JP5471563B2 - vending machine - Google Patents

vending machine Download PDF

Info

Publication number
JP5471563B2
JP5471563B2 JP2010031503A JP2010031503A JP5471563B2 JP 5471563 B2 JP5471563 B2 JP 5471563B2 JP 2010031503 A JP2010031503 A JP 2010031503A JP 2010031503 A JP2010031503 A JP 2010031503A JP 5471563 B2 JP5471563 B2 JP 5471563B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
bypass
outdoor
indoor heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010031503A
Other languages
Japanese (ja)
Other versions
JP2011170441A (en
Inventor
孝博 三本
敏章 土屋
裕地 藤本
浩司 滝口
真 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2010031503A priority Critical patent/JP5471563B2/en
Publication of JP2011170441A publication Critical patent/JP2011170441A/en
Application granted granted Critical
Publication of JP5471563B2 publication Critical patent/JP5471563B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Vending Devices And Auxiliary Devices For Vending Devices (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

本発明は、缶、ビン、パック、ペットボトル等の容器に入れた飲料等の商品を冷却または加熱して販売に供する自動販売機に関する。   The present invention relates to a vending machine that cools or heats products such as beverages in containers such as cans, bottles, packs, and PET bottles for sale.

近年の地球温暖化に対して二酸化炭素の排出量削減が課題となっており、自動販売機も省エネ型が開発されている。その1方式として従来は排熱していた凝縮器の熱を室内の加熱に利用するヒートポンプ方式の自動販売機が注目されている(例えば、特許文献1参照)。   Reducing carbon dioxide emissions has become a challenge with recent global warming, and energy-saving vending machines have been developed. As one of the methods, a heat pump type vending machine that uses the heat of a condenser that has been exhausted in the past for indoor heating has been attracting attention (for example, see Patent Document 1).

この方式での自動販売機では、室内、室外の各熱交換器に複数の電磁弁を設け、電磁弁を切り替えることにより、室内の熱交換器を凝縮器として作用をさせてヒートポンプ運転を行う。例えば、2室を加熱、1室を冷却する設定モードの場合には、室外の熱交換器を休止させ、加熱する室内の熱交換器を凝縮器として作用させ、冷却する室内の熱交換器を蒸発器として作用させるように電磁弁の開閉を切り替えることで冷却加熱のヒートポンプ運転を行う。   In this type of vending machine, a plurality of electromagnetic valves are provided in each of the indoor and outdoor heat exchangers, and the electromagnetic valves are switched to operate the indoor heat exchanger as a condenser to perform a heat pump operation. For example, in the setting mode in which two rooms are heated and one room is cooled, the outdoor heat exchanger is paused, the indoor heat exchanger to be heated is operated as a condenser, and the indoor heat exchanger to be cooled is The heat pump operation of cooling heating is performed by switching the opening and closing of the electromagnetic valve so as to act as an evaporator.

特許文献1に対して、室外熱交換器(熱源側熱交換器)に膨張器(膨張弁)を介したバイパス管路を設けた自動販売機が知られている(例えば、特許文献2参照)。この自動販売機では、2室を加熱、1室を冷却する設定モードで運転中に冷却する室内が適温となり、運転モードが加熱単独運転となったときに、室外熱交換器を蒸発器と使用することで、加熱単独のヒートポンプ運転を行うことができるので、消費電力が低減される。   In contrast to Patent Document 1, a vending machine is known in which an outdoor heat exchanger (heat source side heat exchanger) is provided with a bypass pipe line via an expander (expansion valve) (see, for example, Patent Document 2). . This vending machine uses an outdoor heat exchanger with an evaporator when the room to be cooled is set to an appropriate temperature during operation in a setting mode in which two rooms are heated and one room is cooled, and the operation mode is a single heating operation. By doing so, since the heat pump operation of heating alone can be performed, power consumption is reduced.

特開2001−109942号公報JP 2001-109942 A 特開2005−107764号公報JP 2005-107764 A

しかしながら、特許文献2に記載された自動販売機では、バイパス管路に膨張器(膨張弁)を設けることで、電気ヒータによる加熱運転を行う自動販売機と比較してコスト高となるヒートポンプ運転を行う自動販売機をさらにコストアップさせるという問題があった。   However, in the vending machine described in Patent Document 2, by providing an expander (expansion valve) in the bypass line, a heat pump operation that is costly compared to a vending machine that performs a heating operation with an electric heater is performed. There was a problem of further increasing the cost of the vending machine to be used.

本発明は、上記実情に鑑みなされたもので、上記の課題を解決して、冷却加熱の運転モードに関わらず低コストで効率良くヒートポンプ運転を行う自動販売機等を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to solve the above-described problems and provide a vending machine or the like that efficiently performs heat pump operation at low cost regardless of the cooling heating operation mode. .

上記の目的を達成するために、本発明の請求項1に係る自動販売機は、冷媒を圧縮する圧縮機と、冷媒を凝縮する室外熱交換器と、冷媒を膨張させる膨張手段と、冷媒を蒸発させて室内を冷却する複数の第1室内熱交換器とを順次配管接続してなる冷却循環回路を構成するとともに、前記圧縮機と、冷媒を凝縮させて室内を加熱する第2室内熱交換器と、前記膨張手段と、前記第1室内熱交換器とを順次配管接続してなる冷却加熱循環回路を構成した冷媒循環回路を有する自動販売機において、前記室外熱交換器への冷媒の流れを阻止する態様で、前記室外熱交換器の出口部と前記膨張手段との間に第1逆止弁を設け、前記第1室内熱交換器のみに接続する前記膨張手段の出口よりの管路にバイパス切替電磁弁を設け、当該バイパス切替電磁弁の一の出口部と前記室外熱交換器の入口部との間に第2逆止弁を介して第1バイパス管路を設けるとともに、前記室外熱交換器の出口部と前記第1逆止弁とを接続する配管と前記圧縮機の入口部との間にバイパス電磁弁を介して第2バイパス管路を設けたことを特徴とする。   In order to achieve the above object, a vending machine according to claim 1 of the present invention includes a compressor that compresses a refrigerant, an outdoor heat exchanger that condenses the refrigerant, an expansion means that expands the refrigerant, and a refrigerant. The second indoor heat exchange for forming a cooling circuit in which a plurality of first indoor heat exchangers that evaporate to cool the room are sequentially connected by piping, and that heats the room by condensing the compressor and the refrigerant. In a vending machine having a refrigerant circulation circuit that constitutes a cooling and heating circuit formed by sequentially connecting a pipe, the expansion means, and the first indoor heat exchanger, the flow of refrigerant to the outdoor heat exchanger A pipe from the outlet of the expansion means connected only to the first indoor heat exchanger by providing a first check valve between the outlet of the outdoor heat exchanger and the expansion means. Provided with a bypass switching solenoid valve, A first bypass pipe is provided between the one outlet portion and the inlet portion of the outdoor heat exchanger via a second check valve, and the outlet portion of the outdoor heat exchanger and the first check valve A second bypass pipe is provided between the pipe connecting the pipe and the inlet of the compressor via a bypass solenoid valve.

本発明の請求項2に係る自動販売機は、冷媒を圧縮する圧縮機と、冷媒を凝縮する室外熱交換器と、冷媒を膨張させる膨張手段と、冷媒を蒸発させて室内を冷却する複数の第1室内熱交換器とを配管接続してなる冷却循環回路を構成するとともに、前記圧縮機と、冷媒を凝縮させて室内を加熱する第2室内熱交換器と、前記膨張手段と、冷媒を蒸発させて室内を冷却する前記第1室内熱交換器とを順次配管接続してなる冷却加熱循環回路を構成した冷媒循環回路を有する自動販売機において、前記室外熱交換器への冷媒の流れを阻止する態様で、前記室外熱交換器の出口部と前記膨張手段との間に第1逆止弁と、室外に冷媒を蒸発させる室外蒸発器とを設けるとともに、前記第1室内熱交換器のみに接続する前記膨張手段の出口よりの管路にバイパス切替電磁弁を設け、当該バイパス切替電磁弁の一の出口部と前記室外蒸発器の入口部との間に第3バイパス管路を設けるとともに、前記室外蒸発器の出口部と前記圧縮機の入口部との間に第4バイパス管路を設けたことを特徴とする。   The vending machine according to claim 2 of the present invention includes a compressor that compresses the refrigerant, an outdoor heat exchanger that condenses the refrigerant, an expansion unit that expands the refrigerant, and a plurality of cooling units that evaporate the refrigerant and cool the room. A cooling circuit is formed by connecting a pipe to the first indoor heat exchanger, the compressor, a second indoor heat exchanger that condenses the refrigerant and heats the room, the expansion means, and the refrigerant In a vending machine having a refrigerant circulation circuit that constitutes a cooling and heating circulation circuit in which the first indoor heat exchanger that evaporates and cools the inside of the room is connected by piping, the flow of the refrigerant to the outdoor heat exchanger is reduced. In the blocking mode, a first check valve and an outdoor evaporator for evaporating the refrigerant outside are provided between the outlet portion of the outdoor heat exchanger and the expansion means, and only the first indoor heat exchanger is provided. To the conduit from the outlet of the expansion means connected to An bypass switching solenoid valve is provided, a third bypass pipe is provided between one outlet portion of the bypass switching solenoid valve and the inlet portion of the outdoor evaporator, and the outlet portion of the outdoor evaporator and the compressor A fourth bypass pipe is provided between the inlet and the inlet.

本発明の請求項3に係る自動販売機は、請求項1または2に記載の自動販売機において、前記バイパス切替電磁弁の入口部が第1室内熱交換器の出口部に接続したことを特徴とする。   The vending machine according to claim 3 of the present invention is the vending machine according to claim 1 or 2, characterized in that the inlet part of the bypass switching electromagnetic valve is connected to the outlet part of the first indoor heat exchanger. And

本発明に係る請求項1の自動販売機は、室外熱交換器への冷媒の流れを阻止する態様で、室外熱交換器の出口部と膨張手段との間に第1逆止弁を設け、第1室内熱交換器のみに接続する膨張手段の出口よりの管路にバイパス切替電磁弁を設け、当該バイパス切替電磁弁の一の出口部と室外熱交換器の入口部との間に第2逆止弁を介して第1バイパス管路を設けるとともに、室外熱交換器の出口部と第1逆止弁とを接続する配管と圧縮機の入口部との間にバイパス電磁弁を介して第2バイパス管路を設けたことにより、運転モードが加熱単独運転時に室外熱交換器にて冷媒を蒸発することができるので、ヒートポンプ運転が可能となる結果、消費電力を少なくすることができるとともに、室外熱交換器にて蒸発させる冷媒を膨張する膨張器を冷却運転時に使用する膨張器と兼用するので、低コストでヒートポンプ運転を行うことができる。   The vending machine according to claim 1 of the present invention is a mode in which the flow of the refrigerant to the outdoor heat exchanger is blocked, and a first check valve is provided between the outlet portion of the outdoor heat exchanger and the expansion means, A bypass switching electromagnetic valve is provided in a pipeline from the outlet of the expansion means connected only to the first indoor heat exchanger, and a second is provided between one outlet portion of the bypass switching electromagnetic valve and the inlet portion of the outdoor heat exchanger. A first bypass pipe is provided via the check valve, and a second solenoid valve is provided between the pipe connecting the outlet of the outdoor heat exchanger and the first check valve and the inlet of the compressor. 2 By providing the bypass line, the refrigerant can be evaporated in the outdoor heat exchanger when the operation mode is the heating single operation, so that the heat pump operation can be performed, resulting in a reduction in power consumption, Cooling the expander that expands the refrigerant to be evaporated in the outdoor heat exchanger Since it is also used as an expander used during operation, heat pump operation can be performed at low cost.

本発明に係る請求項2の自動販売機は、室外熱交換器への冷媒の流れを阻止する態様で、室外熱交換器の出口部と膨張手段との間に第1逆止弁と、室外に冷媒を蒸発させる室外蒸発器とを設けるとともに、第1室内熱交換器のみに接続する膨張手段の出口よりの管路にバイパス切替電磁弁を設け、当該バイパス切替電磁弁の一の出口部と室外蒸発器の入口部との間に第3バイパス管路を設けるとともに、室外蒸発器の出口部と圧縮機の入口部との間に第4バイパス管路を設けたことにより、運転モードが加熱単独運転時に室外蒸発器にて冷媒を蒸発することができるので、ヒートポンプ運転が可能となる結果、消費電力を少なくすることができるとともに、室外蒸発器にて蒸発させる冷媒を膨張する膨張器を冷却運転時に使用する膨張器と兼用するので、低コストでヒートポンプ運転を行うことができる。さらに、室外蒸発器の容量を室内第2熱交換器の容量に対応させて設けることができるので、さらに効率よく加熱単独のヒートポンプ運転を行うことができる。   The vending machine according to the second aspect of the present invention is a mode in which the flow of the refrigerant to the outdoor heat exchanger is blocked, and the first check valve is provided between the outlet portion of the outdoor heat exchanger and the expansion means, And an outdoor evaporator for evaporating the refrigerant, and a bypass switching solenoid valve is provided in a pipeline from the outlet of the expansion means connected only to the first indoor heat exchanger, and one outlet portion of the bypass switching solenoid valve The third bypass pipe is provided between the inlet of the outdoor evaporator and the fourth bypass pipe is provided between the outlet of the outdoor evaporator and the inlet of the compressor. Since the refrigerant can be evaporated by the outdoor evaporator during single operation, the heat pump operation can be performed. As a result, power consumption can be reduced and the expander that expands the refrigerant to be evaporated by the outdoor evaporator is cooled. Also used as an expander during operation Since, it is possible to perform the heat-pump operation at a low cost. Furthermore, since the capacity | capacitance of an outdoor evaporator can be provided corresponding to the capacity | capacitance of an indoor 2nd heat exchanger, the heat pump driving | operation of heating can be performed more efficiently.

本発明の実施例1に係る自動販売機を示す斜視図。1 is a perspective view showing a vending machine according to Embodiment 1 of the present invention. 図1に示した自動販売機の断面図。Sectional drawing of the vending machine shown in FIG. 本発明の実施例1に係る冷媒回路図。1 is a refrigerant circuit diagram according to Embodiment 1 of the present invention. FIG. 本発明の実施例1に係る制御装置のブロック図。The block diagram of the control apparatus which concerns on Example 1 of this invention. 実施例1に係る、3室を全て冷却する冷却単独運転における冷媒の流れを示す冷媒回路図。The refrigerant circuit figure which shows the flow of the refrigerant | coolant in the cooling single operation which cools all the three chambers based on Example 1. FIG. 実施例1に係る、2室を加熱し1室を冷却するヒートポンプ運転における冷媒の流れを示す冷媒回路図。The refrigerant circuit figure which shows the flow of the refrigerant | coolant in the heat pump driving | operation which heats 2 chambers and cools 1 chamber | room based on Example 1. FIG. 実施例1に係る、1室を休止し2室を加熱する加熱単独運転における冷媒の流れを示す冷媒回路図。The refrigerant circuit figure which shows the flow of the refrigerant | coolant in the heating independent operation which pauses 1 chamber and heats 2 chambers based on Example 1. FIG. 本発明の実施例2に係る冷媒回路図。The refrigerant circuit figure which concerns on Example 2 of this invention. 実施例2に係る、2室を加熱し1室を冷却するヒートポンプ運転における冷媒の流れを示す冷媒回路図。The refrigerant circuit figure which shows the flow of the refrigerant | coolant in the heat pump driving | operation which heats 2 chambers and cools 1 chamber | room based on Example 2. FIG. 実施例2に係る、1室を休止し2室を加熱する加熱単独運転における冷媒の流れを示す冷媒回路図。The refrigerant circuit figure which shows the flow of the refrigerant | coolant in the heating independent operation which pauses 1 chamber and heats 2 chambers based on Example 2. FIG. 本発明の実施例3に係る冷媒回路図。The refrigerant circuit figure which concerns on Example 3 of this invention. 実施例3に係る、1室を加熱し2室を冷却するヒートポンプ運転における冷媒の流れを示す冷媒回路図。The refrigerant circuit figure which shows the flow of the refrigerant | coolant in the heat pump driving | operation which heats 1 chamber and cools 2 chambers based on Example 3. FIG. 実施例3に係る、1室を休止し2室を加熱する加熱単独運転における冷媒の流れを示す冷媒回路図。The refrigerant circuit figure which shows the flow of the refrigerant | coolant in the heating independent operation which pauses 1 chamber and heats 2 chambers based on Example 3. FIG. 本発明の実施例4に係る冷媒回路図。The refrigerant circuit figure which concerns on Example 4 of this invention. 実施例4に係る、2室を加熱し1室を冷却するヒートポンプ運転における冷媒の流れを示す冷媒回路図。The refrigerant circuit figure which shows the flow of the refrigerant | coolant in the heat pump driving | operation which heats 2 chambers and cools 1 chamber | room based on Example 4. FIG. 実施例4に係る、1室を休止し2室を加熱する加熱単独運転における冷媒の流れを示す冷媒回路図。The refrigerant circuit figure which shows the flow of the refrigerant | coolant in the heating independent operation which pauses 1 chamber and heats 2 chambers based on Example 4. FIG.

(実施例1)
以下に添付図面を参照して、本発明に係る自動販売機における冷媒回路の好適な実施例1を詳細に説明する。なお、この実施例1によりこの発明が限定されるものではない。
Example 1
Exemplary embodiments of a refrigerant circuit in a vending machine according to the present invention will be explained below in detail with reference to the accompanying drawings. The present invention is not limited to the first embodiment.

図1の斜視図、図2の断面図、図3の冷媒回路図において、自動販売機は、前面が開口した直方状の断熱体として形成された本体キャビネット10と、その前面に設けられた外扉20および内扉30(30a,30b)と、本体キャビネット10の内部を上下2段に底板11にて区画形成し、上部を例えば2つの断熱仕切板40wによって仕切られた3つの独立した商品収納室40a、40b、40cと、下部に商品収納室40a、40b、40cを冷却もしくは加熱する冷却/加熱ユニット60を収納する機械室50と、外扉20の内側に配設され、商品収納室40a、40b、40c内の温度センサTa、Tb、Tcにより自動販売機の冷却、加熱運転などを制御する制御手段90と、を有して構成されている。   In the perspective view of FIG. 1, the cross-sectional view of FIG. 2, and the refrigerant circuit diagram of FIG. 3, the vending machine includes a main body cabinet 10 formed as a rectangular heat insulator having an open front surface, and an exterior provided on the front surface thereof. The door 20 and the inner door 30 (30a, 30b) and the interior of the main body cabinet 10 are divided into two upper and lower sections by the bottom plate 11, and the upper part is partitioned by, for example, two heat insulating partition plates 40w to store three independent products. The chambers 40a, 40b, 40c, the machine chamber 50 for storing the cooling / heating unit 60 for cooling or heating the product storage chambers 40a, 40b, 40c at the lower part, and the product storage chamber 40a are disposed inside the outer door 20. , 40b, 40c, and control means 90 for controlling the cooling and heating operation of the vending machine by the temperature sensors Ta, Tb, Tc.

より詳細に説明すると、外扉20は、本体キャビネット10の前面開口を開閉するためのものであり、図には明示していないが、この外扉20の前面には、販売する商品の見本を展示する商品展示室、販売する商品を選択するための選択ボタン、貨幣を投入するための貨幣投入口、払い出された商品を取り出すための商品取出口21等々、商品の販売に必要となる構成が配置してある。   More specifically, the outer door 20 is used to open and close the front opening of the main body cabinet 10 and is not shown in the figure. Product display room, selection button for selecting the product to be sold, money slot for inserting money, product outlet 21 for taking out the paid-out product, etc. Is arranged.

内扉30(30a,30b)は、商品収納室40a、40b、40cの前面を開閉し、内部の商品を保温するものであり、上下2段に分割され内部に断熱体を有する箱型形状の構造体である。上側の内扉30aは、一端を外扉20に軸支し、他端を外扉20に係着して、外扉20の開放と同時に上側の内扉30aを開放させて、商品の補充を容易にするものである。下側の内扉30bは、一端を本体キャビネット10に軸支し、他端を本体キャビネット10に不図示の掛金にて掛着して、外扉20を開放したときには、閉止した状態であり、商品収納室40a、40b、40c内の冷却もしくは加熱した空気が流出することを防ぎ、メンテナンス時など必要に応じて開放できるものである。   The inner door 30 (30a, 30b) opens and closes the front surfaces of the product storage chambers 40a, 40b, 40c, and keeps the products in the interior. It is a structure. The upper inner door 30a is pivotally supported by the outer door 20 at one end and engaged with the outer door 20 at the other end, and the upper inner door 30a is opened simultaneously with the opening of the outer door 20 to replenish the goods. To make it easier. The lower inner door 30b is in a closed state when one end is pivotally supported on the main body cabinet 10 and the other end is hooked on the main body cabinet 10 with a latch (not shown) and the outer door 20 is opened. This prevents the cooled or heated air in the product storage chambers 40a, 40b, and 40c from flowing out and can be opened as needed during maintenance.

商品収納室40a、40b、40cは、缶入り飲料やペットボトル入り飲料等の商品を所望の温度に維持した状態で収容するためのものであり、その収納室の容量は商品収納室40a、40c、40bの順番に大きな態様で配分されている。本実施例1は、商品収納室40aを冷却専用とし、商品収納室40b、40cを冷却加熱兼用としている。その商品収納室40a、40b、40cには、それぞれ、商品を上下方向に沿って並ぶ態様で収納し、販売信号により1個ずつ商品を排出するための商品搬出機構を備えた商品収納ラックR、排出された商品Sを内扉30bに取設された搬出扉31を介して外扉の商品取出口21へ搬出する商品搬出シュート42を有している。   The product storage chambers 40a, 40b, and 40c are for storing products such as canned beverages and beverages containing plastic bottles while maintaining the desired temperature, and the capacity of the storage chambers is the product storage chambers 40a, 40c. , 40b in a large manner. In the first embodiment, the product storage chamber 40a is exclusively used for cooling, and the product storage chambers 40b and 40c are also used for cooling and heating. In the product storage chambers 40a, 40b, and 40c, product storage racks R each having a product carry-out mechanism for storing products in a vertically arranged manner and discharging the products one by one in response to a sales signal, There is a product carry-out chute 42 for carrying out the discharged product S to the product take-out port 21 of the outer door via a carry-out door 31 installed in the inner door 30b.

冷却/加熱ユニット60は、機械室50内に圧縮機61、室外熱交換器62、膨張器(膨張手段)63a、63b、63c、アキュムレータ69、室外補助熱交換器76を取設し、底板11を跨いで室内に蒸発器(第1室内熱交換器)65a、室内熱交換器(第1室内熱交換器、第2室内熱交換器を兼用する)65b、65cを有して各機器を冷媒配管で接続されることにより構成されている。冷却/加熱ユニット60は、冷却加熱の設定モードに応じて、室内に冷却または加熱した空気を循環させて商品収納ラックR内の商品Sを冷却または加熱するものである。   The cooling / heating unit 60 includes a compressor 61, an outdoor heat exchanger 62, expanders (expansion means) 63 a, 63 b, 63 c, an accumulator 69, and an outdoor auxiliary heat exchanger 76 in the machine room 50. A refrigerant (first indoor heat exchanger) 65a and indoor heat exchangers (also serving as the first indoor heat exchanger and the second indoor heat exchanger) 65b, 65c are used as refrigerants. It is configured by connecting with piping. The cooling / heating unit 60 cools or heats the product S in the product storage rack R by circulating the cooled or heated air in the room according to the setting mode of cooling and heating.

冷却加熱用の圧縮機61は、冷媒を圧縮して回路内を循環させるためのもので、冷却単独運転時には、蒸発温度が約−10℃、凝縮温度が約40℃で使用され、冷却加熱運転時には、蒸発温度が約−10℃、凝縮温度が約70℃で使用される。   The compressor 61 for cooling and heating is used to compress the refrigerant and circulate in the circuit. When the cooling alone operation is performed, the evaporation temperature is about −10 ° C. and the condensation temperature is about 40 ° C. Sometimes the evaporation temperature is about -10 ° C and the condensation temperature is about 70 ° C.

室外熱交換器62は、フィンチューブ型の熱交換器であり、冷却運転時に余剰な凝縮熱を排出するためのものであり、加熱単独運転時には蒸発器を兼用する。室外熱交換器62の後部にはファン62fが取設され、ファン62fは機械室50の前面開口部より空気を吸入し、室外熱交換器62による凝縮熱を吸入するとともに、圧縮機61の排熱を吸収して、機械室50の背面開口部へ排気するためのものである。   The outdoor heat exchanger 62 is a fin-tube heat exchanger for discharging excess condensation heat during the cooling operation, and also serves as an evaporator during the heating-only operation. A fan 62f is installed at the rear of the outdoor heat exchanger 62. The fan 62f sucks air from the front opening of the machine room 50, sucks heat of condensation by the outdoor heat exchanger 62, and discharges the compressor 61. This is for absorbing heat and exhausting it to the rear opening of the machine room 50.

膨張器63a、63b、63cは、冷却運転時に通過する冷媒を減圧して断熱膨張させるものであり、たとえばキャピラリ、温度膨張弁、電子膨張弁である。
分流器(分配器)64は、冷媒を蒸発器65a,室内熱交換器65b、65cに分配するためのものである。
The expanders 63a, 63b, and 63c are for adiabatically expanding the refrigerant that passes through during the cooling operation, and are, for example, capillaries, temperature expansion valves, and electronic expansion valves.
The flow divider (distributor) 64 is for distributing the refrigerant to the evaporator 65a and the indoor heat exchangers 65b and 65c.

蒸発器65aは、商品収納室40aを冷却するためのものであり、室内熱交換器65b、65cは、商品収納室40b、40cを冷却もしくは加熱するためのものである。また、蒸発器65a、室内熱交換器65b、65cは、各商品収納室の下部に取設され、風胴167で囲繞され、その後方にファン65fが取設され、その後方にダクト167dが取設されている。商品収納室内の冷却と加熱は、蒸発器65a、室内熱交換器65b、65cにより冷却もしくは加熱された空気を商品収納室内の商品Sに送風し、図2中の矢印で示すようにダクト167dより循環回収することで行われる。   The evaporator 65a is for cooling the product storage chamber 40a, and the indoor heat exchangers 65b and 65c are for cooling or heating the product storage chambers 40b and 40c. The evaporator 65a and the indoor heat exchangers 65b and 65c are installed at the lower part of each product storage room, surrounded by a wind tunnel 167, a fan 65f is installed behind them, and a duct 167d is installed behind them. It is installed. The cooling and heating in the product storage chamber is performed by blowing air cooled or heated by the evaporator 65a and the indoor heat exchangers 65b and 65c to the product S in the product storage chamber, and from the duct 167d as indicated by an arrow in FIG. It is done by circulating recovery.

アキュムレータ69は、蒸発器65a,室内熱交換器65b、65cから蒸発された冷媒を流入し、気液分離させて液冷媒を貯留し、気体冷媒を圧縮機61に戻すための密閉した容器である。また、アキュムレータ69は、回路の冷媒循環に余った冷媒を貯留するための容器でもある。   The accumulator 69 is a sealed container for flowing in the refrigerant evaporated from the evaporator 65 a and the indoor heat exchangers 65 b and 65 c, separating the gas and liquid, storing the liquid refrigerant, and returning the gas refrigerant to the compressor 61. . The accumulator 69 is also a container for storing the refrigerant remaining in the refrigerant circulation of the circuit.

室外補助熱交換器76は、フィンチューブ型の熱交換器であり、加熱運転時に余剰な凝縮熱を排出するためのものである。
室内の温度センサTa、Tb、Tcは、商品収納室40a、40b、40c内の風胴167の上面に取設され、商品収納室40a、40b、40cの室内温度を検知するためのものである。
The outdoor auxiliary heat exchanger 76 is a fin-tube heat exchanger, and discharges excess condensation heat during the heating operation.
The indoor temperature sensors Ta, Tb, and Tc are installed on the upper surface of the wind tunnel 167 in the product storage chambers 40a, 40b, and 40c, and are for detecting the indoor temperature of the product storage chambers 40a, 40b, and 40c. .

凝縮器電磁弁68は、圧縮機61から吐出される冷媒を室外熱交換器62または室内熱交換器65b、65cへ流れを切替えるための3方電磁弁である。加熱器電磁弁68b、68cは、圧縮機61と室内熱交換器65b、65c間の圧縮された冷媒の通路を開閉するものである。第1の冷却器入口電磁弁70a,第2の冷却器入口電磁弁70b,70cは分流器64と蒸発器65a、室内熱交換器65b、65c間の膨張された冷媒の通路を開閉するものであり、冷却器出口電磁弁72b,72cは、室内熱交換器65b、65cと圧縮機61と間の蒸発された冷媒の通路を開閉するものである。   The condenser solenoid valve 68 is a three-way solenoid valve for switching the flow of the refrigerant discharged from the compressor 61 to the outdoor heat exchanger 62 or the indoor heat exchangers 65b and 65c. The heater solenoid valves 68b and 68c open and close the compressed refrigerant passage between the compressor 61 and the indoor heat exchangers 65b and 65c. The first cooler inlet solenoid valve 70a and the second cooler inlet solenoid valves 70b and 70c open and close the expanded refrigerant passage between the flow divider 64 and the evaporator 65a and the indoor heat exchangers 65b and 65c. The cooler outlet solenoid valves 72 b and 72 c open and close the evaporated refrigerant passage between the indoor heat exchangers 65 b and 65 c and the compressor 61.

逆止弁71b、71cは、図3に示すようにそれぞれ膨張器63b、63cと加熱器電磁弁68b、68cとの間に接続され、加熱器電磁弁68b、68cからの高圧冷媒を膨張器63b、63cに流れることを阻止するためのものである。   As shown in FIG. 3, the check valves 71b and 71c are connected between the expanders 63b and 63c and the heater electromagnetic valves 68b and 68c, respectively, and the high-pressure refrigerant from the heater electromagnetic valves 68b and 68c is supplied to the expander 63b. , 63c to prevent flow.

第1逆止弁79は、室外熱交換器62の出口部と分流器64の入口部(室外補助熱交換器76と分流器64との接続点176)との間に設けて、室外熱交換器62への冷媒の流れを阻止するためのものである。   The first check valve 79 is provided between the outlet portion of the outdoor heat exchanger 62 and the inlet portion of the flow divider 64 (the connection point 176 between the outdoor auxiliary heat exchanger 76 and the flow divider 64), and is used for outdoor heat exchange. This is for preventing the flow of the refrigerant to the vessel 62.

第1バイパス管路80は、加熱単独運転時に室外熱交換器62に冷媒を流して蒸発器として使用するためのものであり、膨張器63aと蒸発器65a間に接続されたバイパス切替電磁弁83の一の出口から室外熱交換器62の入口部とを接続する管路である。また、第1バイパス管路80には第2逆止弁81が接続されている。   The first bypass pipe 80 is for use as an evaporator by flowing a refrigerant through the outdoor heat exchanger 62 during a single heating operation, and a bypass switching solenoid valve 83 connected between the expander 63a and the evaporator 65a. It is a pipe line which connects the entrance part of outdoor heat exchanger 62 from one exit. A second check valve 81 is connected to the first bypass conduit 80.

第2逆止弁81は、凝縮器電磁弁68より第1バイパス管路80に流入する冷媒を阻止するためのものである。
バイパス切替電磁弁83は、加熱単独運転時に室外熱交換器62に冷媒をバイパス側に流し、他の運転モード時には主流側の蒸発器65aへ冷媒を流す態様で冷媒の流れを切り替えるための3方電磁弁である。バイパス切替電磁弁83の入口は冷却専用である膨張器63aと接続し、バイパス切替電磁弁83の一の出口は蒸発器65aに他の出口は第1バイパス管路80と接続している。
The second check valve 81 is for blocking the refrigerant flowing into the first bypass conduit 80 from the condenser electromagnetic valve 68.
The bypass switching solenoid valve 83 is a three-way switch for switching the refrigerant flow in such a manner that the refrigerant flows through the outdoor heat exchanger 62 to the bypass side during the single heating operation and flows into the main-stream evaporator 65a in the other operation modes. It is a solenoid valve. The inlet of the bypass switching electromagnetic valve 83 is connected to an expander 63 a dedicated for cooling, and one outlet of the bypass switching electromagnetic valve 83 is connected to the evaporator 65 a and the other outlet is connected to the first bypass pipe 80.

第2バイパス管路85は、加熱単独運転時に室外熱交換器62にて蒸発した冷媒を圧縮機61へ戻すためのものであり、室外熱交換器62と第1逆止弁79との接続点185と、集合器67とアキュムレータ69との接続点186とを接続する管路である。また、第2バイパス管路85には、第2バイパス管路85へ冷媒の流入出を制御するバイパス電磁弁86が接続されている。   The second bypass pipe 85 is for returning the refrigerant evaporated in the outdoor heat exchanger 62 to the compressor 61 during the single heating operation, and is a connection point between the outdoor heat exchanger 62 and the first check valve 79. 185 and a pipe line that connects the connection point 186 between the collector 67 and the accumulator 69. In addition, a bypass solenoid valve 86 that controls the inflow and outflow of the refrigerant to the second bypass conduit 85 is connected to the second bypass conduit 85.

冷却/加熱ユニット60の冷媒回路構成について、図3を参照しつつ詳述する。冷媒回路は、室内を冷却のみを行う冷却単独回路(冷却循環回路)60Aと、室内の冷却加熱を同時に行う冷却加熱回路(冷却加熱循環回路)60Bと、室内を加熱のみを行う加熱単独回路60Cと、を有している。なお、図中の点線の囲いは、冷却専用の商品収納室40aと、冷却加熱兼用の商品収納室40b、40cを模式的に示している。   The refrigerant circuit configuration of the cooling / heating unit 60 will be described in detail with reference to FIG. The refrigerant circuit includes a single cooling circuit (cooling circulation circuit) 60A that only cools the room, a cooling heating circuit (cooling heating circulation circuit) 60B that simultaneously cools and heats the room, and a single heating circuit 60C that only heats the room. And have. In addition, the enclosure of the dotted line in a figure has shown typically the merchandise storage chamber 40a only for cooling, and the merchandise storage chambers 40b and 40c used also for cooling and heating.

冷却単独回路60Aは、圧縮機61より、凝縮器電磁弁68、室外熱交換器62、第1逆止弁79を経由して分流器64に接続し、分流器より一方は第1の冷却器入口電磁弁70a、膨張器63a、バイパス切替電磁弁83、蒸発器65aを経由して集合器67に接続し、また、分流器64より他方は第2の冷却器入口電磁弁70b、70c、膨張器63b、63c、室内熱交換器65b、65c、冷却器出口電磁弁72b、72cを経由して集合器67に接続し、集合器67よりアキュムレータ69を経由して圧縮機61に戻る回路である。   The single cooling circuit 60A is connected to the flow divider 64 from the compressor 61 via the condenser solenoid valve 68, the outdoor heat exchanger 62, and the first check valve 79, and one of the flow dividers is the first cooler. The inlet solenoid valve 70a, the expander 63a, the bypass switching solenoid valve 83, and the evaporator 65a are connected to the collector 67. The other of the shunt 64 is the second cooler inlet solenoid valves 70b and 70c, the expansion It is a circuit that is connected to the collector 67 via the condensers 63b and 63c, the indoor heat exchangers 65b and 65c, and the cooler outlet electromagnetic valves 72b and 72c, and returns from the condenser 67 to the compressor 61 via the accumulator 69. .

一方、冷却加熱回路60Bには、冷却単独回路60Aに加えて、凝縮器電磁弁68の一の出口より並列接続された加熱器電磁弁68b、68cを介して、逆止弁71b、71cと室内熱交換器65b、65c入口側との接続点168b、168cとそれぞれ接続し、また、室内熱交換器65b、65cの出口側(図中右側)からそれぞれ逆止弁71,71を介して結合した後、室外補助熱交換器76を経由して分流器64へ接続する管路とが設けられている。   On the other hand, in addition to the cooling single circuit 60A, the cooling heating circuit 60B is connected to the check valves 71b and 71c via the heater electromagnetic valves 68b and 68c connected in parallel from one outlet of the condenser electromagnetic valve 68. Connected to connection points 168b and 168c on the inlet side of the heat exchangers 65b and 65c, respectively, and connected through check valves 71 and 71 from the outlet side (right side in the figure) of the indoor heat exchangers 65b and 65c, respectively. Thereafter, a pipe line connected to the flow divider 64 via the outdoor auxiliary heat exchanger 76 is provided.

しかして、冷却加熱回路60Bは、圧縮機61から凝縮器電磁弁68、加熱器電磁弁68b、68cを経由して室内熱交換器65c、65bに接続され、室内熱交換器65c、65bから逆止弁71、71、室外補助熱交換器76を経由して分流器64に接続され、分流器64から第1の冷却器入口電磁弁70a、膨張器63a、バイパス切替電磁弁83を経由して蒸発器65aに接続され、集合器67、アキュムレータ69を経由して圧縮機61に戻る回路である。   Thus, the cooling heating circuit 60B is connected to the indoor heat exchangers 65c and 65b from the compressor 61 via the condenser solenoid valve 68 and the heater solenoid valves 68b and 68c, and reversely from the indoor heat exchangers 65c and 65b. It is connected to the flow divider 64 via the stop valves 71 and 71 and the outdoor auxiliary heat exchanger 76, and from the flow divider 64 via the first cooler inlet electromagnetic valve 70a, the expander 63a, and the bypass switching electromagnetic valve 83. This circuit is connected to the evaporator 65a and returns to the compressor 61 via the collector 67 and the accumulator 69.

また、加熱単独回路60Cは、冷却加熱循環回路60Bに加えて、バイパス切替電磁弁83より、第2逆止弁81を経由して室外熱交換器62の入口部とを接続する第1バイパス管路80と、接続点185よりバイパス電磁弁86を介して接続点186と接続する第2バイパス管路85を有している。   In addition to the cooling and heating circulation circuit 60B, the heating single circuit 60C is connected to the inlet of the outdoor heat exchanger 62 via the second check valve 81 from the bypass switching electromagnetic valve 83. A second bypass pipe 85 connected to the connection point 186 from the connection point 185 through the bypass electromagnetic valve 86 is provided.

しかして、加熱単独回路60Cは、圧縮機61から凝縮器電磁弁68、加熱器電磁弁68b、68cを経由して室内熱交換器65c、65bに接続され、室内熱交換器65c、65bから逆止弁71、71、室外補助熱交換器76を経由して分流器64に接続され、分流器64より第1の冷却器入口電磁弁70a、膨張器63a、バイパス切替電磁弁83より第2逆止弁81を経由して室外熱交換器62に接続され、室外熱交換器62よりバイパス電磁弁86、アキュムレータ69を経由して圧縮機61に戻る回路である。   Thus, the heating single circuit 60C is connected from the compressor 61 to the indoor heat exchangers 65c and 65b via the condenser solenoid valve 68 and the heater solenoid valves 68b and 68c, and reversely from the indoor heat exchangers 65c and 65b. It is connected to the flow divider 64 via the stop valves 71 and 71 and the outdoor auxiliary heat exchanger 76, and the second reverse flow from the flow divider 64 from the first cooler inlet electromagnetic valve 70 a, the expander 63 a, and the bypass switching electromagnetic valve 83. This circuit is connected to the outdoor heat exchanger 62 via the stop valve 81 and returns to the compressor 61 via the bypass electromagnetic valve 86 and the accumulator 69 from the outdoor heat exchanger 62.

制御手段90は、商品収納室40a、40b、40cを冷却加熱の設定モード、運転モードにより冷却もしくは加熱の制御をするものである。図4に示すように内部にCPU、メモリを有し、冷却加熱モード設定SW91の設定モードおよび各室の温度状況による運転モードに応じて冷媒回路の圧縮機運転、電磁弁開閉などの制御を行う。冷却加熱の設定モードは、商品収納室40a、40b、40cの冷却もしくは加熱の運転をC、Hで示すものであり、商品収納室の左側から(40a、40b、40c)順に、例えば、すべてが冷却の場合にはCCCモード、右の商品収納室のみが加熱の場合にはCCHモードなどと記す。運転モードは、各室の温度状況により冷却、加熱、休止をそれぞれC、H、−で示すものであり、冷却加熱の設定モードと同様に商品収納室の左側から順に、例えば、左の商品収納室の冷却が適温となり、中、右の商品収納室のみが加熱の場合には−HHモードなどと記す。なお、制御手段90は、室内の温度センサTa、Tb、Tcにより検知した温度により、圧縮機61、凝縮器電磁弁68、第1の冷却器入口電磁弁70a、第2の冷却器入口電磁弁70b、70c、冷却器出口電磁弁72b、72c、加熱器電磁弁68b、68cなどを制御し、室内を一定温度範囲内でON・OFF制御するサーモサイクル運転を行うことにより室内温度を適温に維持する。   The control means 90 controls the cooling or heating of the product storage chambers 40a, 40b, and 40c according to the cooling heating setting mode and the operation mode. As shown in FIG. 4, it has a CPU and a memory inside, and performs control such as compressor operation of the refrigerant circuit and solenoid valve opening / closing according to the setting mode of the cooling / heating mode setting SW 91 and the operation mode depending on the temperature condition of each chamber. . The cooling and heating setting mode indicates the operation of cooling or heating the product storage chambers 40a, 40b, and 40c by C and H. From the left side of the product storage chamber (40a, 40b, 40c), for example, all In the case of cooling, the CCC mode is described, and in the case where only the right product storage chamber is heated, the CCH mode is described. In the operation mode, cooling, heating, and pause are respectively indicated by C, H, and-depending on the temperature condition of each room. For example, the left product storage is performed in order from the left side of the product storage chamber in the same manner as the cooling heating setting mode. When the room is cooled to a suitable temperature and only the right and right product storage rooms are heated, it is described as -HH mode. Note that the control means 90 is configured so that the compressor 61, the condenser solenoid valve 68, the first cooler inlet solenoid valve 70a, and the second cooler inlet solenoid valve are controlled according to the temperatures detected by the indoor temperature sensors Ta, Tb, and Tc. 70b, 70c, cooler outlet solenoid valves 72b, 72c, heater solenoid valves 68b, 68c, etc. are controlled, and the room temperature is maintained at an appropriate temperature by performing a thermocycle operation in which the room is ON / OFF controlled within a certain temperature range. To do.

かかる構成で冷却加熱モード設定SW91の操作により設定モードをCCCモードに設定すると、制御手段90は第1の冷却器入口電磁弁70a、第2の冷却器入口電磁弁70b、70c、冷却器出口電磁弁72b、72cを開成し、加熱器電磁弁68b、68c、バイパス電磁弁86を閉止し、凝縮器電磁弁68を冷媒が室外熱交換器62側に流通する態様で、バイパス切替電磁弁83を冷媒が蒸発器65a側に流通する態様に通路切替えを行う。このとき、冷媒は図5の太線で示すように流れ、具体的には、圧縮機61で圧縮された高温冷媒は、凝縮器電磁弁68を介して室外熱交換器62にて凝縮され液体となり、分流器64で三方に分流され第1の冷却器入口電磁弁70a、第2の冷却器入口電磁弁70b、70cを介して膨張器63a、63b、63cで膨張して低温の気液二相流となり、蒸発器65a、室内熱交換器65b、65cに流入する。流入した冷媒は、蒸発器65a、室内熱交換器65b、65cで蒸発して商品収納室40a、40b、40cを冷却し、蒸発した冷媒は集合器67にて集合しアキュムレータ69を介して気液分離されて、気相が圧縮機61に戻る。なお、この冷却は、制御装置90にて室内の温度センサTa、Tb、Tcによるサーモサイクル運転により室内温度が適温に制御される。   When the setting mode is set to the CCC mode by operating the cooling / heating mode setting SW 91 with such a configuration, the control means 90 is configured to be the first cooler inlet solenoid valve 70a, the second cooler inlet solenoid valves 70b and 70c, and the cooler outlet solenoid. The valves 72b and 72c are opened, the heater electromagnetic valves 68b and 68c and the bypass electromagnetic valve 86 are closed, and the bypass switching electromagnetic valve 83 is set in such a manner that the refrigerant flows through the condenser electromagnetic valve 68 to the outdoor heat exchanger 62 side. The passage is switched so that the refrigerant flows to the evaporator 65a side. At this time, the refrigerant flows as shown by a thick line in FIG. 5. Specifically, the high-temperature refrigerant compressed by the compressor 61 is condensed by the outdoor heat exchanger 62 via the condenser electromagnetic valve 68 and becomes liquid. The flow is divided into three directions by the flow divider 64, and is expanded by the expanders 63a, 63b, 63c via the first cooler inlet electromagnetic valve 70a and the second cooler inlet electromagnetic valves 70b, 70c, and a low-temperature gas-liquid two-phase And flows into the evaporator 65a and the indoor heat exchangers 65b and 65c. The inflowing refrigerant evaporates in the evaporator 65a and the indoor heat exchangers 65b and 65c to cool the product storage chambers 40a, 40b and 40c, and the evaporated refrigerant gathers in the aggregator 67 and passes through the accumulator 69. After being separated, the gas phase returns to the compressor 61. In this cooling, the controller 90 controls the room temperature to an appropriate temperature by a thermocycle operation by the room temperature sensors Ta, Tb, and Tc.

次に、冷却加熱モード設定SW91の操作により設定モードを左側の商品収納室40aを冷却し、中、右側の商品収納室40b、40cを加熱するCHHモードに設定すると、制御手段90は、加熱器電磁弁68b、68c、第1の冷却器入口電磁弁70aを開成し、第2の冷却器入口電磁弁70b、70c、冷却器出口電磁弁72b、72c、バイパス電磁弁86を閉止し、凝縮器電磁弁68を冷媒が加熱器電磁弁68b、68c側に流通する態様で、バイパス切替電磁弁83を冷媒が蒸発器65a側に流通する態様に通路切替えを行う。このとき圧縮機61で圧縮された高温冷媒は、図6の太線で示すように、凝縮器電磁弁68、加熱器電磁弁68b、68c、接続点168b、168cを経由して室内熱交換器65b、65cに流入する。室内熱交換器65b、65cに流入した冷媒は凝縮して商品収納室40b、40cを加熱し、逆止弁71,71を介して集合し、室外補助熱交換器76でさらに凝縮して分流器64、第1の冷却器入口電磁弁70aを経由して膨張器63aに流入する。膨張器63aに流入した冷媒は、膨張して低温低圧の気液二相流となり、バイパス切替電磁弁83を介して蒸発器65aに流入する。蒸発器65aに流入した冷媒は、蒸発して商品収納室40aを冷却し、集合器67、アキュムレータ69を経由して圧縮機61に戻る。このヒートポンプ運転も前述のようにサーモサイクル運転で室内が適温に維持される。   Next, when the setting mode is set to the CHH mode in which the left and right product storage chambers 40b and 40c are heated by operating the cooling and heating mode setting SW91 to cool the left product storage chamber 40a, The solenoid valves 68b and 68c, the first cooler inlet solenoid valve 70a are opened, the second cooler inlet solenoid valves 70b and 70c, the cooler outlet solenoid valves 72b and 72c, and the bypass solenoid valve 86 are closed, and the condenser The passage is switched so that the refrigerant flows through the electromagnetic valve 68 to the heater electromagnetic valves 68b and 68c, and the bypass switching electromagnetic valve 83 passes through the evaporator 65a. At this time, the high-temperature refrigerant compressed by the compressor 61 passes through the condenser solenoid valve 68, the heater solenoid valves 68b and 68c, and the connection points 168b and 168c, as shown by the thick line in FIG. 6, and the indoor heat exchanger 65b. , 65c. The refrigerant flowing into the indoor heat exchangers 65b and 65c condenses and heats the product storage chambers 40b and 40c, collects through the check valves 71 and 71, and further condenses in the outdoor auxiliary heat exchanger 76 to be condensed. 64, flows into the expander 63a via the first cooler inlet electromagnetic valve 70a. The refrigerant flowing into the expander 63a expands to become a low-temperature and low-pressure gas-liquid two-phase flow, and flows into the evaporator 65a via the bypass switching electromagnetic valve 83. The refrigerant that has flowed into the evaporator 65 a evaporates and cools the product storage chamber 40 a, and returns to the compressor 61 via the collector 67 and the accumulator 69. As described above, the heat pump operation also maintains the room at a suitable temperature by the thermocycle operation.

なお、このとき、制御手段90がバイパス電磁弁86を開成させると、接続点186の圧力が低圧であるので、室外熱交換器62内に貯留する冷媒は、図中の矢印で示すように冷媒循環回路内のアキュムレータ69に回収されるので、回路内に適正な冷媒循環量が保持される。   At this time, when the control means 90 opens the bypass solenoid valve 86, the pressure at the connection point 186 is low, so that the refrigerant stored in the outdoor heat exchanger 62 is refrigerant as shown by the arrows in the figure. Since it is collected by the accumulator 69 in the circulation circuit, an appropriate refrigerant circulation amount is maintained in the circuit.

そして、商品収納室40aが適温に冷却されると、制御手段90は、商品収納室40b、40cの加熱単独の運転モード(−HHモード)を行う。具体的には、制御手段90は、加熱器電磁弁68b、68c、第1の冷却器入口電磁弁70a、バイパス電磁弁86を開成し、第2の冷却器入口電磁弁70b、70c、冷却器出口電磁弁72b、72cを閉止し、凝縮器電磁弁68を冷媒が加熱器電磁弁68b、68c側に流通する態様で、バイパス切替電磁弁83を冷媒が第1バイパス管路80側に流通する態様に通路切替えを行う。このとき圧縮機61で圧縮された高温冷媒は、図7の太線で示すように、凝縮器電磁弁68、加熱器電磁弁68b、68c、接続点168b、168cを経由して室内熱交換器65b、65cに流入する。室内熱交換器65b、65cに流入した冷媒は凝縮して商品収納室40b、40cを加熱し、逆止弁71,71を介して集合し、室外補助熱交換器76でさらに凝縮して分流器64、第1の冷却器入口電磁弁70aを経由して膨張器63aに流入する。膨張器63aに流入した冷媒は、膨張して低温低圧の気液二相流となり、バイパス切替電磁弁83、第1バイパス管路80を経由して室外熱交換器62に流入する。室外熱交換器62に流入した冷媒は、蒸発して室外に冷熱を放出して、バイパス電磁弁86、アキュムレータ69を介して圧縮機61に戻る。   And if the goods storage room 40a is cooled by suitable temperature, the control means 90 will perform the heating independent operation mode (-HH mode) of the goods storage room 40b, 40c. Specifically, the control means 90 opens the heater solenoid valves 68b and 68c, the first cooler inlet solenoid valve 70a, and the bypass solenoid valve 86, and the second cooler inlet solenoid valves 70b and 70c, the cooler The outlet electromagnetic valves 72b and 72c are closed, and the refrigerant flows through the condenser electromagnetic valve 68 to the heater electromagnetic valves 68b and 68c, and the refrigerant flows through the bypass switching electromagnetic valve 83 to the first bypass conduit 80 side. The passage is switched to the aspect. At this time, the high-temperature refrigerant compressed by the compressor 61 passes through the condenser solenoid valve 68, the heater solenoid valves 68b and 68c, and the connection points 168b and 168c, as shown by the thick line in FIG. 7, and the indoor heat exchanger 65b. , 65c. The refrigerant flowing into the indoor heat exchangers 65b and 65c condenses and heats the product storage chambers 40b and 40c, collects through the check valves 71 and 71, and further condenses in the outdoor auxiliary heat exchanger 76 to be condensed. 64, flows into the expander 63a via the first cooler inlet electromagnetic valve 70a. The refrigerant that has flowed into the expander 63 a expands to become a low-temperature low-pressure gas-liquid two-phase flow, and flows into the outdoor heat exchanger 62 via the bypass switching electromagnetic valve 83 and the first bypass conduit 80. The refrigerant that has flowed into the outdoor heat exchanger 62 evaporates and releases cold heat to the outside, and returns to the compressor 61 via the bypass electromagnetic valve 86 and the accumulator 69.

このように、室外熱交換器62への冷媒の流れを阻止する態様で、室外熱交換器62の出口部と膨張器63aの間に第1逆止弁79を設け、膨張器63aの出口よりの管路にバイパス切替電磁弁83を設け、当該バイパス切替電磁弁83の一の出口部と室外熱交換器62の入口部との間を第2逆止弁81を介して第1バイパス管路を設けるとともに、室外熱交換器62の出口部と第1逆止弁79とを接続する配管と圧縮機61の入口部との間にバイパス電磁弁86を介して第2バイパス管路85を設けたことにより、運転モードが加熱単独運転時に室外熱交換器62にて冷媒を蒸発することができるので、ヒートポンプ運転が可能となる結果、消費電力を少なくすることができるとともに、室外熱交換器62にて蒸発させる冷媒を膨張する膨張手段を冷却加熱運転時に使用する膨張器63aと兼用するので、低コストでヒートポンプ運転を行うことができる。   Thus, the 1st non-return valve 79 is provided between the exit part of the outdoor heat exchanger 62, and the expander 63a in the aspect which blocks | prevents the flow of the refrigerant | coolant to the outdoor heat exchanger 62, and it is from the exit of the expander 63a. A bypass switching electromagnetic valve 83 is provided in the pipe line, and the first bypass pipe line is provided between one outlet portion of the bypass switching electromagnetic valve 83 and the inlet portion of the outdoor heat exchanger 62 via the second check valve 81. And a second bypass pipe 85 is provided via a bypass solenoid valve 86 between the pipe connecting the outlet of the outdoor heat exchanger 62 and the first check valve 79 and the inlet of the compressor 61. As a result, the refrigerant can be evaporated in the outdoor heat exchanger 62 when the operation mode is the single heating operation. As a result, the heat pump operation can be performed. As a result, the power consumption can be reduced and the outdoor heat exchanger 62 can be reduced. Expansion that expands the refrigerant evaporated in Since the means is also used as the expander 63a used during the cooling and heating operation, the heat pump operation can be performed at a low cost.

なお、上述の説明は、冷却加熱の設定モードをCHHモードで説明をしたが、加熱を1室の商品収納室で行うCCHモード、CHCモードでも同様な効果が得られる。また、上述の説明は、2室の商品収納室を冷却加熱兼用とした自動販売機で説明をしたが、1室のみの商品収納室を冷却加熱兼用とした自動販売機でも同様な効果が得られる。   In the above description, the cooling and heating setting mode is described as the CHH mode. However, the same effect can be obtained in the CCH mode and the CHC mode in which heating is performed in one commodity storage room. In the above description, the vending machine has two product storage rooms that are also used for cooling and heating. However, the same effect can be obtained with a vending machine that has only one product storage room that is also used for cooling and heating. It is done.

(実施例2)
実施例2は、請求項3に関する自動販売機に係り、実施例1と比較すると図8に示すようにバイパス切替電磁弁83aの入口部が蒸発器(第1室内熱交換器)65aの出口部に相当する集合器67に接続し、一の出口部を第2バイパス管路85の出口の接合点186と接続した点である。その他は、実施例1と同一であるので、その詳細な説明は省略をする。
(Example 2)
The second embodiment relates to a vending machine according to claim 3, and as compared with the first embodiment, as shown in FIG. 8, the inlet of the bypass switching electromagnetic valve 83a is the outlet of the evaporator (first indoor heat exchanger) 65a. Is connected to an aggregator 67 corresponding to, and one outlet portion is connected to a junction 186 at the outlet of the second bypass conduit 85. Others are the same as those of the first embodiment, and thus detailed description thereof is omitted.

かかる構成で、冷却加熱モード設定SW91の操作により設定モードを左側の商品収納室40aを冷却し、中、右側の商品収納室40b、40cを加熱するCHHモードに設定すると、制御手段90は、加熱器電磁弁68b、68c、第1の冷却器入口電磁弁70aを開成し、第2の冷却器入口電磁弁70b、70c、冷却器出口電磁弁72b、72c、バイパス電磁弁86を閉止し、凝縮器電磁弁68を冷媒が加熱器電磁弁68b、68c側に流通する態様で、バイパス切替電磁弁83aを冷媒が蒸発器65a側に流通する態様に通路切替えを行う。このとき圧縮機61で圧縮された高温冷媒は、図9の太線で示すように、凝縮器電磁弁68、加熱器電磁弁68b、68c、接続点168b、168cを経由して室内熱交換器65b、65cに流入する。室内熱交換器65b、65cに流入した冷媒は凝縮して商品収納室40b、40cを加熱し、逆止弁71,71を介して集合し、室外補助熱交換器76でさらに凝縮して分流器64、第1の冷却器入口電磁弁70aを経由して膨張器63aに流入する。膨張器63aに流入した冷媒は、膨張して低温低圧の気液二相流となり、蒸発器65aに流入する。蒸発器65aに流入した冷媒は、蒸発して商品収納室40aを冷却し、集合器67、バイパス切替電磁弁83a、アキュムレータ69を経由して圧縮機61に戻る。このヒートポンプ運転も前述のようにサーモサイクル運転で室内が適温に維持される。   With such a configuration, when the setting mode is set to CHH mode in which the left product storage chamber 40a is cooled and the right and left product storage chambers 40b and 40c are heated by operating the cooling / heating mode setting SW91, the control means 90 Open the solenoid valve 68b, 68c, the first cooler inlet solenoid valve 70a, close the second cooler inlet solenoid valve 70b, 70c, cooler outlet solenoid valve 72b, 72c, bypass solenoid valve 86, and condense The passage switching is performed so that the refrigerant flows through the heater electromagnetic valve 68 to the heater electromagnetic valves 68b and 68c, and the bypass switching electromagnetic valve 83a passes to the evaporator 65a. At this time, the high-temperature refrigerant compressed by the compressor 61 passes through the condenser solenoid valve 68, the heater solenoid valves 68b and 68c, and the connection points 168b and 168c, as shown by the thick line in FIG. 9, and the indoor heat exchanger 65b. , 65c. The refrigerant flowing into the indoor heat exchangers 65b and 65c condenses and heats the product storage chambers 40b and 40c, collects through the check valves 71 and 71, and further condenses in the outdoor auxiliary heat exchanger 76 to be condensed. 64, flows into the expander 63a via the first cooler inlet electromagnetic valve 70a. The refrigerant flowing into the expander 63a expands to form a low-temperature and low-pressure gas-liquid two-phase flow and flows into the evaporator 65a. The refrigerant flowing into the evaporator 65a evaporates and cools the product storage chamber 40a, and returns to the compressor 61 via the collector 67, the bypass switching electromagnetic valve 83a, and the accumulator 69. As described above, the heat pump operation also maintains the room at a suitable temperature by the thermocycle operation.

なお、このとき、制御手段90がバイパス電磁弁86を開成させると、接続点186の圧力が低圧であるので、室外熱交換器62内に貯留する冷媒は、図中の矢印で示すように冷媒循環回路内のアキュムレータ69に回収されるので、回路に適正な冷媒循環量が保持される。   At this time, when the control means 90 opens the bypass solenoid valve 86, the pressure at the connection point 186 is low, so that the refrigerant stored in the outdoor heat exchanger 62 is refrigerant as shown by the arrows in the figure. Since the refrigerant is collected by the accumulator 69 in the circulation circuit, an appropriate refrigerant circulation amount is maintained in the circuit.

そして、商品収納室40aが適温に冷却されると、制御手段90は、商品収納室40b、40cの加熱単独の運転モード(−HHモード)を行う。具体的には、制御手段90は、加熱器電磁弁68b、68c、第1の冷却器入口電磁弁70a、バイパス電磁弁86を開成し、第2の冷却器入口電磁弁70b、70c、冷却器出口電磁弁72b、72cを閉止し、凝縮器電磁弁68を冷媒が加熱器電磁弁68b、68c側に流通する態様で、バイパス切替電磁弁83aを冷媒が第1バイパス管路80側に流通する態様に通路切替えを行う。このとき圧縮機61で圧縮された高温冷媒は、図10の太線で示すように、凝縮器電磁弁68、加熱器電磁弁68b、68c、接続点168b、168cを経由して室内熱交換器65b、65cに流入する。室内熱交換器65b、65cに流入した冷媒は凝縮して商品収納室40b、40cを加熱し、逆止弁71,71を介して集合し、室外補助熱交換器76でさらに凝縮して分流器64、第1の冷却器入口電磁弁70aを経由して膨張器63aに流入する。膨張器63aに流入した冷媒は、膨張して低温低圧の気液二相流となり、蒸発器65a、集合器67を経由してバイパス切替電磁弁83aの入口部に流入する。なお、蒸発器65a内での冷媒の蒸発を抑制するため、蒸発器65aに送風するファン65fを停止させる。そして、バイパス切替電磁弁83aに流入した冷媒は第1バイパス管路80を経由して室外熱交換器62に流入して蒸発して冷熱を室外に放出する。冷熱が放出された冷媒は、バイパス電磁弁86、アキュムレータ69を介して圧縮機61に戻る。   And if the goods storage room 40a is cooled by suitable temperature, the control means 90 will perform the heating independent operation mode (-HH mode) of the goods storage room 40b, 40c. Specifically, the control means 90 opens the heater solenoid valves 68b and 68c, the first cooler inlet solenoid valve 70a, and the bypass solenoid valve 86, and the second cooler inlet solenoid valves 70b and 70c, the cooler The outlet solenoid valves 72b and 72c are closed, and the refrigerant flows through the condenser solenoid valve 68 to the heater solenoid valves 68b and 68c, and the refrigerant flows through the bypass switching solenoid valve 83a to the first bypass conduit 80 side. The passage is switched to the aspect. At this time, the high-temperature refrigerant compressed by the compressor 61 passes through the condenser solenoid valve 68, the heater solenoid valves 68b and 68c, and the connection points 168b and 168c, as shown by the thick line in FIG. 10, and the indoor heat exchanger 65b. , 65c. The refrigerant flowing into the indoor heat exchangers 65b and 65c condenses and heats the product storage chambers 40b and 40c, collects through the check valves 71 and 71, and further condenses in the outdoor auxiliary heat exchanger 76 to be condensed. 64, flows into the expander 63a via the first cooler inlet electromagnetic valve 70a. The refrigerant flowing into the expander 63a expands into a low-temperature and low-pressure gas-liquid two-phase flow, and flows into the inlet of the bypass switching electromagnetic valve 83a via the evaporator 65a and the collector 67. In order to suppress the evaporation of the refrigerant in the evaporator 65a, the fan 65f that blows air to the evaporator 65a is stopped. Then, the refrigerant flowing into the bypass switching electromagnetic valve 83a flows into the outdoor heat exchanger 62 via the first bypass pipe 80, evaporates, and releases cold heat to the outside. The refrigerant from which the cold heat has been released returns to the compressor 61 via the bypass solenoid valve 86 and the accumulator 69.

上述のように、この構成により運転モードが加熱単独運転時に室外熱交換器62にて冷媒を蒸発することができるので、ヒートポンプ運転が可能となる結果、消費電力を少なくすることができるとともに、室外熱交換器62にて蒸発させる冷媒を膨張する膨張手段を冷却加熱運転時に使用する膨張器63aと兼用するので、低コストでヒートポンプ運転を行うことができる。   As described above, this configuration allows the refrigerant to evaporate in the outdoor heat exchanger 62 when the operation mode is the heating-only operation. As a result, the heat pump operation can be performed. As a result, the power consumption can be reduced and the outdoor operation can be performed. Since the expansion means for expanding the refrigerant evaporated in the heat exchanger 62 is also used as the expander 63a used during the cooling and heating operation, the heat pump operation can be performed at a low cost.

(実施例3)
実施例3は、請求項2に関する自動販売機に係り、実施例1と比較すると図11に示すように、室外に冷媒を蒸発させる室外蒸発器82を設け、第1バイパス管路80、第2バイパス管路85の代わりに、室外蒸発器82の入口側、出口側に第3バイパス管路80a、第4バイパス管路85aを設けた点である。また、相違点は3方弁で構成されるバイパス切替電磁弁83の代わりに2個の電磁弁841,842を組み合わせて構成されるバイパス切替電磁弁84と、冷媒の吸出し管路89を設けた点である。その他は、実施例1と同一であるので、その詳細な説明は省略をする。
(Example 3)
The third embodiment relates to a vending machine relating to claim 2, and as compared with the first embodiment, as shown in FIG. 11, an outdoor evaporator 82 for evaporating the refrigerant is provided outside, and the first bypass pipe 80, the second Instead of the bypass conduit 85, a third bypass conduit 80a and a fourth bypass conduit 85a are provided on the inlet and outlet sides of the outdoor evaporator 82. The difference is that a bypass switching electromagnetic valve 84 configured by combining two electromagnetic valves 841 and 842 instead of the bypass switching electromagnetic valve 83 configured by a three-way valve, and a refrigerant suction pipe 89 are provided. Is a point. Others are the same as those of the first embodiment, and thus detailed description thereof is omitted.

室外蒸発器82は、機械室50内の庫外熱交換器62と室外補助熱交換器76との間に配設されたフィンチューブ型の熱交換器であり、加熱単独運転時に余剰な蒸発熱を排出するためのものである。   The outdoor evaporator 82 is a fin tube type heat exchanger disposed between the outdoor heat exchanger 62 and the outdoor auxiliary heat exchanger 76 in the machine room 50, and excessive heat of evaporation during heating single operation. It is for discharging.

バイパス切替電磁弁84は、加熱単独運転時に室外蒸発器82に冷媒をバイパス側に流し、他の運転モード時には主流側の蒸発器65aへ冷媒を流す態様で冷媒の流れを切り替えるための電磁弁であり、主流側への冷媒の流通を制御する電磁弁841とバイパス側への冷媒の流通を制御する電磁弁842により構成されている。具体的な構造は、膨張器63aと蒸発器65aとの間に電磁弁841が接続され、膨張器63aと電磁弁841との接続点184より電磁弁842が接続されている。この構造によりバイパス切替電磁弁84は、入口が膨張器63aと接続し、一の出口が蒸発器65aに他の出口が第3バイパス管路80aと接続している。   The bypass switching electromagnetic valve 84 is an electromagnetic valve for switching the refrigerant flow in such a manner that the refrigerant flows through the outdoor evaporator 82 to the bypass side during the heating-only operation and flows into the main-stream evaporator 65a in the other operation modes. There is an electromagnetic valve 841 that controls the flow of the refrigerant to the mainstream side and an electromagnetic valve 842 that controls the flow of the refrigerant to the bypass side. Specifically, an electromagnetic valve 841 is connected between the expander 63a and the evaporator 65a, and an electromagnetic valve 842 is connected from a connection point 184 between the expander 63a and the electromagnetic valve 841. With this structure, the bypass switching electromagnetic valve 84 has an inlet connected to the expander 63a, one outlet connected to the evaporator 65a, and the other outlet connected to the third bypass conduit 80a.

第3バイパス管路80aは、加熱単独運転時に室外蒸発器82に冷媒を流して蒸発器として使用するための管路であり、バイパス切替電磁弁83の電磁弁842の出口から室外蒸発器82の入口部とを接続する管路である。   The third bypass pipe 80a is a pipe for flowing the refrigerant to the outdoor evaporator 82 and using it as an evaporator at the time of heating alone operation. The third bypass pipe 80a is connected to the outdoor evaporator 82 from the outlet of the electromagnetic valve 842 of the bypass switching electromagnetic valve 83. It is a pipe line connecting the inlet part.

第4バイパス管路85aは、加熱単独運転時に室外蒸発器82にて蒸発した冷媒を圧縮機61へ戻すためのものであり、室外蒸発器82とアキュムレータ69とを接続する管路である。   The fourth bypass pipe 85 a is for returning the refrigerant evaporated in the outdoor evaporator 82 to the compressor 61 during the single heating operation, and is a pipe connecting the outdoor evaporator 82 and the accumulator 69.

電磁弁86aは、第4バイパス管路85aとアキュムレータ69とを接続する接続点186aと、集合器67との間に接続された電磁弁である。
吸出し管路89は、室外熱交換器62aと第1逆止弁79とを接続する接続点185と、集合器67と電磁弁86aとを接続する接続点189との間に接続された管路であり、管路中に吸出し電磁弁89vを設けてある。吸出し管路89は、室外熱交換器62aに滞留している冷媒を冷媒回路に戻すためのものである。
The electromagnetic valve 86 a is an electromagnetic valve connected between the connection point 186 a connecting the fourth bypass conduit 85 a and the accumulator 69 and the collector 67.
The suction pipe 89 is a pipe connected between a connection point 185 connecting the outdoor heat exchanger 62a and the first check valve 79 and a connection point 189 connecting the collector 67 and the electromagnetic valve 86a. A suction electromagnetic valve 89v is provided in the pipe. The suction pipe 89 is for returning the refrigerant staying in the outdoor heat exchanger 62a to the refrigerant circuit.

かかる構成で、冷却加熱モード設定SW91の操作により設定モードを左側の商品収納室40aを冷却し、中、右側の商品収納室40b、40cを加熱するCHHモードに設定すると、制御手段90は、加熱器電磁弁68b、68c、第1の冷却器入口電磁弁70a、電磁弁841、電磁弁86aを開成し、第2の冷却器入口電磁弁70b、70c、冷却器出口電磁弁72b、72c、電磁弁842、吸出し電磁弁89vを閉止し、凝縮器電磁弁68を冷媒が加熱器電磁弁68b、68c側に流通する態様で通路切替えを行う。する。このとき圧縮機61で圧縮された高温冷媒は、図12の太線で示すように、凝縮器電磁弁68、加熱器電磁弁68b、68c、接続点168b、168cを経由して室内熱交換器65b、65cに流入する。室内熱交換器65b、65cに流入した冷媒は凝縮して商品収納室40b、40cを加熱し、逆止弁71,71を介して集合し、室外補助熱交換器76でさらに凝縮して分流器64、第1の冷却器入口電磁弁70aを経由して膨張器63aに流入する。膨張器63aに流入した冷媒は、膨張して低温低圧の気液二相流となり、電磁弁841を介して蒸発器65aに流入する。蒸発器65aに流入した冷媒は、蒸発して商品収納室40aを冷却し、集合器67、電磁弁86a、アキュムレータ69を経由して圧縮機61に戻る。このヒートポンプ運転も前述のようにサーモサイクル運転で室内が適温に維持される。   With such a configuration, when the setting mode is set to CHH mode in which the left product storage chamber 40a is cooled and the right and left product storage chambers 40b and 40c are heated by operating the cooling / heating mode setting SW91, the control means 90 The solenoid valve 68b, 68c, the first cooler inlet solenoid valve 70a, the solenoid valve 841, the solenoid valve 86a are opened, the second cooler inlet solenoid valve 70b, 70c, the cooler outlet solenoid valve 72b, 72c, the solenoid The valve 842 and the suction electromagnetic valve 89v are closed, and the passage is switched in such a manner that the refrigerant flows through the condenser electromagnetic valve 68 toward the heater electromagnetic valves 68b and 68c. To do. At this time, the high-temperature refrigerant compressed by the compressor 61 passes through the condenser solenoid valve 68, the heater solenoid valves 68b and 68c, and the connection points 168b and 168c, as shown by the thick line in FIG. 12, and the indoor heat exchanger 65b. , 65c. The refrigerant flowing into the indoor heat exchangers 65b and 65c condenses and heats the product storage chambers 40b and 40c, collects through the check valves 71 and 71, and further condenses in the outdoor auxiliary heat exchanger 76 to be condensed. 64, flows into the expander 63a via the first cooler inlet electromagnetic valve 70a. The refrigerant flowing into the expander 63a expands to become a low-temperature and low-pressure gas-liquid two-phase flow, and flows into the evaporator 65a through the electromagnetic valve 841. The refrigerant flowing into the evaporator 65a evaporates and cools the product storage chamber 40a, and returns to the compressor 61 via the collector 67, the electromagnetic valve 86a, and the accumulator 69. As described above, the heat pump operation also maintains the room at a suitable temperature by the thermocycle operation.

なお、このとき、制御手段90が吸出し電磁弁89vを開成させると、接続点189の圧力が低圧であるので、室外熱交換器62内に貯留する冷媒は、図中の矢印で示すように冷媒循環回路内のアキュムレータ69に回収されるので、回路内に適正な冷媒循環量が保持される。   At this time, when the control means 90 opens the suction electromagnetic valve 89v, the pressure at the connection point 189 is low, so that the refrigerant stored in the outdoor heat exchanger 62 is refrigerant as shown by the arrows in the figure. Since it is collected by the accumulator 69 in the circulation circuit, an appropriate refrigerant circulation amount is maintained in the circuit.

そして、商品収納室40aが適温に冷却されると、制御手段90は、商品収納室40b、40cの加熱単独の運転モード(−HHモード)を行う。具体的には、制御手段90は、加熱器電磁弁68b、68c、第1の冷却器入口電磁弁70a、電磁弁842を開成し、第2の冷却器入口電磁弁70b、70c、冷却器出口電磁弁72b、72c、電磁弁841、電磁弁86a、吸出し電磁弁89vを閉止し、凝縮器電磁弁68を冷媒が加熱器電磁弁68b、68c側に流通する態様で通路切替えを行う。このとき圧縮機61で圧縮された高温冷媒は、図13の太線で示すように、凝縮器電磁弁68、加熱器電磁弁68b、68c、接続点168b、168cを経由して室内熱交換器65b、65cに流入する。室内熱交換器65b、65cに流入した冷媒は凝縮して商品収納室40b、40cを加熱し、逆止弁71,71を介して集合し、室外補助熱交換器76でさらに凝縮して分流器64、第1の冷却器入口電磁弁70aを経由して膨張器63aに流入する。膨張器63aに流入した冷媒は、膨張して低温低圧の気液二相流となり、接続点184より電磁弁842、第3バイパス管路80aを経由して室外蒸発器82に流入する。室外蒸発器82に流入した冷媒は、蒸発して室外に冷熱を放出して、第4バイパス管路85a、アキュムレータ69を介して圧縮機61に戻る。   And if the goods storage room 40a is cooled by suitable temperature, the control means 90 will perform the heating independent operation mode (-HH mode) of the goods storage room 40b, 40c. Specifically, the control unit 90 opens the heater solenoid valves 68b and 68c, the first cooler inlet solenoid valve 70a, and the solenoid valve 842, and the second cooler inlet solenoid valves 70b and 70c and the cooler outlet. The solenoid valves 72b and 72c, the solenoid valve 841, the solenoid valve 86a, and the suction solenoid valve 89v are closed, and the passage is switched in such a manner that the refrigerant flows through the condenser solenoid valve 68 toward the heater solenoid valves 68b and 68c. At this time, the high-temperature refrigerant compressed by the compressor 61 passes through the condenser solenoid valve 68, the heater solenoid valves 68b and 68c, and the connection points 168b and 168c, as shown by the thick line in FIG. 13, and the indoor heat exchanger 65b. , 65c. The refrigerant flowing into the indoor heat exchangers 65b and 65c condenses and heats the product storage chambers 40b and 40c, collects through the check valves 71 and 71, and further condenses in the outdoor auxiliary heat exchanger 76 to be condensed. 64, flows into the expander 63a via the first cooler inlet electromagnetic valve 70a. The refrigerant flowing into the expander 63a expands into a low-temperature and low-pressure gas-liquid two-phase flow, and flows into the outdoor evaporator 82 from the connection point 184 via the electromagnetic valve 842 and the third bypass pipe 80a. The refrigerant flowing into the outdoor evaporator 82 evaporates and releases cold heat to the outside, and returns to the compressor 61 via the fourth bypass pipe 85 a and the accumulator 69.

このように、室外熱交換器62の出口部と膨張器63aとの間に第1逆止弁79と、室外に冷媒を蒸発させる室外蒸発器82とを設けるとともに、蒸発器(第1室内熱交換器)65aのみに接続する膨張手段63aの出口よりの管路にバイパス切替電磁弁84を設け、当該バイパス切替電磁弁84の一の出口部と室外蒸発器82の入口部との間に第3バイパス管路80aを設けるとともに、室外蒸発器82の出口部と圧縮機61の入口部との間に第4バイパス管路85aを設けたことにより、運転モードが加熱単独運転時に室外蒸発器82にて冷媒を蒸発することができるので、ヒートポンプ運転が可能となる結果、消費電力を少なくすることができるとともに、室外蒸発器82にて蒸発させる冷媒を膨張する膨張器を冷却運転時に使用する膨張器63aと兼用するので、低コストでヒートポンプ運転を行うことができる。さらに、室外蒸発器82の容量を室内第2熱交換器65b、65cの容量に対応させて設けることができるので、さらに効率よく加熱単独のヒートポンプ運転を行うことができる。   As described above, the first check valve 79 and the outdoor evaporator 82 for evaporating the refrigerant are provided between the outlet of the outdoor heat exchanger 62 and the expander 63a, and the evaporator (first indoor heat) is provided. (Exchanger) A bypass switching electromagnetic valve 84 is provided in a pipe line from the outlet of the expansion means 63a connected only to the 65a, and a bypass is provided between one outlet portion of the bypass switching electromagnetic valve 84 and the inlet portion of the outdoor evaporator 82. Since the third bypass pipe 80a is provided and the fourth bypass pipe 85a is provided between the outlet of the outdoor evaporator 82 and the inlet of the compressor 61, the outdoor evaporator 82 is operated when the operation mode is the single heating operation. Since the refrigerant can be evaporated in the heat pump, the heat pump operation can be performed. As a result, the power consumption can be reduced, and the expander that expands the refrigerant evaporated in the outdoor evaporator 82 is used during the cooling operation. Since shared with Zhang unit 63a, it is possible to perform the heat-pump operation at a low cost. Furthermore, since the capacity | capacitance of the outdoor evaporator 82 can be provided corresponding to the capacity | capacitance of the indoor 2nd heat exchangers 65b and 65c, a heating independent heat pump operation can be performed more efficiently.

(実施例4)
実施例4は、請求項3に関する自動販売機に係り、実施例3と比較すると図14に示すようにバイパス切替電磁弁84の代わりにバイパス切替電磁弁84aの入口部が第1室内熱交換器の出口部にあたる集合器67に接続し、一の出口部を第2バイパス管路の出口の接合点186aと接続した点である。その他は、実施例1と同一であるので、その詳細な説明は省略をする。
Example 4
The fourth embodiment relates to a vending machine according to claim 3, and in comparison with the third embodiment, the inlet of the bypass switching electromagnetic valve 84a is a first indoor heat exchanger instead of the bypass switching electromagnetic valve 84 as shown in FIG. It is the point which connected to the gathering device 67 which is an exit part, and connected one exit part with the junction 186a of the exit of a 2nd bypass pipe line. Others are the same as those of the first embodiment, and thus detailed description thereof is omitted.

かかる構成で、冷却加熱モード設定SW91の操作により設定モードを左側の商品収納室40aを冷却し、中、右側の商品収納室40b、40cを加熱するCHHモードに設定すると、制御手段90は、加熱器電磁弁68b、68c、第1の冷却器入口電磁弁70a、電磁弁841、電磁弁86aを開成し、第2の冷却器入口電磁弁70b、70c、冷却器出口電磁弁72b、72c、バイパス電磁弁86、電磁弁842、吸出し電磁弁89vを閉止し、凝縮器電磁弁68を冷媒が加熱器電磁弁68b、68c側に流通する態様で通路切替えを行う。このとき圧縮機61で圧縮された高温冷媒は、図15の太線で示すように、凝縮器電磁弁68、加熱器電磁弁68b、68c、接続点168b、168cを経由して室内熱交換器65b、65cに流入する。室内熱交換器65b、65cに流入した冷媒は凝縮して商品収納室40b、40cを加熱し、逆止弁71,71を介して集合し、室外補助熱交換器76でさらに凝縮して分流器64、第1の冷却器入口電磁弁70aを経由して膨張器63aに流入する。膨張器63aに流入した冷媒は、膨張して低温低圧の気液二相流となり、蒸発器65aに流入する。蒸発器65aに流入した冷媒は、蒸発して商品収納室40aを冷却し、集合器67、電磁弁841、電磁弁86a、アキュムレータ69を経由して圧縮機61に戻る。このヒートポンプ運転も前述のようにサーモサイクル運転で室内が適温に維持される。   With such a configuration, when the setting mode is set to CHH mode in which the left product storage chamber 40a is cooled and the right and left product storage chambers 40b and 40c are heated by operating the cooling / heating mode setting SW91, the control means 90 Solenoid valve 68b, 68c, first cooler inlet solenoid valve 70a, solenoid valve 841, solenoid valve 86a, second cooler inlet solenoid valve 70b, 70c, cooler outlet solenoid valve 72b, 72c, bypass The solenoid valve 86, the solenoid valve 842, and the suction solenoid valve 89v are closed, and the passage is switched in such a manner that the refrigerant flows through the condenser solenoid valve 68 toward the heater solenoid valves 68b and 68c. At this time, the high-temperature refrigerant compressed by the compressor 61 passes through the condenser solenoid valve 68, the heater solenoid valves 68b and 68c, and the connection points 168b and 168c, as shown by the thick line in FIG. 15, and the indoor heat exchanger 65b. , 65c. The refrigerant flowing into the indoor heat exchangers 65b and 65c condenses and heats the product storage chambers 40b and 40c, collects through the check valves 71 and 71, and further condenses in the outdoor auxiliary heat exchanger 76 to be condensed. 64, flows into the expander 63a via the first cooler inlet electromagnetic valve 70a. The refrigerant flowing into the expander 63a expands to form a low-temperature and low-pressure gas-liquid two-phase flow and flows into the evaporator 65a. The refrigerant flowing into the evaporator 65a evaporates and cools the product storage chamber 40a, and returns to the compressor 61 via the collector 67, the electromagnetic valve 841, the electromagnetic valve 86a, and the accumulator 69. As described above, the heat pump operation also maintains the room at a suitable temperature by the thermocycle operation.

なお、このとき、制御手段90が吸出し電磁弁89vを開成させると、接続点189の圧力が低圧であるので、室外熱交換器62内に貯留する冷媒は、図中の矢印で示すように冷媒循環回路内のアキュムレータ69に回収されるので、回路内に適正な冷媒循環量が保持される。   At this time, when the control means 90 opens the suction electromagnetic valve 89v, the pressure at the connection point 189 is low, so that the refrigerant stored in the outdoor heat exchanger 62 is refrigerant as shown by the arrows in the figure. Since it is collected by the accumulator 69 in the circulation circuit, an appropriate refrigerant circulation amount is maintained in the circuit.

そして、商品収納室40aが適温に冷却されると、制御手段90は、商品収納室40b、40cの加熱単独の運転モード(−HHモード)を行う。具体的には、制御手段90は、加熱器電磁弁68b、68c、第1の冷却器入口電磁弁70a、電磁弁842を開成し、第2の冷却器入口電磁弁70b、70c、冷却器出口電磁弁72b、72c、電磁弁841、電磁弁86a、吸出し電磁弁89vを閉止し、凝縮器電磁弁68を冷媒が加熱器電磁弁68b、68c側に流通する態様で通路切替えを行う。このとき圧縮機61で圧縮された高温冷媒は、図16の太線で示すように、凝縮器電磁弁68、加熱器電磁弁68b、68c、接続点168b、168cを経由して室内熱交換器65b、65cに流入する。室内熱交換器65b、65cに流入した冷媒は凝縮して商品収納室40b、40cを加熱し、逆止弁71,71を介して集合し、室外補助熱交換器76でさらに凝縮して分流器64、第1の冷却器入口電磁弁70aを経由して膨張器63aに流入する。膨張器63aに流入した冷媒は、膨張して低温低圧の気液二相流となり、蒸発器65aに流入する。なお、蒸発器65a内での冷媒の蒸発を抑制するため、蒸発器65aに送風するファン65fを停止させる。そして、蒸発器65aより流出する冷媒は、集合器67、電磁弁842を経由して第3バイパス管路80aから室外蒸発器82に流入する。室外蒸発器82に流入した冷媒は、蒸発して冷熱を室外に放出して、第4バイパス管路85a、アキュムレータ69を介して圧縮機61に戻る。   And if the goods storage room 40a is cooled by suitable temperature, the control means 90 will perform the heating independent operation mode (-HH mode) of the goods storage room 40b, 40c. Specifically, the control unit 90 opens the heater solenoid valves 68b and 68c, the first cooler inlet solenoid valve 70a, and the solenoid valve 842, and the second cooler inlet solenoid valves 70b and 70c and the cooler outlet. The solenoid valves 72b and 72c, the solenoid valve 841, the solenoid valve 86a, and the suction solenoid valve 89v are closed, and the passage is switched in such a manner that the refrigerant flows through the condenser solenoid valve 68 toward the heater solenoid valves 68b and 68c. At this time, the high-temperature refrigerant compressed by the compressor 61 passes through the condenser solenoid valve 68, the heater solenoid valves 68b and 68c, and the connection points 168b and 168c, as shown by the thick line in FIG. 16, and the indoor heat exchanger 65b. , 65c. The refrigerant flowing into the indoor heat exchangers 65b and 65c condenses and heats the product storage chambers 40b and 40c, collects through the check valves 71 and 71, and further condenses in the outdoor auxiliary heat exchanger 76 to be condensed. 64, flows into the expander 63a via the first cooler inlet electromagnetic valve 70a. The refrigerant flowing into the expander 63a expands to form a low-temperature and low-pressure gas-liquid two-phase flow and flows into the evaporator 65a. In order to suppress the evaporation of the refrigerant in the evaporator 65a, the fan 65f that blows air to the evaporator 65a is stopped. The refrigerant flowing out of the evaporator 65a flows into the outdoor evaporator 82 from the third bypass pipe 80a via the collector 67 and the electromagnetic valve 842. The refrigerant that has flowed into the outdoor evaporator 82 evaporates and releases cold heat to the outside, and returns to the compressor 61 via the fourth bypass pipe 85 a and the accumulator 69.

上述のようにこの構成により、運転モードが加熱単独運転時に室外蒸発器82にて冷媒を蒸発することができるので、ヒートポンプ運転が可能となる結果、消費電力を少なくすることができるとともに、室外蒸発器82にて蒸発させる冷媒を膨張する膨張器を冷却運転時に使用する膨張器63aと兼用するので、低コストでヒートポンプ運転を行うことができる。さらに、室外蒸発器82の容量を室内第2熱交換器65b、65cの容量に対応させて設けることができるので、さらに効率よく加熱単独のヒートポンプ運転を行うことができる。   As described above, this configuration allows the refrigerant to evaporate in the outdoor evaporator 82 when the operation mode is the single heating operation. As a result, the heat pump operation can be performed. As a result, power consumption can be reduced and outdoor evaporation can be performed. Since the expander that expands the refrigerant to be evaporated in the cooler 82 is also used as the expander 63a used during the cooling operation, the heat pump operation can be performed at low cost. Furthermore, since the capacity | capacitance of the outdoor evaporator 82 can be provided corresponding to the capacity | capacitance of the indoor 2nd heat exchangers 65b and 65c, a heating independent heat pump operation can be performed more efficiently.

以上のように、本発明に係る冷媒回路は、缶、ビン、パック、ペットボトル等の容器に入れた飲料等の商品を冷却または加熱して販売する自動販売機に適している。   As described above, the refrigerant circuit according to the present invention is suitable for vending machines that sell products by cooling or heating products such as beverages contained in containers such as cans, bottles, packs, and plastic bottles.

10 本体キャビネット
20 外扉
30(30a,30b) 内扉
40a、40b、40c 商品収納室
60 冷却/加熱ユニット
61 圧縮機
62 室外熱交換器
63a、63b、63c 膨張器
64 分流器(分配器)
65a 蒸発器(第1室内熱交換器)
65b、65c 室内熱交換器(第1および第2室内熱交換器)
68 凝縮器電磁弁
68a、68b 加熱器電磁弁
69 アキュムレータ
70a 第1の冷却器入口電磁弁
70b、70c 第2の冷却器入口電磁弁
72b、72c 冷却器出口電磁弁
76 室外補助熱交換器
79 第1逆止弁
80 第1バイパス管路
80a 第3バイパス管路
81 第2逆止弁
82 室外蒸発器
83、83a バイパス切替電磁弁
84、84a バイパス切替電磁弁
85 第2バイパス管路
85a 第4バイパス管路
86 バイパス電磁弁
90 制御装置
91 設定モード選択SW


DESCRIPTION OF SYMBOLS 10 Main body cabinet 20 Outer door 30 (30a, 30b) Inner door 40a, 40b, 40c Product storage room 60 Cooling / heating unit 61 Compressor 62 Outdoor heat exchanger 63a, 63b, 63c Expander 64 Divider (distributor)
65a Evaporator (first indoor heat exchanger)
65b, 65c indoor heat exchanger (first and second indoor heat exchangers)
68 Condenser solenoid valve 68a, 68b Heater solenoid valve 69 Accumulator 70a First cooler inlet solenoid valve 70b, 70c Second cooler inlet solenoid valve 72b, 72c Cooler exit solenoid valve 76 Outdoor auxiliary heat exchanger 79 First 1 Check Valve 80 First Bypass Line 80a Third Bypass Line 81 Second Check Valve 82 Outdoor Evaporator 83, 83a Bypass Switch Solenoid Valve 84, 84a Bypass Switch Solenoid Valve 85 Second Bypass Line 85a Fourth Bypass Pipe line 86 Bypass solenoid valve 90 Controller 91 Setting mode selection SW


Claims (3)

冷媒を圧縮する圧縮機と、冷媒を凝縮する室外熱交換器と、冷媒を膨張させる膨張手段と、冷媒を蒸発させて室内を冷却する複数の第1室内熱交換器とを順次配管接続してなる冷却循環回路を構成するとともに、
前記圧縮機と、冷媒を凝縮させて室内を加熱する第2室内熱交換器と、前記膨張手段と、前記第1室内熱交換器とを順次配管接続してなる冷却加熱循環回路を構成した冷媒循環回路を有する自動販売機において、
前記室外熱交換器への冷媒の流れを阻止する態様で、前記室外熱交換器の出口部と前記膨張手段との間に第1逆止弁を設け、
前記第1室内熱交換器のみに接続する前記膨張手段の出口よりの管路にバイパス切替電磁弁を設け、当該バイパス切替電磁弁の一の出口部と前記室外熱交換器の入口部との間に第2逆止弁を介して第1バイパス管路を設けるとともに、
前記室外熱交換器の出口部と前記第1逆止弁とを接続する配管と前記圧縮機の入口部との間にバイパス電磁弁を介して第2バイパス管路を設けたことを特徴とする自動販売機。
A compressor that compresses the refrigerant, an outdoor heat exchanger that condenses the refrigerant, an expansion unit that expands the refrigerant, and a plurality of first indoor heat exchangers that evaporate the refrigerant and cool the room are sequentially connected by piping. While constructing a cooling circuit that becomes
Refrigerant that constitutes a cooling and heating circuit in which the compressor, a second indoor heat exchanger that condenses the refrigerant and heats the room, the expansion means, and the first indoor heat exchanger are sequentially connected by piping. In a vending machine having a circulation circuit,
In a mode of blocking the flow of refrigerant to the outdoor heat exchanger, a first check valve is provided between the outlet portion of the outdoor heat exchanger and the expansion means,
A bypass switching electromagnetic valve is provided in a pipe line from the outlet of the expansion means connected only to the first indoor heat exchanger, and between one outlet portion of the bypass switching electromagnetic valve and the inlet portion of the outdoor heat exchanger. In addition to providing a first bypass line via a second check valve,
A second bypass pipe is provided via a bypass solenoid valve between a pipe connecting the outlet of the outdoor heat exchanger and the first check valve and the inlet of the compressor. vending machine.
冷媒を圧縮する圧縮機と、冷媒を凝縮する室外熱交換器と、冷媒を膨張させる膨張手段と、冷媒を蒸発させて室内を冷却する複数の第1室内熱交換器とを配管接続してなる冷却循環回路を構成するとともに、
前記圧縮機と、冷媒を凝縮させて室内を加熱する第2室内熱交換器と、前記膨張手段と、冷媒を蒸発させて室内を冷却する前記第1室内熱交換器とを順次配管接続してなる冷却加熱循環回路を構成した冷媒循環回路を有する自動販売機において、
前記室外熱交換器への冷媒の流れを阻止する態様で、前記室外熱交換器の出口部と前記膨張手段との間に第1逆止弁と、
室外に冷媒を蒸発させる室外蒸発器とを設けるとともに、
前記第1室内熱交換器のみに接続する前記膨張手段の出口よりの管路にバイパス切替電磁弁を設け、当該バイパス切替電磁弁の一の出口部と前記室外蒸発器の入口部との間に第3バイパス管路を設けるとともに、
前記室外蒸発器の出口部と前記圧縮機の入口部との間に第4バイパス管路を設けたことを特徴とする自動販売機。
A compressor that compresses the refrigerant, an outdoor heat exchanger that condenses the refrigerant, expansion means that expands the refrigerant, and a plurality of first indoor heat exchangers that evaporate the refrigerant and cool the room are connected by piping. While configuring the cooling circuit,
The compressor, a second indoor heat exchanger that condenses the refrigerant and heats the room, the expansion means, and the first indoor heat exchanger that evaporates the refrigerant and cools the room are sequentially connected by piping. In a vending machine having a refrigerant circulation circuit that constitutes a cooling and heating circulation circuit,
In a mode of blocking the flow of refrigerant to the outdoor heat exchanger, a first check valve between the outlet portion of the outdoor heat exchanger and the expansion means,
While providing an outdoor evaporator for evaporating the refrigerant outside the room,
A bypass switching electromagnetic valve is provided in a pipe line from the outlet of the expansion means connected only to the first indoor heat exchanger, and between the outlet portion of the bypass switching electromagnetic valve and the inlet portion of the outdoor evaporator. While providing a third bypass line,
A vending machine, wherein a fourth bypass pipe is provided between an outlet portion of the outdoor evaporator and an inlet portion of the compressor.
前記バイパス切替電磁弁の入口部が第1室内熱交換器の出口部に接続したことを特徴とする請求項1または2に記載の自動販売機。   The vending machine according to claim 1 or 2, wherein an inlet portion of the bypass switching electromagnetic valve is connected to an outlet portion of the first indoor heat exchanger.
JP2010031503A 2010-02-16 2010-02-16 vending machine Expired - Fee Related JP5471563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010031503A JP5471563B2 (en) 2010-02-16 2010-02-16 vending machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010031503A JP5471563B2 (en) 2010-02-16 2010-02-16 vending machine

Publications (2)

Publication Number Publication Date
JP2011170441A JP2011170441A (en) 2011-09-01
JP5471563B2 true JP5471563B2 (en) 2014-04-16

Family

ID=44684535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010031503A Expired - Fee Related JP5471563B2 (en) 2010-02-16 2010-02-16 vending machine

Country Status (1)

Country Link
JP (1) JP5471563B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6111066B2 (en) * 2012-12-28 2017-04-05 サンデンホールディングス株式会社 vending machine
JP6207855B2 (en) * 2013-03-25 2017-10-04 サンデンホールディングス株式会社 vending machine
JP2016186403A (en) * 2015-03-27 2016-10-27 富士電機株式会社 Refrigerant circuit device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4924535B2 (en) * 2008-05-15 2012-04-25 富士電機リテイルシステムズ株式会社 vending machine
JP5156923B2 (en) * 2008-12-01 2013-03-06 富士電機株式会社 vending machine

Also Published As

Publication number Publication date
JP2011170441A (en) 2011-09-01

Similar Documents

Publication Publication Date Title
WO2010035512A1 (en) Vending machine
JP5169282B2 (en) vending machine
JP5471563B2 (en) vending machine
JP5375342B2 (en) vending machine
JP5392491B2 (en) Refrigerant circuit
JP5321241B2 (en) vending machine
JP4924535B2 (en) vending machine
JP5471480B2 (en) vending machine
JP4911105B2 (en) vending machine
JP5407621B2 (en) Cooling and heating device
JP5434423B2 (en) vending machine
JP5471518B2 (en) vending machine
JP5569634B2 (en) Operation method of cooling heating device
JP5229057B2 (en) vending machine
JP5240016B2 (en) vending machine
JP5228965B2 (en) vending machine
JP2010152673A (en) Vending machine
JP5240017B2 (en) vending machine
JP2009169495A (en) Vending machine
JP5240030B2 (en) vending machine
JP2009245192A (en) Vending machine
JP4548540B2 (en) vending machine
JP2011127848A (en) Refrigerant circuit
JP2011170648A (en) Vending machine
JP5056425B2 (en) vending machine

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110301

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121025

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130111

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131226

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140120

R150 Certificate of patent or registration of utility model

Ref document number: 5471563

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees