち、このモノリス中間体は、基本的には連続マクロポア構造ではあるが、マクロポアとマクロポアの重なり部分である開口(メソポア)が格段に大きいため、モノリス構造を構成する骨格が二次元の壁面から一次元の棒状骨格に限りなく近い構造を有している。これを重合系に共存させると、モノリス中間体の構造を型として共連続構造の多孔質体が形成される。全細孔容積が小さ過ぎると、ビニルモノマーを重合させた後で得られるモノリスの構造が共連続構造から連続マクロポア構造に変化してしまうため好ましくなく、一方、全細孔容積が大き過ぎると、ビニルモノマーを重合させた後で得られるモノリスの機械的強度が低下したり、体積当たりのアニオン交換容量が低下してしまうため好ましくない。モノリス中間体の全細孔容積をBタイプのモノリスアニオン交換体の特定の範囲とするには、モノマーと水の比を、概ね1:20〜1:40とすればよい。   The total pore volume of the monolith intermediate is greater than 16 ml / g and not greater than 30 ml / g, preferably greater than 16 ml / g and not greater than 25 ml / g. In other words, this monolith intermediate basically has a continuous macropore structure, but the opening (mesopore) that is the overlapping part of the macropore and the macropore is remarkably large, so that the skeleton constituting the monolith structure is primary from the two-dimensional wall surface. It has a structure as close as possible to the original rod-like skeleton. When this coexists in the polymerization system, a porous body having a co-continuous structure is formed using the structure of the monolith intermediate as a mold. If the total pore volume is too small, the structure of the monolith obtained after polymerizing the vinyl monomer is not preferable because it changes from a co-continuous structure to a continuous macropore structure. On the other hand, if the total pore volume is too large, This is not preferable because the mechanical strength of the monolith obtained after polymerizing the vinyl monomer is lowered and the anion exchange capacity per volume is lowered. In order to make the total pore volume of the monolith intermediate within a specific range of the B-type monolith anion exchanger, the ratio of monomer to water may be about 1:20 to 1:40.

また、モノリス中間体は、マクロポアとマクロポアの重なり部分である開口(メソポア)の平均直径が乾燥状態で5〜100μmである。開口の平均直径が乾燥状態で5μm未満であると、ビニルモノマーを重合させた後で得られるモノリスの開口径が小さくなり、流体透過時の圧力損失が大きくなってしまうため好ましくない。一方、100μmを超えると、ビニルモノマーを重合させた後で得られるモノリスの開口径が大きくなりすぎ、被処理水とモノリスアニオン交換体との接触が不十分となり、その結果、過酸化水素分解特性が低下してしまうため好ましくない。モノリス中間体は、マクロポアの大きさや開口の径が揃った均一構造のものが好適であるが、これに限定されず、均一構造中、均一なマクロポアの大きさよりも大きな不均一なマクロポアが点在するものであってもよい。   Moreover, the average diameter of the opening (mesopore) which is an overlap part of a macropore and a macropore is a monolith intermediate body is 5-100 micrometers in a dry state. When the average diameter of the openings is less than 5 μm in the dry state, the opening diameter of the monolith obtained after polymerizing the vinyl monomer is reduced, and the pressure loss during fluid permeation is increased, which is not preferable. On the other hand, if it exceeds 100 μm, the opening diameter of the monolith obtained after polymerizing the vinyl monomer becomes too large, resulting in insufficient contact between the water to be treated and the monolith anion exchanger, resulting in hydrogen peroxide decomposition characteristics. Is unfavorable because it decreases. Monolith intermediates preferably have a uniform structure with uniform macropore size and aperture diameter, but are not limited to this, and the uniform structure is dotted with nonuniform macropores larger than the size of the uniform macropore. You may do.

Bタイプのモノリスアニオン交換体は、共連続構造のモノリスにアニオン交換基が導入されるため、例えばモノリスの1.4〜1.9倍に大きく膨潤する。また、空孔径が膨潤で大きくなっても全細孔容積は変化しない。従って、Bタイプのモノリスアニオン交換体は、3次元的に連続する空孔の大きさが格段に大きいにもかかわらず、骨太骨格を有するため機械的強度が高い。また、骨格が太いため、水湿潤状態での体積当りのアニオン交換容量を大きくでき、更に、被処理水を低圧、大流量で長期間通水することが可能である。   The B-type monolith anion exchanger swells to 1.4 to 1.9 times as large as that of the monolith, for example, because an anion exchange group is introduced into the bilithic monolith. Further, the total pore volume does not change even if the pore diameter becomes larger due to swelling. Therefore, the B type monolith anion exchanger has a high mechanical strength because it has a thick bone skeleton even though the size of three-dimensionally continuous pores is remarkably large. Further, since the skeleton is thick, the anion exchange capacity per volume in a water-wet state can be increased, and furthermore, the water to be treated can be passed for a long time at a low pressure and a large flow rate.

(触媒金属担持体)
触媒金属担持体は、モノリスアニオン交換体に白金族金属が担持されてなるものであり、モノリスアニオン交換体に、白金族金属のナノ粒子が担持されている触媒金属担持体であることが好ましい。
(Catalyst metal carrier)
The catalyst metal carrier is formed by carrying a platinum group metal on a monolith anion exchanger, and is preferably a catalyst metal carrier having platinum group metal nanoparticles supported on the monolith anion exchanger.

モノリスアニオン交換体としては、上述したA,Bタイプのモノリスアニオン交換体が好ましい。   As the monolith anion exchanger, the above-described A and B type monolith anion exchangers are preferable.

白金族金属とは、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金である。これらの白金族金属は、一種類を単独で用いても、二種類以上の金属を組み合わせて用いてもよく、更に、二種類以上の金属を合金として用いてもよい。これらの中で、白金、パラジウム、白金/パラジウム合金は触媒活性が高く、好適に用いられる。   The platinum group metal is ruthenium, rhodium, palladium, osmium, iridium, or platinum. These platinum group metals may be used individually by 1 type, may be used in combination of 2 or more types of metals, and may also use 2 or more types of metals as an alloy. Among these, platinum, palladium, and platinum / palladium alloys have high catalytic activity and are preferably used.

白金族金属のナノ粒子の平均粒子径は、1〜100nmであり、好ましくは1〜50nm、更に好ましくは1〜20nmである。平均粒子径が1nm未満であると、ナノ粒子が担体から脱離する可能性が高くなるため好ましくなく、一方、平均粒子径が100nmを超えると、金属の単位質量当たりの表面積が少なくなり触媒効果が効率的に得られなくなるため好ましくない。なお、ナノ粒子の平均粒子径が上記範囲内の場合、表面プラズモン共鳴によりナノ粒子は強く着色するため、目視によっても確認可能である。   The average particle diameter of the platinum group metal nanoparticles is 1 to 100 nm, preferably 1 to 50 nm, and more preferably 1 to 20 nm. If the average particle size is less than 1 nm, the possibility that the nanoparticles are detached from the carrier increases, which is not preferable. On the other hand, if the average particle size exceeds 100 nm, the surface area per unit mass of the metal decreases and the catalytic effect. Is not preferred because it cannot be obtained efficiently. When the average particle diameter of the nanoparticles is within the above range, the nanoparticles are strongly colored by surface plasmon resonance and can be confirmed by visual observation.

乾燥状態の触媒金属担持体中の白金族金属ナノ粒子の担持量((白金族金属ナノ粒子/乾燥状態の白金族金属担持触媒)×100)は、0.004〜20重量%、好ましくは0.005〜15重量%である。白金族金属ナノ粒子の担持量が0.004重量%未満であると、過酸化水素分解効果が不十分になるため好ましくない。   The amount of platinum group metal nanoparticles supported in the catalyst metal support in the dry state ((platinum group metal nanoparticles / dry platinum group metal supported catalyst) × 100) is 0.004 to 20% by weight, preferably 0. 0.005 to 15% by weight. If the supported amount of platinum group metal nanoparticles is less than 0.004% by weight, the effect of decomposing hydrogen peroxide is insufficient, which is not preferable.

触媒金属担持体において、白金族金属ナノ粒子の担体であるモノリスアニオン交換体のイオン形は、白金族金属ナノ粒子を担持した後は、通常、塩化物形のような塩形となる。このような塩形のものを過酸化水素分解用の触媒として用いても良い。また、触媒金属担持体は、モノリスアニオン交換体のイオン形を、OH形に再生したものであってもよい。そして、これらのうち、モノリスアニオン交換体のイオン形がOH形であることが、高い触媒効果が得られるため好ましい。白金族金属ナノ粒子を担持した後のモノリスアニオン交換体のOH形への再生方法には特に制限はなく、水酸化ナトリウム水溶液を通液する等の公知の方法を用いればよい。   In the catalyst metal carrier, the ionic form of the monolith anion exchanger, which is the carrier of the platinum group metal nanoparticles, is usually a salt form such as a chloride form after the platinum group metal nanoparticles are supported. Such a salt form may be used as a catalyst for decomposing hydrogen peroxide. Further, the catalyst metal carrier may be one obtained by regenerating the ionic form of the monolith anion exchanger into the OH form. Of these, the ionic form of the monolith anion exchanger is preferably the OH form because a high catalytic effect is obtained. The method for regenerating the monolith anion exchanger after supporting the platinum group metal nanoparticles to the OH form is not particularly limited, and a known method such as passing a sodium hydroxide aqueous solution may be used.

(過酸化水素と導電率の関係)
図3に示す構成の実験装置において通水流量60L/時で超純水を通水し、過酸化水素注入ポンプPによって過酸化水素を注入し、20、50、80、100ppbとなるように過酸化水素濃度を調整した。その後、過酸化水素濃度の調整された超純水を2つに分岐させ、一方は30L/時で過酸化水素分解触媒に通水した後、比抵抗を測定した。他方は30L/時で過酸化水素分解性能を持さないアニオンモノリスに通水した後、比抵抗を測定した。
(Relationship between hydrogen peroxide and conductivity)
In the experimental apparatus having the configuration shown in FIG. 3, ultrapure water is passed at a flow rate of 60 L / hour, hydrogen peroxide is injected by the hydrogen peroxide injection pump P, and the excess is adjusted to 20, 50, 80, and 100 ppb. The hydrogen oxide concentration was adjusted. Thereafter, the ultrapure water whose hydrogen peroxide concentration was adjusted was branched into two, one was passed through a hydrogen peroxide decomposition catalyst at 30 L / hour, and then the specific resistance was measured. The other was passed through an anionic monolith having no hydrogen peroxide decomposition performance at 30 L / hour, and then the specific resistance was measured.

過酸化水素分解触媒としては、内径10mmのチューブに層高50mm(約2.5mL)でPdモノリスを充填したものを用いた。アニオンモノリスとしては、内径10mmのチューブに層高50mm(約2.5mL)で充填したものを用いた。これによって、Pdの有無による比抵抗の違いだけを抽出することができる。比抵抗計には875CR型(FOXBORO製)を使用した。過酸化水素濃度はサンプリングした後、フェノールフタリン法を用いて吸光光度計にて測定した。図中のSはサンプリング点を示す。   As the hydrogen peroxide decomposition catalyst, a tube having an inner diameter of 10 mm filled with Pd monolith with a layer height of 50 mm (about 2.5 mL) was used. As the anion monolith, a tube having an inner diameter of 10 mm filled with a layer height of 50 mm (about 2.5 mL) was used. Thus, only the difference in specific resistance depending on the presence or absence of Pd can be extracted. An 875CR type (manufactured by FOXBORO) was used as a specific resistance meter. After sampling, the hydrogen peroxide concentration was measured with an absorptiometer using the phenolphthalin method. S in the figure indicates a sampling point.

結果を図4に示す。導電率と比抵抗は逆数の関係にあり、図4に示した導電率は、測定した比抵抗の逆数をとったものである。図4より、導電率と過酸化水素との間には相関があることがわかる。具体的には過酸化水素濃度が高くなると導電率も増加する傾向にある。また過酸化水素分解触媒がない場合は、過酸化水素分解触媒がある場合と比べ、導電率の増加が明らかに大きい。これより、超純水中の過酸化水素濃度は導電率に大きな影響を与えることが分かる。   The results are shown in FIG. The electrical conductivity and the specific resistance have a reciprocal relationship, and the electrical conductivity shown in FIG. 4 is the reciprocal of the measured specific resistance. FIG. 4 shows that there is a correlation between conductivity and hydrogen peroxide. Specifically, the conductivity tends to increase as the hydrogen peroxide concentration increases. Further, in the absence of the hydrogen peroxide decomposition catalyst, the increase in conductivity is clearly larger than in the case of the hydrogen peroxide decomposition catalyst. From this, it can be seen that the hydrogen peroxide concentration in the ultrapure water has a great influence on the conductivity.

(実施例1)
超純水製造装置から供給された超純水を、図5に示す構成の実験装置に通水流量100L/時で供給した。供給された超純水の電気抵抗率は18MΩ・cm以上であった。実施例1では、供給された超純水を過酸化水素分解触媒に通水し、これをTOC濃度測定装置に供給した。
Example 1
The ultrapure water supplied from the ultrapure water production apparatus was supplied to the experimental apparatus having the configuration shown in FIG. The electrical resistivity of the supplied ultrapure water was 18 MΩ · cm or more. In Example 1, the supplied ultrapure water was passed through a hydrogen peroxide decomposition catalyst and supplied to a TOC concentration measuring device.

超純水のTOC濃度はTOC濃度測定装置(Anatel社製A−1000XP型)を用いてオンラインで測定した。過酸化水素濃度はサンプリング点Sでサンプリングした後、フェノールフタリン法を用いて吸光光度計にて測定した。測定された過酸化水素濃度は被測定水の実際の過酸化水素濃度を示している。過酸化水素分解触媒としては、内径25mmのアクリルカラムに層高400mm(約200mL)でPd樹脂を充填したものを用いた。過酸化水素濃度とTOC濃度の測定結果を表1に示す。過酸化水素分解触媒出口での過酸化水素濃度の測定値は1ppb未満であり、TOC濃度は0.57ppbであった。   The TOC concentration of ultrapure water was measured online using a TOC concentration measuring device (A-1000XP type manufactured by Anatel). The hydrogen peroxide concentration was sampled at the sampling point S and then measured with an absorptiometer using the phenol phthaline method. The measured hydrogen peroxide concentration indicates the actual hydrogen peroxide concentration of the water to be measured. As the hydrogen peroxide decomposition catalyst, an acrylic column having an inner diameter of 25 mm filled with Pd resin at a layer height of 400 mm (about 200 mL) was used. Table 1 shows the measurement results of the hydrogen peroxide concentration and the TOC concentration. The measured value of the hydrogen peroxide concentration at the hydrogen peroxide decomposition catalyst outlet was less than 1 ppb, and the TOC concentration was 0.57 ppb.

(比較例1)
比較例1では、過酸化水素分解触媒を(バイパスライン経由で)バイパスして超純水をTOC濃度測定装置に供給した他は、実施例1と同様とした。結果を表1に示す。TOC測定前の過酸化水素濃度は19ppbであり、TOC濃度は0.60ppbであった。過酸化水素濃度が高い状態ではTOC濃度が大きめに測定されることがわかる。
(Comparative Example 1)
Comparative Example 1 was the same as Example 1 except that the hydrogen peroxide decomposition catalyst was bypassed (via a bypass line) and ultrapure water was supplied to the TOC concentration measuring device. The results are shown in Table 1. The hydrogen peroxide concentration before the TOC measurement was 19 ppb, and the TOC concentration was 0.60 ppb. It can be seen that the TOC concentration is measured to be larger when the hydrogen peroxide concentration is high.

Figure 0005484277
Figure 0005484277

(実施例2)
超純水製造装置から供給された超純水を、図5に示す構成の実験装置に通水流量12L/時で供給した。供給された超純水の電気抵抗率は18MΩ・cm以上であった。実施例2では、供給された超純水を過酸化水素分解触媒に通水し、これをTOC濃度測定装置に供給した。
(Example 2)
The ultrapure water supplied from the ultrapure water production apparatus was supplied to the experimental apparatus configured as shown in FIG. 5 at a water flow rate of 12 L / hour. The electrical resistivity of the supplied ultrapure water was 18 MΩ · cm or more. In Example 2, the supplied ultrapure water was passed through the hydrogen peroxide decomposition catalyst and supplied to the TOC concentration measuring device.

超純水のTOC濃度及び過酸化水素濃度は実施例1と同様に測定した。過酸化水素分解触媒としては、内径10mmのナイロンカラムに層高30mm(約2.5mL)でPdモノリスを充填したものを用いた。結果を表2に示す。過酸化水素分解触媒出口での過酸化水素濃度の測定値は1ppb未満であり、TOC濃度は1.02ppbであった。   The TOC concentration and the hydrogen peroxide concentration of ultrapure water were measured in the same manner as in Example 1. As the hydrogen peroxide decomposition catalyst, a nylon column having an inner diameter of 10 mm packed with Pd monolith with a layer height of 30 mm (about 2.5 mL) was used. The results are shown in Table 2. The measured value of the hydrogen peroxide concentration at the hydrogen peroxide decomposition catalyst outlet was less than 1 ppb, and the TOC concentration was 1.02 ppb.

(比較例2)
比較例2では、過酸化水素分解触媒をバイパスして超純水をTOC濃度測定装置に供給した他は、実施例2と同様とした。結果を表2に示す。TOC測定前の過酸化水素濃度は14ppbであり、TOC濃度は1.24ppbであった。過酸化水素濃度が高い状態ではTOC濃度が大きめに測定されることがわかる。
(Comparative Example 2)
Comparative Example 2 was the same as Example 2 except that ultrapure water was supplied to the TOC concentration measuring device by bypassing the hydrogen peroxide decomposition catalyst. The results are shown in Table 2. The hydrogen peroxide concentration before the TOC measurement was 14 ppb, and the TOC concentration was 1.24 ppb. It can be seen that the TOC concentration is measured to be larger when the hydrogen peroxide concentration is high.

Figure 0005484277
Figure 0005484277

1 TOC濃度測定システム
2 過酸化水素分解触媒
3 TOC濃度測定装置
4 保持チャンバー
5 紫外線照射部
6 コントローラー
7 導電率測定部
9 データ処理部
DESCRIPTION OF SYMBOLS 1 TOC concentration measuring system 2 Hydrogen peroxide decomposition catalyst 3 TOC concentration measuring device 4 Holding chamber 5 Ultraviolet irradiation part 6 Controller 7 Conductivity measuring part 9 Data processing part

Claims (12)

過酸化水素を含む超純水から少なくとも一部の過酸化水素を除去することができる過酸化水素分解触媒と、
前記過酸化水素分解触媒の後段に設けられた全有機炭素成分濃度測定装置であって、前記超純水を導入し前記超純水を保持する保持チャンバーと、前記保持チャンバーに保持されている超純水に紫外線を照射する紫外線照射部と、前記保持チャンバーに保持されている超純水が前記紫外線照射部による紫外線の照射を受けて導電率の時間変化率が所定の値以下となったときの、前記保持チャンバーに保持されている前記超純水の導電率を測定する導電率測定部と、前記導電率測定部で測定した前記導電率から、前記紫外線照射部による紫外線の照射を受ける前に前記超純水に含まれていた全有機炭素成分濃度を算出するデータ処理部と、を備えた全有機炭素成分濃度測定装置と、
を有する、超純水中の全有機炭素成分濃度の測定システム。
A hydrogen peroxide decomposition catalyst capable of removing at least a portion of hydrogen peroxide from ultrapure water containing hydrogen peroxide;
A total organic carbon component concentration measuring apparatus provided at a subsequent stage of the hydrogen peroxide decomposition catalyst, wherein the ultrapure water is introduced to hold the ultrapure water, and the ultrapure water held in the hold chamber When the ultraviolet irradiation unit that irradiates the pure water with ultraviolet rays and the ultrapure water held in the holding chamber is irradiated with the ultraviolet rays by the ultraviolet irradiation unit, and the time change rate of the conductivity becomes a predetermined value or less. A conductivity measuring unit that measures the conductivity of the ultrapure water held in the holding chamber, and the conductivity measured by the conductivity measuring unit before being irradiated with ultraviolet rays by the ultraviolet irradiation unit. A data processing unit for calculating the total organic carbon component concentration contained in the ultrapure water, and a total organic carbon component concentration measuring device comprising:
A system for measuring the concentration of total organic carbon components in ultrapure water.
過酸化水素を含む超純水から少なくとも一部の過酸化水素を除去することができる過酸化水素分解触媒と、
前記過酸化水素分解触媒の後段に設けられた全有機炭素成分濃度測定装置であって、前記超純水を導入し前記超純水を保持する保持チャンバーと、前記保持チャンバーに保持されている超純水の導電率を測定する導電率測定部と、前記導電率測定部で測定した導電率から前記超純水に含まれていた全有機炭素成分濃度を算出するデータ処理部と、を備えた全有機炭素成分濃度測定装置と、
を有し、
前記導電率測定部は、前記保持チャンバーに保持されている前記超純水の導電率が、前記紫外線照射部による紫外線の照射を受ける前と、前記紫外線照射部による紫外線の照射を受けて前記導電率の時間変化率が所定の値以下となったときの2つの段階で得られるようにされ、
前記データ処理部は、前記2つの段階における前記導電率の差分から、前記紫外線照射部による紫外線の照射を受ける前に前記超純水に含まれていた全有機炭素成分濃度を算出するようにされている、超純水中の全有機炭素成分濃度の測定システム。
A hydrogen peroxide decomposition catalyst capable of removing at least a portion of hydrogen peroxide from ultrapure water containing hydrogen peroxide;
A total organic carbon component concentration measuring apparatus provided at a subsequent stage of the hydrogen peroxide decomposition catalyst, wherein the ultrapure water is introduced to hold the ultrapure water, and the ultrapure water held in the hold chamber A conductivity measuring unit for measuring the conductivity of pure water, and a data processing unit for calculating the total organic carbon component concentration contained in the ultrapure water from the conductivity measured by the conductivity measuring unit. A total organic carbon component concentration measuring device;
Have
The conductivity measuring unit is configured such that the conductivity of the ultrapure water held in the holding chamber is irradiated with ultraviolet rays from the ultraviolet irradiation unit and before the ultraviolet irradiation by the ultraviolet irradiation unit. It is obtained in two stages when the rate of time change of the rate falls below a predetermined value,
The data processing unit is configured to calculate the total organic carbon component concentration contained in the ultrapure water before receiving the ultraviolet irradiation by the ultraviolet irradiation unit from the difference in conductivity in the two stages. A system for measuring the concentration of all organic carbon components in ultrapure water.
前記全有機炭素成分濃度測定装置は前記過酸化水素分解触媒の後段に前記過酸化水素分解触媒と隣接して設けられている、請求項1または2に記載の測定システム。   3. The measurement system according to claim 1, wherein the total organic carbon component concentration measuring device is provided adjacent to the hydrogen peroxide decomposition catalyst downstream of the hydrogen peroxide decomposition catalyst. 前記過酸化水素分解触媒は白金族金属である、請求項1から3のいずれか1項に記載の測定システム。   The measurement system according to claim 1, wherein the hydrogen peroxide decomposition catalyst is a platinum group metal. 前記過酸化水素分解触媒はアニオン交換体に白金族金属が担持された触媒金属担持体である、請求項1から3のいずれか1項に記載の測定システム。   The measurement system according to any one of claims 1 to 3, wherein the hydrogen peroxide decomposition catalyst is a catalytic metal carrier in which a platinum group metal is supported on an anion exchanger. 前記触媒金属担持体は、モノリス状有機多孔質アニオン交換体に白金族金属が担持された触媒金属担持体である、請求項5に記載の測定システム。   The measurement system according to claim 5, wherein the catalyst metal support is a catalyst metal support in which a platinum group metal is supported on a monolithic organic porous anion exchanger. 前記アニオン交換体がOH形である請求項5または6に記載の測定システム。   The measurement system according to claim 5 or 6, wherein the anion exchanger is in OH form. 前記触媒金属担持体は、有機多孔質アニオン交換体に、平均粒子径1〜100nmの白金族金属のナノ粒子が、担持されている白金族金属担持触媒であり、
前記有機多孔質アニオン交換体は、気泡状のマクロポア同士が重なり合い、この重なる部分が水湿潤状態で平均直径30〜300μmの開口となる連続マクロポア構造を有し、0.3〜10モル%の架橋構造単位を含有する有機ポリマー材料からなり、全細孔容積が0.5〜5ml/gであり、アニオン交換容量が湿潤状態で0.4〜1mg当量/mlであり、アニオン交換基が該多孔質イオン交換体中に均一に分布している、請求項5から7のいずれか1項に記載の測定システム。
The catalyst metal support is a platinum group metal supported catalyst in which platinum group metal nanoparticles having an average particle diameter of 1 to 100 nm are supported on an organic porous anion exchanger,
The organic porous anion exchanger has a continuous macropore structure in which bubble-like macropores overlap each other, and the overlapping portion has an opening with an average diameter of 30 to 300 μm in a water-wet state. It is made of an organic polymer material containing a structural unit, has a total pore volume of 0.5 to 5 ml / g, an anion exchange capacity of 0.4 to 1 mg equivalent / ml in a wet state, and the anion exchange group is porous. The measurement system according to claim 5, wherein the measurement system is uniformly distributed in the ion exchanger.
前記触媒金属担持体は、有機多孔質アニオン交換体に白金族金属のナノ粒子が、担持されている白金族金属担持触媒であり、
前記有機多孔質アニオン交換体は、アニオン交換基が導入された全構成単位中、架橋構造単位を0.3〜5.0モル%含有する芳香族ビニルポリマーからなる平均太さが水湿潤状態で1〜60μmの三次元的に連続した骨格と、その骨格間に平均直径が水湿潤状態で10〜100μmの三次元的に連続した空孔とからなる共連続構造体であって、全細孔容積が0.5〜5ml/gであり、水湿潤状態での体積当りのイオン交換容量が0.3〜1.0mg当量/mlであり、アニオン交換基が該多孔質イオン交換体中に均一に分布している、請求項5から7のいずれか1項に記載の測定システム。
The catalyst metal carrier is a platinum group metal-supported catalyst in which platinum group metal nanoparticles are supported on an organic porous anion exchanger,
The organic porous anion exchanger has an average thickness composed of an aromatic vinyl polymer containing 0.3 to 5.0 mol% of a crosslinked structural unit among all the structural units into which an anion exchange group has been introduced. A co-continuous structure comprising a three-dimensionally continuous skeleton of 1 to 60 μm and three-dimensionally continuous pores having an average diameter of 10 to 100 μm in a wet state between the skeletons. The volume is 0.5 to 5 ml / g, the ion exchange capacity per volume under water wet condition is 0.3 to 1.0 mg equivalent / ml, and the anion exchange group is uniform in the porous ion exchanger. The measurement system according to claim 5, wherein the measurement system is distributed.
過酸化水素を濃度Xで含み全有機炭素成分濃度が10ppb以下である超純水から少なくとも一部の過酸化水素を除去する過酸化水素除去ステップと、
前記過酸化水素除去ステップに続き、過酸化水素を含まずまたは過酸化水素を濃度X未満の濃度で含む前記超純水を保持チャンバーに保持し、前記保持チャンバーに保持されている前記超純水に紫外線を照射しながら、前記保持チャンバーに保持されている前記超純水の導電率を測定し、導電率の時間変化率が所定の値以下となったときの導電率を求めるステップと、
前記導電率の時間変化率が所定の値以下となったときの導電率から、前記紫外線の照射を受ける前に前記超純水に含まれていた全有機炭素成分濃度を算出するステップと、
を有する、超純水中の全有機炭素成分濃度の測定方法。
A hydrogen peroxide removal step of removing at least a part of hydrogen peroxide from ultrapure water containing hydrogen peroxide at a concentration X and having a total organic carbon component concentration of 10 ppb or less;
Following the hydrogen peroxide removal step, the ultrapure water containing no hydrogen peroxide or containing hydrogen peroxide at a concentration less than X is held in a holding chamber, and the ultrapure water held in the holding chamber Measuring the conductivity of the ultrapure water held in the holding chamber while irradiating with ultraviolet light, and determining the conductivity when the time change rate of the conductivity is a predetermined value or less;
Calculating the total organic carbon component concentration contained in the ultrapure water before being irradiated with the ultraviolet rays, from the conductivity when the time change rate of the conductivity is a predetermined value or less;
A method for measuring the concentration of all organic carbon components in ultrapure water.
過酸化水素を濃度Xで含み全有機炭素成分濃度が10ppb以下である超純水から少なくとも一部の過酸化水素を除去する過酸化水素除去ステップと、
前記過酸化水素除去ステップに続き、過酸化水素を含まずまたは濃度X未満の濃度で過酸化水素を含む前記超純水を保持チャンバーに保持し、前記保持チャンバーに保持されている前記超純水に紫外線を照射しながら、前記保持チャンバーに保持されている前記超純水の導電率を測定し、その後前記保持チャンバーに保持されている前記超純水に紫外線を照射し前記保持チャンバーに保持されている前記超純水の導電率の時間変化率が所定の値以下となったときの導電率を求めるステップと、
2つの前記導電率の差分から、前記紫外線の照射を受ける前に前記超純水に含まれていた全有機炭素成分濃度を算出するステップと、
を有する、超純水中の全有機炭素成分濃度の測定方法。
A hydrogen peroxide removal step of removing at least a part of hydrogen peroxide from ultrapure water containing hydrogen peroxide at a concentration X and having a total organic carbon component concentration of 10 ppb or less;
Following the hydrogen peroxide removal step, the ultrapure water not containing hydrogen peroxide or containing hydrogen peroxide at a concentration less than X is held in a holding chamber, and the ultrapure water held in the holding chamber The conductivity of the ultrapure water held in the holding chamber is measured while irradiating the ultrapure water, and then the ultrapure water held in the holding chamber is irradiated with ultraviolet rays and held in the holding chamber. Determining the conductivity when the time change rate of the conductivity of the ultrapure water is a predetermined value or less;
Calculating the total organic carbon component concentration contained in the ultrapure water before receiving the ultraviolet irradiation from the difference between the two conductivity values;
A method for measuring the concentration of all organic carbon components in ultrapure water.
前記一部の過酸化水素を除去することは、前記超純水を過酸化水素分解触媒に接触させることを含む、請求項10または11に記載の測定方法。   The measurement method according to claim 10 or 11, wherein removing the part of the hydrogen peroxide includes bringing the ultrapure water into contact with a hydrogen peroxide decomposition catalyst.
JP2010209234A 2010-09-17 2010-09-17 System and method for measuring total organic carbon content in ultrapure water Active JP5484277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010209234A JP5484277B2 (en) 2010-09-17 2010-09-17 System and method for measuring total organic carbon content in ultrapure water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010209234A JP5484277B2 (en) 2010-09-17 2010-09-17 System and method for measuring total organic carbon content in ultrapure water

Publications (2)

Publication Number Publication Date
JP2012063302A JP2012063302A (en) 2012-03-29
JP5484277B2 true JP5484277B2 (en) 2014-05-07

Family

ID=46059151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010209234A Active JP5484277B2 (en) 2010-09-17 2010-09-17 System and method for measuring total organic carbon content in ultrapure water

Country Status (1)

Country Link
JP (1) JP5484277B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5647842B2 (en) * 2010-09-17 2015-01-07 オルガノ株式会社 Pure water or ultrapure water production apparatus and production method
KR101948659B1 (en) * 2017-01-16 2019-02-18 한국과학기술연구원 Methods of preparing catalysts for decomposition of hydrogen peroxide
EP3586126B1 (en) * 2017-02-23 2022-06-29 Merck Patent GmbH Device and method for measuring the total organic carbon content of a sample fluid

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6071085A (en) * 1983-09-28 1985-04-22 Kurita Water Ind Ltd Removal of hydrogen peroxide
JP3320050B2 (en) * 1999-11-26 2002-09-03 東亜ディーケーケー株式会社 Method and apparatus for measuring organic carbon content
JP2001281189A (en) * 2000-03-30 2001-10-10 Japan Organo Co Ltd Measuring method for total organic carbon and instrument therefor
JP5124946B2 (en) * 2006-01-12 2013-01-23 栗田工業株式会社 Removal method of hydrogen peroxide in ultrapure water in ultrapure water production equipment
JP4920019B2 (en) * 2008-09-22 2012-04-18 オルガノ株式会社 Hydrogen peroxide reduction method, hydrogen peroxide reduction device, ultrapure water production device, and cleaning method

Also Published As

Publication number Publication date
JP2012063302A (en) 2012-03-29

Similar Documents

Publication Publication Date Title
JP5484278B2 (en) Hydrogen peroxide concentration measuring device and measuring method
JP5647842B2 (en) Pure water or ultrapure water production apparatus and production method
KR101668132B1 (en) Catalyst with supported platinum-group metal, process for producing water in which hydrogen peroxide has been decomposed, process for producing water from which dissolved oxygen has been removed, and method of cleaning electronic part
JP5124946B2 (en) Removal method of hydrogen peroxide in ultrapure water in ultrapure water production equipment
KR102287709B1 (en) Ultrapure Water Manufacturing System
KR101824785B1 (en) Cleaning method for exposed copper substrate and cleaning system
JP6298275B2 (en) Water treatment especially to obtain ultrapure water
JP5484277B2 (en) System and method for measuring total organic carbon content in ultrapure water
WO2018105188A1 (en) Ultrapure water production apparatus and operation method for ultrapure water production apparatus
JP6082192B2 (en) Pure water production equipment
Osifo et al. Transport properties of chitosan membranes for zinc (II) removal from aqueous systems
JP6590964B2 (en) Hydrogen peroxide concentration measuring system and measuring method
JP5525754B2 (en) Platinum group metal supported catalyst, method for producing hydrogen peroxide decomposition treatment water, method for producing dissolved oxygen removal treatment water, and method for cleaning electronic components
WO2021261143A1 (en) Method and apparatus for removing hydrogen peroxide, and apparatus for producing pure water
JP2006297244A (en) Pretreatment column for ion chromatography unit and its regeneration method, and ion chromatography unit
JP5292136B2 (en) Method for measuring dissolved nitrogen concentration and measuring device for dissolved nitrogen concentration
JP5842347B2 (en) Subsystem for ultrapure water production
JP6591211B2 (en) Ultrapure water production system and ultrapure water production method
JP2019144143A (en) System and method for measuring concentration of hydrogen peroxide
JP5663410B2 (en) Ultrapure water production method and apparatus
JP6548942B2 (en) Filter evaluation method
JP6029948B2 (en) Pure water production method and pure water production system
JP7195097B2 (en) Hydrogen peroxide concentration analyzer and hydrogen peroxide concentration analysis method
JP2019098248A (en) Modifier of platinum group catalyst for water treatment, catalyst modification device, modification method of platinum group catalyst for water treatment, water treatment system, and water treatment method
JP7252044B2 (en) Concentration analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140218

R150 Certificate of patent or registration of utility model

Ref document number: 5484277

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250