JP5474312B2 - 荷電粒子ビーム装置及びその制御方法 - Google Patents

荷電粒子ビーム装置及びその制御方法 Download PDF

Info

Publication number
JP5474312B2
JP5474312B2 JP2008109502A JP2008109502A JP5474312B2 JP 5474312 B2 JP5474312 B2 JP 5474312B2 JP 2008109502 A JP2008109502 A JP 2008109502A JP 2008109502 A JP2008109502 A JP 2008109502A JP 5474312 B2 JP5474312 B2 JP 5474312B2
Authority
JP
Japan
Prior art keywords
sample
potential
charged particle
particle beam
line segment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008109502A
Other languages
English (en)
Other versions
JP2009026742A (ja
Inventor
宗行 福田
弘将 山梨
明佳 谷本
康成 早田
修 那須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2008109502A priority Critical patent/JP5474312B2/ja
Priority to US12/142,284 priority patent/US8026482B2/en
Publication of JP2009026742A publication Critical patent/JP2009026742A/ja
Application granted granted Critical
Publication of JP5474312B2 publication Critical patent/JP5474312B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/026Means for avoiding or neutralising unwanted electrical charges on tube components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/261Details
    • H01J37/265Controlling the tube; circuit arrangements adapted to a particular application not otherwise provided, e.g. bright-field-dark-field illumination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24564Measurements of electric or magnetic variables, e.g. voltage, current, frequency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Tests Of Electronic Circuits (AREA)

Description

本発明は、試料に荷電粒子ビームを照射し、この試料から発生する二次荷電粒子を検出する荷電粒子ビーム装置及びその制御方法に関する。
半導体ウェハ等の試料に形成された回路パターンを観察する装置として、荷電粒子ビーム装置がある。荷電粒子ビーム装置は、試料に一次荷電粒子ビームを照射し、これにより発生する二次荷電粒子を検出し、これを画像化して表示する装置である。この一次荷電粒子ビームが電子ビームの場合は、この荷電粒子ビーム装置は走査電子顕微鏡(Scanning Electron Microscope、以下SEMと略す)と呼ばれる。
このSEMで、電子ビームが試料に深く進入すると、二次荷電粒子の分解能が低下する。また、試料のなかには電子ビームに対する耐性が低いものも多い。このため、SEMの中は、電子ビームを減速するためのリターディング電圧を試料に印加する機構が設けられているものがある。
ところで、試料の中には、試料自体が帯電しているものがある。試料が帯電する原因としては、例えば、試料が半導体ウェハである場合、プラズマエッチング処理やレジストの塗布処理が考えられているが、全ての帯電の原因を説明することはできない。いずれにしろ、試料を接地させても残留してしまう固定的な電荷による帯電が原因と考えられている。このような帯電は、試料に照射する電子ビームの軌道を曲げたり、合焦点をずらしたりする。この結果、フォーカス位置を再度調整するために電磁レンズなどの調整に時間がかかり、微細パターンの測定スループットは著しく低下する。
そこで、以下の特許文献1では、半導体ウェハの電位を推定する技術が開示されている。この技術では、半導体ウェハを搬送ロボットで試料交換室へ搬送する過程で、ウェハの中心を通る直線上の複数のポイントの電位を検知し、この検知結果に基づいて半導体ウェハの電位分布関数を得ている。具体的には、まず、半導体ウェハの半径中の複数のポイントの電位を検知し、これらのポイントでの電位を四次関数で近似して、ウェハ中心を原点としてこの四次関数を回転させて、電位分布関数を得ている。そして、この電位分布関数を用いて、測定ポイントの電位を推定し、この値をリターディング電圧にフードバックすることで、短時間でフォーカスを合わせている。
国際公開WO2003/007330号公報
しかしながら、特許文献1に記載の技術では、ウェハ上の電位分布が同心円状である、言い換えると、1回回転対称であると仮定しているため、電位分布が回転対称でない場合には、実際の電位分布と推定した電位分布との間に大きなずれが生じ、リターディング電圧を適切な値に設定することができず、測定ポイントにおける測定に時間がかかってしまうという問題点がある。
本発明は、このような従来技術の問題点に着目し、帯電によるウェハの電位分布を正確に推定し、リターディング電圧等の荷電粒子ビーム光学系の設定パラメータを適切な値に設定することができる荷電粒子ビーム装置及びその制御方法を提供することを目的とする。
前記問題点を解決するため、本発明では、
試料表面上の複数のポイントでの電位を検知する電位計測計を設け、この電位計測計により検知された複数のポイントでの電位を用いて、互いに異なる方向のそれぞれで隣り合うポイント間の電位を補間して、試料表面上の電位分布に関する二次元補間関数を求める。例えば、電位計測計で前記試料表面上の直線状に並んでいる複数のポイントでの電位を計測する場合には、直線状に並んでいる複数のポイントでの電位を用いて、直線状に並んでいる複数のポイント列毎に隣り合うポイント間の電位を補間して直線方向電位分布関数を求める。続いて、この直線方向電位分布関数で定められる任意のポイントに関して周方向に隣り合うポイント間の電位を補間して、前記二次元補間関数を求めるとよい。そして、この二次補間関数を用いて、試料表面上の測定ポイントでの電位を推定し、推定された測定ポイントでの電位を用いて、荷電粒子ビーム光学系の設定パラメータを求める。
ここで、電位計測計は、複数設けてもよい。例えば、互いに平行な複数の直線方向の電位をそれぞれ計測する電位計測計を設けてもよい。この場合、前記制御装置は、複数の前記電位計測計のそれぞれで検知された前記試料表面上の直線状に並んでいる複数のポイントでの電位を用いて、直線状に並んでいる複数のポイント列毎に隣り合うポイント間の電位を補間すると共に、周方向に隣り合うポイント間の電位を補間して、前記二次元補間関を求めるとよい。
また、例えば、前記試料表面上の直線上に並んでいる複数のポイントでの電位を計測する直線方向電位計測計と、前記試料の中心を基準として周方向に並んでいる複数のポイントでの電位を計測する周方向電位計測計とを設けてもよい。この場合、前記制御装置は、直線方向電位計測計で検知された前記試料表面上の直線状に並んでいる複数のポイントでの電位を用いて、直線状に並んでいる複数のポイントで隣り合うポイント間の電位を補間して直線方向電位分布関数を求めると共に、前記周方向電位計測計で検知された該試料表面上の周方向に並んだ複数のポイントでの電位を用いて、周方向に隣り合うポイント間の電位を補間して周方向電位分布関数を求め、該直線電位分布関数と該周方向電位分布関数のそれぞれに重み付けして両者を加算して、前記二次元補間関数を求めるとよい。
ここで、補間の境界条件としては、帯電に特有の条件を考慮する。例えば、試料の外側では帯電電位は0となるので、試料端部で電位が不連続に変化する、あるいは、補間する二方向のうちの一方が試料の周方向である場合には、この周方向の電位分布がθ=0と2πの位置で連続(=なめらかに繋がる)等である。
補間に用いる関数としては、例えば、スプライン関数が好適である。スプライン補間では、連続するいくつかの点(数学的には節点)を取り出して、それらの節点を結ぶ曲線の微分係数が制御点において連続するような関数を使用する。スプライン関数の他、例えば、ラグランジュ関数や三角関数、あるいは多項式を用いて補間を行っても構わない。但し、いずれも節点の数が増えるとフィッティング関数が振動するため、余り好適ではない。
以上のように、本発明では、互いに異なる方向のそれぞれで隣り合うポイント間の電位を補間して、試料表面上の電位分布に関する二次元補間関数を求めているので、電位分布が回転対称でない場合でも、この二次元補間関数(電位分布関数)で試料表面上の電位を正確に推定することができる。また、特許文献1に記載の技術のように、半導体ウェハの半径中のポイントのみの実測電位に基づいて、電位分布関数を求める必要性がないため、試料中の広い範囲でのポイントの実測電位に基づいて、電位分布関数を求めることができるので、この電位分布関数で試料表面上の全域に渡って、正確な電位を推定することができる。
したがって、試料表面上の電位に関係する設定パラメータを適切な値に設定することができる。
以下、本発明に係る荷電粒子ビーム装置としての走査電子顕微鏡システムの各種実施形態について、図面を用いて説明する。
「第一の実施形態」
本実施形態の走査電子顕微鏡システムは、図1に示すように、電子線光学系10、制御系20、搬送系30、試料室40などのサブシステムを有して構成される。なお、図1中の一点破線及び二点破線は、各サブシステムの境界を示す仮想的な線である。
電子線光学系10は、一次電子線11を出射する電子源101と、この電子源101から発生した電子に所望の加速電圧を与えるための引出電極102a,102bと、一次電子線11を集光させるためのコンデンサレンズ103と、一次電子線11の光軸調整を行うためのアライメントコイル104と、一次電子線11を試料上で操作するための走査偏向器105と、一次電子線11を試料上に集束させる対物レンズ106と、試料からの二次荷電粒子12を検出する二次荷電粒子検出器107と、試料13の高さを検出するための高さ検出用レーザ発光器108と、このレーザ発光器108からのレーザ光を試料を介して受光する高さセンサ109と、試料にリターディング電圧を印加するリターディングピン111と、を有している。
搬送系30は、本実施形態における試料である半導体ウェハ13を収納しておくウェハカセット301と、半導体ウェハ13を搬送するウェハ搬送装置302と、半導体ウェハ13の向きや中心位置を調整するアライナ307と、搬送中の半導体ウェハ13の電位を検知する電位計測計304と、を有している。電位計測計304は、半導体ウェハ13の直線搬送経路上に設けられているプローブ304aと、計測計本体304bとを有している。
試料室40は、半導体ウェハ13が載置される試料ステージ401と、試料交換室405と、試料交換室405の出入口に設けられているゲートバルブ406a,406bと、を有している。先に説明した電子線光学系10及び試料ステージ401は、真空室110内に設けられている。試料交換室405は、この真空室110の入り口に設けられている。
制御系20は、走査電子顕微鏡システムの全体を統括制御する統括制御部220と、キーボード等によりユーザの要求を入力するユーザインターフェース部202と、電子光学系10を制御する電子光学系制御装置203と、試料ステージ401を制御するステージ制御装置204と、電子光学系制御装置203からの指示に従って電子源101や引出電極102a,102bを制御する加速電圧制御装置205と、電子光学系制御装置203からの指示に従ってコンデンサレンズ103を制御するコンデンサレンズ制御部206と、二次荷電粒子検出器107からの信号を増幅する増幅器207と、電子光学系制御装置203からの指示に従ってアライメントコイル104を制御するアライメント制御部208と、電子光学系制御装置203からの指示に従って走査偏向器105を制御する偏向信号制御部209と、電子光学系制御装置203からの指示に従って対物レンズ制御部210と、画像表示装置211と、半導体ウェハ13に印加するリターディング電位を制御するリターディング制御部212、試料ステージ401の位置を検出するステージ位置検出器213と、を有している。
統括制御部220は、ユーザインターフェース部202を介してオペレータより入力された検査レシピ情報(一次荷電粒子の加速電圧、半導体ウェハ13に関する情報、測定点の位置情報等)に従い、電子線光学系制御装置203、ステージ制御装置204等を介して、システム全体の制御を行う。統括制御部220は、演算部221と記憶部231とを有している。記憶部231は、例えば半導体メモリなどにより構成される。この記憶部231には、システム全体の統括制御のために必要な情報やプログラムが格納されていると共に、システムの動作過程で得られる各種データを一時的に格納される。演算部221は、統括制御に必要なプログラムを実行する。
加速電圧制御装置205は、電子光学系制御装置203の制御を受けて、一次電子線11の加速電圧を試料観察・分析などに適切な値に制御する。同様に、コンデンサレンズ制御部206は、電子光学系制御装置203の制御によって、電子線11の電流量や集束の開き角などを制御するための適切な値に、コンデンサレンズ103の励磁電流を設定する。その際、一次電子線11の軸ずれ補正値が電子線光学系制御装置203からアライメント制御部208に送信される。対物レンズ制御部210は、対物レンズ106の励磁電流値を電子線11が試料上で合焦点となるような値に設定するが、その設定値は、電子光学系制御装置203から送付される。偏向信号制御部209は、走査偏向器105に対して電子線11を偏向するための偏向信号を供給し、かつ電子光学系制御装置203へ伝送する。伝送された偏向信号は、検出器増幅器207の出力信号読み出しの為の参照信号として使用される。統括制御部220の演算部221は、電子線走査のタイミングと同期して、二次電子検出器107からの出力信号を読み出し、画像表示装置211に表示する観察像を作成する。
ここで、本実施形態の走査電子顕微鏡システムの動作概要について説明する。
ウェハ搬送装置302は、統括制御部220から命令を受けて、ウェハカセット301から半導体ウェハ13を取り出す。そして、真空に保持されている試料交換室405を大気圧にある外部から分離するゲートバルブ406aが開けられると、半導体ウェハ13を試料交換室405に搬入する。試料交換室405に入った半導体ウェハ13は、ゲートバルブ406bを介して真空室110内に搬送され、試料ステージ401上に固定される。
半導体ウェハ13上の回路パターンを高速に計測するためには、試料ステージ401が所望の測定点に移動したときの半導体ウェハ13の高さを検出し、その高さに応じて対物レンズ106の焦点距離を調整する、いわゆる集束調整が必要である。このため、本実施形態では、高さ検出用レーザ発光器108、及びこのレーザ発光器108からのレーザ光を試料を介して受光する高さセンサ109が設けられている。
ステージ位置検出器213により試料ステージ401の位置が検出され、統括制御部220が所望の位置近傍に試料ステージ401が接近したと把握すると、高さ検出用レーザ発光器108に試料ステージ401上の半導体ウェハ13にレーザ光を照射させる。そして、高さセンサ109が半導体ウェハ13からの反射光を受光し、その受光位置から半導体ウェハ13の高さを検出する。この半導体ウェハ13の高さ情報は、対物レンズ106の焦点距離にフィードバックされる。つまり、対物レンズ制御部210は、高さセンサ109が検出した半導体ウェハ13の高さ情報に基づいて対物レンズ106の焦点距離を調節する。
一次電子線11は、引出電極102a,102bにより電子源101から引き出さる。
この一次電子線11は、コンデンサレンズ103、対物レンズ106により集束され、試料ステージ401上の半導体ウェハ13に照射される。なお、電子源101から引き出された一次電子線11は、アライメントコイル104によりその軌道を調整され、偏向信号制御部209から信号を受けた走査偏向器105により、半導体ウェハ13上を二次元に走査される。
本実施形態において、対物レンズ106は電磁レンズであり、励磁電流によって焦点距離が決定される。半導体ウェハ13上に一次電子線11が集束するために必要な励磁電流は、一次電子線11の加速電圧、半導体ウェハ13の表面電位、及び前述した半導体ウェハ13の高さの関数で表される。この関数は、光学シミュレーションまたは実測により導出することができる。
試料ステージ401上の半導体ウェハ13には、リターディングピン111を介して、リターディング制御部212から一次電子線11を減速するためのリターディング電圧が印加されている。半導体ウェハ13への一次電子線11の照射に起因して、半導体ウェハ13から二次荷電粒子12が放出される。この二次荷電粒子12は、二次荷電粒子検出器107により検出され、増幅器207を介して画像表示装置211の輝度信号として使用される。画像表示装置211は、偏向信号制御部209から走査偏向器105へ出力される偏向信号と同期している。このため、画像表示装置211には、半導体ウェハ13に形成された回路パターン形状が忠実に再現される。なお、二次荷電粒子12とは、一次電子線11の照射に伴い半導体ウェハ13から二次的に放出される荷電粒子であり、一般的には二次電子、オージェ電子、反射電子、二次イオンと呼ばれるものを指す。
一次電子線照射の合焦判定(一次電子線の集束状態判定)は、対物レンズ制御部210又はリターディング制御部212の設定変更毎の観察像を統合制御部220が画像処理して行われる。その結果、試料ステージ401が所定の位置に到達した際には、一次電子線11は半導体ウェハ13上に集束される。したがって、半導体ウェハ13の回路パターンの検出を、オペレータによる操作なしに自動で行うことができる。
ここで、半導体ウェハ13が帯電していなければ、高さセンサ109で検出した半導体ウェハ13上の測定点(一次電子線11の照射点)における高さ情報を対物レンズ106の焦点距離にフィードバックすれば、前述したように、一次電子線11を測定点に集束させることができる。なぜなら、帯電が無ければ、半導体ウェハ13の表面電位は、測定点の位置にかかわらずリターディング電圧と等しくなるため、合焦のために必要な対物レンズ励磁電流は、一次電子線11の加速電圧が一定という条件下で一次電子線11の加速電圧および半導体ウェハ13の高さの関数となるためである。
しかし、半導体ウェハ13が帯電している場合、半導体ウェハ13の表面電位は、ビーム照射位置に応じて変化することになる。したがって、合焦のために必要な対物レンズ106の励磁電流は、一次電子線11の加速電圧と半導体ウェハ13の高さに加えて、半導体ウェハ13の表面電位も含んだ関数とする必要がある。繰り返すことになるが、対物レンズ106の焦点距離制御にあたって、試料の表面電位情報を考慮しなければ、一次電子線11を測定点に集束させることができない。測定点の高さ情報は、高さ検出用レーザ発光器108および高さセンサ109を用いて測定開始直前(リアルタイム)に計測することができる。しかしながら、電子線照射位置の表面電位を測定開始直前(即ち、電子線照射の直前に)計測することは現実的には困難である。よって、試料の表面電位分布を予め推定し、電子線光学系10の焦点調整にフィードバックすることが必要となる。そこで、本実施形態では、半導体ウェハ13の直径上の帯電電位を測定前の搬送過程で実測し、得られた実測値から、電位分布を示す二次元の補間関数を求め、これを用いて試料上の測定点の電位を推定している。
以上の二次元補間関数の算出処理、測定点の電位算出処理、電子線光学系10の焦点調整処理は、いずれも、統括制御部220の演算部221により、記憶部231に記憶されているプログラムの実行で処理される。
統括制御部220は、機能的には、図2に示すように、電位計測計304からの電位情報とウェハ搬送装置302のエンコーダ等からのウェハ位置情報とから、半導体ウェハ13の直径上の複数点の電位を取得する直径方向電位分布検出部223と、この直径方向電位分布検出部223が取得した半導体ウェハ13の直径上の複数点の電位が記憶される電位分布記憶部232と、半導体ウェハ13の中心を原点とした極座標系で表された電位分布に関する二次元補間関数を作成する二次元補間関数作成部224と、この二次元補間関数が記憶される二次元補間関数記憶部233と、ステージ位置検出器213で検出された半導体ウェハ13上の照射位置、言い換えると測定点の直交座標系での座標値を極座標系に変換する座標変換部225と、この測定点での電位を二次元補間関数を用いて算出する測定点電位算出部226と、この測定点での電位に基づいてリターデング電圧を求めるリターディング電圧算出部227と、二次荷電粒子検出器107からの信号を画像処理する画像処理部228とを有している。この画像処理部228は、合焦しているか否かを判定する合焦状態検出部228aを有している。
なお、以上の機能構成要素のうち、電位分布記憶部232と二次元補間関数記憶部233は、いずれも、統括制御部220の記憶部231内に確保される。
次に、図3に示すフローチャートに従って、先に述べた二次元補間関数の算出処理、測定点の電位算出処理、電子線光学系10の焦点調整処理の内容を中心して、統括制御部220の処理動作について説明する。
統括制御部220は、装置ユーザにより画像表示装置211に表示されるGUI画面上でスタートボタンがクリックされると、図2に示すように、ウェハ搬送装置302を動作させて、ウェハカセット301から半導体ウェハ13を搬出させ、これをアライナ307に移動させる(S1)。続いて、このアライアナ307により、半導体ウェハ13の中心軸調整等が実行させる(S2)。
半導体ウェハ13には、通常、ノッチ13aと呼ばれる切り欠き部が形成されており、アライナ307では、このノッチ13aが所定方向に向き且つアライナ307の回転中心と半導体ウェハ13の中心が一致するように、半導体ウェハ13の位置が調整される。ノッチ13aの位置は、アライナ307の光学センサなどでモニタされる。半導体ウェハ13がアライナ307に搬入される時点ではノッチ13aがどの方向を向いているか不明であるので、アライナ307では、半導体ウェハ13を回転台上で少なくとも1回転させ、アライナ307の回転中心と半導体ウェハ13の中心が一致し、且つノッチ13aが所定の方向を向くと、ウェハの回転を停止させる。
統括制御部220は、アライナ307により半導体ウェハ13の位置及び向き調整が終了すると(S3)、ウェハ搬送装置302により、半導体ウェハ13を試料交換室405に向って直線搬送させる(S4)。
この半導体ウェハ13の直線搬送の過程で、半導体ウェハ13の中心及びノッチ13aを通る直線上の複数点での電位が検出される(S5)。この際、統括制御部220の直径方向電位分布検出部223は、電位計測計304からの電位情報とウェハ搬送装置302のエンコーダ等からのウェハ位置情報とから、半導体ウェハ13の直径上の電位分布を取得し、これを電位分布記憶部232に格納する。この電位分布記憶部232には、電位検知位置の座標値と、その座標値での電位とが対応付けられて記憶される。
次に、統括制御部220の二次元補間関数作成部224は、半導体ウェハ13の中心を通る直線上の複数点での電位を用いて、半導体ウェハ13の中心を通る直線方向で隣り合う検出点間の電位をスプライン補間すると共に、半導体ウェハ13の周方向で隣り合う検出点間の電位をスプライン補間して、この半導体ウェハ13の電位分布に関する二次元補間関数を求め、これを二次元補間関数記憶部233に格納する(S6)。なお、この二次元補間関数の作成の詳細については後述する。また、この二次元補間関数の作成処理は、後述のステップ12の前であればいつ行ってもよい。
半導体ウェハ13は、その後、ウェハ搬送装置302により、試料交換室405を経て、試料ステージ401上にセットされる(S7)。試料交換室405の内部は、ゲートバルブ306aにより減圧状態に保たれており、半導体ウェハ13の搬入の際には、ゲートバルブ306aが解放され、内部が大気圧状態になる。試料交換室405内への搬入が終わるとゲートバルブ306aは閉じられ、試料交換室405の内圧が真空室110の内圧と同じになると、ゲートバルブ306bが開き、半導体ウェハ13は試料ステージ401上にセットされ、ステージ移動により電子光学鏡筒直下の位置まで移動される。厳密に説明すると、ウェハの計測・検査に使用する高倍画像取得のための電子線照射位置にウェハを移動するためには、光学顕微鏡による粗位置合わせのステップを経るが、煩雑になるため説明は省略する。
次に、統括制御部220は、図2に示すように、ステージ座標系(XY座標系)の原点と試料ステージ401上の半導体ウェハ13の中心とのオフセット値(ΔX,ΔY)を取得し、半導体ウェハ13の中心を原点とする新たなX’Y’座標系を設定した後、このX’Y’座標系の原点を原点とする極座標系を設定する(S8)。なお、XY座標系及びX’Y’座標系のY方向及びY’方向は、いずれも、ウェハ搬送装置302による搬入方向であり、X方向及びX’方向は、いずれも、Y方向及びY’方向に対して垂直な方向である。また、オフセット値(ΔX,ΔY)は、試料ステージ401上の半導体ウェハ13の位置を検出する図示されていないセンサから取得する。
統括制御部220は、次に、ステージ制御装置204に指示を与え、統括制御部220に予め入力されていた複数の測定点のうちの一つの測定点の近傍に設けられたアライメントパターンが一次電子線の照射位置になるように、試料ステージ401を移動させる(S9)。アライメントパターンへのステージ移動後、統括制御部220は、高さセンサ109により測定点の高さ測定を実行させ、この高さ情報を対物レンズ制御部210及び電子光学系制御装置203へ転送する(S10)。なお、このアライメントパターンは、測定点に極めて近い、例えば、測定点から数μ程度の位置に存在するものが選択される。このため、一次電子線の照射位置は、実質的に測定点であると言ってよい。
統括制御部220は、高さ測定の終了後、対物レンズ106のフォーカス条件を設定する(S11)。実際には、フォーカス条件設定の前に一次電子線の加速電圧や電流値を設定するが、図3中では、これらの設定ステップを省略している。対物レンズ106のフォーカス設定の際には、電子光学系制御装置203に格納された励磁電流テーブルから対物レンズ106の励磁電流値が読み出され、対物レンズ制御装置210に転送される。このステップで画像のフォーカスは大まかには一致するが、半導体ウェハ13の表面電位の影響により、フォーカスは完全には合焦状態にはならない。よってリターディング電位を調整することにより、フォーカスの微調整を行う必要がある。
統括制御部220の測定点電位算出部226は、二次元補間関数記憶部233に記憶されている二次元補間関数を用いて、測定点の電位を算出する(S12)。この際、二次元補間関数は、極座標系の変数を用いて表されているため、座標変換部225により、ステージ位置検出器213で検出された測定点のXY座標値を極座標値に変換される。測定点電位算出部226は、この測定点の極座標値を二次元補間関数に代入して、この測定点の電位を算出する。
次に、統括制御部220のリターディング電圧算出部227が、測定点の電位Vexpを用いてリターディング電圧Vrを算出する(S13)。
前述したように、半導体ウェハ13が帯電していない場合、半導体ウェハ13の表面電位はリターディング電圧と等しい。これに対して、半導体ウェハ13が帯電している場合、半導体ウェハ13の表面電位は、リターディング電圧と半導体ウェハ13の帯電による電位との和になる。このため、半導体ウェハ13の表面電位を、半導体ウェハ13が帯電していない場合と同じ一定電位に揃えるためには、半導体ウェハ13に印加するリターディング電圧を補正する必要がある。そこで、半導体ウェハ13の帯電による電位をVs、帯電が無い場合のリターディング電位をVo、帯電が存在する場合のリターディング電圧をVrとした場合、Vr=Vo-Vsとなるように、リターディング電圧Vrを設定すればよい。このようにすることで、対物レンズ106の励磁電流に対する表面電位の影響をキャンセルし、半導体ウェハ13上に一次電子線11が集束するために必要な励磁電流の条件を、半導体ウェハ13が帯電していない場合と同様に扱うことが可能となる。つまり、一次電子線11の加速電圧が一定ならば、高さセンサ109で検出した半導体ウェハ13の測定点における高さ情報を対物レンズ106の焦点距離にフィードバックすることで、この測定点で一次電子線11を集束させることができるようにしている。
ところで、二次元で補間した関数を用いも、この関数は限られた実測データを元に求めているため、半導体ウェハ13の表面電位分布を完全に再現することは困難である。このため、本実施形態では、リターデイング電圧Vrを一定の範囲Vvar内で、適当な刻み幅dで変えて二次荷電粒子走査像を取得し、これら複数の画像データ毎に合焦判定を実行するようにしている。そこで、ここでは、まず、図6に示すように、帯電が無い場合のリターディング電位Vから、帯電による測定点の電位Vexpを引き、この電位(V-Vexp)を基準リターデング電圧とし、この基準リターディング電圧から電圧振り幅Vvarの半分の値(Vvar/2)を減算した電圧を初期リターディング電圧Vrとしている(S13)。
リターディング電圧算出部227は、リターディング電圧Vrを算出すると、この値をリターディング電圧制御部212に設定する(S14)。リターディング電圧制御部212は、リターディング電圧の値が設定されると、試料ステージ401にリターディングピン111に、この値のリターディング電圧が印加される。
統合制御部220は、電子線光学系制御部203に指示を与え、試料ステージ401の半導体ウェハ13に一次電子線を照射させる(S15)。この一次電子線は、前述したように、電子源101から引出電極102a,102bにより引き出され、コンデンサレンズ103及び対物レンズ106により集束されて、試料ステージ401上の半導体ウェハ13に照射される。
この半導体ウェハ13への一次電子線の照射により、半導体ウェハ13から二次荷電粒子12が放出され、この二次荷電粒子12が二次荷電粒子検出器107により検出される。二次荷電粒子検出器107からの出力は、増幅器207で増幅されてから、統合制御部220の合焦状態検出部228aに送られ、ここで合焦しているか否かが判定される(S16)。合焦しているか否かの判定は、二次荷電粒子走査像の鮮鋭度を判断することにより行われる。より具体的には、例えば、アライメントパターンのエッジを強調するフィルタをかけて、その際のコントラストで合焦判定を行うことができる。合焦していれば後述のステップ20に進み、合焦していなければ、リターディング電圧算出部227が、先に定めたリターディング電圧Vrに、予め定めた刻み幅dを加えて、これを新たなリターディング電圧Vrとし(S17)、この新たなリターディング電圧Vrがリターディング電圧の上限値((Vo−Vexp)+Vvar/2)より大きいか否かを判定する(S18)。
新たなリターディング電圧Vrがリターディング電圧の上限値より大きい場合には、ステップ9に戻り、新たな測定点が照射位置に至るように試料ステージ401を移動させて、ステップ10以降を実行する。また、新たなリターディング電圧Vrがリターディング電圧の上限値以下である場合には、ステップ14と同様に、この新たなリターディング電圧Vrを設定し(S19)、この状態が合焦しているか否か判定が行われる(S16)。以降、合焦していると判定されるまで、リターディング電圧Vrが上限値を超えない限り、ステップ16〜ステップ19の処理が繰り返される。
ステップ16で合焦していると判定されると、測定点での実際の測定が実行される(S20)。測定点での測定が終了すると、統合制御部220は、他の測定点が残っているか否かを判断し(S20)、他の測定点がなくなるまで、以上のステップ9〜ステップ21の処理を繰り返す。
なお、以上では、ステップ18でリターディング電圧Vrが上限値を超えた場合に、一次電子線照射位置を次の測定点に移動させているが、この替わりに、リターディング電圧Vrの振り幅Vvarをより大きく設定し直して、再度最適値を探索するようにしてもよい。この場合、リターディング電位の再設定を数回繰り返しても合焦状態に至らないときには、設定した対物レンズ106の励磁電流値もしくは計算した表面電位分布関数のいずれかに問題があると考えられるので、高さ計測もしくは半導体ウェハ13の表面電位計測をやり直すとよい。
以上説明した実施形態では、リターディング電圧Vrをd刻みで、振り幅Vvarだけ振る(変化させる)ため、リターディング電圧Vrの最適値を求めるのに要する時間はVvar/dに比例する。したがって、測定時間短縮の観点からは、振り幅Vvarはできるだけ小さいことが望ましい。一方、振り幅Vvarが小さすぎると、最適値がリターディング電圧Vrの振り幅Vvarから外れる可能性が高まり、集束調整を自動的に行うことができなくなる場合が多くなる。しかし、本実施形態では、後述するように、二次元補間関数により、半導体ウェハ13の電位予測精度が向上するために、振り幅Vvarを小さくでき、高速にリターディング電圧Vrの最適値を求めることが可能になる。
以上説明したフォーカス設定は、測定点毎に繰り返される。このため、ウェハ1枚あたりの処理時間に与える影響が大きい。例えば、測長について言えば、帯電が不均一なウェハにおいて、現状では、リターディング電位の最適値決定ステップで測定点1点あたり0〜3秒の時間を要しており、これは、フォーカス調整完了後に実行される測長1点あたりの所要時間 0〜3 秒とほぼ同等である。したがって、高速にリターディング電圧Vrの最適値を求めることは、測定全体のスループットの向上に極めて有用である。
次に、以上で述べた二次元補間関数の作成方法について説明する。なお、ここでは、図4(A)に示すように、便宜上、半導体ウェハ13の直径が300mmであるとする。このため、あり半導体ウェハ13の中心を原点とする前述のX’Y’座標系では、ノッチ13aが(0,−150)に位置することになる。このX’Y’座標系で、電位の検知点は、(0,0)の位置、つまり半導体ウェハ13の中心と、Y’軸上であって、(+)Y側、つまり搬入方向側の5点と、Y’軸上であって、(−)Y側、つまり搬出方向側の5点の合計11点である。これらの点の隣り合う点間隔は、同一である。
まず、以下の数1により、11点の実測データを第一のスプライン補間して、Y’軸上の電位分布を推定する。ここでは、Y’軸上で(−)側の電位分布をVとし、Y’軸上で(+)側の電位分布をVとして、Y’軸上の電位分布を二つに分けて推定する。スプライン補間関数としては種々の関数を用いることが可能であるが、ここでは、実測データと、この実測データの二階微分値とを用いて補間を行う。
Figure 0005474312
この数1中の各係数A、B、C、Dは、数2のように定義する。
Figure 0005474312
ここで、数1及び数2中のiは、表面電位の実測点を示すための引数で、1≦i≦10の自然数で、YはY’軸上の任意箇所の座標を意味する。よって、数1は、Y’軸上で(−)の任意位置の電位Vをその両隣の実測データでスプライン補間することにより推定していることになる。なお、Y’軸上で(−)側の電位分布Vを示す式は、基本的に数1及び数2と同様である。但し、引数iが数1及び数2とは異なる。
次に、得られたY’軸上の補間電位データ、つまり第一の補間により得られた直線上の電位分布を用いて、第二の補間を行って、半導体ウェハ13上の任意位置(X,Y)の表面電位を推定する。ここで、半導体ウェハ13は通常円形であるので、X’Y’直交座標系よりは、Rθ極座標系を使用した方が計算が単純化される。よって、以下の数3及び数4を用いて、ウェハ上の座標値(X,Y)を座標値(R,θ)に変換する。
Figure 0005474312
Figure 0005474312
半導体ウェハ13上の任意位置(X,Y)(=(R,θ))の電位Vは、数5に示すように、先に求めた正軸側電位Vと負軸側電位Vとのそれぞれに重み付けして求める。この数5は、図4(B)に示すように、周方向でと隣り合う点、つまり所定半径R上で、Y’軸上の2つの点間を補間する式である。
Figure 0005474312
ここで、数5中の重み係数E,Fは、帯電の特性(ある程度の対象性を持つ、ウェハの領域外では帯電電位が0になる)を考慮し、数6で示す条件により定める。
Figure 0005474312
この条件を満たす関数としては、例えば、数7に示すような関数がある。
Figure 0005474312
統括制御部220の二次元補間関数作成部224は、以上の式を作成して、これを前述したように、二次元補間関数記憶部233に格納する。そして、測定点電位算出部226は、以上の式で示される二次元補間関数に、半導体ウェハ13上の測定点(R,θ)を代入して、この測定点(R,θ)の電位を求める。
以上の式で示される二次元補間関数を用いて、半導体ウェハ13上の任意位置(X,Y)(=(R,θ))の表面電位を求めた結果が図4(C)及び図4(D)である。なお、図4(C)は電位分布を二次元表示したものであり、図4(D)は電位分布を三次元表示したものである。
ここで、図5を用いて、本実施形態における電位分布の算出手法と、特許文献1に記載の従来の電位分布算出手法について、比較する。なお、図5(A)は従来手法に基づくものであり、図5(B)は本実施形態手法に基づくもので、図5中の上段が各手法により求められた電位分布を二次元で表したものであり、図5中の下段が各手法により求められた電位分布と実測した電位分布との残差を三次元的に表したものである。
従来手法は、「背景技術」で述べたように、半導体ウェハの半径中の複数の点の実測値を用いて、この半径中の電位分布を四次関数で近似し、これをウェハ中心を原点として回転させて電位分布関数で求めている。このため、この関数を用いて求めたウェハ上の電位分布は、図5(A)の上段に示すように、回転対称である。また、図5(B)の下段に示すように、Y’軸上で残差が大きくなっており、これは、一次元の補間データを単に面内で回転させた場合、回転開始位置と終了位置での電位の不連続性に起因すると考えられる。
一方、本実施形態手法では、図5(B)の上段に示すように、ウェハ上の電位分布が非対称になっていることが理解できる。また、図5(B)の下段に示すように、全体として、残差が小さく、実際の電位分布に近いものが得られたことが理解できる。
このように、本実施形態手法でウェハ上の電位分布を推定すると、ウェハ上の電位分布が正確に推定することができるため、短時間で適切なリターディング電圧を設定することができ、ステージ移動完了から測定開始までの調整時間を短縮することができる。具体的には、表面電位分布の推定手法以外の条件は同じにして、本実施形態手法と従来手法とで、リターディング電圧の調整に要する時間を比較したところ、従来手法の場合では、半導体ウェハ13上の測定点20点の各々に対して10秒ずつ、合計200秒かかった。一方、本実施形態手法の場合には、10秒を要したのは半導体ウェハ13の5点のみで、残りのうち8点は3秒、7点は1秒しか要しなかった。すなわち、半導体ウェハ13の一枚あたりの調整時間が、200秒から81秒に短縮された。
以上、本実施形態では、測定開始までの時間を短くでき、ユーザにストレスを感じさせない走査電子顕微鏡が実現可能となる。また、測長SEMやレビューSEMあるいは外観検査装置などの計測・検査装置に適用した場合には、ウェハ1枚当たりの処理時間の短い、即ち従来よりも高スループットの装置を実現することが可能となる。さらに、より多くの表面電位測定点を確保すると、予想精度が向上して表面電位分布の予測のみでフォーカスをあわせることも可能になる。
「第二の実施形態」
第一の実施形態では、半導体ウェハ13の中心とノッチ13aとを通る直線上(Y’軸上)の点の電位のみを実測したが、本実施形態では、電位分布の精度を高めるために、図7に示すように、X’軸方向に三つの電位検知プローブ304aを設け、Y’軸と平行な三本の直線上の点の電位を実測し、この実測した点の電位に基づいて、二次補間関数を求めるようにしている。すなわち、本実施形態の走査電子顕微鏡システムは、三つの電位計測計304を有している点と、これらの電位計測計304で実測した電位に基づいて、三次元補間関数を求める点とが、第一の実施形態と異なっており、その他は第一の実施形態と同様である。このため、本実施形態の走査電子顕微鏡システムの全体構成、各構成要素、及び全体フローの説明は省略する。
図8(A)に示すように、ここでも、第一の実施形態と同様に、直径が300mmの半導体ウェハ13を対象とする。前述したように、本実施形態では、Y’軸上の点と、これと平行な二本の直線上の点の電位を実測する。ここでは、三本の直線間隔を90mmとしている。すなわち、本実施形態では、三つの電位検知プローブ304aをX’軸方向に直線上に並べ、これらの間隔を90mmにしている。
ウェハ表面電位の実測点は、ウェハ中心を原点とするX’Y’座標系で、点(−90,0)を通りY’軸に平行なライン(以下、ライン1)上の9点、Y’軸上(以下、ライン2)の11点(第一の実施形態の実測点と同じ)、点(90,0)を通りY’軸に平行なライン(以下、ライン3)上の9点であり、合計29点である。
次に、以上の実測点を用いた二次元補間関数の求め方について説明する。
まず、第一の実施形態で説明した数1及び数2を用いて、第一のスプライン補間を行い、3本の直線上のそれぞれの電位分布を求める。次に、第一の実施形態と同様に、数3及び数4を用いて、ウェハ上の座標値(X,Y)を座標値(R,θ)に変換する。
図8(B)に示すように、原点を中心として半径が90mmの円C1、即ち、ライン1とライン3の距離を直径とする円内の領域内では、ライン1およびライン3と交差する任意半径の円が存在しない。そこで、この円C1内の領域(領域S1)と、その外周側の領域(領域S2)とに分けて電位分布を推定する。
領域S1の形状とこの領域S1内の実測点の位置との関係は、基本的に第一の実施形態と同様である。このため、領域S1内の電位を示す二次元補間関数は、ライン1とライン3上の情報は用いず、第一の実施形態と同様に、ライン2上、つまりY’軸上の情報のみを用いて、数5で特定されるものになる。
領域S2内の電位を示す二次元補間関数は、この領域S2内のライン1〜ライン3上の全ての情報を用いる。領域S2内に含まれる任意半径Rの円を考えると、この円上にライン1〜3と交差する点が6点存在することが分かる。これらの交点の座標のθ成分を各々θ1,θ2,θ3,θ4,θ5,θ6とする。これらθ1〜θ6の座標位置での電位をV(Rj,θi)|{i:1〜6}と表記すると、上記半径Rj上の任意箇所の電位は、θ方向に隣り合った位置の電位の電位を用いて第二のスプライン補間した場合、数8で示すことができる。
Figure 0005474312
ここで、jは、領域S2内での特定の半径Rを示すための引数である。また、この数8中の各係数A、B、C、Dは、数9のように定義する。
Figure 0005474312
以上の手法により求めた二次補間関数、つまり領域S1内に関しては、数5に示される二次補間関数、領域S2内に関しては、数7に示される二次元補間関数を用いて、半導体ウェハ13上の任意位置(X,Y)(=(R,θ))の表面電位を求めた結果が図7(C)である。同図に示すように、本実施形態で求めた表面電位分布は、図4(C)に示す第一の実施形態で求めた表面電位分布よりも、更に非対称性が強調された電位分布が得られていることが分かる。言い換えると、本実施形態では、第一の実施形態よりも、より精密な電位分布を求められることが分かる。
なお、本実施形態では、半導体ウェハ13の表面電位を3本のライン上で実測して、二次元補間関数を求めたが、2本あるいは4本以上のライン上で表面電位を実測して、二次元補間関数を求めても良い。この場合に、帯電分布の対称性を考えると、試料の中心を通るラインは必ず含んでいた方が良い。よって、複数ライン上で電位計測を行う場合には、電位の実測ラインは偶数よりも奇数(中心を通るラインとその両側のラインn本)の方が良い。但し、電位計測ラインの本数を一定以上に増やしても、電位の推定精度の向上効果は逓減していくので、実際には、使用する表面電位計の数は、3個ないし5個が良い。
以上、本実施形態では、第一の実施形態よりも更に調整時間を短くでき、計測・検査のスループットを高めることができる。
「第三の実施形態」
第一及び第二の実施形態では、半導体ウェハ13の直線上の点の電位のみを実測したが、電位分布が半導体ウェハ13の周方向にも連続的に変化することを考えれば、半導体ウェハ13の周方向の複数の点の電位も実測し、この実測データも用いた方が電位分布推定の精度がより向上することが期待される。そこで、本実施形態では、ウェハ周方向、すなわちθ方向の複数の点の電位も実測し、この実測データも用いて二次元補間関数を求めるようにしている。
本実施形態では、図9に示すように、半導体ウェハ13の直線搬送経路上に電位検知プローブ304aを配置すると共に、半導体ウェハ13が回転するアライナ307内にも電位検知プローブ304aを配置する。このように、アライナ307内に電位検知プローブ304aを配置することにより、半導体ウェハ13の周方向の複数の点の電位も検知できるようになる。なお、本実施形態では、アライナ307内に電位検知プローブ304aを配置したが、別途、半導体ウェハ13を回転させる機構を設け、ここに電位検知プローブ304aを配置してもよい。但し、観察効率の点から、半導体ウェハ13を回転させる機構を別途も受けるよりも、本実施形態の方が好ましい。
本実施形態の統合制御部220の機能構成要素は、基本的に、第一の実施形態と同様である。但し、本実施形態では、周方向の複数の点の電位も検知するため、第一の実施形態の統合制御部220の機能構成要素の他に、周方向電位分布検知部222も有している。この周方向電位分布検知部222は、アライナ307内にプローブ304aが配置されている電位計測計304からの電位情報と、アライナ307のロータリーエンコーダ等からの角情報とから、半導体ウェハ13の周方向の電位分布を取得し、これを電位分布記憶部232に格納する。この電位分布記憶部232には、ウェハ回転角度θと、その角度θでの電位とが対応付けられて記憶される。
次に、図10に示すフローチャートに従って、本実施形態の統括制御部220の動作について説明する。
本実施形態では、図3に示す第一の実施形態の動作と同様に、統合制御部220は、ウェハ搬出指示(S1)、アライナ307によるアライメント指示(S2)を行う。次に、統合制御部220は、アライメントによる半導体ウェハ13の回転軸調整と向き調整とのうち、回転軸調整がOKか否か、つまり、アライナ307の回転中心と半導体ウェハ13の中心が一致しているか否かを判断する(S3a)。
アライナ307の回転中心と半導体ウェハ13の中心が一致していると判断した場合には、アライナ307による半導体ウェハ13の回転を維持した状態で、統合制御部220の周方向電位検知部222による周方向電位分布検知が実行される(S5a)。この周方向電位分布検知部222は、前述したように、アライナ307内にプローブ304aが配置されている電位計測計304から、回転中の半導体ウェハの複数点の電位情報と、アライナ307のロータリーエンコーダ等からの各点の角情報を取得し、これを電位分布記憶部232に格納する。統合制御部220は、この周方向電位分布検知が終了すると、向き調整がOKか否か、つまり半導体ウェハ13のノッチ13aが所定の方向を向いたか否かを判断する(S3b)。
半導体ウェハ13のノッチ13aが所定の方向を向いたと判断した場合には、アライナ307による半導体ウェハ13の回転を直ちに停止させ、ウェハ搬送装置302により、半導体ウェハ13を試料交換室405に向って直線搬送させる(S4)。そして、第一の実施形態と同様に、半導体ウェハ13の直線方向電位分布検知が実行される(S5)。以降、統合制御部220は、基本的に第一の実施形態と同様に動作する。
次に、図11を用いて、本実施形態における二次元補間関数の作成方法について説明する。
図11(A)に示すように、ここでも、第一の実施形態と同様に、直径が300mmの半導体ウェハ13を対象とする。前述したように、本実施形態では、Y’軸上の点と、半導体ウェハ13の中心を中心とする円周上の点の電位を実測する。この円の半径は90mmである。
ウェハ表面電位の実測点は、ウェハ中心を原点とするX’Y’座標系のY’軸上の11点、半径90mmの円周上であって、点(0,-90)、点(90,0)、点(0,90)、点(−90,0)を含む8点であり、合計19点である。
以上の実測データを用いて、二次元補間関数を作成するには、まず、第一の実施形態で説明した数1及び数2を用いて、Y’軸上の11点の実測データをスプライン補間して、Y’軸上の電位分布V, Vを求める。
次に、半径90mmの円周上の電位分布を求める。ウェハ上の任意位置(R,θ)の表面電位をV(R,θ)と表記すると、同円周上の電位分布VθはV(R=90、θ)のことであり、R=90を一般化してRjと表記すれば、補間式は、数10のように表現できる。
Figure 0005474312
ここで、この数10中の各係数A,B,C,Dは、数11のように定義する。
Figure 0005474312
なお、数10及び数11において、引数jは、半径方向の特定の位置を示すための引数、引数iは、θ方向の特定位置を示すための引数である。
次に、図11(B)に示すように、上で説明したV、VおよびV(Rj,θi)を用いて補間演算を行い、ウェハ上の任意位置の電位を計算する。ウェハ上の任意位置(R,θ)の表面電位V(R,θ) 電位を記述する補間式は、半径Rの円とY軸との交点位置(R,0)、(R,π)の電位VLj、VUjと、Vθと位置(R,θ)と原点を結ぶ線分との交点位置における電位V(R=Rj,θ)を用いて、数12のように表現できる。すなわち、数12は、V、VおよびV(Rj,θi)のそれぞれに重み付けし、その結果を加算したものである。
Figure 0005474312
ここで、VθiはV(R=Rj,θ)のことであり、煩雑さを避けるため省略して表記した。図10(B)には、以上の関係を図示した。
また、数12中の各係数は以下の条件を満たすように定める。
Figure 0005474312
Figure 0005474312
Figure 0005474312
以上の数13〜数15を満たす関数としては、例えば、数16に示す関数がある。
Figure 0005474312
数12で示される二次元補間関数を用いて、半導体ウェハ13上の任意位置(X,Y)(=(R,θ))の表面電位を求めた結果が図11(C)及び図11(D)である。なお、図11(C)は電位分布を二次元表示したものであり、図11(D)は電位分布を三次元表示したものである。
ここで、図12を用いて、本実施形態における電位分布の算出手法と、第一の実施形態おける電位分布算出手法について、比較する。なお、図12(A)は第一の実施形態手法に基づくものであり、図12(B)は本実施形態手法に基づくもので、図11中の上段が各手法により求められた電位分布を二次元で表したものであり、図12中の下段が各手法により求められた電位分布と実測した電位分布との残差を三次元的に表したものである。同図からは、第一の実施形態手法による電位分布より、本実施形態手法による電位分布の方が分布の非対称性が良く表現できており、より実際の電位分布に近いものが得られたことが理解できる。また、ここでは、図示していないが、本実施形態手法による電位分布は、第二の実施形態手法よりも多くの場合、より実際の電位分布に近いものを得ることができる。
このため、第一及び第二の実施形態よりも、本実施形態の方が、ステージ移動完了から測定開始までの調整時間も更に短縮することができる。具体的には、表面電位分布の推定手法以外の条件は同じにして、本実施形態手法と第一の実施形態手法とで、リターディング電圧の調整に要する時間を比較したところ、第一の実施形態手法の場合には、半導体ウェハ13上の測定点20点中、5点に10秒、8点に3秒、7点に1秒、合計81秒の時間を要したが、本実施形態手法の定手法の場合には、調整に10秒を要したのは測定点20点中の2点のみで、8点は3秒、10点は1秒、合計54秒しか要しなかった。すなわち、半導体ウェハ一枚あたりの調整時間が、実施形態の81秒から54秒に短縮することができる。
以上、本実施形態では、第一及び第二の実施形態よりも更に調整時間の短い走査電子顕微鏡が実現可能となる。また、測長SEMやレビューSEMあるいは外観検査装置などの計測・検査装置に適用した場合には、第一及び第二の実施形態よりも、高スループットの装置を実現できることは言うまでもない。この場合、ウェハ1枚当たりの測定点数が多くなるほどトータルのスループット向上効果は大きく、特に外観検査装置やレビューSEMに適用した場合にはその効果が大きい。
なお、以上の各実施形態では、走査電子顕微鏡を用いて説明を行ったが、本実施形態手法が、電子線だけではなくイオンビームなど、帯電によるフォーカスずれが問題になるような系であれば、広く荷電粒子ビーム装置一般(イオンビーム加工装置、イオンビーム照射装置など)にも適用できることは言うまでもない。
また、以上では、試料として半導体ウェハを例示しているが、本発明はこれに限定されるものではなく、例えば、ガラス基板、磁気ディスク基板、絶縁膜が形成された金属基板等、他の試料であってもよい。
また、試料の表面電位を計測する電位計測手段として、検知プローブ304aを有する電位計測計304を用いているが、例えば、吸収電流測定法を利用する電位計測計等、他の計測計を用いてもよい。また、この計測計の配置としては、基本的に何処でもよく、以上の各実施形態は、スループットの観点からの好ましい配置に過ぎない。
また、二次元の電位分布関数を求めるために、以上では、極座標系を用いたが、二次元の補間関数を表現できれば、つまり基底ベクトルが二つ存在する座標系であれば、例えば、直交座標系や斜交座標系等の任意の座標系を用いてもよい。
また、以上では、推定した測定点の電位を用いて、電子線光学系10の設定パラメータであるフォーカス調整のためのリターディング電圧を求めているが、このリターデイング電圧のみならず、例えば、推定した測定点の電位を用いて、走査偏向器の駆動信号の振幅、対物レンズ106の励磁電流、対物レンズ106のフォーカス用駆動電圧等を求めてもよい。また、SEM画像を得るウェハの帯電電位を制御するため、画像取得前に、ウェハに電子線を照射するプリドーズ技術において、この推定した測定点の電位を用いるようにしてもよい。
本発明に係る第一の実施形態における走査電子顕微鏡システムの構成図である。 本発明に係る第一の実施形態における統括制御部の機能構成及び搬送系の構成を示す説明図である。 本発明に係る第一の実施形態における統括制御部の動作を示すフローチャートである。 本発明に係る第一の実施形態に関する説明図で、同図(A)は実測点を示し、同図(B)は二次元補間関数の作成方法を示し、同図(C)は二次元的に表現した推定電位分布を示す。 従来手法と第一の実施形態手法における電位分布推定結果を示す説明図で、同図(A)は従来手法を示し、同図(B)は第一の実施形態手法を示す。 本発明に係る第一の実施形態におけるリターディング電圧の設定方法を説明するための説明図である。 本発明に係る第二の実施形態における統括制御部の機能構成及び搬送系の構成を示す説明図である。 本発明に係る第二の実施形態に関する説明図で、同図(A)は実測点を示し、同図(B)は二次元補間関数の作成方法を示し、同図(C)は二次元的に表現した推定電位分布を示す。 本発明に係る第三の実施形態における統括制御部の機能構成及び搬送系の構成を示す説明図である。 本発明に係る第三の実施形態における統括制御部の動作を示すフローチャートである。 本発明に係る第三の実施形態に関する説明図で、同図(A)は実測点を示し、同図(B)は二次元補間関数の作成方法を示し、同図(C)は二次元的に表現した推定電位分布を示す。 第一の実施形態手法と第三の実施形態手法における電位分布推定結果を示す説明図で、同図(A)は従来手法を示し、同図(B)は第一の実施形態手法を示す。
符号の説明
10:電子線光学系、11:一次電子線、12:二次荷電粒子、13:半導体ウェハ、20:制御系、30:搬送系、40:試料室、101:電子源、102a,102b:引出電極、103:コンデンサレンズ、104:アライメントコイル、105:偏向コイル、106:対物レンズ、107:二次荷電粒子検出器、108:高さ検出用レーザ発光器、109:高さセンサ、110:真空室、111:リターディングピン、202:ユーザインターフェース部、203:電子線光学系制御装置、204:ステージ制御装置、205:加速電圧制御装置、206:コンデンサレンズ制御部、207:増幅器、208:アライメント制御部、209:偏向信号制御部、210:対物レンズ制御部、211:画像表示装置、212:リターディング制御部、213:試料ステージ位置検出器、220:統括制御部、221:演算部、222:周方向電位分布検出部、223:直線方向電位分布検出部、224:二次元補間関数作成部、226:測定点電位算出部、227:リターディング電圧算出部、228:画像処理部、228a:合焦状態検出部、301:ウェハカセット301、302:ウェハ搬送装置、304:電位計測計、304a:プローブ、304b:計測計本体、307:アライナ、401:試料ステージ、405:試料交換室

Claims (16)

  1. 試料室内に格納された試料に対して一次荷電粒子線を照射し、該試料から発生する二次荷電粒子線を検出して、検出結果を信号出力する荷電粒子ビーム光学系と、
    前記試料の表面上において当該試料の中心位置を含む線分上の複数箇所の電位を計測する電位計測手段と、
    当該計測された電位情報を元に前記荷電粒子ビーム光学系を制御する制御装置と、を備え、
    前記制御装置は、
    前記電位計測手段で計測された前記複数の電位を元に、前記線分上の任意箇所の電位を第1の補間により推定し、
    当該推定された線分上の電位情報を用いて、前記試料上の任意位置の電位を第2の補間により推定することを特徴とする荷電粒子ビーム装置。
  2. 試料室内に格納された試料に対して一次荷電粒子線を照射し、該試料から発生する二次荷電粒子線を検出して、検出結果を信号出力する荷電粒子ビーム光学系と、
    前記試料の表面上の複数箇所の電位を計測する電位計測手段と、
    当該計測された電位情報を元に前記荷電粒子ビーム光学系を制御する制御装置と、を備え、
    前記制御装置は、前記電位計測手段で計測された前記複数の電位を元に、前記試料の表面の電位分布を二次元のスプライン補間により推定することを特徴とする荷電粒子ビーム装置。
  3. 試料室内に格納された試料に対して一次荷電粒子線を照射し、該試料から発生する二次荷電粒子線を検出して、検出結果を信号出力する荷電粒子ビーム光学系と、
    前記試料の表面上の複数のポイントの電位を計測する電位計測手段と、
    当該計測された電位情報を元に前記荷電粒子ビーム光学系を制御する制御装置と、を備え、
    前記制御装置は、前記電位計測手段により検知された前記複数のポイントでの電位を用いて、互いに異なる方向のそれぞれで隣り合うポイント間の電位を補間して、前記試料表面上の電位分布に関する二次元補間関数を求め、当該二次元補間関数を用いて、前記試料表面上の任意位置の電位を推定することを特徴とする荷電粒子ビーム装置。
  4. 請求項1から3のいずれか一項に記載の荷電粒子ビーム装置において、
    前記試料を前記試料室内に搬送するための搬送機構を有し、
    前記電位計測手段は、当該搬送機構による前記試料の搬送経路上に設けられていることを特徴とする荷電粒子ビーム装置。
  5. 請求項1から3のいずれか一項に記載の荷電粒子ビーム装置において、
    前記試料を前記試料室内に搬送するための搬送機構と、
    前記試料を前記試料室に搬入する手前で一時格納する試料交換室と、を備え、
    前記複数箇所の電位計測が、前記試料交換室に前記試料を搬送する際の当該搬送機構による直線搬送動作の際に実行されることを特徴とする荷電粒子ビーム装置。
  6. 請求項1から3のいずれか一項に記載の荷電粒子ビーム装置において、
    前記電位計測手段を複数備えていることを特徴とする荷電粒子ビーム装置。
  7. 請求項6に記載の荷電粒子ビーム装置において、
    複数の前記電位計測手段のうちの少なくとも一つとして、前記試料の周方向の電位を計測する周方向電位計測手段を備えていることを特徴とする荷電粒子ビーム装置。
  8. 請求項1から3のいずれか一項に記載の荷電粒子ビーム装置において、
    前記電位計測手段として、前記試料の中心を含む線分上の電位を計測する第1の電位計測手段と、該試料の中心の周方向の電位を計測する第2の電位計測手段と、を備えていることを特徴とする荷電粒子ビーム装置。
  9. 請求項8に記載の荷電粒子ビーム装置において、
    前記試料の角度調整を行うアライナを備え、
    前記第2の電位計測手段は、当該アライナ位置に配置されていることを特徴とする荷電粒子ビーム装置。
  10. 請求項1に記載の荷電粒子ビーム装置において、
    前記第1の補間および第2の補間にスプライン補間を用いることを特徴とする荷電粒子ビーム装置。
  11. 請求項6に記載の荷電粒子ビーム装置において、
    複数の前記電位計測手段の個数が3もしくは5であることを特徴とする荷電粒子ビーム装置。
  12. 試料に対して荷電粒子ビームを照射して、得られる二次荷電粒子の分布データを元に該被計測試料の計測を行う荷電粒子ビーム装置の制御方法において、
    前記試料上の中心を含む線分上において複数の電位を測定し、
    当該電位の測定値を補間することにより該線分上の任意位置の電位を推定し、
    前記線分が伸びている方向とは異なる方向に、当該線分上の推定電位を補間することにより、前記被計測試料表面上の任意位置の電位を推定し、
    当該得られた電位を用いて前記荷電粒子ビーム装置を調整することを特徴とする荷電粒子ビーム装置の制御方法。
  13. 試料室内に格納された試料に対して一次荷電粒子線を照射し、当該試料から発生する二次荷電粒子線を検出して、検出結果を信号出力する荷電粒子ビーム光学系と、
    前記試料への前記一次荷電粒子線の照射より前に、前記荷電粒子ビーム光学系の試料台への前記試料の搬送過程において、前記試料の表面上において当該試料の中心位置を含む線分上の複数箇所の電位を計測する第一の電位計測手段と、
    前記試料への前記一次荷電粒子線の照射より前に、前記試料台上の前記試料の表面高さを計測する高さ計測手段と、
    前記高さ計測手段により取得された高さ情報と、前記第一の電位計測手段により計測された電位情報とを元に前記荷電粒子ビーム光学系を制御する制御装置と、を備え、
    前記制御装置は、
    前記試料への前記一次荷電粒子線の照射より前に、前記第一の電位計測手段により計測された電位を元にした第一の補間により、前記線分上の電位分布を推定し、
    前記試料への前記一次荷電粒子線の照射より前に、前記推定された線分上の電位分布を元にした前記試料の周方向における第二の補間により、前記試料上の任意位置の電位を推定することを特徴とする荷電粒子ビーム装置。
  14. 試料室内に格納された試料に対して一次荷電粒子線を照射し、当該試料から発生する二次荷電粒子線を検出して、検出結果を信号出力する荷電粒子ビーム光学系と、
    前記試料への前記一次荷電粒子線の照射より前に、前記荷電粒子ビーム光学系の試料台への前記試料の搬送過程において、前記試料の表面上の、当該試料の中心位置を含む第一の線分上の第一の複数箇所の電位を計測する第一の電位計測手段と、
    前記試料への前記一次荷電粒子線の照射より前に、前記荷電粒子ビーム光学系の試料台への前記試料の搬送過程において、前記試料の表面上の、前記第一の線分と平行な第二の線分上の第二の複数箇所の電位を計測する第二の電位計測手段と、
    前記試料への前記一次荷電粒子線の照射より前に、前記荷電粒子ビーム光学系の試料台への前記試料の搬送過程において、前記試料の表面上において前記第一の線分と平行な第三の線分上であって前記第一の線分は前記第二の線分と前記第三の線分との間である第三の線分上の第三の複数箇所の電位を計測する第三の電位計測手段と、
    前記第一の電位計測手段と前記第二の電位計測手段と前記第三の電位計測手段とにより計測された電位情報を元に前記荷電粒子ビーム光学系を制御する制御装置と、を備え、
    前記制御装置は、
    前記第一の電位計測手段と前記第二の電位計測手段と前記第三の電位計測手段との各々により計測された電位を元にした第一の補間により、前記第一の線分上と前記第二の線分上と前記第三の線分上との各々の電位分布を推定し、
    前記試料の表面上における円形領域であって当該円形領域の中心位置は前記試料の中央位置と同じであり且つ当該円形領域の半径は前記第一の線分と前記第三の線分との間の距離と同じである円形領域の電位分布を、当該円形領域に含まれる前記第一の線分上の電位分布を元に、前記試料の周方向における第二の補間により推定し、
    前記試料の表面上における前記円形領域の外周である外側領域の電位分布を、当該外側領域に含まれる前記第一の線分上と前記第二の線分上と前記第三の線分上との電位分布を元に、前記試料の周方向における第三の補間により推定することを特徴とする荷電粒子ビーム装置。
  15. 試料室内に格納された試料に対して一次荷電粒子線を照射し、当該試料から発生する二次荷電粒子線を検出して、検出結果を信号出力する荷電粒子ビーム光学系と、
    前記試料への前記一次荷電粒子線の照射より前に、前記荷電粒子ビーム光学系の試料台への前記試料の搬送過程において、前記試料の表面上において当該試料の中心に位置する円に沿った前記試料の周方向上の第一の複数箇所の電位を計測する第一の電位計測手段と、
    前記試料への前記一次荷電粒子線の照射より前に、前記荷電粒子ビーム光学系の試料台への前記試料の搬送過程において、前記試料の表面上において当該試料の中心位置を含む線分上の第二の複数箇所の電位を計測する第二の電位計測手段と、
    前記第一の電位計測手段と前記第二の電位計測手段とにより計測された電位情報を元に前記荷電粒子ビーム光学系を制御する制御装置と、を備え、
    前記制御装置は、
    前記一次荷電粒子線の照射より前に、前記第二の電位計測手段が前記第二の複数個所を測定した電位を元にした第一の補間により、前記線分上の電位分布を推定し、
    前記一次荷電粒子線の照射より前に、前記第一の電位測定手段が測定した電位を元に、前記円の電位分布を、前記試料の周方向における第二の補間により推定し、
    前記一次荷電粒子線の照射より前に、前記推定した前記線分上の電位分布と前記推定した前記円の電位分布とを元に、前記試料の周方向における第三の補間により、前記試料上の任意位置の電位を推定することを特徴とする荷電粒子ビーム装置。
  16. 試料に対して荷電粒子ビームを照射して、得られる二次荷電粒子の分布データを元に当該試料の計測を行う荷電粒子ビーム装置の制御方法において、
    前記試料への前記荷電粒子ビームの照射より前に、当該荷電粒子ビームの試料台への前記試料の搬送過程において、前記試料上の中心を含む線分上において複数の電位を測定し、
    前記荷電粒子ビームの照射より前に、前記線分上において測定された電位を元に、第一の補間により前記線分上の電位分布を推定し、
    前記推定した前記線分上の電位分布を元に、前記試料の周方向における第2の補間により、前記試料表面上の任意位置の電位を推定し、
    前記第二の補間により推定された電位を用いて前記荷電粒子ビーム装置を調整することを特徴とする荷電粒子ビーム装置の制御方法。
JP2008109502A 2007-06-20 2008-04-18 荷電粒子ビーム装置及びその制御方法 Active JP5474312B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008109502A JP5474312B2 (ja) 2007-06-20 2008-04-18 荷電粒子ビーム装置及びその制御方法
US12/142,284 US8026482B2 (en) 2007-06-20 2008-06-19 Charged particle beam apparatus and control method therefor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007162286 2007-06-20
JP2007162286 2007-06-20
JP2008109502A JP5474312B2 (ja) 2007-06-20 2008-04-18 荷電粒子ビーム装置及びその制御方法

Publications (2)

Publication Number Publication Date
JP2009026742A JP2009026742A (ja) 2009-02-05
JP5474312B2 true JP5474312B2 (ja) 2014-04-16

Family

ID=40398342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008109502A Active JP5474312B2 (ja) 2007-06-20 2008-04-18 荷電粒子ビーム装置及びその制御方法

Country Status (2)

Country Link
US (1) US8026482B2 (ja)
JP (1) JP5474312B2 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5205515B2 (ja) 2009-07-15 2013-06-05 株式会社日立ハイテクノロジーズ 試料電位測定方法、及び荷電粒子線装置
KR101211104B1 (ko) * 2010-08-18 2012-12-18 유병소 레이저 가공 방법 및 레이저 가공 장치
JP5678693B2 (ja) 2011-01-31 2015-03-04 コニカミノルタ株式会社 画像投影装置
JP5797446B2 (ja) * 2011-04-25 2015-10-21 株式会社リコー 表面電荷分布測定方法および表面電荷分布測定装置
US10924668B2 (en) * 2011-09-19 2021-02-16 Epilog Imaging Systems Method and apparatus for obtaining enhanced resolution images
JP5951223B2 (ja) * 2011-11-02 2016-07-13 株式会社日立ハイテクノロジーズ 電子顕微法、電子顕微鏡および観察標体作製装置
JP5934501B2 (ja) * 2011-12-13 2016-06-15 株式会社日立ハイテクノロジーズ 走査電子線装置およびそれを用いた寸法計測方法
JP6227262B2 (ja) * 2013-03-06 2017-11-08 株式会社荏原製作所 表面電位測定装置および表面電位測定方法
US10345250B2 (en) * 2017-10-12 2019-07-09 Applied Materials, Inc. Method of inspecting a sample with a charged particle beam device, and charged particle beam device
JP2019204618A (ja) * 2018-05-22 2019-11-28 株式会社日立ハイテクノロジーズ 走査型電子顕微鏡
JP7455676B2 (ja) 2020-06-05 2024-03-26 株式会社日立ハイテク 電子顕微鏡および電子顕微鏡のフォーカス調整方法
CN112834829B (zh) * 2021-02-04 2021-12-31 北京邮电大学 紧缩场天线测量***、构建其的方法、装置及电子设备

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5184398A (en) * 1991-08-30 1993-02-09 Texas Instruments Incorporated In-situ real-time sheet resistance measurement method
JPH0567667A (ja) * 1991-09-06 1993-03-19 Ricoh Co Ltd イオン注入機の電位測定装置
US5983043A (en) * 1997-12-24 1999-11-09 Canon Kabushiki Kaisha Potential measuring apparatus and potential measuring method
KR100265285B1 (ko) * 1997-12-30 2000-09-15 윤종용 정전기 센서를 이용한 표면 정전기 분포상태 측정방법과 장치 및 표면 정전기 분포상태 측정 시스템
JPH11211770A (ja) * 1998-01-21 1999-08-06 Advanced Display Inc 静電気評価装置
JP4064533B2 (ja) * 1998-05-22 2008-03-19 株式会社東京カソード研究所 ウェハの電位分布測定装置及び電位分布測定方法
JP3717728B2 (ja) * 1999-10-25 2005-11-16 株式会社リコー 感光体の特性評価装置の露光タイミング補正方法
MXPA02005430A (es) * 1999-12-06 2004-04-21 Elo Touchsystems Inc Pantalla tactil mejorada con rejilla relativamente conductora.
JP4506588B2 (ja) * 2001-07-12 2010-07-21 株式会社日立製作所 荷電粒子線照射方法、及び荷電粒子線装置
WO2003007330A1 (en) * 2001-07-12 2003-01-23 Hitachi, Ltd. Sample electrification measurement method and charged particle beam apparatus
JP4472305B2 (ja) * 2002-10-22 2010-06-02 株式会社ナノジオメトリ研究所 パターン検査装置および方法
JP3581361B1 (ja) * 2003-02-17 2004-10-27 株式会社脳機能研究所 脳活動測定装置
JP2005091342A (ja) * 2003-08-08 2005-04-07 Ebara Corp 試料欠陥検査装置及び方法並びに該欠陥検査装置及び方法を用いたデバイス製造方法
JP4268461B2 (ja) * 2003-06-24 2009-05-27 浜松ホトニクス株式会社 時間分解測定装置
US7212017B2 (en) * 2003-12-25 2007-05-01 Ebara Corporation Electron beam apparatus with detailed observation function and sample inspecting and observing method using electron beam apparatus
JP5185506B2 (ja) * 2006-03-23 2013-04-17 株式会社日立ハイテクノロジーズ 荷電粒子線パターン測定装置
JP4705869B2 (ja) * 2006-03-29 2011-06-22 株式会社日立ハイテクノロジーズ 荷電粒子線システム、およびパターン計測方法
US7612570B2 (en) * 2006-08-30 2009-11-03 Ricoh Company, Limited Surface-potential distribution measuring apparatus, image carrier, and image forming apparatus

Also Published As

Publication number Publication date
US20090140143A1 (en) 2009-06-04
US8026482B2 (en) 2011-09-27
JP2009026742A (ja) 2009-02-05

Similar Documents

Publication Publication Date Title
JP5474312B2 (ja) 荷電粒子ビーム装置及びその制御方法
JP4705869B2 (ja) 荷電粒子線システム、およびパターン計測方法
JP5357889B2 (ja) 荷電粒子ビーム装置
US8258475B2 (en) Charged particle radiation device provided with aberration corrector
US20070187595A1 (en) Method for measuring a pattern dimension using a scanning electron microscope
JP5174750B2 (ja) 荷電粒子線装置及び荷電粒子線画像を安定に取得する方法
JP2002134048A (ja) 荷電粒子線装置
JP2011033423A (ja) パターン形状選択方法、及びパターン測定装置
JP2009198339A (ja) パターン寸法計測方法
TWI837655B (zh) 用來處理藉由帶電粒子束裝置得到的圖像之圖像處理系統,疊合錯位量算出方法,及圖像處理程式
US9401297B2 (en) Electrostatic chuck mechanism and charged particle beam apparatus
US11195691B2 (en) Method of automatically focusing a charged particle beam on a surface region of a sample, method of calculating a converging set of sharpness values of images of a charged particle beam device and charged particle beam device for imaging a sample
JP2006032202A (ja) 荷電粒子線装置
JP2001147113A (ja) パターン寸法測定装置および方法
JP5205515B2 (ja) 試料電位測定方法、及び荷電粒子線装置
TW202331772A (zh) 決定聚焦帶電粒子束的束匯聚度的方法及帶電粒子束系統
US11164720B2 (en) Scanning electron microscope and calculation method for three-dimensional structure depth
JP6207893B2 (ja) 試料観察装置用のテンプレート作成装置
US9000366B2 (en) Method and apparatus for measuring displacement between patterns and scanning electron microscope installing unit for measuring displacement between patterns
JP2005183881A (ja) 荷電粒子ビームを用いた半導体ウェハ試料の検査方法および装置
TWI847275B (zh) 決定帶電粒子束的像差的方法,以及帶電粒子束系統
TWI759161B (zh) 帶電粒子束裝置及粗糙度指標計算方法
KR20240067992A (ko) 하전 입자 빔의 수차들을 결정하는 방법들, 및 하전 입자 빔 시스템
TW202205339A (zh) 帶電粒子束檢測中基於電荷累積減少之影像增強
JPH0372923B2 (ja)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140205

R150 Certificate of patent or registration of utility model

Ref document number: 5474312

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350