JP5471480B2 - vending machine - Google Patents

vending machine Download PDF

Info

Publication number
JP5471480B2
JP5471480B2 JP2010008155A JP2010008155A JP5471480B2 JP 5471480 B2 JP5471480 B2 JP 5471480B2 JP 2010008155 A JP2010008155 A JP 2010008155A JP 2010008155 A JP2010008155 A JP 2010008155A JP 5471480 B2 JP5471480 B2 JP 5471480B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
indoor heat
cooling
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010008155A
Other languages
Japanese (ja)
Other versions
JP2011145983A (en
Inventor
裕地 藤本
敏章 土屋
浩司 滝口
孝博 三本
真 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2010008155A priority Critical patent/JP5471480B2/en
Publication of JP2011145983A publication Critical patent/JP2011145983A/en
Application granted granted Critical
Publication of JP5471480B2 publication Critical patent/JP5471480B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Vending Devices And Auxiliary Devices For Vending Devices (AREA)

Description

本発明は、缶、ビン、パック、ペットボトル等の容器に入れた飲料等の商品を冷却または加熱して販売に供する自動販売機に関する。   The present invention relates to a vending machine that cools or heats products such as beverages in containers such as cans, bottles, packs, and PET bottles for sale.

近年の地球温暖化に対して二酸化炭素の排出量削減が課題となっており、自動販売機も省エネ型が開発されている。その1方式として従来は排熱していた凝縮器の熱を室内の加熱に利用するヒートポンプ方式の自動販売機が注目されている(例えば、特許文献1参照)。
この方式での自動販売機では、室内、室外の各熱交換器に複数の電磁弁を設け、電磁弁を切り替えることにより、室内の熱交換器を凝縮器として作用をさせてヒートポンプ運転を行う。例えば、2室を加熱、1室を冷却する設定モードの場合には、室外の熱交換器を休止させ、加熱する室内の熱交換器を凝縮器として作用させ、冷却する室内の熱交換器を蒸発器として作用させるように電磁弁を切り替えることで冷却加熱のヒートポンプ運転を行う。
特許文献1に対して、室内熱交換器と並列接続をして室外に熱交換器を設けた自動販売機が知られている。この自動販売機では、2室を加熱、1室を冷却する設定モードで運転中に冷却する室内が適温となり、運転モードが加熱単独運転となったときに、室外に設けた熱交換器を蒸発器と使用することで、加熱単独のヒートポンプ運転を行うことができるので、消費電力が低減される(例えば、特許文献2参照)。
Reducing carbon dioxide emissions has become a challenge with recent global warming, and energy-saving vending machines have been developed. As one of the methods, a heat pump type vending machine that uses the heat of a condenser that has been exhausted in the past for indoor heating has been attracting attention (for example, see Patent Document 1).
In this type of vending machine, a plurality of electromagnetic valves are provided in each of the indoor and outdoor heat exchangers, and the electromagnetic valves are switched to operate the indoor heat exchanger as a condenser to perform a heat pump operation. For example, in the setting mode in which two rooms are heated and one room is cooled, the outdoor heat exchanger is paused, the indoor heat exchanger to be heated is operated as a condenser, and the indoor heat exchanger to be cooled is Cooling and heating heat pump operation is performed by switching the electromagnetic valve so as to act as an evaporator.
For patent document 1, a vending machine is known which is connected in parallel to an indoor heat exchanger and provided with a heat exchanger outside the room. In this vending machine, when the room to be cooled is set to an appropriate temperature during operation in the setting mode in which two rooms are heated and one room is cooled, the heat exchanger provided outside the room evaporates when the operation mode is the heating single operation. By using with a vessel, a heat pump operation with heating alone can be performed, so that power consumption is reduced (see, for example, Patent Document 2).

特開2001−109942号公報JP 2001-109942 A 特開2007−108915号公報JP 2007-108915 A

しかしながら、特許文献2に記載された自動販売機では、室内熱交換器と並列接続させて室外に蒸発器用の熱交換器を設けるため、当該蒸発器用の熱交換器が休止中にはその熱交換器内に冷媒が残留する。この時冷却加熱の設定モードを3室すべての室で冷却運転に切り替えるなど大量の冷媒循環量を必要とする運転モードに切り替わると、冷媒の循環量が不足するという虞があった。
本発明は、上記実情に鑑みなされたもので、上記の課題を解決して、冷却加熱の運転モードに関わらず低コストで効率良くヒートポンプ運転を行う自動販売機等を提供することを目的とする。
However, in the vending machine described in Patent Document 2, a heat exchanger for the evaporator is provided outside the room in parallel connection with the indoor heat exchanger. Refrigerant remains in the vessel. At this time, if the setting mode of cooling and heating is switched to an operation mode that requires a large amount of refrigerant circulation such as switching to cooling operation in all three rooms, there is a risk that the amount of refrigerant circulation will be insufficient.
The present invention has been made in view of the above circumstances, and an object of the present invention is to solve the above-described problems and provide a vending machine or the like that efficiently performs heat pump operation at low cost regardless of the cooling heating operation mode. .

上記の目的を達成するために、本発明の請求項1に係る自動販売機は、冷媒を圧縮する圧縮機と、冷媒を凝縮する室外の凝縮器と、冷媒を膨張させる第1膨張手段と、分配器を介して分配した冷媒を蒸発させて室内を冷却する複数の第1室内熱交換器とを配管接続してなる冷却循環回路を構成するとともに、前記圧縮機と、冷媒を凝縮させて室内を加熱する第2室内熱交換器と、前記第1膨張手段と、冷媒を蒸発させて室内を冷却する前記第1室内熱交換器とを配管接続してなる冷却加熱循環回路を構成した冷媒循環回路を有する自動販売機において、前記第1室内熱交換器と前記圧縮機の入口部との間に直列接続した室外蒸発器を設けるとともに、前記凝縮器への冷媒の流れを阻止する態様で、前記凝縮器の出口部と前記第1膨張手段との間に逆止弁を設け、当該逆止弁と前記第1膨張手段とを接続する配管と前記室外蒸発器の入口部との間を第1電磁弁および第2膨張器を介してバイパス管路を冷媒循環回路に接続したことを特徴とする。
本発明の請求項2に係る自動販売機は、請求項1に記載の自動販売機において、前記逆止弁と前記バイパス管路との接続点と第1膨張手段との間に第2電磁弁を設けたことを特徴とする。
本発明の請求項3に係る自動販売機は、請求項1または2に記載の自動販売機において、前記第1膨張手段が前記分配器と各前記第1室内熱交換器との間に設けられたことを特徴とする。
In order to achieve the above object, a vending machine according to claim 1 of the present invention includes a compressor that compresses a refrigerant, an outdoor condenser that condenses the refrigerant, a first expansion means that expands the refrigerant, A cooling circulation circuit is formed by connecting a plurality of first indoor heat exchangers that evaporate the refrigerant distributed through the distributor and cool the room, and the compressor and the refrigerant are condensed to form a room. Refrigerant circulation that constitutes a cooling and heating circuit in which a second indoor heat exchanger that heats the interior, the first expansion means, and the first indoor heat exchanger that evaporates the refrigerant and cools the room are connected by piping. In an automatic vending machine having a circuit, an outdoor evaporator connected in series between the first indoor heat exchanger and the inlet of the compressor is provided, and the refrigerant flow to the condenser is prevented. Between the outlet of the condenser and the first expansion means. Provided with a check valve, and a bypass line is provided between the pipe connecting the check valve and the first expansion means and the inlet of the outdoor evaporator via the first electromagnetic valve and the second expander. It is connected to a refrigerant circulation circuit.
A vending machine according to a second aspect of the present invention is the vending machine according to the first aspect, wherein a second electromagnetic valve is provided between a connection point between the check valve and the bypass pipe and the first expansion means. Is provided.
The vending machine according to claim 3 of the present invention is the vending machine according to claim 1 or 2, wherein the first expansion means is provided between the distributor and each of the first indoor heat exchangers. It is characterized by that.

本発明の請求項4に係る自動販売機は、請求項1ないし3の何れかに記載の自動販売機において、前記凝縮器または前記第2室内熱交換器から高温の冷媒が流れる高圧配管と、前記第1室内熱交換器から低温の冷媒が流れる低圧配管との間で熱交換を行う内部熱交換器を設けたことを特徴とする。   A vending machine according to claim 4 of the present invention is the vending machine according to any one of claims 1 to 3, wherein high-pressure piping through which a high-temperature refrigerant flows from the condenser or the second indoor heat exchanger; An internal heat exchanger is provided that exchanges heat between the first indoor heat exchanger and a low-pressure pipe through which a low-temperature refrigerant flows.

本発明に係る請求項1の自動販売機は、第1室内熱交換器と圧縮機の入口部との間に直列接続した室外蒸発器を設けるとともに、凝縮器への冷媒の流れを阻止する態様で、凝縮器の出口部と第1膨張手段との間に逆止弁を設け、当該逆止弁と第1膨張手段とを接続する配管と室外蒸発器の入口部との間を第1電磁弁および第2膨張器を介してバイパス管路を冷媒循環回路に接続したことにより、運転モードが加熱単独運転時に室外蒸発器にて冷媒を蒸発することができるので、ヒートポンプ運転が可能となる結果、消費電力を少なくすることができるとともに、運転モードが冷却単独運転または冷却加熱運転時においても室外蒸発器にて冷媒の蒸発が行われるので、アキュムレータを小型化または省略することができ、冷媒の循環量が適正に保持することができる結果、低コストで効率よく運転を行うことができる。
本発明に係る請求項2の自動販売機は、逆止弁とバイパス管路との接続点と第1膨張手段との間に第2電磁弁を設けたことにより、冷却加熱のヒートポンプ運転中において室外凝縮器に滞留する冷媒を回収することができるので、冷媒循環量が適正に保持される結果、効率よくヒートポンプ運転を行うことができる。
本発明に係る請求項3の自動販売機は、第1膨張手段が分配器と各第1室内熱交換器との間に設けられたことにより、冷媒が各第1室内熱交換器に応じて適正に分配される結果、効率よくヒートポンプ運転を行うことができる。
The vending machine according to claim 1 of the present invention is an aspect in which an outdoor evaporator connected in series is provided between the first indoor heat exchanger and the inlet of the compressor, and the flow of refrigerant to the condenser is blocked. Thus, a check valve is provided between the outlet portion of the condenser and the first expansion means, and a first electromagnetic wave is provided between the pipe connecting the check valve and the first expansion means and the inlet portion of the outdoor evaporator. As a result of connecting the bypass line to the refrigerant circulation circuit via the valve and the second expander, the refrigerant can be evaporated by the outdoor evaporator when the operation mode is the single heating operation, so that the heat pump operation is possible. In addition, the power consumption can be reduced, and the refrigerant is evaporated in the outdoor evaporator even when the operation mode is the cooling only operation or the cooling heating operation. Therefore, the accumulator can be reduced in size or omitted. Circulation amount is appropriate The results can be lifting, it is possible to perform efficient operation at low cost.
In the vending machine according to claim 2 of the present invention, the second electromagnetic valve is provided between the connection point between the check valve and the bypass pipe and the first expansion means, so that the heat pump operation for cooling heating is performed. Since the refrigerant staying in the outdoor condenser can be recovered, the amount of refrigerant circulating is appropriately maintained, so that the heat pump operation can be performed efficiently.
According to the third aspect of the present invention, the first expansion means is provided between the distributor and each of the first indoor heat exchangers, so that the refrigerant is in accordance with each of the first indoor heat exchangers. As a result of proper distribution, heat pump operation can be performed efficiently.

本発明に係る請求項4の自動販売機は、凝縮器または第2室内熱交換器から高温の冷媒が流れる高圧配管と、第1室内熱交換器から低温の冷媒が流れる低圧配管との間で熱交換を行う内部熱交換器を設けたことにより、第1膨張器への流入する冷媒の温度が低下するので、蒸発温度を下がり、また、圧縮機へ流入する冷媒の温度が上昇するので、凝縮温度を上がる結果、効率よくヒートポンプ運転を行うことができる。   According to a fourth aspect of the present invention, there is provided a vending machine between a high-pressure pipe through which a high-temperature refrigerant flows from a condenser or a second indoor heat exchanger, and a low-pressure pipe through which a low-temperature refrigerant flows from a first indoor heat exchanger. By providing the internal heat exchanger that performs heat exchange, the temperature of the refrigerant flowing into the first expander decreases, so the evaporation temperature is lowered, and the temperature of the refrigerant flowing into the compressor increases. As a result of increasing the condensation temperature, heat pump operation can be performed efficiently.

本発明の実施例1に係る自動販売機を示す斜視図。1 is a perspective view showing a vending machine according to Embodiment 1 of the present invention. 図1に示した自動販売機の断面図。Sectional drawing of the vending machine shown in FIG. 本発明の実施例1に係る冷媒回路図。1 is a refrigerant circuit diagram according to Embodiment 1 of the present invention. FIG. 本発明の実施例1に係る制御装置のブロック図。The block diagram of the control apparatus which concerns on Example 1 of this invention. 実施例1に係る、3室を全て冷却する冷却単独運転における冷媒の流れを示す回路図。The circuit diagram which shows the flow of the refrigerant | coolant in the cooling single operation which cools all the three chambers based on Example 1. FIG. 実施例1に係る、2室を加熱し1室を冷却するヒートポンプ運転における冷媒の流れを示す回路図。The circuit diagram which shows the flow of the refrigerant | coolant in the heat pump driving | operation which heats 2 chambers and cools 1 chamber | room based on Example 1. FIG. 実施例1に係る、1室を休止し2室を加熱する加熱単独運転における冷媒の流れを示す回路図。The circuit diagram which shows the flow of the refrigerant | coolant in the heating independent operation which pauses 1 chamber and heats 2 chambers based on Example 1. FIG. 本発明の実施例2に係る冷媒回路図。The refrigerant circuit figure which concerns on Example 2 of this invention. 実施例2に係る、2室を加熱し1室を冷却するヒートポンプ運転における冷媒の流れを示す回路図。The circuit diagram which shows the flow of the refrigerant | coolant in the heat pump driving | operation which heats 2 chambers and cools 1 chamber | room based on Example 2. FIG. 本発明の実施例3に係る冷媒回路図。The refrigerant circuit figure which concerns on Example 3 of this invention. 実施例3に係る、1室を加熱し2室を冷却するヒートポンプ運転における冷媒の流れを示す回路図。The circuit diagram which shows the flow of the refrigerant | coolant in the heat pump driving | operation which heats 1 chamber and cools 2 chambers based on Example 3. FIG. 実施例3に係る、2室を休止し1室を加熱する加熱単独運転における冷媒の流れを示す回路図。The circuit diagram which shows the flow of the refrigerant | coolant in the heating independent operation which pauses 2 chambers and heats 1 chamber based on Example 3. FIG. 本発明の実施例4に係る冷媒回路図。The refrigerant circuit figure which concerns on Example 4 of this invention. 実施例4に係る、2室を加熱し1室を冷却するヒートポンプ運転における冷媒の流れを示す回路図。The circuit diagram which shows the flow of the refrigerant | coolant in the heat pump driving | operation which heats 2 chambers and cools 1 chamber | room based on Example 4. FIG. 実施例4に係る、1室を休止し2室を加熱する加熱単独運転における冷媒の流れを示す回路図。The circuit diagram which shows the flow of the refrigerant | coolant in the heating independent operation which pauses 1 chamber and heats 2 chambers based on Example 4. FIG.

(実施例1)
以下に添付図面を参照して、本発明に係る自動販売機における冷媒回路の好適な実施例1を詳細に説明する。なお、この実施例1によりこの発明が限定されるものではない。
図1の斜視図、図2の断面図、図3の冷媒回路図において、自動販売機は、前面が開口した直方状の断熱体として形成された本体キャビネット10と、その前面に設けられた外扉20および内扉30(30a,30b)と、本体キャビネット10の内部を上下2段に底板11にて区画形成し、上部を例えば2つの断熱仕切板40wによって仕切られた3つの独立した商品収納室40a、40b、40cと、下部に商品収納室40a、40b、40cを冷却もしくは加熱する冷却/加熱ユニット60を収納する機械室50と、外扉20の内側に配設され、商品収納室40a、40b、40c内の温度センサTa、Tb、Tcにより自動販売機の冷却、加熱運転などを制御する制御手段90と、を有して構成されている。
より詳細に説明すると、外扉20は、本体キャビネット10の前面開口を開閉するためのものであり、図には明示していないが、この外扉20の前面には、販売する商品の見本を展示する商品展示室、販売する商品を選択するための選択ボタン、貨幣を投入するための貨幣投入口、払い出された商品を取り出すための商品取出口21等々、商品の販売に必要となる構成が配置してある。
Example 1
Exemplary embodiments of a refrigerant circuit in a vending machine according to the present invention will be explained below in detail with reference to the accompanying drawings. The present invention is not limited to the first embodiment.
In the perspective view of FIG. 1, the cross-sectional view of FIG. 2, and the refrigerant circuit diagram of FIG. 3, the vending machine includes a main body cabinet 10 formed as a rectangular heat insulator having an open front surface, and an exterior provided on the front surface thereof. The door 20 and the inner door 30 (30a, 30b) and the interior of the main body cabinet 10 are divided into two upper and lower sections by the bottom plate 11, and the upper part is partitioned by, for example, two heat insulating partition plates 40w to store three independent products. The chambers 40a, 40b, 40c, the machine chamber 50 for storing the cooling / heating unit 60 for cooling or heating the product storage chambers 40a, 40b, 40c at the lower part, and the product storage chamber 40a are disposed inside the outer door 20. , 40b, 40c, and control means 90 for controlling the cooling and heating operation of the vending machine by the temperature sensors Ta, Tb, Tc.
More specifically, the outer door 20 is used to open and close the front opening of the main body cabinet 10 and is not shown in the figure. Product display room, selection button for selecting the product to be sold, money slot for inserting money, product outlet 21 for taking out the paid-out product, etc. Is arranged.

内扉30(30a,30b)は、商品収納室40a、40b、40cの前面を開閉し、内部の商品を保温するものであり、上下2段に分割され内部に断熱体を有する箱型形状の構造体である。上側の内扉30aは、一端を外扉20に軸支し、他端を外扉20に係着して、外扉20の開放と同時に上側の内扉30aを開放させて、商品の補充を容易にするものである。下側の内扉30bは、一端を本体キャビネット10に軸支し、他端を本体キャビネット10に不図示の掛金にて掛着して、外扉20を開放したときには、閉止した状態であり、商品収納室40a、40b、40c内の冷却もしくは加熱した空気が流出することを防ぎ、メンテナンス時など必要に応じて開放できるものである。
商品収納室40a、40b、40cは、缶入り飲料やペットボトル入り飲料等の商品を所望の温度に維持した状態で収容するためのものであり、その収納室の容量は商品収納室40a、40c、40bの順番に大きな態様で配分されている。本実施例1は、商品収納室40aを冷却専用とし、商品収納室40b、40cを冷却加熱兼用としている。その商品収納室40a、40b、40cには、それぞれ、商品を上下方向に沿って並ぶ態様で収納し、販売信号により1個ずつ商品を排出するための商品搬出機構を備えた商品収納ラックR、排出された商品Sを内扉30bに取設された搬出扉31を介して外扉の販売口21へ搬出する商品搬出シュート42を有している。
The inner door 30 (30a, 30b) opens and closes the front surfaces of the product storage chambers 40a, 40b, 40c, and keeps the products in the interior. It is a structure. The upper inner door 30a is pivotally supported by the outer door 20 at one end and engaged with the outer door 20 at the other end, and the upper inner door 30a is opened simultaneously with the opening of the outer door 20 to replenish the goods. To make it easier. The lower inner door 30b is in a closed state when one end is pivotally supported on the main body cabinet 10 and the other end is hooked on the main body cabinet 10 with a latch (not shown) and the outer door 20 is opened. This prevents the cooled or heated air in the product storage chambers 40a, 40b, and 40c from flowing out and can be opened as needed during maintenance.
The product storage chambers 40a, 40b, and 40c are for storing products such as canned beverages and beverages containing plastic bottles while maintaining the desired temperature, and the capacity of the storage chambers is the product storage chambers 40a, 40c. , 40b in a large manner. In the first embodiment, the product storage chamber 40a is exclusively used for cooling, and the product storage chambers 40b and 40c are also used for cooling and heating. In the product storage chambers 40a, 40b, and 40c, product storage racks R each having a product carry-out mechanism for storing products in a vertically arranged manner and discharging the products one by one in response to a sales signal, There is a product carry-out chute 42 for carrying the discharged product S to the sales port 21 of the outer door through a carry-out door 31 installed in the inner door 30b.

冷却/加熱ユニット60は、機械室50内に圧縮機61、凝縮器62、第1の膨張器(膨張手段)63、第2の膨張器(膨張手段)84、小型アキュムレータ69、補助熱交換器76、室内蒸発器81を取設し、底板11を跨いで室内に蒸発器(第1室内熱交換器)65a、室内熱交換器(第1室内熱交換器、第2室内熱交換器を兼用する)65b、65cを有して各機器を冷媒配管で接続されることにより構成されている。冷却/加熱ユニット60は、冷却加熱の設定モードに応じて、室内に冷却または加熱した空気を循環させて商品収納ラックR内の商品Sを冷却または加熱するものである。
冷却加熱用の圧縮機61は、冷媒を圧縮して回路内を循環させるためのもので、冷却運転時には、蒸発温度が約−10℃、凝縮温度が約40℃で使用され、加熱運転時には、蒸発温度が約−10℃、凝縮温度が約70℃で使用される。
凝縮器62は、フィンチューブ型の熱交換器であり、冷却運転時に不要な凝縮熱を排出するためのものである。凝縮器62の後部にはファン62fが取設され、ファン62fは機械室50の前面開口部より空気を吸入し、凝縮器62による凝縮熱を吸入するとともに、圧縮機61の排熱を吸収して、機械室50の背面開口部へ排気するためのものである。
第1膨張器63は、冷却運転時に通過する冷媒を減圧して断熱膨張させるものであり、たとえばキャピラリ、温度膨張弁、電子膨張弁である。
The cooling / heating unit 60 includes a compressor 61, a condenser 62, a first expander (expansion means) 63, a second expander (expansion means) 84, a small accumulator 69, and an auxiliary heat exchanger in the machine room 50. 76, the indoor evaporator 81 is installed, and the evaporator (first indoor heat exchanger) 65a and the indoor heat exchanger (the first indoor heat exchanger and the second indoor heat exchanger) are used in the room across the bottom plate 11. 65b, 65c, and each device is connected by a refrigerant pipe. The cooling / heating unit 60 cools or heats the product S in the product storage rack R by circulating the cooled or heated air in the room according to the setting mode of cooling and heating.
The compressor 61 for cooling and heating is for compressing the refrigerant and circulating it in the circuit. During the cooling operation, the evaporation temperature is about −10 ° C., the condensation temperature is about 40 ° C., and during the heating operation, An evaporation temperature of about −10 ° C. and a condensation temperature of about 70 ° C. are used.
The condenser 62 is a fin tube type heat exchanger, and discharges unnecessary condensation heat during the cooling operation. A fan 62f is installed at the rear of the condenser 62. The fan 62f sucks air from the front opening of the machine chamber 50, sucks heat of condensation by the condenser 62, and absorbs exhaust heat of the compressor 61. Thus, the air is exhausted to the rear opening of the machine room 50.
The first expander 63 decompresses the refrigerant passing during the cooling operation and adiabatically expands, and is, for example, a capillary, a temperature expansion valve, or an electronic expansion valve.

分流器(分配器)64は、膨張器63で断熱膨張させられた冷媒を蒸発器65a,室内熱交換器65b、65cに分配するためのものである。
蒸発器65aは、商品収納室40aを冷却するためのものであり、室内熱交換器65b、65cは、商品収納室40b、40cを冷却もしくは加熱するためのものである。また、蒸発器65a、室内熱交換器65b、65cは、各商品収納室の下部に取設され、風胴167で囲繞され、その後方にファン65fが取設され、その後方にダクト167dが取設されている。商品収納室内の冷却と加熱は、蒸発器65a、室内熱交換器65b、65cにより冷却もしくは加熱された空気を商品収納室内の商品Sに送風し、図2中の矢印で示すようにダクト167dより循環回収することで行われる。
小型アキュムレータ69は、蒸発器65a,室内熱交換器65b、65cから蒸発された冷媒を流入し、気液分離させて液冷媒を貯留し、気体冷媒を圧縮機61に戻すための密閉した容器である。また、小型アキュムレータ69は、回路の冷媒循環に余った冷媒を貯留するための容器でもある。
補助熱交換器76は、フィンチューブ型の熱交換器であり、加熱運転時に余剰な凝縮熱を排出するためのものである。
The flow divider (distributor) 64 is for distributing the refrigerant adiabatically expanded by the expander 63 to the evaporator 65a and the indoor heat exchangers 65b and 65c.
The evaporator 65a is for cooling the product storage chamber 40a, and the indoor heat exchangers 65b and 65c are for cooling or heating the product storage chambers 40b and 40c. The evaporator 65a and the indoor heat exchangers 65b and 65c are installed at the lower part of each product storage room, surrounded by a wind tunnel 167, a fan 65f is installed behind them, and a duct 167d is installed behind them. It is installed. The cooling and heating in the product storage chamber is performed by blowing air cooled or heated by the evaporator 65a and the indoor heat exchangers 65b and 65c to the product S in the product storage chamber, and from the duct 167d as indicated by an arrow in FIG. It is done by circulating recovery.
The small accumulator 69 is a sealed container for flowing in the refrigerant evaporated from the evaporator 65a and the indoor heat exchangers 65b and 65c, separating the gas and liquid, storing the liquid refrigerant, and returning the gas refrigerant to the compressor 61. is there. The small accumulator 69 is also a container for storing the refrigerant remaining in the refrigerant circulation of the circuit.
The auxiliary heat exchanger 76 is a fin tube type heat exchanger, and discharges excess condensation heat during the heating operation.

室内温センサTa、Tb、Tcは、商品収納室40a、40b、40c内の風胴167の上面に取設され、商品収納室40a、40b、40cの室内温度を検知するためのものである。
凝縮器電磁弁68は、圧縮機61と凝縮器62間の冷媒通路を開閉するものであり、加熱器電磁弁68b、68cは、圧縮機61と室内熱交換器65b、65c間の圧縮された冷媒の通路を開閉するものである。第1の冷却器入口電磁弁70a,第2の冷却器入口電磁弁70b,70cは分流器64と蒸発器65a、室内熱交換器65b、65c間の膨張された冷媒の通路を開閉するものであり、冷却器出口電磁弁72b,72cは、室内熱交換器65b、65cと圧縮機61と間の蒸発された冷媒の通路を開閉するものである。
室外蒸発器81は、フィンチューブ型の熱交換器であり、運転モードが加熱単独運転時に蒸発熱を排出するためのものである。
逆止弁82は、図3に示すように凝縮器62の出口部と第1膨張器63の入口部(補助熱交換器76と分配器63との結合点176)との間に設けて、加熱運転時に凝縮器62への冷媒の流れを阻止するためのものである。
バイパス管路80は、加熱単独運転時に室外蒸発器81に冷媒を流すためのものであり、逆止弁82と第1膨張器63とを接続する配管の接続点180と、室外蒸発器81の入口部と集合部67とを接続する配管の接続点181の間を接続する管路である。また、バイパス管路80には、バイパス電磁弁83、第2膨張器84が接続されている。
The indoor temperature sensors Ta, Tb, and Tc are installed on the upper surface of the wind tunnel 167 in the product storage chambers 40a, 40b, and 40c, and are for detecting the indoor temperature of the product storage chambers 40a, 40b, and 40c.
The condenser solenoid valve 68 opens and closes the refrigerant passage between the compressor 61 and the condenser 62, and the heater solenoid valves 68b and 68c are compressed between the compressor 61 and the indoor heat exchangers 65b and 65c. It opens and closes the refrigerant passage. The first cooler inlet solenoid valve 70a and the second cooler inlet solenoid valves 70b and 70c open and close the expanded refrigerant passage between the flow divider 64 and the evaporator 65a and the indoor heat exchangers 65b and 65c. The cooler outlet solenoid valves 72 b and 72 c open and close the evaporated refrigerant passage between the indoor heat exchangers 65 b and 65 c and the compressor 61.
The outdoor evaporator 81 is a fin tube type heat exchanger, and is for discharging the heat of evaporation when the operation mode is a single heating operation.
As shown in FIG. 3, the check valve 82 is provided between the outlet portion of the condenser 62 and the inlet portion of the first expander 63 (the coupling point 176 between the auxiliary heat exchanger 76 and the distributor 63). This is to prevent the refrigerant from flowing into the condenser 62 during the heating operation.
The bypass line 80 is for flowing the refrigerant to the outdoor evaporator 81 during the heating-only operation. The bypass line 80 connects the connection point 180 of the pipe connecting the check valve 82 and the first expander 63, and the outdoor evaporator 81. This is a pipe line that connects between the connection points 181 of the pipe that connects the inlet part and the gathering part 67. Further, a bypass solenoid valve 83 and a second expander 84 are connected to the bypass conduit 80.

バイパス電磁弁83は、加熱単独運転時に室外蒸発器81に冷媒を流し、他の運転モード時にはバイパス管路80への冷媒の流入を阻止するためのものである。
第2膨張器84は、加熱単独運転時に通過する冷媒を減圧して断熱膨張させるものであり、たとえばキャピラリ、温度膨張弁、電子膨張弁である。
冷却/加熱ユニット60の冷媒回路構成について、図3を参照しつつ詳述する。冷媒回路は、室内を冷却のみを行う冷却単独回路(冷却循環回路)60Aと、室内の冷却加熱を同時に行う冷却加熱回路(冷却加熱循環回路)60Bと、室内を加熱のみを行う加熱単独回路60Cと、を有している。なお、図中の点線の囲いは、冷却専用の商品収納室40aと、冷却加熱兼用の商品収納室40b、40cを模式的に示している。
冷却単独回路60Aは、圧縮機61より、凝縮器電磁弁68、凝縮器62、逆止弁82、第1膨張器63を経由して、分流器64に接続し、分流器64より一方は第1の冷却器入口電磁弁70a、蒸発器65aを経由して集合器67に接続し、また、分流器64より他方は第2の冷却器入口電磁弁70b、70c、室内熱交換器65b、65c、冷却器出口電磁弁72b、72cを経由して集合器67に接続し、集合器67より室外蒸発器81、小型アキュムレータ69を経由して圧縮機61に戻る回路である。
The bypass solenoid valve 83 is used to flow the refrigerant through the outdoor evaporator 81 during the single heating operation and to prevent the refrigerant from flowing into the bypass line 80 during other operation modes.
The second expander 84 depressurizes and adiabatically expands the refrigerant that passes during the single heating operation, and is, for example, a capillary, a temperature expansion valve, or an electronic expansion valve.
The refrigerant circuit configuration of the cooling / heating unit 60 will be described in detail with reference to FIG. The refrigerant circuit includes a single cooling circuit (cooling circulation circuit) 60A that only cools the room, a cooling heating circuit (cooling heating circulation circuit) 60B that simultaneously cools and heats the room, and a single heating circuit 60C that only heats the room. And have. In addition, the enclosure of the dotted line in a figure has shown typically the merchandise storage chamber 40a only for cooling, and the merchandise storage chambers 40b and 40c used also for cooling and heating.
The single cooling circuit 60A is connected to the flow divider 64 from the compressor 61 via the condenser solenoid valve 68, the condenser 62, the check valve 82, and the first expander 63, and one side of the flow divider 64 is the first. 1 is connected to the collector 67 via the cooler inlet electromagnetic valve 70a and the evaporator 65a, and the other of the flow divider 64 is the second cooler inlet electromagnetic valve 70b, 70c, the indoor heat exchanger 65b, 65c. This circuit is connected to the collector 67 via the cooler outlet solenoid valves 72b and 72c, and returns to the compressor 61 from the collector 67 via the outdoor evaporator 81 and the small accumulator 69.

一方、冷却加熱回路60Bには、冷却単独回路60Aに加えて、圧縮機61と凝縮器電磁弁68との接続点より並列接続された加熱器電磁弁68b、68cを介して、第2の冷却器入口電磁弁70b、70cと室内熱交換器65b、65c入口側との中間点(接続点)168b、168cとそれぞれ接続し、室内熱交換器65b、65cの出口側(図中右側)からそれぞれ逆止弁71,71を介して結合した後、補助熱交換器76、第1膨張器63を経由して分配器64へ接続する管路とが設けられている。
しかして、冷却加熱回路60Bは、圧縮機61から加熱器電磁弁68b、68cを介し室内熱交換器65c、65bに接続され、室内熱交換器65c、65bから逆止弁71、71を介して補助熱交換器76、第1膨張器63を経由して分配器64に接続され、分流器64から第1の冷却器入口電磁弁70aを介して蒸発器65aに接続され、集合器67、室外蒸発器81、小型アキュムレータ69を経由して圧縮機61に戻る回路である。
また、加熱単独回路60Cは、冷却加熱循環回路60Bに加えて、逆止弁82と第1膨張器63と接続点180より、バイパス電磁弁83、第2膨張器84を経由して室外蒸発器81の入口部との接続点181とを接続するバイパス管路80を有している。
しかして、加熱単独回路60Cは、圧縮機61から加熱器電磁弁68b、68cを介し室内熱交換器65c、65bに接続され、室内熱交換器65c、65bから逆止弁71、71を介して補助熱交換器76に接続され、バイパス電磁弁83、第2膨張器84を経由して室外蒸発器81に接続され、室外蒸発器81より小型アキュムレータ69を介して圧縮機61に戻る回路である。
On the other hand, in the cooling heating circuit 60B, in addition to the cooling single circuit 60A, the second cooling is performed via heater electromagnetic valves 68b and 68c connected in parallel from the connection point between the compressor 61 and the condenser electromagnetic valve 68. Are connected to intermediate points (connection points) 168b and 168c between the inlet solenoid valves 70b and 70c and the indoor heat exchangers 65b and 65c, respectively, and from the outlet side (right side in the figure) of the indoor heat exchangers 65b and 65c, respectively. After coupling via the check valves 71, 71, an auxiliary heat exchanger 76 and a pipe line connected to the distributor 64 via the first expander 63 are provided.
Thus, the cooling heating circuit 60B is connected from the compressor 61 to the indoor heat exchangers 65c and 65b via the heater electromagnetic valves 68b and 68c, and from the indoor heat exchangers 65c and 65b via the check valves 71 and 71. The auxiliary heat exchanger 76 and the first expander 63 are connected to the distributor 64, and the shunt 64 is connected to the evaporator 65a via the first cooler inlet solenoid valve 70a. This circuit returns to the compressor 61 via the evaporator 81 and the small accumulator 69.
In addition to the cooling heating circuit 60B, the heating single circuit 60C is connected to the outdoor evaporator from the check valve 82, the first expander 63 and the connection point 180 via the bypass solenoid valve 83 and the second expander 84. It has a bypass pipe line 80 that connects a connection point 181 with the inlet port 81.
Thus, the heating single circuit 60C is connected to the indoor heat exchangers 65c and 65b from the compressor 61 via the heater electromagnetic valves 68b and 68c, and from the indoor heat exchangers 65c and 65b via the check valves 71 and 71. This circuit is connected to the auxiliary heat exchanger 76, connected to the outdoor evaporator 81 via the bypass solenoid valve 83 and the second expander 84, and returned to the compressor 61 from the outdoor evaporator 81 via the small accumulator 69. .

制御手段90は、商品収納室40a、40b、40cを冷却加熱の設定モードにより冷却もしくは加熱の制御をするものである。図4に示すように内部にCPU、メモリを有し、冷却加熱モード設定SW91の設定モードおよび各室の温度状況による運転モードに応じて冷媒回路の圧縮機運転、電磁弁開閉などの制御を行う。冷却加熱の設定モードは、商品収納室40a、40b、40cの冷却もしくは加熱の運転をC、Hで示すものであり、商品収納室の左側から(40a、40b、40c)順に、例えば、すべてが冷却の場合にはCCCモード、右の商品収納室のみが加熱の場合にはCCHモードなどと記す。運転モードは、各室の温度状況により冷却、加熱、休止をそれぞれC、H、−で示すものであり、冷却加熱の設定モードと同様に商品収納室の左側から順に、例えば、左の商品収納室の冷却が適温となり、中、右の商品収納室のみが加熱の場合には−HHモードなどと記す。なお、制御手段90は、室内温センサTa、Tb、Tcにより検知した温度により、圧縮機61、凝縮器電磁弁68、第1の冷却器入口電磁弁70a、第2の冷却器入口電磁弁70b、70c、冷却器出口電磁弁72b、72c、加熱器電磁弁68b、68cなどを制御し、室内を一定温度範囲内でON・OFF制御するサーモサイクル運転を行うことにより室内温度を適温に維持する。   The control means 90 controls the cooling or heating of the product storage chambers 40a, 40b, and 40c by the cooling / heating setting mode. As shown in FIG. 4, it has a CPU and a memory inside, and performs control such as compressor operation of the refrigerant circuit and solenoid valve opening / closing according to the setting mode of the cooling / heating mode setting SW 91 and the operation mode depending on the temperature condition of each chamber. . The cooling and heating setting mode indicates the operation of cooling or heating the product storage chambers 40a, 40b, and 40c by C and H. From the left side of the product storage chamber (40a, 40b, 40c), for example, all In the case of cooling, the CCC mode is described, and in the case where only the right product storage chamber is heated, the CCH mode is described. In the operation mode, cooling, heating, and pause are respectively indicated by C, H, and-depending on the temperature condition of each room. For example, the left product storage is performed in order from the left side of the product storage chamber in the same manner as the cooling heating setting mode. When the room is cooled to a suitable temperature and only the right and right product storage rooms are heated, it is described as -HH mode. Note that the control means 90 controls the compressor 61, the condenser solenoid valve 68, the first cooler inlet solenoid valve 70a, and the second cooler inlet solenoid valve 70b according to the temperatures detected by the room temperature sensors Ta, Tb, and Tc. 70c, cooler outlet solenoid valves 72b and 72c, heater solenoid valves 68b and 68c, etc. are controlled, and the indoor temperature is maintained at an appropriate temperature by performing a thermocycle operation in which the interior is controlled to be ON / OFF within a certain temperature range. .

かかる構成で冷却加熱モード設定SW91の操作により設定モードをCCCモードに設定すると、制御手段90は凝縮器電磁弁68、第1の冷却器入口電磁弁70a、第2の冷却器入口電磁弁70b、70c、冷却器出口電磁弁72b、72cを開成し、加熱器電磁弁68b、68c、バイパス電磁弁83を閉止する。このとき、冷媒は図5の太線で示すように流れ、具体的には、圧縮機61で圧縮された高温冷媒は、凝縮器62にて凝縮され液体となり、第1膨張器63で膨張して低温の気液二相流となり、分流器64で三方に分流された後に蒸発器65a、室内熱交換器65b、65cに流入する。流入した冷媒は、蒸発器65a、室内熱交換器65b、65cで蒸発して商品収納室40a、40b、40cを冷却し、蒸発した冷媒は集合器67にて集合して、さらに室外蒸発器81にてさらに蒸発し、小型アキュムレータ69を介して気液分離されて、気相が圧縮機61に戻る。なお、この冷却は、制御装置90にて室内温度センサTa、Tb、Tcによるサーモサイクル運転により室内温度が適温に制御される。
次に、冷却加熱モード設定SW91の操作により設定モードを左側の商品収納室40aを冷却し、中、右側の商品収納室40b、40cを加熱するCHHモードに設定すると、制御手段90は、加熱器電磁弁68b、68c、第1の冷却器入口電磁弁70aを開成し、凝縮器電磁弁68、第2の冷却器入口電磁弁70b、70c、冷却器出口電磁弁72b、72c、バイパス電磁弁83を閉止する。このとき圧縮機61で圧縮された高温冷媒は、図6の太線で示すように、加熱器電磁弁68b、68c、接続点168b、168cを経由して室内熱交換器65b、65cに流入する。室内熱交換器65b、65cに流入した冷媒は凝縮して商品収納室40b、40cを加熱し、逆止弁71,71を介して集合し、補助熱交換器76でさらに凝縮して第1膨張器63に流入する。第1膨張器63に流入した冷媒は、膨張して低温低圧の気液二相流となり分流器64、第1の冷却器入口電磁弁70aを経由して蒸発器65aに流入する。蒸発器65aに流入した冷媒は、蒸発して商品収納室40aを冷却し、集合器67にて集合して、さらに室外蒸発器81にてさらに蒸発し、小型アキュムレータ69を介して圧縮機61に戻る。このヒートポンプ運転も前述のようにサーモサイクル運転で室内が適温に維持される。
When the setting mode is set to the CCC mode by the operation of the cooling / heating mode setting SW 91 with such a configuration, the control means 90 is configured to include the condenser solenoid valve 68, the first cooler inlet solenoid valve 70a, the second cooler inlet solenoid valve 70b, 70c, cooler outlet solenoid valves 72b and 72c are opened, and heater solenoid valves 68b and 68c and bypass solenoid valve 83 are closed. At this time, the refrigerant flows as shown by a thick line in FIG. 5. Specifically, the high-temperature refrigerant compressed by the compressor 61 is condensed by the condenser 62 to become a liquid, and is expanded by the first expander 63. It becomes a low-temperature gas-liquid two-phase flow and is divided into three directions by the flow divider 64 and then flows into the evaporator 65a and the indoor heat exchangers 65b and 65c. The refrigerant flowing in is evaporated in the evaporator 65a and the indoor heat exchangers 65b and 65c to cool the product storage chambers 40a, 40b and 40c. The evaporated refrigerant is collected in the collector 67, and further the outdoor evaporator 81. The gas is further vaporized and separated through the small accumulator 69, and the gas phase returns to the compressor 61. In this cooling, the controller 90 controls the room temperature to an appropriate temperature by the thermocycle operation by the room temperature sensors Ta, Tb, and Tc.
Next, when the setting mode is set to the CHH mode in which the left and right product storage chambers 40b and 40c are heated by operating the cooling and heating mode setting SW91 to cool the left product storage chamber 40a, The solenoid valves 68b and 68c and the first cooler inlet solenoid valve 70a are opened, the condenser solenoid valve 68, the second cooler inlet solenoid valves 70b and 70c, the cooler outlet solenoid valves 72b and 72c, and the bypass solenoid valve 83. Close. At this time, the high-temperature refrigerant compressed by the compressor 61 flows into the indoor heat exchangers 65b and 65c via the heater electromagnetic valves 68b and 68c and the connection points 168b and 168c, as shown by the thick lines in FIG. The refrigerant flowing into the indoor heat exchangers 65b and 65c condenses and heats the product storage chambers 40b and 40c, collects via the check valves 71 and 71, and further condenses in the auxiliary heat exchanger 76 to perform the first expansion. Flows into the vessel 63. The refrigerant flowing into the first expander 63 expands to form a low-temperature low-pressure gas-liquid two-phase flow, and flows into the evaporator 65a via the flow divider 64 and the first cooler inlet electromagnetic valve 70a. The refrigerant flowing into the evaporator 65 a evaporates to cool the product storage chamber 40 a, collects in the collector 67, further evaporates in the outdoor evaporator 81, and enters the compressor 61 via the small accumulator 69. Return. As described above, the heat pump operation also maintains the room at a suitable temperature by the thermocycle operation.

そして、商品収納室40aが適温に冷却されると、制御手段90は、商品収納室40b、40cの加熱単独の運転モード(−HHモード)を行う。具体的には、制御手段90は、加熱器電磁弁68b、68c、バイパス電磁弁83を開成し、凝縮器電磁弁68、第1の冷却器入口電磁弁70a、第2の冷却器入口電磁弁70b、70c、冷却器出口電磁弁72b、72cを閉止する。このとき圧縮機61で圧縮された高温冷媒は、図7の太線で示すように、加熱器電磁弁68b、68c、接続点168b、168cを経由して室内熱交換器65b、65cに流入する。室内熱交換器65b、65cに流入した冷媒は凝縮して商品収納室40b、40cを加熱し、逆止弁71,71を介して集合し、補助熱交換器76でさらに凝縮して接続点183よりバイパス電磁弁83を介して第2膨張器84に流入する。第2膨張器84に流入した冷媒は、膨張して低温低圧の気液二相流となり、室外蒸発器81にて蒸発して室外に冷熱を放出する。そして、室外蒸発器81にて蒸発した冷媒は、小型アキュムレータ69を介して圧縮機61に戻る。
このように、蒸発器65aと圧縮機61の入口部との間に直列接続した室外蒸発器81を設けるとともに、凝縮器62への冷媒の流れを阻止する態様で、凝縮器62の入口部と第1膨張手段63との間に逆止弁82を設け、逆止弁82と第1膨張手段63とを接続する配管と室外蒸発器81の入口部との間をバイパス電磁弁83および第2膨張器84を介してバイパス管路80を設けたことにより、運転モードが加熱単独運転時に室外蒸発器81にて冷媒を蒸発することができるので、ヒートポンプ運転が可能となる結果、消費電力を少なくすることができるとともに、運転モードが冷却単独運転または冷却加熱運転時においても室外蒸発器81にて冷媒の蒸発が行われるので、アキュムレータ69を小型化または省略することができ、冷媒の循環量が適正に保持することができる結果、低コストで効率よく運転を行うことができる。
And if the goods storage room 40a is cooled by suitable temperature, the control means 90 will perform the heating independent operation mode (-HH mode) of the goods storage room 40b, 40c. Specifically, the control unit 90 opens the heater solenoid valves 68b and 68c and the bypass solenoid valve 83, and the condenser solenoid valve 68, the first cooler inlet solenoid valve 70a, and the second cooler inlet solenoid valve. 70b and 70c and the cooler outlet electromagnetic valves 72b and 72c are closed. At this time, the high-temperature refrigerant compressed by the compressor 61 flows into the indoor heat exchangers 65b and 65c via the heater electromagnetic valves 68b and 68c and the connection points 168b and 168c, as shown by the thick lines in FIG. The refrigerant flowing into the indoor heat exchangers 65b and 65c condenses, heats the product storage chambers 40b and 40c, collects through the check valves 71 and 71, and further condenses in the auxiliary heat exchanger 76 to be connected to the connection point 183. It flows into the second expander 84 via the bypass electromagnetic valve 83. The refrigerant flowing into the second expander 84 expands into a low-temperature and low-pressure gas-liquid two-phase flow, evaporates in the outdoor evaporator 81, and releases cold heat to the outside. Then, the refrigerant evaporated in the outdoor evaporator 81 returns to the compressor 61 via the small accumulator 69.
Thus, while providing the outdoor evaporator 81 connected in series between the evaporator 65a and the inlet part of the compressor 61, and the aspect which blocks | prevents the flow of the refrigerant | coolant to the condenser 62, the inlet part of the condenser 62 and A check valve 82 is provided between the first expansion means 63 and a bypass solenoid valve 83 and a second connection between the pipe connecting the check valve 82 and the first expansion means 63 and the inlet of the outdoor evaporator 81. By providing the bypass pipe line 80 via the expander 84, the refrigerant can be evaporated in the outdoor evaporator 81 when the operation mode is the single heating operation, so that the heat pump operation becomes possible, resulting in less power consumption. In addition, since the refrigerant is evaporated in the outdoor evaporator 81 even when the operation mode is the cooling only operation or the cooling heating operation, the accumulator 69 can be reduced in size or omitted. Results circulation amount can be properly held, it is possible to perform efficient operation at low cost.

なお、上述の説明は、冷却加熱の設定モードをCHHモードで説明をしたが、加熱を1室の商品収納室で行うCCHモード、CHCモードでも同様な効果が得られる。また、上述の説明は、2室の商品収納室を冷却加熱兼用とした自動販売機で説明をしたが、1室のみの商品収納室を冷却加熱兼用とした自動販売機でも同様な効果が得られる。
(実施例2)
実施例2は、請求項2に関する冷媒回路に係り、実施例1の冷媒回路と比較して、図8に示すようにバイパス管路80の接続点180と、第1膨張器63との間に第2電磁弁85を接続している点が異なる。その他の構造は実施例1と同一であるので、その詳細な説明は省略をする。
第2電磁弁85は、冷却加熱のヒートポンプ運転を行うときに、閉止している凝縮器電磁弁68から漏れて凝縮器62に貯留する冷媒を冷媒循環回路に回収して冷媒循環量適正化するために使用するものである。
かかる構成で冷却加熱モード設定SW91の操作により設定モードを左側の商品収納室40aを冷却し、中、右側の商品収納室40b、40cを加熱するCHHモードに設定すると、制御手段90は、加熱器電磁弁68b、68c、第1の冷却器入口電磁弁70aを開成し、凝縮器電磁弁68、第2の冷却器入口電磁弁70b、70c、冷却器出口電磁弁72b、72c、バイパス電磁弁83、第2電磁弁85を閉止する。このとき圧縮機61で圧縮された高温冷媒は、図9の太線で示すように、加熱器電磁弁68b、68c、接続点168b、168cを経由して室内熱交換器65b、65cに流入する。室内熱交換器65b、65cに流入した冷媒は凝縮して商品収納室40b、40cを加熱し、逆止弁71,71を介して集合し、補助熱交換器76でさらに凝縮して第1膨張器63に流入する。第1膨張器63に流入した冷媒は、膨張して低温低圧の気液二相流となり分流器64、第1の冷却器入口電磁弁70aを経由して蒸発器65aに流入する。蒸発器65aに流入した冷媒は、蒸発して商品収納室40aを冷却し、集合器67にて集合して、さらに室外蒸発器81にてさらに蒸発し、小型アキュムレータ69を介して圧縮機61に戻る。
In the above description, the cooling and heating setting mode is described as the CHH mode. However, the same effect can be obtained in the CCH mode and the CHC mode in which heating is performed in one commodity storage room. In the above description, the vending machine has two product storage rooms that are also used for cooling and heating. However, the same effect can be obtained with a vending machine that has only one product storage room that is also used for cooling and heating. It is done.
(Example 2)
The second embodiment relates to a refrigerant circuit according to claim 2, and as compared with the refrigerant circuit of the first embodiment, as shown in FIG. 8, between the connection point 180 of the bypass pipe 80 and the first expander 63. The difference is that the second electromagnetic valve 85 is connected. Since other structures are the same as those of the first embodiment, detailed description thereof is omitted.
When performing the heat pump operation for cooling and heating, the second electromagnetic valve 85 recovers the refrigerant leaking from the closed condenser electromagnetic valve 68 and stored in the condenser 62 to the refrigerant circulation circuit to optimize the refrigerant circulation amount. It is intended for use.
When the setting mode is set to the CHH mode in which the left product storage chamber 40a is cooled and the right and left product storage chambers 40b and 40c are heated by operating the cooling / heating mode setting SW91 in such a configuration, the control means 90 The solenoid valves 68b and 68c and the first cooler inlet solenoid valve 70a are opened, the condenser solenoid valve 68, the second cooler inlet solenoid valves 70b and 70c, the cooler outlet solenoid valves 72b and 72c, and the bypass solenoid valve 83. Then, the second electromagnetic valve 85 is closed. At this time, the high-temperature refrigerant compressed by the compressor 61 flows into the indoor heat exchangers 65b and 65c via the heater electromagnetic valves 68b and 68c and the connection points 168b and 168c as shown by the thick lines in FIG. The refrigerant flowing into the indoor heat exchangers 65b and 65c condenses and heats the product storage chambers 40b and 40c, collects via the check valves 71 and 71, and further condenses in the auxiliary heat exchanger 76 to perform the first expansion. Flows into the vessel 63. The refrigerant flowing into the first expander 63 expands to form a low-temperature low-pressure gas-liquid two-phase flow, and flows into the evaporator 65a via the flow divider 64 and the first cooler inlet electromagnetic valve 70a. The refrigerant flowing into the evaporator 65 a evaporates to cool the product storage chamber 40 a, collects in the collector 67, further evaporates in the outdoor evaporator 81, and enters the compressor 61 via the small accumulator 69. Return.

そして、このとき、制御手段90が第2電磁弁83を開成させると、第2膨張器84と凝縮器62との接続点181の圧力が接続点180の圧力よりも低圧であるので、凝縮器62内に貯留する漏れ冷媒は、図中の矢印で示すように第2膨張器84により膨張されて冷媒循環回路内に回収される。
このように、逆止弁82とバイパス管路80との接続点180と、第1膨張手段63との間に第2電磁弁85を設けたことにより、冷却加熱のヒートポンプ運転中においても室外凝縮器62に滞留する冷媒を回収することができるので、冷媒循環量が適正に保持できる結果、自動販売機の設定モードに関わらず効率よくヒートポンプ運転を行うことができる。
(実施例3)
実施例3は請求項3に係る冷媒回路で、実施例2と比較して、図10で示すように第1膨張器63が分流器64と蒸発器65a、室内熱交換器65b、65cとの間に第1膨張器63a,63b,63cとして設けられている点が異なる。その他の構造は実施例2と同一であるので、その詳細な説明は省略をする。
第1膨張器63a,63b,63cは、それぞれ第1の冷却器入口電磁弁70a,70b,70cと蒸発器65a,逆止弁71b、71cとの間に接続された膨張手段であって、たとえばキャピラリ、温度膨張弁、電子膨張弁である。
At this time, when the control means 90 opens the second electromagnetic valve 83, the pressure at the connection point 181 between the second expander 84 and the condenser 62 is lower than the pressure at the connection point 180. The leaked refrigerant stored in 62 is expanded by the second expander 84 and collected in the refrigerant circuit as indicated by the arrows in the figure.
As described above, the second electromagnetic valve 85 is provided between the connection point 180 between the check valve 82 and the bypass pipe 80 and the first expansion means 63, so that the outdoor condensation is performed even during the cooling heat pump operation. Since the refrigerant staying in the vessel 62 can be collected, the refrigerant circulation amount can be appropriately maintained. As a result, the heat pump operation can be performed efficiently regardless of the setting mode of the vending machine.
(Example 3)
The third embodiment is a refrigerant circuit according to claim 3, and compared with the second embodiment, the first expander 63 includes a flow divider 64, an evaporator 65 a, and indoor heat exchangers 65 b and 65 c as shown in FIG. 10. The difference is that they are provided as first expanders 63a, 63b, 63c. Since other structures are the same as those of the second embodiment, detailed description thereof is omitted.
The first expanders 63a, 63b, and 63c are expansion means connected between the first cooler inlet solenoid valves 70a, 70b, and 70c and the evaporator 65a and check valves 71b and 71c, respectively. Capillaries, temperature expansion valves, and electronic expansion valves.

かかる構成で、冷却加熱モード設定SW91の操作により設定モードを左、中側の商品収納室40a、40bを冷却し、右側の商品収納室40cを加熱するCCHモードに設定すると、制御手段90は、加熱器電磁弁68c、第1の冷却器入口電磁弁70a、第2の冷却器入口電磁弁70b、冷却器出口電磁弁72b、第2電磁弁85を開成し、凝縮器電磁弁68、加熱器電磁弁68b、第2の冷却器入口電磁弁70c、冷却器出口電磁弁72c、バイパス電磁弁83を閉止する。このとき圧縮機61で圧縮された高温冷媒は、図11の太線で示すように、加熱器電磁弁68c、接続点168cを経由して室内熱交換器65cに流入する。室内熱交換器65cに流入した冷媒は凝縮して商品収納室40cを加熱し、逆止弁71を介して補助熱交換器76でさらに凝縮して分流器64に流入する。分流器64に流入した冷媒は、一方は第1の冷却器入口電磁弁70aを介して第1膨張器63aにて膨張して低温低圧の気液二相流となり、蒸発器65aに流入する。蒸発器65aに流入した冷媒は、蒸発して商品収納室40aを冷却し、集合器67にて集合する。また、分流器64に流入した冷媒の他方は、第2の冷却器入口電磁弁70bを介して第1膨張器63bにて膨張して低温低圧の気液二相流となり、逆止弁71bを介して蒸発器65bに流入する。蒸発器65bに流入した冷媒は、蒸発して商品収納室40bを冷却して集合器67にて集合する。集合器67に集合した冷媒は、室外蒸発器81にてさらに蒸発し、小型アキュムレータ69を介して圧縮機61に戻る。このヒートポンプ運転も前述のようにサーモサイクル運転で室内が適温に維持される。   With this configuration, when the setting mode is set to the CCH mode in which the left and middle product storage chambers 40a and 40b are cooled and the right product storage chamber 40c is heated by operating the cooling and heating mode setting SW91, the control unit 90 The heater solenoid valve 68c, the first cooler inlet solenoid valve 70a, the second cooler inlet solenoid valve 70b, the cooler outlet solenoid valve 72b, and the second solenoid valve 85 are opened, and the condenser solenoid valve 68, heater The solenoid valve 68b, the second cooler inlet solenoid valve 70c, the cooler outlet solenoid valve 72c, and the bypass solenoid valve 83 are closed. At this time, the high-temperature refrigerant compressed by the compressor 61 flows into the indoor heat exchanger 65c via the heater electromagnetic valve 68c and the connection point 168c, as shown by the thick line in FIG. The refrigerant flowing into the indoor heat exchanger 65c condenses and heats the product storage chamber 40c, further condenses in the auxiliary heat exchanger 76 via the check valve 71, and flows into the flow divider 64. One of the refrigerant flowing into the flow divider 64 is expanded in the first expander 63a via the first cooler inlet electromagnetic valve 70a to form a low-temperature low-pressure gas-liquid two-phase flow and flows into the evaporator 65a. The refrigerant that has flowed into the evaporator 65 a evaporates, cools the product storage chamber 40 a, and collects in the collector 67. The other refrigerant flowing into the flow divider 64 is expanded in the first expander 63b via the second cooler inlet electromagnetic valve 70b to become a low-temperature and low-pressure gas-liquid two-phase flow, and the check valve 71b is To the evaporator 65b. The refrigerant that has flowed into the evaporator 65 b evaporates, cools the product storage chamber 40 b, and collects in the collector 67. The refrigerant collected in the collecting unit 67 is further evaporated in the outdoor evaporator 81 and returns to the compressor 61 through the small accumulator 69. As described above, the heat pump operation also maintains the room at a suitable temperature by the thermocycle operation.

そして、商品収納室40a、40bが適温に冷却されると、制御手段90は、商品収納室40cの加熱単独のモード運転(−−Hモード)を行う。具体的には、制御手段90は、加熱器電磁弁68c、バイパス電磁弁83、第2電磁弁85を開成し、凝縮器電磁弁68、加熱器電磁弁68b、第1の冷却器入口電磁弁70a、第2の冷却器入口電磁弁70b、70c、冷却器出口電磁弁72b、72cを閉止する。このとき圧縮機61で圧縮された高温冷媒は、図12の太線で示すように、加熱器電磁弁68c、接続点168cを経由して室内熱交換器65cに流入する。室内熱交換器65cに流入した冷媒は凝縮して商品収納室40cを加熱し、逆止弁71を介して補助熱交換器76でさらに凝縮し、接続点176より第2電磁弁85、接続点180、バイパス電磁弁83を経由して第2膨張器84に流入する。第2膨張器84に流入した冷媒は、膨張して低温低圧の気液二相流となり、室外蒸発器81にて蒸発して室外に冷熱を放出する。そして、室外蒸発器81にて蒸発した冷媒は、小型アキュムレータ69を介して圧縮機61に戻る。
このように第1膨張手段63a,63b,63cが分流器64と蒸発器65a、室内熱交換器65b、65cとの間に設けられたことにより、冷媒が蒸発器65a、室内熱交換器65b、65cに適正に分配される結果、効率よくヒートポンプ運転を行うことができる。
When the product storage chambers 40a and 40b are cooled to an appropriate temperature, the control unit 90 performs a heating-only mode operation (--H mode) of the product storage chamber 40c. Specifically, the control means 90 opens the heater solenoid valve 68c, the bypass solenoid valve 83, and the second solenoid valve 85, and the condenser solenoid valve 68, the heater solenoid valve 68b, and the first cooler inlet solenoid valve. 70a, the second cooler inlet solenoid valves 70b and 70c, and the cooler outlet solenoid valves 72b and 72c are closed. At this time, the high-temperature refrigerant compressed by the compressor 61 flows into the indoor heat exchanger 65c via the heater electromagnetic valve 68c and the connection point 168c, as shown by the thick line in FIG. The refrigerant flowing into the indoor heat exchanger 65c condenses and heats the product storage chamber 40c, and further condenses in the auxiliary heat exchanger 76 via the check valve 71. From the connection point 176, the second electromagnetic valve 85 is connected to the connection point. 180, flows into the second expander 84 via the bypass solenoid valve 83. The refrigerant flowing into the second expander 84 expands into a low-temperature and low-pressure gas-liquid two-phase flow, evaporates in the outdoor evaporator 81, and releases cold heat to the outside. Then, the refrigerant evaporated in the outdoor evaporator 81 returns to the compressor 61 via the small accumulator 69.
As described above, the first expansion means 63a, 63b, and 63c are provided between the flow divider 64 and the evaporator 65a and the indoor heat exchangers 65b and 65c, so that the refrigerant is the evaporator 65a, the indoor heat exchanger 65b, As a result of proper distribution to 65c, heat pump operation can be performed efficiently.

(実施例4)
実施例4は、請求項4に関する冷媒回路に係り、実施例3と比較すると図13に示すように凝縮器62または室内熱交換器65b、65cからの高温の冷媒が流れる高圧配管と、蒸発器65a、室内熱交換器65b、65cからの低温の冷媒が流れる低圧配管との間で熱交換を行う内部熱交換器86を設けた点である。その他は、実施例3と同一であるので、その詳細な説明は省略をする。
内部熱交換器86は、その内部で熱交換を行う高温の高圧側配管861と低温の低圧側配管862を有している。高圧側配管861は、補助熱交換器76と接続点180との間の接続点176および分流器64とに配管接続され、低圧側配管862は接続点181および集合器67とに配管接続されている。
かかる構成で、冷却加熱モード設定SW91の操作により設定モードを左側の商品収納室40aを冷却し、中、右側の商品収納室40b、40cを加熱するCHHモードに設定すると、制御手段90は、加熱器電磁弁68b、68c、第1の冷却器入口電磁弁70a、第2電磁弁85を開成し、凝縮器電磁弁68、第2の冷却器入口電磁弁70b、70c、冷却器出口電磁弁72b、72c、バイパス電磁弁83を閉止する。このとき圧縮機61で圧縮された高温冷媒は、図14の太線で示すように、加熱器電磁弁68b、68c、接続点168b、168cを経由して室内熱交換器65b、65cに流入する。室内熱交換器65b、65cに流入した冷媒は凝縮して商品収納室40b、40cを加熱し、逆止弁71,71を介して集合し、補助熱交換器76でさらに凝縮して内部熱交換器86内の高圧側配管861に流入する。高圧側配管861流入した冷媒は、低圧側配管862と熱交換を行う。熱交換を行った冷媒は、分流器64、第1の冷却器入口電磁弁70aを経由して第1膨張器63aに流入し膨張して低温低圧の気液二相流となり蒸発器65aに流入する。蒸発器65aに流入した冷媒は、蒸発して商品収納室40aを冷却し、集合器67を介して内部熱交換器86内の低圧側配管862に流入する。低圧側配管862流入した冷媒は、高圧側配管861と熱交換を行う。熱交換を行った冷媒は、室外蒸発器81にてさらに蒸発し、小型アキュムレータ69を介して圧縮機61に戻る。このヒートポンプ運転も前述のようにサーモサイクル運転で室内が適温に維持される。
Example 4
The fourth embodiment relates to a refrigerant circuit according to claim 4, and as compared with the third embodiment, as shown in FIG. 13, a high-pressure pipe through which a high-temperature refrigerant from the condenser 62 or the indoor heat exchangers 65b and 65c flows, and an evaporator 65a, and an internal heat exchanger 86 that performs heat exchange with the low-pressure pipe through which the low-temperature refrigerant flows from the indoor heat exchangers 65b and 65c. Others are the same as those of the third embodiment, and thus detailed description thereof is omitted.
The internal heat exchanger 86 has a high-temperature high-pressure side pipe 861 and a low-temperature low-pressure side pipe 862 that perform heat exchange therein. The high-pressure side pipe 861 is connected to the connection point 176 and the flow divider 64 between the auxiliary heat exchanger 76 and the connection point 180, and the low-pressure side pipe 862 is connected to the connection point 181 and the collector 67. Yes.
With such a configuration, when the setting mode is set to CHH mode in which the left product storage chamber 40a is cooled and the right and left product storage chambers 40b and 40c are heated by operating the cooling / heating mode setting SW91, the control means 90 The condenser solenoid valves 68b and 68c, the first cooler inlet solenoid valve 70a and the second solenoid valve 85 are opened, and the condenser solenoid valve 68, the second cooler inlet solenoid valves 70b and 70c, and the cooler outlet solenoid valve 72b are opened. 72c, the bypass solenoid valve 83 is closed. At this time, the high-temperature refrigerant compressed by the compressor 61 flows into the indoor heat exchangers 65b and 65c via the heater electromagnetic valves 68b and 68c and the connection points 168b and 168c, as shown by the thick lines in FIG. The refrigerant flowing into the indoor heat exchangers 65b and 65c condenses, heats the product storage chambers 40b and 40c, collects through the check valves 71 and 71, and further condenses in the auxiliary heat exchanger 76 to exchange internal heat. It flows into the high-pressure side pipe 861 in the vessel 86. The refrigerant flowing into the high pressure side pipe 861 exchanges heat with the low pressure side pipe 862. The heat-exchanged refrigerant flows into the first expander 63a via the flow divider 64 and the first cooler inlet solenoid valve 70a, expands to become a low-temperature low-pressure gas-liquid two-phase flow, and flows into the evaporator 65a. To do. The refrigerant that has flowed into the evaporator 65 a evaporates, cools the product storage chamber 40 a, and flows into the low-pressure side pipe 862 in the internal heat exchanger 86 through the collector 67. The refrigerant that flows into the low-pressure side pipe 862 exchanges heat with the high-pressure side pipe 861. The refrigerant that has exchanged heat further evaporates in the outdoor evaporator 81 and returns to the compressor 61 via the small accumulator 69. As described above, the heat pump operation also maintains the room at a suitable temperature by the thermocycle operation.

そして、商品収納室40aが適温に冷却されると、制御手段90は、商品収納室40b、40cの加熱単独の運転モード(−HHモード)を行う。具体的には、制御手段90は、加熱器電磁弁68b、68c、バイパス電磁弁83、第2電磁弁85を開成し、凝縮器電磁弁68、第1の冷却器入口電磁弁70a、第2の冷却器入口電磁弁70b、70c、冷却器出口電磁弁72b、72cを閉止する。このとき圧縮機61で圧縮された高温冷媒は、図15の太線で示すように、加熱器電磁弁68b、68c、接続点168b、168cを経由して室内熱交換器65b、65cに流入する。室内熱交換器65b、65cに流入した冷媒は凝縮して商品収納室40b、40cを加熱し、逆止弁71,71を介して集合し、補助熱交換器76でさらに凝縮して接続点180よりバイパス電磁弁83を介して第2膨張器84に流入する。第2膨張器84に流入した冷媒は、膨張して低温低圧の気液二相流となり室外蒸発器81にて蒸発して室外に冷熱を放出する。そして、室外蒸発器81にて蒸発した冷媒は、小型アキュムレータ69を介して圧縮機61に戻る。
上述のように室内熱交換器65b、65c(または凝縮器62も同様)からの高温の冷媒が流れる高圧配管861と、蒸発器65a、室内熱交換器65b、65cからの低温の冷媒が流れる低圧配管862との間で熱交換を行う内部熱交換器86を設けたことにより、第1膨張器63a、63b、63cへの流入する冷媒の温度が低下するので、蒸発温度を下がり、また、圧縮機61へ流入する冷媒の温度が上昇するので、凝縮温度を上がる結果、効率よくヒートポンプ運転を行うことができる。
And if the goods storage room 40a is cooled by suitable temperature, the control means 90 will perform the heating independent operation mode (-HH mode) of the goods storage room 40b, 40c. Specifically, the control means 90 opens the heater solenoid valves 68b and 68c, the bypass solenoid valve 83, and the second solenoid valve 85, the condenser solenoid valve 68, the first cooler inlet solenoid valve 70a, and the second solenoid valve 85a. The cooler inlet solenoid valves 70b and 70c and the cooler outlet solenoid valves 72b and 72c are closed. At this time, the high-temperature refrigerant compressed by the compressor 61 flows into the indoor heat exchangers 65b and 65c via the heater electromagnetic valves 68b and 68c and the connection points 168b and 168c, as shown by the thick lines in FIG. The refrigerant flowing into the indoor heat exchangers 65b and 65c condenses and heats the product storage chambers 40b and 40c, gathers via the check valves 71 and 71, and further condenses in the auxiliary heat exchanger 76 to be connected to the connection point 180. It flows into the second expander 84 via the bypass electromagnetic valve 83. The refrigerant flowing into the second expander 84 expands to become a low-temperature low-pressure gas-liquid two-phase flow, evaporates in the outdoor evaporator 81, and releases cold heat to the outside. Then, the refrigerant evaporated in the outdoor evaporator 81 returns to the compressor 61 via the small accumulator 69.
As described above, the high-pressure pipe 861 through which the high-temperature refrigerant from the indoor heat exchangers 65b and 65c (or the condenser 62 is similar) flows, and the low pressure through which the low-temperature refrigerant from the evaporator 65a and the indoor heat exchangers 65b and 65c flows. By providing the internal heat exchanger 86 that exchanges heat with the pipe 862, the temperature of the refrigerant flowing into the first expanders 63a, 63b, and 63c is lowered, so that the evaporation temperature is lowered and compression is performed. Since the temperature of the refrigerant flowing into the machine 61 rises, the heat pump operation can be performed efficiently as a result of raising the condensation temperature.

以上のように、本発明に係る冷媒回路は、缶、ビン、パック、ペットボトル等の容器に入れた飲料等の商品を冷却または加熱して販売する自動販売機に適している。   As described above, the refrigerant circuit according to the present invention is suitable for vending machines that sell products by cooling or heating products such as beverages contained in containers such as cans, bottles, packs, and plastic bottles.

10 本体キャビネット
20 外扉
30(30a,30b) 内扉
40a、40b、40c 商品収納室
60 冷却/加熱ユニット
61 圧縮機
62 凝縮器
63 第1の膨張器
64 分流器
65a 蒸発器
65b、65c 室内熱交換器
68 凝縮器電磁弁
68a、68b 加熱器電磁弁
69 小型アキュムレータ
70a 第1の冷却器入口電磁弁
70b、70c 第2の冷却器入口電磁弁
72b、72c 冷却器出口電磁弁
80 バイパス管路
81 室外蒸発器
82 逆止弁
83 バイパス電磁弁(第1電磁弁)
84 第2の膨張器
85 第2電磁弁
86 内部熱交換器
90 制御装置
91 設定モード選択SW


DESCRIPTION OF SYMBOLS 10 Main body cabinet 20 Outer door 30 (30a, 30b) Inner door 40a, 40b, 40c Product storage room 60 Cooling / heating unit 61 Compressor 62 Condenser 63 First expander 64 Shunt 65a Evaporator 65b, 65c Indoor heat Exchanger 68 Condenser solenoid valve 68a, 68b Heater solenoid valve 69 Small accumulator 70a First cooler inlet solenoid valve 70b, 70c Second cooler inlet solenoid valve 72b, 72c Cooler exit solenoid valve 80 Bypass line 81 Outdoor evaporator 82 Check valve 83 Bypass solenoid valve (first solenoid valve)
84 Second expander 85 Second solenoid valve 86 Internal heat exchanger 90 Controller 91 Setting mode selection SW


Claims (4)

冷媒を圧縮する圧縮機と、冷媒を凝縮する室外の凝縮器と、冷媒を膨張させる第1膨張手段と、分配器を介して分配した冷媒を蒸発させて室内を冷却する複数の第1室内熱交換器とを配管接続してなる冷却循環回路を構成するとともに、
前記圧縮機と、冷媒を凝縮させて室内を加熱する第2室内熱交換器と、前記第1膨張手段と、冷媒を蒸発させて室内を冷却する前記第1室内熱交換器とを配管接続してなる冷却加熱循環回路を構成した冷媒循環回路を有する自動販売機において、
前記第1室内熱交換器と前記圧縮機の入口部との間に直列接続した室外蒸発器を設けるとともに、
前記凝縮器への冷媒の流れを阻止する態様で、前記凝縮器の出口部と前記第1膨張手段との間に逆止弁を設け、
当該逆止弁と前記第1膨張手段とを接続する配管と前記室外蒸発器の入口部との間を第1電磁弁および第2膨張器を介してバイパス管路を冷媒循環回路に接続したことを特徴とする自動販売機。
A compressor that compresses the refrigerant, an outdoor condenser that condenses the refrigerant, a first expansion means that expands the refrigerant, and a plurality of first indoor heats that cool the room by evaporating the refrigerant distributed through the distributor While constructing a cooling circuit that connects the exchanger to the piping,
The compressor, the second indoor heat exchanger that condenses the refrigerant and heats the room, the first expansion means, and the first indoor heat exchanger that evaporates the refrigerant and cools the room are connected by piping. In a vending machine having a refrigerant circulation circuit that constitutes a cooling and heating circulation circuit,
Providing an outdoor evaporator connected in series between the first indoor heat exchanger and the inlet of the compressor;
In a mode of blocking the flow of the refrigerant to the condenser, a check valve is provided between the outlet of the condenser and the first expansion means,
The bypass pipe is connected to the refrigerant circuit via the first solenoid valve and the second expander between the pipe connecting the check valve and the first expansion means and the inlet of the outdoor evaporator. Vending machine characterized by
前記逆止弁と前記バイパス管路との接続点と第1膨張手段との間に第2電磁弁を設けたことを特徴とする請求項1に記載の自動販売機。   The vending machine according to claim 1, wherein a second electromagnetic valve is provided between a connection point between the check valve and the bypass pipe and the first expansion means. 前記第1膨張手段が前記分配器と各前記第1室内熱交換器との間に設けられたことを特徴とする請求項1または2に記載の自動販売機。   The vending machine according to claim 1 or 2, wherein the first expansion means is provided between the distributor and each of the first indoor heat exchangers. 前記凝縮器または前記第2室内熱交換器から高温の冷媒が流れる高圧配管と、前記第1室内熱交換器から低温の冷媒が流れる低圧配管との間で熱交換を行う内部熱交換器を設けたことを特徴とする請求項1ないし3の何れかに記載の自動販売機。   Provided is an internal heat exchanger that exchanges heat between a high-pressure pipe through which a high-temperature refrigerant flows from the condenser or the second indoor heat exchanger and a low-pressure pipe through which a low-temperature refrigerant flows from the first indoor heat exchanger. The vending machine according to any one of claims 1 to 3, wherein
JP2010008155A 2010-01-18 2010-01-18 vending machine Expired - Fee Related JP5471480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010008155A JP5471480B2 (en) 2010-01-18 2010-01-18 vending machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010008155A JP5471480B2 (en) 2010-01-18 2010-01-18 vending machine

Publications (2)

Publication Number Publication Date
JP2011145983A JP2011145983A (en) 2011-07-28
JP5471480B2 true JP5471480B2 (en) 2014-04-16

Family

ID=44460763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010008155A Expired - Fee Related JP5471480B2 (en) 2010-01-18 2010-01-18 vending machine

Country Status (1)

Country Link
JP (1) JP5471480B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4427310B2 (en) * 2003-12-18 2010-03-03 三菱重工業株式会社 Refrigeration apparatus and operation control method thereof
JP5169282B2 (en) * 2008-02-15 2013-03-27 富士電機株式会社 vending machine

Also Published As

Publication number Publication date
JP2011145983A (en) 2011-07-28

Similar Documents

Publication Publication Date Title
WO2010035512A1 (en) Vending machine
JP5169282B2 (en) vending machine
JP5375342B2 (en) vending machine
JP5392491B2 (en) Refrigerant circuit
JP5471563B2 (en) vending machine
JP5321241B2 (en) vending machine
JP4924535B2 (en) vending machine
JP5471480B2 (en) vending machine
JP5407621B2 (en) Cooling and heating device
JP5471518B2 (en) vending machine
JP5569634B2 (en) Operation method of cooling heating device
JP5434423B2 (en) vending machine
JP5228965B2 (en) vending machine
JP5229057B2 (en) vending machine
JP2010152673A (en) Vending machine
JP5240016B2 (en) vending machine
JP5240017B2 (en) vending machine
JP2009259139A (en) Vending machine
JP4548540B2 (en) vending machine
JP5240030B2 (en) vending machine
JP2011127848A (en) Refrigerant circuit
JP5407692B2 (en) vending machine
JP5056425B2 (en) vending machine
JP2011170648A (en) Vending machine
JP2010060228A (en) Refrigerant circuit apparatus

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110301

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121025

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140120

R150 Certificate of patent or registration of utility model

Ref document number: 5471480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees