JP5471156B2 - Control device for permanent magnet type synchronous motor - Google Patents

Control device for permanent magnet type synchronous motor Download PDF

Info

Publication number
JP5471156B2
JP5471156B2 JP2009191521A JP2009191521A JP5471156B2 JP 5471156 B2 JP5471156 B2 JP 5471156B2 JP 2009191521 A JP2009191521 A JP 2009191521A JP 2009191521 A JP2009191521 A JP 2009191521A JP 5471156 B2 JP5471156 B2 JP 5471156B2
Authority
JP
Japan
Prior art keywords
permanent magnet
value
armature resistance
magnetic flux
estimation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009191521A
Other languages
Japanese (ja)
Other versions
JP2011045185A (en
Inventor
尚史 野村
康 松本
岳志 黒田
信夫 糸魚川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2009191521A priority Critical patent/JP5471156B2/en
Publication of JP2011045185A publication Critical patent/JP2011045185A/en
Application granted granted Critical
Publication of JP5471156B2 publication Critical patent/JP5471156B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Electric Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

本発明は、電力変換器を用いて永久磁石形同期電動機の速度及びトルクを制御する制御装置において、電動機を運転しながらその電機子抵抗及び永久磁石磁束を高精度に推定する技術に関するものである。   The present invention relates to a technology for controlling the speed and torque of a permanent magnet type synchronous motor using a power converter and estimating the armature resistance and permanent magnet magnetic flux with high accuracy while operating the motor. .

永久磁石形同期電動機のトルクは、回転子の永久磁石によって発生する磁束の大きさにほぼ比例する。このため、トルクを高精度に制御するためには、永久磁石の磁束を事前に測定し、これに基づいて電流を制御するのがよい。ところが、永久磁石磁束は温度によって変化するため、重負荷時のように永久磁石の温度が上昇する場合や周囲温度が変化した場合に、トルク制御精度が低下する問題がある。   The torque of the permanent magnet type synchronous motor is substantially proportional to the magnitude of the magnetic flux generated by the permanent magnet of the rotor. For this reason, in order to control the torque with high accuracy, it is preferable to measure the magnetic flux of the permanent magnet in advance and control the current based on this. However, since the permanent magnet magnetic flux changes depending on the temperature, there is a problem that the torque control accuracy decreases when the temperature of the permanent magnet rises or the ambient temperature changes like during heavy load.

一方、永久磁石形同期電動機の制御装置をコストダウンするため、磁極位置検出器を使用しないで運転する、いわゆる、センサレス制御が実用化されている。
センサレス制御は、電動機の端子電圧や電流の情報から回転子の磁極位置と速度とを演算し、これらに基づいて電流制御を行ってトルク制御や速度制御を実現するものである。
On the other hand, in order to reduce the cost of a control device for a permanent magnet type synchronous motor, so-called sensorless control that is operated without using a magnetic pole position detector has been put into practical use.
In the sensorless control, the magnetic pole position and speed of the rotor are calculated from information on the terminal voltage and current of the electric motor, and current control is performed based on these to realize torque control and speed control.

例えば、この種のセンサレス制御技術として、特許文献1や非特許文献1には、回転子の磁極方向に対して直交方向に発生する拡張誘起電圧を演算し、拡張誘起電圧の角度から磁極位置の演算誤差を検出し、これを利用して磁極位置と速度とを演算する技術が開示されている。
しかし、特許文献1や非特許文献1に開示されている従来技術では、電動機の低速運転時に、電機子抵抗の設定誤差や温度変化によって拡張誘起電圧ひいては磁極位置の演算誤差が大きくなり、この結果、トルク制御誤差が発生したり、運転不能になる等の問題がある。
そこで、電動機の運転状態に応じて電機子抵抗を正確に推定し、高精度なセンサレス制御を行うようにした従来技術が、以下のように公知となっている。
For example, as this type of sensorless control technology, Patent Document 1 and Non-Patent Document 1 calculate an expansion induced voltage generated in a direction orthogonal to the magnetic pole direction of the rotor, and calculate the magnetic pole position from the angle of the expansion induced voltage A technique for detecting a calculation error and calculating the magnetic pole position and speed using the calculation error is disclosed.
However, in the prior art disclosed in Patent Literature 1 and Non-Patent Literature 1, during the low-speed operation of the motor, the setting error of the armature resistance and the temperature change increase the calculation error of the expansion induced voltage and hence the magnetic pole position. There are problems such as occurrence of torque control errors and inability to operate.
Therefore, a conventional technique in which the armature resistance is accurately estimated according to the operating state of the motor and high-precision sensorless control is performed is known as follows.

例えば、特許文献2には、電動機の電圧方程式から演算した永久磁石磁束から電機子巻線の温度を推定すると共に、永久磁石及び電機子巻線の温度係数を用いて電機子抵抗等の電動機定数を正確に推定し、磁極位置を演算する技術が開示されている。また、非特許文献2には、電動機の電圧方程式に基づいて演算した電流推定値の誤差から電機子抵抗及び永久磁石磁束を推定するセンサレス制御技術が開示されている。   For example, in Patent Document 2, the temperature of the armature winding is estimated from the permanent magnet magnetic flux calculated from the voltage equation of the motor, and the motor constant such as the armature resistance is calculated using the temperature coefficient of the permanent magnet and the armature winding. A technique for accurately estimating the magnetic pole position and calculating the magnetic pole position is disclosed. Non-Patent Document 2 discloses a sensorless control technique for estimating an armature resistance and a permanent magnet magnetic flux from an error in an estimated current value calculated based on a voltage equation of an electric motor.

特許第3411878号公報(段落[0132]〜[0141]、図1,図8等)Japanese Patent No. 3411878 (paragraphs [0132] to [0141], FIG. 1, FIG. 8, etc.) 特開2008−92649号公報(請求項3〜5、請求項9,11、段落[0014],[0022]〜[0026]、図1、図3等)JP-A-2008-92649 (Claims 3 to 5, Claims 9 and 11, paragraphs [0014], [0022] to [0026], FIG. 1, FIG. 3, etc.)

Takashi Aihara, Akio Toba, Takao Yanase, Akihide Mashimo, and Kenji Endo,「Sensorless Torque Control of Salient-Pole Synchronous Motor at Zero-Speed Operation」,IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 14, NO.1, JANUARY 1999Takashi Aihara, Akio Toba, Takao Yanase, Akihide Mashimo, and Kenji Endo, “Sensorless Torque Control of Salient-Pole Synchronous Motor at Zero-Speed Operation”, IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 14, NO.1, JANUARY 1999 福本 哲哉,富樫 重則,井上 淳,林 洋一,「固定子抵抗と永久磁石鎖交磁束のオンライン同時同定によるIPMSM位置センサレスベクトル制御の高性能化」,電気学会半導体電力変換研究会資料,SPC-08-80,p.41〜p.46Tetsuya Fukumoto, Shigenori Togashi, Satoshi Inoue, Yoichi Hayashi, “High-performance IPMSM position sensorless vector control by simultaneous on-line identification of stator resistance and permanent magnet flux linkage”, IEEJ Semiconductor Power Conversion Study Materials, SPC-08 -80, p.41-p.46

特許文献2や非特許文献2に開示された従来技術では、演算が複雑であるため制御装置のコストが上昇する恐れがある。また、制御定数の設計が困難であることから、所望の電機子抵抗推定値及び永久磁石磁束推定値の応答を得るのが困難である。
更に、実用化のためには、推定値の誤差が過大になるのを防止するため、運転条件に応じて推定演算を実行したり停止したりする必要がある。例えば、特許文献2には、低速時や電流が大きい時に電機子抵抗の推定演算を停止することによって推定誤差が過大になるのを防ぐ方法が記載されているが、推定演算を停止する直前に推定誤差が大きくなった場合には、電機子抵抗推定値が大きな誤差を持ったまま保持され、磁極位置の演算誤差がかえって大きくなる恐れがある。
In the prior art disclosed in Patent Document 2 and Non-Patent Document 2, the calculation is complicated, and thus the cost of the control device may increase. In addition, since it is difficult to design the control constant, it is difficult to obtain a response of a desired armature resistance estimated value and a permanent magnet magnetic flux estimated value.
Furthermore, for practical use, in order to prevent an error in the estimated value from becoming excessive, it is necessary to execute or stop the estimation calculation according to the operating conditions. For example, Patent Document 2 describes a method of preventing an estimation error from becoming excessive by stopping the armature resistance estimation calculation at low speed or when the current is large, but immediately before stopping the estimation calculation. When the estimation error increases, the armature resistance estimation value is held with a large error, and the calculation error of the magnetic pole position may be increased.

そこで、本発明の解決課題は、電機子抵抗及び永久磁石磁束を高精度に推定して磁極位置演算精度、トルク及び速度制御精度を向上させた永久磁石形同期電動機の制御装置を提供することにある。   SUMMARY OF THE INVENTION Accordingly, the problem to be solved by the present invention is to provide a control device for a permanent magnet type synchronous motor in which armature resistance and permanent magnet magnetic flux are estimated with high accuracy to improve magnetic pole position calculation accuracy, torque and speed control accuracy. is there.

上記課題を解決するため、請求項1に係る制御装置は、電力変換器により駆動される永久磁石形同期電動機の制御装置であって、前記電動機の等価電機子抵抗推定値及び永久磁石磁束推定値に基づいて前記電動機の速度及びトルクを制御する制御装置において、
前記電動機の電圧方程式、及び、等価電機子抵抗の温度による変化量と永久磁石磁束の温度による変化量との関係に基づく温度変化評価関数を用いて、前記等価電機子抵抗推定値の誤差、及び、前記永久磁石磁束推定値の誤差を演算する電気定数推定誤差演算手段と、
前記等価電機子抵抗推定値の誤差を増幅して得た補正量により等価電機子抵抗の初期設定値を補正して前記等価電機子抵抗推定値を演算する第1の等価電機子抵抗推定手段と、
前記永久磁石磁束推定値の誤差を増幅して得た補正量により永久磁石磁束の初期設定値を補正して前記永久磁石磁束推定値を演算する第1の永久磁石磁束推定手段と、を備えたものである。
これにより、温度変化に起因する等価電機子抵抗推定値の誤差、及び、永久磁石磁束推定値の誤差を反映させて等価電機子抵抗及び永久磁石磁束を同時かつ高応答に推定し、これらの推定値をそれぞれの真値に収束させることができる。
In order to solve the above-mentioned problem, a control device according to claim 1 is a control device for a permanent magnet type synchronous motor driven by a power converter, and is an equivalent armature resistance estimation value and a permanent magnet magnetic flux estimation value of the motor. In the control device for controlling the speed and torque of the electric motor based on
Using a temperature change evaluation function based on the voltage equation of the motor and the relationship between the change amount due to the temperature of the equivalent armature resistance and the change amount due to the temperature of the permanent magnet magnetic flux, an error in the equivalent armature resistance estimation value, and An electric constant estimation error calculating means for calculating an error of the permanent magnet magnetic flux estimated value;
First equivalent armature resistance estimation means for calculating an equivalent armature resistance estimation value by correcting an initial setting value of the equivalent armature resistance by a correction amount obtained by amplifying an error of the equivalent armature resistance estimation value; ,
First permanent magnet magnetic flux estimation means for correcting the initial set value of the permanent magnet magnetic flux by a correction amount obtained by amplifying the error of the permanent magnet magnetic flux estimated value and calculating the permanent magnet magnetic flux estimated value. Is.
As a result, the equivalent armature resistance and the permanent magnet magnetic flux are estimated simultaneously and with high response by reflecting the error of the equivalent armature resistance estimated value due to the temperature change and the error of the permanent magnet magnetic flux estimation value, and these estimates Values can converge to their true values.

請求項2に係る制御装置は、請求項1における電気定数推定誤差演算手段を具体化したものである。
すなわち、電気定数推定誤差演算手段は、前記電動機の電流検出値、速度推定値、前記等価電機子抵抗推定値、前記永久磁石磁束推定値及び電動機定数を用いて前記電動機の回転子磁極方向のd軸に対応した制御演算上のδ軸電圧推定値を演算する電圧推定手段と、
前記δ軸電圧推定値とδ軸電圧検出値との偏差であるδ軸電圧推定誤差を演算する手段と、
前記等価電機子抵抗推定値、前記永久磁石磁束推定値、前記電動機の電機子巻線の温度係数、永久磁石の温度係数、基準温度における等価電機子抵抗、及び、基準温度における永久磁石磁束を用いて前記温度変化評価関数を演算する手段と、
前記δ軸電圧推定誤差、前記温度変化評価関数、前記電動機の電流検出値及び速度推定値を用いて、前記等価電機子抵抗推定値の誤差、及び、前記永久磁石磁束推定値の誤差を演算する手段と、を備えている。
A control device according to a second aspect of the present invention embodies the electric constant estimation error calculating means according to the first aspect.
An electrical constants estimated error calculating means, a current detection value of the motor speed estimated value, the equivalent armature resistance estimate using said permanent magnet flux estimation value and the motor constants, the rotor magnetic pole direction of the electric motor a voltage estimating means you calculating a δ-axis voltage estimated value on the control operation corresponding to the d-axis,
Means for calculating a δ-axis voltage estimation error that is a deviation between the δ-axis voltage estimated value and the δ-axis voltage detected value;
Using the equivalent armature resistance estimation value, the permanent magnet magnetic flux estimation value, the temperature coefficient of the armature winding of the motor, the temperature coefficient of the permanent magnet, the equivalent armature resistance at the reference temperature, and the permanent magnet magnetic flux at the reference temperature Means for calculating the temperature change evaluation function;
Using the δ-axis voltage estimation error, the temperature change evaluation function, the current detection value and the speed estimation value of the motor, the error of the equivalent armature resistance estimation value and the error of the permanent magnet magnetic flux estimation value are calculated. Means.

請求項3に係る制御装置は、請求項1または2における温度変化評価関数を電機子巻線温度と永久磁石温度とが異なる場合にも正確に演算できるように、前記温度変化評価関数を、電動機の電機子巻線の熱抵抗と永久磁石の熱抵抗との関数としたものである。   According to a third aspect of the present invention, there is provided a control device comprising: the temperature change evaluation function according to claim 1 or 2 so that the temperature change evaluation function can be accurately calculated even when the armature winding temperature and the permanent magnet temperature are different. This is a function of the thermal resistance of the armature winding and the thermal resistance of the permanent magnet.

請求項4に係る制御装置は、請求項1または2における温度変化評価関数を配線抵抗が大きい場合にも正確に演算できるように、前記温度変化評価関数を、電動機の電機子巻線の熱抵抗、永久磁石の熱抵抗、配線の熱抵抗、配線の温度係数、基準温度における配線抵抗、永久磁石の熱時定数、及び、電動機の鉄損の関数としたものである。   According to a fourth aspect of the present invention, there is provided the control device according to the first or second aspect, wherein the temperature change evaluation function can be accurately calculated even when the wiring resistance is large. It is a function of the thermal resistance of the permanent magnet, the thermal resistance of the wiring, the temperature coefficient of the wiring, the wiring resistance at the reference temperature, the thermal time constant of the permanent magnet, and the iron loss of the motor.

請求項5に係る制御装置は、請求項1〜4の何れか1項における第1の等価電機子抵抗推定手段または第1の永久磁石磁束推定手段の構成を改良し、等価電機子抵抗推定値または永久磁石磁束推定値をより正確に演算可能としたものであり、この制御装置は、電動機の電流検出値及び速度推定値に応じて、第1の等価電機子抵抗推定手段または第1の永久磁石磁束推定手段の少なくとも一方のゲインを制御する手段を備えたことを特徴とする。 According to a fifth aspect of the present invention, there is provided a control device that improves the configuration of the first equivalent armature resistance estimation means or the first permanent magnet magnetic flux estimation means according to any one of the first to fourth aspects, and provides an equivalent armature resistance estimation value. Alternatively, the estimated value of the permanent magnet magnetic flux can be calculated more accurately, and this control device can perform the first equivalent armature resistance estimation means or the first permanent according to the current detection value and the speed estimation value of the motor. A means for controlling the gain of at least one of the magnetic flux estimating means is provided.

請求項6に係る制御装置は、請求項1〜5の何れか1項に記載した制御装置に第2の永久磁石磁束推定手段を付加したものであり、広い運転条件で永久磁石磁束を正確に推定可能としたものである。
すなわち、この制御装置は、前記電動機の熱モデルに基づいて永久磁石磁束の初期設定値からの変化量を演算する手段と、
前記永久磁石磁束の初期設定値からの変化量に基づく補正量により前記永久磁石磁束の初期設定値を補正して永久磁石磁束推定値を演算する第2の永久磁石磁束推定手段と、
前記第1の永久磁石磁束推定手段における補正量と前記第2の永久磁石磁束推定手段における補正量との何れかを選択する手段と、を備えたものである。
A control device according to a sixth aspect is obtained by adding the second permanent magnet magnetic flux estimating means to the control device according to any one of the first to fifth aspects so that the permanent magnet magnetic flux can be accurately obtained under a wide range of operating conditions. It can be estimated.
That is, the control device calculates a change amount from the initial setting value of the permanent magnet magnetic flux based on the thermal model of the electric motor,
A second permanent magnet magnetic flux estimating means for correcting an initial set value of the permanent magnet magnetic flux by a correction amount based on an amount of change from an initial set value of the permanent magnet magnetic flux and calculating a permanent magnet magnetic flux estimated value;
Means for selecting one of a correction amount in the first permanent magnet magnetic flux estimation means and a correction amount in the second permanent magnet magnetic flux estimation means.

請求項7に係る制御装置は、請求項1〜6の何れか1項に記載した制御装置に第2の等価電機子抵抗推定手段を付加し、広い運転条件で等価電機子抵抗を正確に推定可能としたものである。
すなわち、この制御装置は、前記電動機の熱モデルに基づいて等価電機子抵抗の初期設定値からの変化量を演算する手段と、
前記等価電機子抵抗の初期設定値からの変化量に基づく補正量により前記等価電機子抵抗の初期設定値を補正して等価電機子抵抗推定値を演算する第2の等価電機子抵抗推定手段と、
前記第1の等価電機子抵抗推定手段における補正量と前記第2の等価電機子抵抗推定手段における補正量との何れかを選択する手段と、を備えたものである。
The control device according to claim 7 adds the second equivalent armature resistance estimation means to the control device according to any one of claims 1 to 6, and accurately estimates the equivalent armature resistance under a wide range of operating conditions. It is possible.
That is, the control device includes means for calculating a change amount from an initial setting value of the equivalent armature resistance based on the thermal model of the electric motor,
Second equivalent armature resistance estimation means for calculating an equivalent armature resistance estimation value by correcting the initial setting value of the equivalent armature resistance by a correction amount based on an amount of change from the initial setting value of the equivalent armature resistance; ,
And means for selecting one of a correction amount in the first equivalent armature resistance estimation means and a correction amount in the second equivalent armature resistance estimation means.

請求項8に係る制御装置は、請求項7における等価電機子抵抗の初期設定値からの変化量を演算する演算手段を改良し、配線抵抗が大きい場合にも等価電機子抵抗を正確に推定可能としたものであり、上記演算手段は、電動機の熱モデルと配線の熱モデルとに基づいて、等価電機子抵抗の初期設定値からの変化量を演算するものである。   The control device according to claim 8 improves the calculation means for calculating the amount of change from the initial setting value of the equivalent armature resistance in claim 7, and can accurately estimate the equivalent armature resistance even when the wiring resistance is large. The calculation means calculates the amount of change from the initial set value of the equivalent armature resistance based on the thermal model of the motor and the thermal model of the wiring.

請求項9に係る制御装置は、請求項1〜8の何れか1項に記載した制御装置に第3の等価電機子抵抗推定手段を付加し、広い運転条件で等価電機子抵抗と永久磁石磁束とを正確に推定可能としたものであり、前記電動機の電圧方程式から演算した前記等価電機子抵抗推定値の誤差に基づく補正量により前記等価電機子抵抗の初期設定値を補正して等価電機子抵抗推定値を演算する第3の等価電機子抵抗推定手段と、前記第1の等価電機子抵抗推定手段における補正量と前記第3の等価電機子抵抗推定手段における補正量との何れかを選択する手段と、を備えたものである。 According to a ninth aspect of the present invention, there is provided a control device according to any one of the first to eighth aspects, wherein a third equivalent armature resistance estimating unit is added to the control device according to any one of the first to eighth aspects. Can be accurately estimated, and the equivalent armature is corrected by correcting the initial set value of the equivalent armature resistance by a correction amount based on an error in the estimated value of the equivalent armature resistance calculated from the voltage equation of the motor. A third equivalent armature resistance estimating means for calculating an estimated resistance value, a correction amount in the first equivalent armature resistance estimating means, or a correction amount in the third equivalent armature resistance estimating means is selected. Means for performing.

本発明によれば、温度変化に起因する推定誤差に基づき等価電機子抵抗及び永久磁石磁束をそれぞれ正確に推定することができ、これによって電動機のトルク制御精度や磁極位置演算精度の向上が可能になる。また、複数の推定手段を併用することにより、等価電機子抵抗及び永久磁石磁束を広い運転条件で高精度に推定することができる。   According to the present invention, it is possible to accurately estimate the equivalent armature resistance and the permanent magnet magnetic flux based on the estimation error caused by the temperature change, respectively, thereby improving the motor torque control accuracy and the magnetic pole position calculation accuracy. Become. Further, by using a plurality of estimation means in combination, the equivalent armature resistance and the permanent magnet magnetic flux can be estimated with high accuracy under a wide range of operating conditions.

本発明の実施形態に係る速度制御系のブロック図である。It is a block diagram of the speed control system which concerns on embodiment of this invention. d,q軸及びγ,δ軸の関係を示すベクトル図である。It is a vector diagram which shows the relationship of d, q axis | shaft and (gamma), (delta) axis. 実施例1に係る電気定数推定手段の構成を示すブロック図である。It is a block diagram which shows the structure of the electrical constant estimation means which concerns on Example 1. FIG. 実施例4に係る電気定数推定手段の構成を示すブロック図である。It is a block diagram which shows the structure of the electrical constant estimation means which concerns on Example 4. FIG. 実施例5に係る電気定数推定手段の構成を示すブロック図である。It is a block diagram which shows the structure of the electrical constant estimation means which concerns on Example 5. FIG. 実施例6に係る電気定数推定手段の構成を示すブロック図である。It is a block diagram which shows the structure of the electrical constant estimation means based on Example 6. FIG. 実施例7に係る電気定数推定手段の構成を示すブロック図である。It is a block diagram which shows the structure of the electrical constant estimation means which concerns on Example 7. FIG. 実施例8に係る電気定数推定手段の構成を示すブロック図である。It is a block diagram which shows the structure of the electrical constant estimation means based on Example 8. FIG. 実施例4,6,7における重み係数の関数を示すグラフである。It is a graph which shows the function of the weighting coefficient in Examples 4, 6, and 7. 実施例5における重み係数の関数を示すグラフである。10 is a graph showing a function of a weighting coefficient in Example 5. 実施例8における重み係数の関数を示すグラフである。10 is a graph showing a function of a weighting coefficient in Example 8.

以下、図に沿って本発明の実施形態を説明する。図1は、この実施形態に係る速度制御系のブロック図である。
まず、速度推定値ω及び磁極位置推定値θの演算について説明する。
永久磁石形同期電動機は、電動機の電流を回転子のd軸(回転子の磁極方向の軸)とd軸から90度進んだq軸とに分解して制御することにより、トルクや速度を高精度に制御することが可能である。しかしながら、磁極位置検出器を持たない場合、d,q軸を直接検出することができない。このため、d,q軸に対応した直交回転座標のγ,δ軸を制御装置内に想定し、このγ,δ軸上で制御演算を行っている。
図2は、これらのd,q軸及びγ,δ軸の関係を示すベクトル図である。図2において、ωは回転子の速度推定値(γ,δ軸の回転角速度)、ωは速度実際値(d,q軸の回転角速度)、θerrはγ,δ軸とd,q軸との角度差(磁極位置演算誤差)である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram of a speed control system according to this embodiment.
First, the calculation of the speed estimated value ω 1 and the magnetic pole position estimated value θ 1 will be described.
Permanent magnet synchronous motors increase torque and speed by controlling the motor current by breaking it down into the d-axis of the rotor (axis in the magnetic pole direction of the rotor) and the q-axis advanced 90 degrees from the d-axis. It is possible to control the accuracy. However, when the magnetic pole position detector is not provided, the d and q axes cannot be directly detected. For this reason, γ and δ axes of orthogonal rotation coordinates corresponding to the d and q axes are assumed in the control device, and control calculation is performed on the γ and δ axes.
FIG. 2 is a vector diagram showing the relationship between the d and q axes and the γ and δ axes. In FIG. 2, ω 1 is the estimated rotor speed (rotational angular speeds of γ and δ axes), ω r is the actual speed value (rotating angular speeds of d and q axes), and θ err is the γ and δ axes and d, q This is the angle difference from the shaft (magnetic pole position calculation error).

図1において、速度推定手段31は、γ軸電圧指令値vγ 、δ軸電圧指令値vδ 、γ軸電流検出値iγ、δ軸電流検出値iδから、永久磁石形同期電動機80の電圧方程式に基づいてγ,δ軸とd,q軸との角度差θerrを演算し、この角度差θerrを増幅して速度推定値ωを演算する。
速度推定手段31における角度差θerrの演算には、電気定数推定手段41により求めた等価電機子抵抗推定値Raestを用いる。ここで、等価電機子抵抗は、電動機80の電機子抵抗と、電動機80と電力変換器70との間の配線抵抗との和として定義する。
電気角演算器32は、速度推定手段31から出力される速度推定値ωを積分して磁極位置推定値θを演算する。
これらの演算によって角度差θerrを零に収束させることができ、速度推定値ω及び磁極位置推定値θを真値に収束させることができる。
In FIG. 1, the speed estimation means 31 is based on a γ-axis voltage command value v γ * , a δ-axis voltage command value v δ * , a γ-axis current detection value i γ , and a δ-axis current detection value i δ. An angular difference θ err between the γ and δ axes and the d and q axes is calculated based on the 80 voltage equation, and the estimated angular speed ω 1 is calculated by amplifying the angular difference θ err .
For the calculation of the angle difference θ err in the speed estimation means 31, the equivalent armature resistance estimation value R aest obtained by the electrical constant estimation means 41 is used. Here, the equivalent armature resistance is defined as the sum of the armature resistance of the motor 80 and the wiring resistance between the motor 80 and the power converter 70.
The electrical angle calculator 32 integrates the speed estimated value ω 1 output from the speed estimating means 31 to calculate the magnetic pole position estimated value θ 1 .
By these calculations, the angle difference θ err can be converged to zero, and the speed estimated value ω 1 and the magnetic pole position estimated value θ 1 can be converged to true values.

次に、速度推定値ω及び磁極位置推定値θを用いて永久磁石形同期電動機80の速度制御を行う方法について説明する。
速度指令値ωと速度推定値ωとの偏差を減算器16により演算し、この偏差を速度調節器17により増幅してトルク指令値τを演算する。電流指令演算器18は、トルク指令値τ及び速度推定値ωと、電気定数推定手段41が演算する永久磁石磁束推定値Ψmestとから、電動機80の端子電圧が電力変換器70の最大出力電圧以下の条件で所望のトルクを出力するようなγ,δ軸電流指令値iγ ,iδ を演算する。
Next, a method for controlling the speed of the permanent magnet type synchronous motor 80 using the estimated speed value ω 1 and the estimated magnetic pole position value θ 1 will be described.
The deviation between the speed command value ω * and the estimated speed value ω 1 is calculated by the subtractor 16, and the deviation is amplified by the speed regulator 17 to calculate the torque command value τ * . The current command calculator 18 determines that the terminal voltage of the electric motor 80 is the maximum of the power converter 70 from the torque command value τ * and the estimated speed value ω 1 and the estimated permanent magnet magnetic flux value Ψ mest calculated by the electric constant estimating means 41. Γ and δ-axis current command values i γ * and i δ * are calculated so as to output a desired torque under the condition of the output voltage or less.

また、u相電流検出器11u、w相電流検出器11wによりそれぞれ検出した相電流検出値i,iは、磁極位置推定値θを用いて電流座標変換器14によりγ,δ軸電流検出値iγ,iδに座標変換する。
γ軸電流指令値iγ とγ軸電流検出値iγとの偏差を減算器19aにて演算し、この偏差をγ軸電流調節器20aにより増幅してγ軸電圧指令値vγ を演算する。一方、δ軸電流指令値iδ とδ軸電流検出値iδとの偏差を減算器19bにて演算し、この偏差をδ軸電流調節器20bにより増幅してδ軸電圧指令値vδ を演算する。
Also, the phase current detection values i u and i w detected by the u-phase current detector 11u and the w-phase current detector 11w are respectively converted into γ and δ-axis currents by the current coordinate converter 14 using the magnetic pole position estimation value θ 1. Coordinates are converted to detected values i γ and i δ .
The deviation between the γ-axis current command value i γ * and the detected γ-axis current value i γ is calculated by the subtractor 19a, and this deviation is amplified by the γ-axis current regulator 20a to obtain the γ-axis voltage command value v γ * . Calculate. On the other hand, the difference between the δ-axis current command value i δ * and the detected δ-axis current value i δ is calculated by the subtractor 19b, and this deviation is amplified by the δ-axis current regulator 20b to be amplified by the δ-axis voltage command value v δ. * Is calculated.

γ,δ軸電圧指令値vγ ,vδ は、電圧座標変換器15により、磁極位置推定値θを用いて相電圧指令値v ,v ,v に変換される。
整流回路60は、三相交流電源50の三相交流電圧を整流して得た直流電圧をインバータ等の電力変換器70に供給する。
PWM回路13は、相電圧指令値v ,v ,v と入力電圧検出回路12により検出した入力電圧検出値Edcとから、電力変換器70の出力電圧を相電圧指令値v ,v ,v に制御するためのゲート信号を生成する。電力変換器70は、上記ゲート信号に基づいて内部の半導体スイッチング素子をオンオフ制御し、電動機80の端子電圧を相電圧指令値v ,v ,v に制御する。
The γ and δ-axis voltage command values v γ * and v δ * are converted by the voltage coordinate converter 15 into phase voltage command values v u * , v v * , and v w * using the magnetic pole position estimated value θ 1. The
The rectifier circuit 60 supplies a DC voltage obtained by rectifying the three-phase AC voltage of the three-phase AC power supply 50 to a power converter 70 such as an inverter.
The PWM circuit 13 calculates the output voltage of the power converter 70 from the phase voltage command values v u * , v v * , v w * and the input voltage detection value E dc detected by the input voltage detection circuit 12. A gate signal for controlling to v u * , v v * , and v w * is generated. The power converter 70 performs on / off control of the internal semiconductor switching element based on the gate signal, and controls the terminal voltage of the electric motor 80 to the phase voltage command values v u * , v v * , v w * .

次に、図1の電気定数推定手段41の構成及び作用を、各実施例により説明する。   Next, the configuration and operation of the electrical constant estimating means 41 in FIG.

まず、図3は、実施例1に係る電気定数推定手段41の構成を示すブロック図であり、請求項1に相当する。
電気定数推定誤差演算器110は、γ,δ軸電流検出値iγ,iδ、δ軸電圧指令値vδ 、速度推定値ω、等価電機子抵抗推定値Raest及び永久磁石磁束推定値Ψmestから、等価電機子抵抗推定誤差演算値Raerrest及び永久磁石磁束推定誤差演算値Ψmerrestを求める。ここで、請求項2に記載の技術によって構成される電気定数推定誤差演算器110の詳細を説明する。
始めに、永久磁石形同期電動機80のδ軸電圧方程式より、δ軸電圧推定値vδestを数式1により演算する。
First, FIG. 3 is a block diagram showing a configuration of the electrical constant estimating means 41 according to the first embodiment, which corresponds to claim 1.
The electrical constant estimation error calculator 110 includes γ, δ-axis current detection values i γ , i δ , δ-axis voltage command value v δ * , speed estimation value ω 1 , equivalent armature resistance estimation value R aest, and permanent magnet flux estimation. the value [psi mest, obtaining an equivalent armature resistance estimation error calculation value R Aerrest and the permanent magnet flux estimation error operation value Ψ merrest. Here, the details of the electric constant estimation error calculator 110 constituted by the technique of claim 2 will be described.
First, the δ-axis voltage estimated value v δest is calculated by Equation 1 from the δ-axis voltage equation of the permanent magnet type synchronous motor 80.

Figure 0005471156
Figure 0005471156

次に、δ軸電圧推定誤差vδerrを、数式2に示すようにδ軸電圧推定値vδestとδ軸電圧指令値vδ との偏差から演算する。このδ軸電圧推定誤差vδerrは、等価電機子抵抗推定値Raestの誤差と永久磁石磁束推定値Ψmestの誤差に比例する。 Next, the δ-axis voltage estimation error v δerr is calculated from the deviation between the δ-axis voltage estimated value v δest and the δ-axis voltage command value v δ * as shown in Equation 2. This δ-axis voltage estimation error v δerr is proportional to the error of the equivalent armature resistance estimation value R aest and the error of the permanent magnet magnetic flux estimation value ψ mest .

Figure 0005471156
Figure 0005471156

次いで、等価電機子抵抗の温度による変化量と永久磁石磁束の温度による変化量との関係に基づく温度変化評価関数を導出する。
まず、温度変化に起因する永久磁石磁束の無負荷時(永久磁石温度が周囲温度Tに等しいとき)からの変化量(永久磁石磁束の温度による変化量)は、数式3によって表される。
Next, a temperature change evaluation function based on the relationship between the change amount of the equivalent armature resistance due to the temperature and the change amount of the permanent magnet magnetic flux due to the temperature is derived.
First, the amount of change from the no-load of the permanent magnet flux (when the permanent magnet temperature is equal to ambient temperature T a) due to the temperature change (variation with temperature of the permanent magnet flux) is represented by Equation 3.

Figure 0005471156
Figure 0005471156

また、温度変化に起因する等価電機子抵抗Rの無負荷時からの変化量(等価電機子抵抗の温度による変化量)は、数式4に示す如く、電機子抵抗Rの無負荷時からの変化量と、配線抵抗Rの無負荷時からの変化量との和になる。 Further, the amount of change from the no-load of the equivalent armature resistance R a due to temperature changes (amount change with temperature equivalent armature resistance), as shown in Equation 4, from the time of no load of the armature resistance R w and the amount of change, the sum of the amount of change from the no-load of the wiring resistance R l.

Figure 0005471156
Figure 0005471156

ここで、配線抵抗Rが無視でき、永久磁石温度と電機子巻線温度とが等しい場合について、温度変化評価関数を導出する。
永久磁石温度と電機子巻線温度とが等しい場合、永久磁石の熱抵抗Rthmと電機子巻線の熱抵抗Rthwとは等しく、かつ、永久磁石の熱時定数Tthmと電機子巻線の熱時定数Tthwとは等しい。数式3及び数式4から電動機の損失Qmotorを消去すると、数式5が導出される。
Here, the wiring resistance R l is negligible, the case and the permanent magnet temperature and the armature winding temperature is equal to derive the temperature change evaluation function.
When the permanent magnet temperature and the armature winding temperature are equal, the thermal resistance R thm of the permanent magnet and the thermal resistance R thw of the armature winding are equal, and the thermal time constant T thm of the permanent magnet and the armature winding Is equal to the thermal time constant T thw . By eliminating the motor loss Q motor from Equation 3 and Equation 4, Equation 5 is derived.

Figure 0005471156
Figure 0005471156

後述するように、等価電機子抵抗の初期設定値と永久磁石磁束の初期設定値とを平均温度時の値に設定していることから、数式5における無負荷時の等価電機子抵抗Ra(Ta)と無負荷時の永久磁石磁束Ψm(Ta)とを、それぞれ、平均温度時の等価電機子抵抗Ra(AVE)と平均温度時の永久磁石磁束Ψm(AVE)とに置き換え、等価電機子抵抗Rと永久磁石磁束Ψとを、それぞれ、等価電機子抵抗推定値Raestと永久磁石磁束推定値Ψmestとに置き換えることにより、温度変化評価関数fthを数式6によって演算する。 As will be described later, since the initial setting value of the equivalent armature resistance and the initial setting value of the permanent magnet magnetic flux are set to values at the average temperature, the equivalent armature resistance R a ( Ta) and the permanent magnet magnetic flux Ψ m (Ta) at no load are replaced with the equivalent armature resistance Ra (AVE) at the average temperature and the permanent magnet magnetic flux Ψ m (AVE) at the average temperature, respectively. By replacing the equivalent armature resistance R a and the permanent magnet magnetic flux Ψ m with the equivalent armature resistance estimated value R aest and the permanent magnet magnetic flux estimated value Ψ mest , respectively, the temperature change evaluation function f th is calculated by Equation 6. To do.

Figure 0005471156
Figure 0005471156

数式6により演算した温度変化評価関数fthは、等価電機子抵抗推定値Raestの誤差と永久磁石磁束推定値Ψmestの誤差の関数である。また、等価電機子抵抗推定値Raest及び永久磁石磁束推定値Ψmestが真値に等しい場合、温度変化評価関数fthは零になる。
図3における電気定数推定誤差演算器110は、数式2のδ軸電圧推定誤差vδerrと数式6の温度変化評価関数fthとから、数式7を用いて、等価電機子抵抗推定誤差演算値Raerrest及び永久磁石磁束推定誤差演算値Ψmerrestを求める。
The temperature change evaluation function f th calculated by Expression 6 is a function of the error of the equivalent armature resistance estimated value R aest and the error of the permanent magnet magnetic flux estimated value Ψ mest . Further, when the equivalent armature resistance estimated value R aest and the permanent magnet magnetic flux estimated value Ψ mest are equal to the true value, the temperature change evaluation function f th becomes zero.
The electric constant estimation error calculator 110 in FIG. 3 calculates an equivalent armature resistance estimation error calculation value R from the δ-axis voltage estimation error v δerr in Expression 2 and the temperature change evaluation function f th in Expression 6 using Expression 7. aerrest and permanent magnet magnetic flux estimation error calculation value Ψ merrest are obtained.

Figure 0005471156
Figure 0005471156

等価電機子抵抗推定誤差演算値Raerrestは反転増幅器121により反転増幅され、電機子抵抗推定ゲインGRaを乗じた後、積分器122により積分されて等価電機子抵抗補正値Racompが演算される。また、数式8に示すように、平均温度時の等価電機子抵抗Ra(AVE)と等価電機子抵抗補正値Racompとが加算器123により加算され、等価電機子抵抗推定値Raestとして図1の速度推定手段31に送られることになる。
なお、等価電機子抵抗推定値Raestの初期設定値は、平均温度時の等価電機子抵抗Ra(AVE)とする。
Equivalent armature resistance estimation error calculation value R Aerrest is inverted amplified by the inverting amplifier 121, after multiplied by the armature resistance estimated gain G Ra, equivalent armature resistance correction value R acomp is calculated is integrated by the integrator 122 . Further, as shown in Formula 8, the equivalent armature resistance R a (AVE) at the average temperature and the equivalent armature resistance correction value R acomp are added by the adder 123 to obtain an equivalent armature resistance estimated value R aest . 1 speed estimation means 31.
The initial set value of the estimated equivalent armature resistance value Raest is the equivalent armature resistance Ra (AVE) at the average temperature.

Figure 0005471156
Figure 0005471156

平均温度時の等価電機子抵抗Ra(AVE)は、平均温度電機子抵抗演算器124が周囲温度Tに基づいて数式9により演算する。ここで、周囲温度Tは、予め設定された一定値、または、温度検出回路による検出値のいずれでもよい。 The average temperature during the equivalent armature resistance R a (AVE), the average temperature armature resistance calculator 124 is calculated by Equation 9 based on the ambient temperature T a. Here, the ambient temperature T a is preset fixed value, or may be any of the detection value by the temperature detecting circuit.

Figure 0005471156
Figure 0005471156

前述した等価電機子抵抗推定値Raestの演算と同様に、永久磁石磁束推定誤差演算値Ψmerrestを反転増幅器125、永久磁石磁束推定ゲインGΨm及び積分器126に順次入力して永久磁石磁束補正値Ψmcompを演算し、数式10に示すように、加算器127にて平均温度時の永久磁石磁束Ψm(AVE)と永久磁石磁束補正値Ψmcompとを加算して永久磁石磁束推定値Ψmestを演算する。この永久磁石磁束推定値Ψmestは、図1の電流指令演算器18に送られることとなる。
なお、永久磁石磁束推定値Ψmestの初期設定値は、平均温度時の永久磁石磁束Ψm(AVE)とする。
Similar to the calculation of the equivalent armature resistance estimation value R aest described above, the permanent magnet magnetic flux estimation error calculation value Ψ merrest is sequentially input to the inverting amplifier 125, the permanent magnet magnetic flux estimation gain G Ψm, and the integrator 126 to correct the permanent magnet magnetic flux correction. The value Ψ mcomp is calculated, and the permanent magnet magnetic flux Ψ m (AVE) at the average temperature and the permanent magnet magnetic flux correction value Ψ mcomp are added by the adder 127 as shown in Equation 10, and the estimated permanent magnet magnetic flux Ψ Calculate mest . This permanent magnet magnetic flux estimated value Ψ mest is sent to the current command calculator 18 of FIG.
The initial set value of the estimated permanent magnet magnetic flux ψ mest is the permanent magnet magnetic flux ψ m (AVE) at the average temperature.

Figure 0005471156
Figure 0005471156

平均温度時の永久磁石磁束Ψm(AVE)は、平均温度永久磁石磁束演算器128が、周囲温度Tに基づいて数式11により演算する。 The average temperature permanent magnet magnetic flux calculator 128 calculates the permanent magnet magnetic flux Ψ m (AVE) at the average temperature based on the ambient temperature Ta , using Equation 11.

Figure 0005471156
Figure 0005471156

以上の演算処理により、等価電機子抵抗推定誤差演算値Raerrest及び永久磁石磁束推定誤差演算値Ψmerrestが零になるように等価電機子抵抗推定値Raest及び永久磁石磁束推定値Ψmestが演算され、これらの等価電機子抵抗推定値Raest及び永久磁石磁束推定値Ψmestは真値に収束することとなる。
なお、上記構成において、反転増幅器121、ゲインGRa、積分器122、平均温度電機子抵抗演算器124及び加算器123は、請求項における等価電機子抵抗推定手段を構成し、また、反転増幅器125、ゲインGΨm、積分器126、平均温度永久磁石磁束演算器128及び加算器127は、請求項における第1の永久磁石磁束推定手段を構成している。
By the above calculation processing, the equivalent armature resistance estimation value R aest and the permanent magnet magnetic flux estimation value Ψ mest are calculated so that the equivalent armature resistance estimation error calculation value R aerrest and the permanent magnet magnetic flux estimation error calculation value Ψ merrest become zero. Thus, the equivalent armature resistance estimated value R aest and the permanent magnet magnetic flux estimated value Ψ mest converge to a true value.
In the above configuration, the inverting amplifier 121, the gain G Ra , the integrator 122, the average temperature armature resistance calculator 124 and the adder 123 constitute equivalent armature resistance estimation means in the claims, and the inverting amplifier 125. , Gain G Ψm , integrator 126, average temperature permanent magnet magnetic flux calculator 128 and adder 127 constitute the first permanent magnet magnetic flux estimating means in the claims.

次に、本発明の実施例2は、実施例1において永久磁石温度と電機子巻線温度とが異なる場合にも適用できるように温度変化評価関数fthを改良すると共に、これに伴って、等価電機子抵抗推定誤差演算値Raerrest及び永久磁石磁束推定誤差演算値Ψmerrestの演算方法を改良したものである。この実施例2は、請求項3に対応している。 Next, the second embodiment of the present invention improves the temperature change evaluation function f th so that it can be applied even when the permanent magnet temperature and the armature winding temperature are different in the first embodiment. This is an improvement of the calculation method of the equivalent armature resistance estimation error calculation value R aerrest and the permanent magnet magnetic flux estimation error calculation value Ψ merrest . The second embodiment corresponds to the third aspect.

電動機80の配線抵抗Rを無視でき、かつ、永久磁石の熱時定数Tthmと電機子巻線の熱時定数Tthwとが等しいと仮定すると共に、数式3及び数式4により電動機80の損失Qmotorを消去した関係式から、数式6と同様にして温度変化評価関数fthを数式12により演算する。 It is assumed that the wiring resistance R l of the electric motor 80 can be ignored, and that the thermal time constant T thm of the permanent magnet and the thermal time constant T thw of the armature winding are equal, and the loss of the electric motor 80 is calculated according to the equations 3 and 4. A temperature change evaluation function f th is calculated by Expression 12 in the same manner as Expression 6 from the relational expression in which Q motor is eliminated.

Figure 0005471156
Figure 0005471156

等価電機子抵抗推定誤差演算値Raerrest及び永久磁石磁束推定誤差演算値Ψmerrestは、実施例1と同様に数式7により演算するが、温度変化評価関数fthを数式12により演算することから、信号要素z11,z12,z21,z22を数式13のように定める。 The equivalent armature resistance estimation error calculation value R aerrest and the permanent magnet magnetic flux estimation error calculation value Ψ merrest are calculated by Equation 7 as in the first embodiment. However, since the temperature change evaluation function f th is calculated by Equation 12, The signal elements z 11 , z 12 , z 21 , z 22 are defined as in Expression 13.

Figure 0005471156
Figure 0005471156

本発明の実施例3は、前述した実施例1において電動機80の配線抵抗Rを無視できず、かつ、永久磁石温度と電機子巻線温度とが異なる場合にも適用できるように温度変化評価関数fthを改良すると共に、これに伴って等価電機子抵抗推定誤差演算値Raerrest及び永久磁石磁束推定誤差演算値Ψmerrestの演算方法を改良したものである。この実施例3は、請求項4に対応している。 Examples of the present invention 3 can not ignore the wiring resistance R l of the motor 80 in the embodiment 1 described above, and the temperature change estimated as applicable also to a case where the permanent magnet temperature and the armature winding temperature is different The function f th is improved, and the calculation method of the equivalent armature resistance estimation error calculation value R aerrest and the permanent magnet magnetic flux estimation error calculation value Ψ merrest is improved accordingly. The third embodiment corresponds to claim 4.

永久磁石の熱時定数Tthmと電機子巻線の熱時定数Tthwと配線の熱時定数Tthlとが何れも等しいと仮定し、数式3及び数式4により電動機80の損失Qmotor及び配線の損失Qを消去した関係式から、数式6と同様にして温度変化評価関数fthを数式14により演算する。 Suppose the thermal time constant T thw thermal time constant T thm the armature winding of the permanent magnet and the thermal time constant T thl wiring is equal any, loss of the electric motor 80 according to Equation 3 and Equation 4 Q motor and wiring The temperature change evaluation function f th is calculated from Equation 14 in the same manner as Equation 6 from the relational expression in which the loss Q 1 is eliminated.

Figure 0005471156
Figure 0005471156

温度変化評価関数fthを数式14によって演算することから、信号要素z11,z12,z21,z22を数式15のよう定める。 Since the temperature change evaluation function f th is calculated by Equation 14, the signal elements z 11 , z 12 , z 21 , and z 22 are determined as Equation 15.

Figure 0005471156
Figure 0005471156

図4は、本発明の実施例4における電気定数推定手段41のブロック図である。この実施例4は実施例1を改良したものであり、請求項5に対応している。
数式7により演算される等価電機子抵抗推定誤差演算値Raerrest及び永久磁石磁束推定誤差演算値Ψmerrestは、det(Z)が小さいときに誤差の影響を受けやすい。そこで、det(Z)が小さいときに、等価電機子抵抗推定誤差演算値Raerrestから等価電機子抵抗補正値Racompまでのゲイン、及び、永久磁石磁束推定誤差演算値Ψmerrestから永久磁石磁束補正値Ψmcompまでのゲインを減少させることにより、各推定値Raest,Ψmestの誤差が過大になるのを防ぐようにしたものである。なお、これらのゲインは、少なくとも一方を制御可能としても良い。
FIG. 4 is a block diagram of the electrical constant estimating means 41 in Embodiment 4 of the present invention. The fourth embodiment is an improvement of the first embodiment and corresponds to claim 5.
The equivalent armature resistance estimation error calculation value R aerrest and the permanent magnet magnetic flux estimation error calculation value Ψ merrest calculated by Expression 7 are easily affected by an error when det (Z T ) is small. Therefore, when det (Z T ) is small, the gain from the equivalent armature resistance estimation error calculation value R aerrest to the equivalent armature resistance correction value R acomp , and the permanent magnet magnetic flux estimation error calculation value Ψ merrest to the permanent magnet magnetic flux By reducing the gain up to the correction value Ψ mcomp , the error of each estimated value R aest , Ψ mest is prevented from becoming excessive. Note that at least one of these gains may be controllable.

まず、等価電機子抵抗推定値Raestの演算方法について説明する。
図4において、第1の重み係数WRaと第2の重み係数(1−WRa)との和を“1”とし、これらの重み係数WRa,(1−WRa)の上限値を“1”、下限値を“零”とする。このとき、反転増幅器121、第1の重み係数WRa、減算器129、電機子抵抗推定ゲインGRa、積分器122、第2の重み係数(1−WRa)、加算器123により、等価電機子抵抗の真値Rから等価電機子抵抗推定値Raestまでの伝達関数は、数式16の関係にある。
この数式16より、第1の重み係数WRaに比例して、等価電機子抵抗の真値Rから等価電機子抵抗推定値Raestまでの伝達関数のゲインを制御できることが明らかである。
First, a calculation method of the equivalent armature resistance estimation value R aest will be described.
In FIG. 4, the sum of the first weight coefficient W Ra and the second weight coefficient (1-W Ra ) is “1”, and the upper limit value of these weight coefficients W Ra , (1-W Ra ) is “ 1 ”and the lower limit value is“ zero ”. At this time, the inverting amplifier 121, the first weighting factor W Ra , the subtractor 129, the armature resistance estimation gain G Ra , the integrator 122, the second weighting factor (1−W Ra ), and the adder 123 are The transfer function from the true value R a of the child resistance to the equivalent armature resistance estimated value R aest has the relationship of Equation 16.
From this formula 16, in proportion to the first weighting factor W Ra, it is clear that to control the gain of the transfer function up to the equivalent armature resistance estimate R aest from the true value R a of the equivalent armature resistance.

Figure 0005471156
Figure 0005471156

同様にして、第3の重み係数WΨmと第4の重み係数(1−WΨm)との和を“1”とし、これらの重み係数WΨm,(1−WΨm)の上限値を“1”、下限値を“零”とする。このとき、反転増幅器125、第3の重み係数WΨm、減算器130、永久磁石推定ゲインGΨm、積分器126、第4の重み係数(1−WΨm)、加算器127によって、永久磁石磁束の真値Ψから永久磁石磁束推定値Ψmestまでの伝達関数のゲインを、第3の重み係数WΨmに比例させて制御することができる。 Similarly, the sum of the third weight coefficient W Ψm and the fourth weight coefficient (1-W Ψm ) is set to “1”, and the upper limit value of these weight coefficients W Ψm , (1-W Ψm ) is set to “1”. 1 ”and the lower limit value is“ zero ”. At this time, the inverting amplifier 125, the third weighting coefficient W Ψm , the subtractor 130, the permanent magnet estimated gain G Ψm , the integrator 126, the fourth weighting coefficient (1−W Ψm ), and the adder 127 are used to generate the permanent magnet magnetic flux. The gain of the transfer function from the true value Ψ m to the permanent magnet magnetic flux estimated value Ψ mest can be controlled in proportion to the third weighting coefficient W Ψm .

ここで、図9は、|det(Z)|から第1の重み係数WRa、第2の重み係数(1−WRa)、第3の重み係数WΨm、第4の重み係数(1−WΨm)を演算する関数を示している。
|det(Z)|がしきい値Xth1よりも小さいときは、第1の重み係数WRa及び第3の重み係数WΨmを“零”、第2の重み係数(1−WRa)及び第4の重み係数(1−WΨm)を“1”に制御する。|det(Z)|がしきい値Xth1としきい値Xth2との間にあるときは、第1の重み係数WRa及び第3の重み係数WΨmを増加させ、第2の重み係数(1−WRa)及び第4の重み係数(1−WΨm)を減少させる。|det(Z)|がしきい値Xth2よりも大きいときは、第1の重み係数WRa及び第3の重み係数WΨmを “1”、第2の重み係数(1−WRa)及び第4の重み係数(1−WΨm)を “零”に制御する。
詳細な説明は省略するが、この実施例4の技術は、実施例2または実施例3にも適用することができる。
Here, FIG. 9 shows | det (Z T ) | from the first weighting factor W Ra , the second weighting factor (1−W Ra ), the third weighting factor W Ψm , and the fourth weighting factor (1 A function for calculating −W Ψm ) is shown.
When | det (Z T ) | is smaller than the threshold value X th1 , the first weight coefficient W Ra and the third weight coefficient W Ψm are set to “zero”, and the second weight coefficient (1−W Ra ). And the fourth weighting coefficient (1−W Ψm ) is controlled to “1”. When | det (Z T ) | is between the threshold value X th1 and the threshold value X th2 , the first weight coefficient W Ra and the third weight coefficient W Ψm are increased, and the second weight coefficient Reduce (1-W Ra ) and the fourth weighting factor (1-W Ψm ). When | det (Z T ) | is larger than the threshold value X th2 , the first weighting factor W Ra and the third weighting factor W Ψm are set to “1”, and the second weighting factor (1−W Ra ) And the fourth weight coefficient (1−W Ψm ) is controlled to “zero”.
Although the detailed description is omitted, the technique of the fourth embodiment can also be applied to the second or third embodiment.

次に、図5は本発明の実施例5における電気定数推定手段41のブロック図を示している。この実施例5は、実施例4に、電動機80の熱モデルを使用して永久磁石磁束を推定する第2の永久磁石磁束推定手段を付加することにより、広い運転条件のもとで永久磁石磁束を高精度に推定できるように改良したものであり、請求項6に対応している。
以下では、実施例1として説明した、電気定数推定誤差演算器110により演算した永久磁石磁束推定誤差演算値Ψmerrestを用いた永久磁石磁束推定手段を第1の永久磁石磁束推定手段と呼ぶ。
この第1の永久磁石磁束推定手段と、実施例5に係る第2の永久磁石磁束推定手段との切り換えは、図5に示すごとく、第3の重み係数WΨm、第4の重み係数(1−WΨm)及び加算器131を用いて、積分器126の入力を制御することにより実現する。
Next, FIG. 5 shows a block diagram of the electrical constant estimating means 41 in Embodiment 5 of the present invention. In the fifth embodiment, the second permanent magnet magnetic flux estimating means for estimating the permanent magnet magnetic flux using the thermal model of the electric motor 80 is added to the fourth embodiment, so that the permanent magnet magnetic flux can be obtained under a wide operating condition. Is improved so that it can be estimated with high accuracy, and corresponds to claim 6.
Hereinafter, the permanent magnet magnetic flux estimation means using the permanent magnet magnetic flux estimation error calculation value Ψ merrest calculated by the electric constant estimation error calculator 110 described as the first embodiment will be referred to as first permanent magnet magnetic flux estimation means.
As shown in FIG. 5, the switching between the first permanent magnet magnetic flux estimating means and the second permanent magnet magnetic flux estimating means according to the fifth embodiment is performed by using a third weight coefficient W Ψm , a fourth weight coefficient (1 This is realized by controlling the input of the integrator 126 using −W Ψm ) and the adder 131.

図5において、第1の永久磁石磁束推定手段を実行する場合は、第3の重み係数WΨmを“1”、第4の重み係数(1−WΨm)を“零”に制御する。この場合、実施例1と同様に、永久磁石磁束推定誤差演算値Ψmerrestを、反転増幅器125、永久磁石磁束推定ゲインGΨm、第3の重み係数WΨm、加算器131、積分器126によって積分制御することで、永久磁石磁束補正値Ψmcompを演算する。 In FIG. 5, when the first permanent magnet magnetic flux estimating means is executed, the third weighting coefficient W Ψm is controlled to “1”, and the fourth weighting coefficient (1−W Ψm ) is controlled to “zero”. In this case, as in the first embodiment, the permanent magnet magnetic flux estimation error calculation value Ψ merrest is integrated by the inverting amplifier 125, the permanent magnet magnetic flux estimation gain G Ψm , the third weight coefficient W Ψm , the adder 131, and the integrator 126. By controlling, the permanent magnet magnetic flux correction value Ψ mcomp is calculated.

一方、第2の永久磁石磁束推定手段を実行する場合は、第3の重み係数WΨmを“零”、第4の重み係数(1−WΨm)を“1”に制御する。
図5における電動機損失演算器132は、電流検出値iγ,iδ及び速度推定値ω等を用いて、電動機80の銅損Q、鉄損Qironをそれぞれ数式17、数式18により演算し、数式19により電動機の損失Qmotorを演算する。
On the other hand, when the second permanent magnet magnetic flux estimating means is executed, the third weighting coefficient W Ψm is controlled to “zero” and the fourth weighting coefficient (1−W Ψm ) is controlled to “1”.
The motor loss calculator 132 in FIG. 5 calculates the copper loss Q w and the iron loss Q iron of the motor 80 by using Formulas 17 and 18, respectively, using the current detection values i γ and i δ and the estimated speed value ω 1. Then, the motor loss Q motor is calculated by Equation 19.

Figure 0005471156
Figure 0005471156

Figure 0005471156
Figure 0005471156

Figure 0005471156
Figure 0005471156

永久磁石磁束変化量演算器133は、電動機80の損失Qmotorに比例して、永久磁石磁束の無負荷時からの変化量ΔΨを数式20により演算する。 The permanent magnet magnetic flux change amount calculator 133 calculates the change amount ΔΨ m of the permanent magnet magnetic flux from no load in accordance with the equation 20 in proportion to the loss Q motor of the electric motor 80.

Figure 0005471156
Figure 0005471156

一方、永久磁石磁束平均変化量演算器134は、永久磁石磁束の無負荷時からの平均変化量ΔΨmAVEを数式21により演算する。 On the other hand, the permanent magnet magnetic flux average change calculator 134 calculates the average change ΔΨ mAVE from the no-load state of the permanent magnet magnetic flux using Equation 21.

Figure 0005471156
Figure 0005471156

減算器135は、永久磁石磁束の無負荷時からの変化量ΔΨから上記平均変化量ΔΨmAVEを減算して、永久磁石磁束の平均温度時からの変化量ΔΨm2を演算する。
永久磁石磁束補正値Ψmcompは、永久磁石磁束変化量演算器133、永久磁石磁束平均変化量演算器134、減算器135,136、時定数係数(1/Tthm)、第4の重み係数(1−WΨm)、加算器131、積分器126により、数式22によって演算される。
Subtractor 135, from the change amount [Delta] [Psi] m from the no-load of the permanent magnet flux by subtracting the mean change [Delta] [Psi] MAVE, calculates the change amount [Delta] [Psi] m @ 2 from the time average temperature of the permanent magnet flux.
The permanent magnet magnetic flux correction value Ψ mcomp is obtained by calculating the permanent magnet magnetic flux change amount calculator 133, the permanent magnet magnetic flux average change amount calculator 134, the subtractors 135 and 136, the time constant coefficient (1 / T thm ), and the fourth weight coefficient ( 1−W Ψm ), the adder 131, and the integrator 126, the calculation is performed according to Equation 22.

Figure 0005471156
Figure 0005471156

数式22におけるRthmmotorは、物理的に永久磁石の温度上昇に等しい。このため、永久磁石磁束補正値Ψmcompは、永久磁石温度が平均上昇値ΔTmAVEだけ変化した場合に零になる。このことから、平均温度時における永久磁石磁束Ψm(AVE)と永久磁石磁束補正値Ψmcompとを加算器127により加算して永久磁石磁束推定値Ψmestを求めれば、永久磁石磁束を正確に推定することができる。
一方、等価電機子抵抗推定値Raestの算出方法は、図4に示した実施例4と同様であり、詳細な説明は省略する。
R thm Q motor in Equation 22 is physically equal to the temperature rise of the permanent magnet. Therefore, the permanent magnet magnetic flux correction value Ψ mcomp becomes zero when the permanent magnet temperature changes by the average increase value ΔT mAVE . From this, the permanent magnet magnetic flux Ψ m (AVE) at the average temperature and the permanent magnet magnetic flux correction value Ψ mcomp are added by the adder 127 to obtain the permanent magnet magnetic flux estimated value Ψ mest , and the permanent magnet magnetic flux is accurately determined. Can be estimated.
On the other hand, the calculation method of the equivalent armature resistance estimated value R aest is the same as that in the fourth embodiment shown in FIG.

次に、第1の重み係数WRa、第2の重み係数(1−WRa)、第3の重み係数WΨm、第4の重み係数(1−WΨm)の算出方法を説明する。
第1の永久磁石磁束推定手段によって永久磁石磁束を高精度に推定できるのは、等価電機子抵抗の温度変化に起因する第1の電圧降下よりも永久磁石磁束の温度変化に起因する第2の電圧降下の方が大きい場合である。ここで、第1の電圧降下と第2の電圧降下との比は、数式7における|z1122|と|z1221|との比に等しい。このことから、重み関数評価関数xを数式23により演算する。
Next, a method of calculating the first weighting factor W Ra , the second weighting factor (1-W Ra ), the third weighting factor W Ψm , and the fourth weighting coefficient (1-W Ψm ) will be described.
The reason why the permanent magnet flux can be estimated with high accuracy by the first permanent magnet flux estimating means is that the second voltage caused by the temperature change of the permanent magnet flux rather than the first voltage drop caused by the temperature change of the equivalent armature resistance. This is the case when the voltage drop is larger. Here, the ratio between the first voltage drop and the second voltage drop is equal to the ratio between | z 11 z 22 | and | z 12 z 21 | in Equation 7. From this, the weighting function evaluation function x is calculated by Equation 23.

Figure 0005471156
Figure 0005471156

図10は、重み関数評価関数xから第1の重み係数WRa、第2の重み係数(1−WRa)、第3の重み係数WΨm、第4の重み係数(1−WΨm)を演算する関数を示している。図10に示すように、第1の電圧降下よりも第2の電圧降下が大きく、重み関数評価関数xが負のしきい値Xth1よりも小さい運転条件では、等価電機子抵抗の推定と第1の永久磁石磁束推定とを実行し、第1の電圧降下よりも第2の電圧降下が小さく、重み関数評価関数xが負のしきい値Xth1よりも大きい運転条件では、等価電機子抵抗の推定を停止し、第2の永久磁石磁束推定を実行する。
詳細な説明は省略するが、この実施例5の技術は、電気定数推定誤差演算器110を実施例2または実施例3によって構成する場合にも適用可能である。
FIG. 10 shows the first weighting coefficient W Ra , the second weighting coefficient (1-W Ra ), the third weighting coefficient W Ψm , and the fourth weighting coefficient (1-W Ψm ) from the weight function evaluation function x. The function to be calculated is shown. As shown in FIG. 10, in the operating condition where the second voltage drop is larger than the first voltage drop and the weight function evaluation function x is smaller than the negative threshold value Xth1 , the estimation of the equivalent armature resistance and the first 1 is performed, and under the operating conditions in which the second voltage drop is smaller than the first voltage drop and the weighting function evaluation function x is larger than the negative threshold value Xth1 , the equivalent armature resistance And the second permanent magnet flux estimation is executed.
Although the detailed description is omitted, the technique of the fifth embodiment can also be applied to the case where the electrical constant estimation error calculator 110 is configured according to the second or third embodiment.

図6は、本発明の実施例6における電気定数推定手段41のブロック図を示している。この実施例6は、上述した実施例5に、電動機の熱モデルを用いて等価電機子抵抗を推定する第2の等価電機子抵抗推定手段を付加することで、広い運転条件で永久磁石磁束及び等価電機子抵抗を高精度に推定できるように改良したものであり、請求項7に対応している。
以下では、実施例1として説明した、電気定数推定誤差演算器110により演算した等価電機子抵抗推定誤差演算値Raerrestを用いた等価電機子抵抗推定手段を第1の等価電機子抵抗推定手段と呼ぶ。
第1の等価電機子抵抗推定手段と第2の等価電機子抵抗推定手段との切り換えは、第1の重み係数WRa、第2の重み係数(1−WRa)及び加算器141を用いて積分器122の入力を制御することで実現する。
FIG. 6 shows a block diagram of the electrical constant estimating means 41 in Embodiment 6 of the present invention. In the sixth embodiment, the second equivalent armature resistance estimating means for estimating the equivalent armature resistance using the thermal model of the motor is added to the above-described fifth embodiment, so that the permanent magnet magnetic flux and the This is an improvement so that the equivalent armature resistance can be estimated with high accuracy, and corresponds to claim 7.
Hereinafter, the equivalent armature resistance estimation means using the equivalent armature resistance estimation error calculation value R aerrest calculated by the electrical constant estimation error calculator 110 described as the first embodiment is referred to as first equivalent armature resistance estimation means. Call.
Switching between the first equivalent armature resistance estimation means and the second equivalent armature resistance estimation means is performed using the first weight coefficient W Ra , the second weight coefficient (1−W Ra ), and the adder 141. This is realized by controlling the input of the integrator 122.

第1の等価電機子抵抗推定手段を実行する場合は、第1の重み係数WRaを“1”、第2の重み係数(1−WRa)を“零”に制御する。これにより、実施例1と同様に、等価電機子抵抗推定誤差演算値Raerrestから等価電機子抵抗補正値Racompを演算する。
一方、第2の等価電機子抵抗推定手段を実行する場合は、第1の重み係数WRaを“零”、第2の重み係数(1−WRa)を“1”に制御する。
ここで、配線抵抗は無視できると仮定し、電機子抵抗変化量演算器137は、電動機80の損失Qmotorに比例して、等価電機子抵抗の無負荷時からの変化量ΔRを数式24により演算する。
When executing the first equivalent armature resistance estimation means, the first weighting coefficient W Ra is controlled to “1”, and the second weighting coefficient (1−W Ra ) is controlled to “zero”. As a result, similarly to the first embodiment, the equivalent armature resistance correction value R acomp is calculated from the equivalent armature resistance estimation error calculation value R aerrest .
On the other hand, when the second equivalent armature resistance estimation means is executed, the first weighting coefficient W Ra is controlled to “zero” and the second weighting coefficient (1−W Ra ) is controlled to “1”.
Here, assuming that the wiring resistance is negligible, the armature resistance change calculator 137 calculates the change ΔR a of the equivalent armature resistance from no load in proportion to the loss Q motor of the electric motor 80. Calculate by

Figure 0005471156
Figure 0005471156

電機子抵抗平均変化量演算器138は、等価電機子抵抗の無負荷時からの平均変化量ΔRaAVEを数式25により演算する。 The armature resistance average change amount calculator 138 calculates an average change amount ΔR aAVE of the equivalent armature resistance from when no load is applied, using Equation 25.

Figure 0005471156
Figure 0005471156

減算器139は、等価電機子抵抗の無負荷時からの変化量ΔRから上記平均変化量ΔRaAVEを減算し、等価電機子抵抗の平均温度時からの変化量ΔRa2を演算する。
等価電機子抵抗補正値Racompは、電機子抵抗変化量演算器137、電機子抵抗平均変化量演算器138、減算器139,140、時定数係数(1/Tthw)、第2の重み係数(1−WRa)、加算器141、積分器122により、数式26によって演算される。
The subtractor 139 subtracts the average change amount ΔR aAVE from the change amount ΔR a of the equivalent armature resistance from no load, and calculates the change amount ΔR a2 of the equivalent armature resistance from the average temperature.
The equivalent armature resistance correction value R acomp includes an armature resistance change calculator 137, an armature resistance average change calculator 138, subtractors 139 and 140, a time constant coefficient (1 / T thw ), and a second weighting coefficient. (1-W Ra ), an adder 141, and an integrator 122 are used to calculate according to Equation 26.

Figure 0005471156
Figure 0005471156

数式26におけるRthwmotorは、物理的に電機子巻線の温度上昇に等しい。このため、等価電機子抵抗補正値Racompは、電機子巻線温度が平均上昇値ΔTwAVEだけ変化した場合に零になる。このことから、平均温度時における等価電機子抵抗Ra(AVE)と等価電機子抵抗補正値Racompとを加算器123により加算して等価電機子抵抗推定値Raestを求めれば、等価電機子抵抗を正確に推定することができる。
一方、永久磁石磁束推定値Ψmestの演算方法は、図5に示した実施例5と同様とする。詳細な説明は省略する。
R thw Q motor in Equation 26 is physically equal to the temperature rise of the armature winding. For this reason, the equivalent armature resistance correction value R acomp becomes zero when the armature winding temperature changes by the average increase value ΔT wAVE . From this, the equivalent armature resistance R a (AVE) at the average temperature and the equivalent armature resistance correction value R acomp are added by the adder 123 to obtain the equivalent armature resistance estimated value R aest. The resistance can be estimated accurately.
On the other hand, the calculation method of the permanent magnet magnetic flux estimated value Ψ mest is the same as that of the fifth embodiment shown in FIG. Detailed description is omitted.

次に、第1の重み係数WRa、第2の重み係数(1−WRa)、第3の重み係数WΨm、第4の重み係数(1−WΨm)の算出方法を説明する。
第1の等価電機子抵抗推定手段と第1の永久磁石磁束推定手段とによって等価電機子抵抗と永久磁石磁束とを正確に推定できるのは、|det(Z)|が十分大きい場合である。このため、これらの第1〜第4の重み係数WRa,(1−WRa),WΨm,(1−WΨm)は、実施例4と同様に、図9に示した関数によって演算する。
詳細な説明は省略するが、この実施例6の技術は、電気定数推定誤差演算器110を実施例2または実施例3によって構成する場合にも適用可能である。
Next, a method of calculating the first weighting factor W Ra , the second weighting factor (1-W Ra ), the third weighting factor W Ψm , and the fourth weighting coefficient (1-W Ψm ) will be described.
The equivalent armature resistance and the permanent magnet magnetic flux can be accurately estimated by the first equivalent armature resistance estimating means and the first permanent magnet magnetic flux estimating means when | det (Z T ) | is sufficiently large. . Therefore, the first to fourth weighting factors W Ra , (1-W Ra ), W Ψm , (1-W Ψm ) are calculated by the function shown in FIG. .
Although the detailed description is omitted, the technique of the sixth embodiment can also be applied to the case where the electrical constant estimation error calculator 110 is configured according to the second or third embodiment.

図7は、本発明の実施例7における電気定数推定手段41のブロック図を示している。この実施例7は、実施例6における第2の等価電機子抵抗推定手段を、電動機の熱モデルと配線の熱モデルとを用いて等価電機子抵抗の初期設定値からの変化量を演算し、これを使って等価電機子抵抗を推定するように構成することで、演算をより高精度にしたものであり、請求項8に対応している。
図7において、配線損失演算器142は、配線の損失Qを数式27により演算する。
FIG. 7 shows a block diagram of the electric constant estimating means 41 in the seventh embodiment of the present invention. In the seventh embodiment, the second equivalent armature resistance estimating means in the sixth embodiment calculates the amount of change from the initial setting value of the equivalent armature resistance using the thermal model of the motor and the thermal model of the wiring, This is used to estimate the equivalent armature resistance, thereby making the calculation more accurate, and corresponds to claim 8.
In FIG. 7, the wiring loss calculator 142 calculates the wiring loss Q l using Equation 27.

Figure 0005471156
Figure 0005471156

電機子抵抗変化量演算器143は、電動機80の損失Qmotor及び配線の損失Qを用いて、等価電機子抵抗の無負荷時からの変化量ΔRを数式28により演算する。 The armature resistance change amount calculator 143 calculates the amount of change ΔR a of the equivalent armature resistance from the no-load state using Equation 28 using the loss Q motor of the motor 80 and the loss Q 1 of the wiring.

Figure 0005471156
Figure 0005471156

電機子抵抗平均変化量演算器138は、等価電機子抵抗の無負荷時からの平均変化量ΔRaAVEを数式29により演算する。 The armature resistance average change amount calculator 138 calculates an average change amount ΔR aAVE of the equivalent armature resistance from when no load is given by Expression 29.

Figure 0005471156
Figure 0005471156

減算器139は、等価電機子抵抗の無負荷時からの変化量ΔRから上記平均変化量ΔRaAVEを減算して、等価電機子抵抗の平均温度時からの変化量ΔRa2を演算する。
等価電機子抵抗補正値Racompは、電機子巻線の熱時定数Tthwと配線の熱時定数Tthlとが等しいと仮定すると、電機子抵抗変化量演算器143、電機子抵抗平均変化量演算器138、減算器139,140、時定数係数(1/Tthw)、第2の重み係数(1−WRa)、加算器141、積分器122により、数式30によって演算される。
The subtractor 139 calculates the amount of change ΔR a2 of the equivalent armature resistance from the average temperature by subtracting the average amount of change ΔR aAVE from the amount of change ΔR a of the equivalent armature resistance from no load.
Equivalent armature resistance correction value R acomp, assuming the thermal time constant T thl thermal time constant T thw and the wiring of the armature winding equal, armature resistance change amount calculator 143, the armature resistance mean changes The arithmetic unit 138, the subtracters 139 and 140, the time constant coefficient (1 / T thw ), the second weighting coefficient (1−W Ra ), the adder 141, and the integrator 122 are used to calculate according to Equation 30.

Figure 0005471156
Figure 0005471156

数式30におけるRthwmotor,Rthlは、それぞれ、物理的に電機子巻線の温度上昇と配線の温度上昇に等しい。このため、等価電機子抵抗補正値Racompは、電機子巻線温度が平均上昇値ΔTwAVEだけ変化し、かつ、配線温度が平均上昇値ΔTlAVEだけ変化した場合に零になる。このことから、平均温度時における等価電機子抵抗Ra(AVE)と等価電機子抵抗補正値Racompとを加算器123により加算して等価電機子抵抗推定値Raestを求めれば、等価電機子抵抗を正確に推定することができる。
一方、永久磁石磁束推定値Ψmestの演算方法は、図5に示した実施例5と同様とする。なお、詳細な説明は省略する。
また、第1〜第4の重み係数WRa,(1−WRa),WΨm,(1−WΨm)は、実施例6と同様に、図9に示した関数によって演算する。
R thw Q motor and R thl Q l in Equation 30 are physically equal to the temperature rise of the armature winding and the temperature rise of the wiring, respectively. For this reason, the equivalent armature resistance correction value R acomp becomes zero when the armature winding temperature changes by the average increase value ΔT wAVE and the wiring temperature changes by the average increase value ΔT lAVE . From this, the equivalent armature resistance R a (AVE) at the average temperature and the equivalent armature resistance correction value R acomp are added by the adder 123 to obtain the equivalent armature resistance estimated value R aest. The resistance can be estimated accurately.
On the other hand, the calculation method of the permanent magnet magnetic flux estimated value Ψ mest is the same as that of the fifth embodiment shown in FIG. Detailed description is omitted.
The first to fourth weighting factors W Ra , (1-W Ra ), W Ψm , and (1-W Ψm ) are calculated by the function shown in FIG.

図8は、本発明の実施例8における電気定数推定手段41のブロック図を示している。この実施例8は、実施例5の構成において、電動機80の電圧方程式を用いて等価電機子抵抗を推定する第3の等価電機子抵抗推定手段を付加することで、広い運転条件で等価電機子抵抗と永久磁石磁束とを高精度に推定できるように改良したものであり、請求項9に対応している。
図8のブロック図は、図5のブロック図に、第3の等価電機子抵抗推定手段を実現するための電機子抵抗推定誤差演算器144と、第1の等価電機子抵抗推定手段と第3の等価電機子抵抗推定手段とを切り換えるための第5の重み係数WRa2、第6の重み係数(1−WRa2)、加算器145を追加したものである。以下では、図5のブロック図と異なる箇所を中心に説明する。
FIG. 8 shows a block diagram of the electric constant estimating means 41 in the eighth embodiment of the present invention. The eighth embodiment adds the third equivalent armature resistance estimating means for estimating the equivalent armature resistance using the voltage equation of the motor 80 in the configuration of the fifth embodiment, so that the equivalent armature can be obtained under a wide range of operating conditions. The resistance and the permanent magnet magnetic flux are improved so that they can be estimated with high accuracy, and correspond to claim 9.
The block diagram of FIG. 8 is the same as the block diagram of FIG. 5 except that the armature resistance estimation error calculator 144 for realizing the third equivalent armature resistance estimation unit, the first equivalent armature resistance estimation unit, and the third A fifth weighting factor W Ra2 , a sixth weighting factor (1−W Ra2 ), and an adder 145 for switching between the equivalent armature resistance estimation means are added. Below, it demonstrates centering on a different location from the block diagram of FIG.

第1の等価電機子抵抗推定手段を実行する場合は、第5の重み係数WRa2を“零”、第6の重み係数(1−WRa2)を“1”に制御する。
一方、第3の等価電機子抵抗推定手段を実行する場合は、第5の重み係数WRa2を“1”、第6の重み係数(1−WRa2)を“零”に制御する。
電機子抵抗推定誤差演算器144は、前述した数式1によりδ軸電圧推定値vδestを演算し、数式2によってδ軸電圧推定誤差vδerrを演算する。更に、δ軸電圧推定誤差vδerr(=vδest−vδ )及びδ軸電流検出値iδを用いて、等価電機子抵抗推定誤差演算値Raerrest2を数式31により演算する。
When executing the first equivalent armature resistance estimation means, the fifth weighting coefficient W Ra2 is controlled to “zero”, and the sixth weighting coefficient (1−W Ra2 ) is controlled to “1”.
On the other hand, when the third equivalent armature resistance estimating means is executed, the fifth weighting coefficient W Ra2 is controlled to “1”, and the sixth weighting coefficient (1-W Ra2 ) is controlled to “zero”.
The armature resistance estimation error calculator 144 calculates the δ-axis voltage estimated value v δest by the above-described equation 1, and calculates the δ-axis voltage estimation error v δerr by the equation 2. Further, using the δ-axis voltage estimation error v δerr (= v δest −v δ * ) and the δ-axis current detection value i δ , the equivalent armature resistance estimation error calculation value R aerrest2 is calculated by Equation 31.

Figure 0005471156
Figure 0005471156

等価電機子抵抗推定誤差演算値Raerrest2は、第5の重み係数WRa2及び加算器145を介して、反転増幅器121、第1の重み係数WRa、第2の重み係数(1−WRa)、減算器129、電機子抵抗推定ゲインGRa、積分器122、平均温度電機子抵抗演算器124及び加算器123からなるブロックに与えられ、等価電機子抵抗推定値Raestが演算される。このブロックの動作は、図4に示した実施例4における第1の等価電機子抵抗推定手段と同様である。 The equivalent armature resistance estimation error calculation value R aerrest2 is supplied to the inverting amplifier 121, the first weight coefficient W Ra , and the second weight coefficient (1-W Ra ) via the fifth weight coefficient W Ra2 and the adder 145. , A subtractor 129, an armature resistance estimation gain G Ra , an integrator 122, an average temperature armature resistance calculator 124, and an adder 123 are provided to calculate an equivalent armature resistance estimation value R aest . The operation of this block is the same as that of the first equivalent armature resistance estimation means in the fourth embodiment shown in FIG.

次に、第1の重み係数WRa、第2の重み係数(1−WRa)、第3の重み係数WΨm、第4の重み係数(1−WΨm)、第5の重み係数WRa2、第6の重み係数(1−WRa2)の演算方法を説明する。
第1の等価電機子抵抗推定手段と第1の永久磁石磁束推定手段とによって永久磁石磁束を高精度に推定できるのは、等価電機子抵抗の温度変化に起因する第1の電圧降下よりも永久磁石磁束の温度変化に起因する第2の電圧降下の方が大きい場合である。一方、第3の等価電機子抵抗推定手段によって等価電機子抵抗を正確に推定できるのは、第1の電圧降下の方が第2の電圧降下よりも大きい場合である。
Next, the first weight coefficient W Ra , the second weight coefficient (1-W Ra ), the third weight coefficient W Ψm , the fourth weight coefficient (1-W Ψm ), and the fifth weight coefficient W Ra2 The calculation method of the sixth weighting coefficient (1-W Ra2 ) will be described.
The reason why the permanent magnet magnetic flux can be estimated with high accuracy by the first equivalent armature resistance estimation means and the first permanent magnet magnetic flux estimation means is more permanent than the first voltage drop caused by the temperature change of the equivalent armature resistance. This is a case where the second voltage drop due to the temperature change of the magnet magnetic flux is larger. On the other hand, the equivalent armature resistance can be accurately estimated by the third equivalent armature resistance estimation means when the first voltage drop is larger than the second voltage drop.

第1の電圧降下と第2の電圧降下との比は、前述した数式7における|z1122|と|z1221|との比に等しいことから、重み関数評価関数xを前述の数式23によって演算する。
図11は、重み関数評価関数xから第1の重み係数WRa、第2の重み係数(1−WRa)、第3の重み係数WΨm、第4の重み係数(1−WΨm)、第5の重み係数WRa2、第6の重み係数(1−WRa2)を演算する関数を示している。
第1の電圧降下よりも第2の電圧降下が大きく、重み関数評価関数xが負のしきい値Xth1よりも小さい運転条件では、第1の等価電機子抵抗推定手段と第1の永久磁石磁束推定手段とを実行する。重み関数評価関数xが負のしきい値Xth2から零の間では、第1の等価電機子抵抗推定手段を停止し、第2の永久磁石磁束推定手段を実行する。また、重み関数評価関数xが正のしきい値Xth3よりも大きい場合には、第3の等価電機子抵抗推定手段と第2の永久磁石磁束推定手段とを実行する。
Since the ratio between the first voltage drop and the second voltage drop is equal to the ratio between | z 11 z 22 | and | z 12 z 21 | in Equation 7 described above, the weight function evaluation function x is set to Calculation is performed using Equation 23.
FIG. 11 shows a weight function evaluation function x to a first weight coefficient W Ra , a second weight coefficient (1-W Ra ), a third weight coefficient W Ψm , a fourth weight coefficient (1-W Ψm ), A function for calculating a fifth weighting factor WRa2 and a sixth weighting factor (1- WRa2 ) is shown.
In an operating condition where the second voltage drop is larger than the first voltage drop and the weighting function evaluation function x is smaller than the negative threshold value Xth1 , the first equivalent armature resistance estimating means and the first permanent magnet And magnetic flux estimation means. When the weighting function evaluation function x is between the negative threshold value Xth2 and zero, the first equivalent armature resistance estimation unit is stopped and the second permanent magnet magnetic flux estimation unit is executed. When the weight function evaluation function x is larger than the positive threshold value Xth3 , the third equivalent armature resistance estimation unit and the second permanent magnet magnetic flux estimation unit are executed.

50 三相交流電源
60 整流回路
70 電力変換器
80 永久磁石形同期電動機
11u u相電流検出回路
11w w相電流検出回路
12 入力電圧検出回路
13 PWM回路
14 電流座標変換器
15 電圧座標変換器
16 減算器
17 速度調節器
18 電流指令演算器
19a 減算器
19b 減算器
20a γ軸電流調節器
20b δ軸電流調節器
31 速度推定手段
32 電気角演算器
41 電気定数推定手段
110 電気定数推定誤差演算器
121,125 反転増幅器
122,126 積分器
123,127,131,141,145 加算器
124 平均温度電機子抵抗演算器
128 平均温度永久磁石磁束演算器
129,130,135,136,139,140 減算器
132 電動機損失演算器
133 永久磁石磁束変化量演算器
134 永久磁石磁束平均変化量演算器
137 電機子抵抗変化量演算器
138 電機子抵抗平均変化量演算器
142 配線損失演算器
143 電機子抵抗変化量演算器
144 電機子抵抗推定誤差演算器
DESCRIPTION OF SYMBOLS 50 Three-phase alternating current power supply 60 Rectifier circuit 70 Power converter 80 Permanent magnet type synchronous motor 11u u phase current detection circuit 11w w phase current detection circuit 12 Input voltage detection circuit 13 PWM circuit 14 Current coordinate converter 15 Voltage coordinate converter 16 Subtraction 17 Speed controller 18 Current command calculator 19a Subtractor 19b Subtractor 20a γ-axis current controller 20b δ-axis current controller 31 Speed estimation means 32 Electrical angle calculator 41 Electrical constant estimation means 110 Electrical constant estimation error calculator 121 , 125 Inverting amplifier 122, 126 Integrator 123, 127, 131, 141, 145 Adder 124 Average temperature armature resistance calculator 128 Average temperature permanent magnet flux calculator 129, 130, 135, 136, 139, 140 Subtractor 132 Motor loss calculator 133 Permanent magnet magnetic flux change calculator 134 Magnet flux average change amount calculation unit 137 armature resistance change amount calculator 138 armature resistance mean change calculator 142 wiring loss calculator 143 armature resistance change amount calculator 144 armature resistance estimation error calculator

Claims (9)

電力変換器により駆動される永久磁石形同期電動機の制御装置であって、前記電動機の等価電機子抵抗推定値及び永久磁石磁束推定値に基づいて前記電動機の速度及びトルクを制御する制御装置において、
前記電動機の電圧方程式、及び、等価電機子抵抗の温度による変化量と永久磁石磁束の温度による変化量との関係に基づく温度変化評価関数を用いて、前記等価電機子抵抗推定値の誤差、及び、前記永久磁石磁束推定値の誤差を演算する電気定数推定誤差演算手段と、
前記等価電機子抵抗推定値の誤差を増幅して得た補正量により等価電機子抵抗の初期設定値を補正して前記等価電機子抵抗推定値を演算する第1の等価電機子抵抗推定手段と、
前記永久磁石磁束推定値の誤差を増幅して得た補正量により永久磁石磁束の初期設定値を補正して前記永久磁石磁束推定値を演算する第1の永久磁石磁束推定手段と、
を備えたことを特徴とする永久磁石形同期電動機の制御装置。
A control device for a permanent magnet type synchronous motor driven by a power converter, wherein the control device controls the speed and torque of the motor based on an estimated equivalent armature resistance value and a permanent magnet magnetic flux estimated value of the motor,
Using a temperature change evaluation function based on the voltage equation of the motor and the relationship between the change amount due to the temperature of the equivalent armature resistance and the change amount due to the temperature of the permanent magnet magnetic flux, an error in the equivalent armature resistance estimation value, and An electric constant estimation error calculating means for calculating an error of the permanent magnet magnetic flux estimated value;
First equivalent armature resistance estimation means for calculating an equivalent armature resistance estimation value by correcting an initial setting value of the equivalent armature resistance by a correction amount obtained by amplifying an error of the equivalent armature resistance estimation value; ,
First permanent magnet magnetic flux estimating means for calculating the permanent magnet magnetic flux estimated value by correcting an initial setting value of the permanent magnet magnetic flux by a correction amount obtained by amplifying the error of the permanent magnet magnetic flux estimated value;
A control device for a permanent magnet type synchronous motor.
請求項1に記載した永久磁石形同期電動機の制御装置において、
前記電気定数推定誤差演算手段は、
前記電動機の電流検出値、速度推定値、前記等価電機子抵抗推定値、前記永久磁石磁束推定値及び電動機定数を用いて前記電動機の回転子磁極方向のd軸に対応した制御演算上のδ軸電圧推定値を演算する電圧推定手段と、
前記δ軸電圧推定値とδ軸電圧検出値との偏差であるδ軸電圧推定誤差を演算する手段と、
前記等価電機子抵抗推定値、前記永久磁石磁束推定値、前記電動機の電機子巻線の温度係数、永久磁石の温度係数、基準温度における等価電機子抵抗、及び、基準温度における永久磁石磁束を用いて前記温度変化評価関数を演算する手段と、
前記δ軸電圧推定誤差、前記温度変化評価関数、前記電動機の電流検出値及び速度推定値を用いて、前記等価電機子抵抗推定値の誤差、及び、前記永久磁石磁束推定値の誤差を演算する手段と、
を備えたことを特徴とする永久磁石形同期電動機の制御装置。
In the control device for the permanent magnet type synchronous motor according to claim 1,
The electrical constant estimation error calculating means is
Current detection value of the motor speed estimated value, the equivalent armature resistance estimate using said permanent magnet flux estimate and the motor constants, the electric motor for control operations on corresponding to the d-axis of the rotor magnetic pole direction of δ a voltage estimating means you calculating an axis voltage estimate,
Means for calculating a δ-axis voltage estimation error that is a deviation between the δ-axis voltage estimated value and the δ-axis voltage detected value;
Using the equivalent armature resistance estimation value, the permanent magnet magnetic flux estimation value, the temperature coefficient of the armature winding of the motor, the temperature coefficient of the permanent magnet, the equivalent armature resistance at the reference temperature, and the permanent magnet magnetic flux at the reference temperature Means for calculating the temperature change evaluation function;
Using the δ-axis voltage estimation error, the temperature change evaluation function, the current detection value and the speed estimation value of the motor, the error of the equivalent armature resistance estimation value and the error of the permanent magnet magnetic flux estimation value are calculated. Means,
A control device for a permanent magnet type synchronous motor.
請求項1または2に記載した永久磁石形同期電動機の制御装置において、
前記温度変化評価関数は、前記電動機の電機子巻線の熱抵抗と永久磁石の熱抵抗との関数であることを特徴とする永久磁石形同期電動機の制御装置。
In the control device for a permanent magnet type synchronous motor according to claim 1 or 2,
The temperature change evaluation function is a function of a thermal resistance of an armature winding of the motor and a thermal resistance of a permanent magnet, and a control device for a permanent magnet type synchronous motor.
請求項1または2に記載した永久磁石形同期電動機の制御装置において、
前記温度変化評価関数は、前記電動機の電機子巻線の熱抵抗、永久磁石の熱抵抗、配線の熱抵抗、配線の温度係数、基準温度における配線抵抗、永久磁石の熱時定数、及び、前記電動機の鉄損の関数であることを特徴とする永久磁石形同期電動機の制御装置。
In the control device for a permanent magnet type synchronous motor according to claim 1 or 2,
The temperature change evaluation function is the thermal resistance of the armature winding of the motor, the thermal resistance of the permanent magnet, the thermal resistance of the wiring, the temperature coefficient of the wiring, the wiring resistance at the reference temperature, the thermal time constant of the permanent magnet, and the A control device for a permanent magnet type synchronous motor, wherein the control device is a function of iron loss of the motor.
請求項1〜4の何れか1項に記載した永久磁石形同期電動機の制御装置において、
前記電動機の電流検出値及び速度推定値に応じて、前記第1の等価電機子抵抗推定手段または前記第1の永久磁石磁束推定手段の少なくとも一方のゲインを制御する手段を備えたことを特徴とする永久磁石形同期電動機の制御装置。
In the control device for the permanent magnet type synchronous motor according to any one of claims 1 to 4,
And a means for controlling a gain of at least one of the first equivalent armature resistance estimation means or the first permanent magnet magnetic flux estimation means according to a current detection value and a speed estimation value of the electric motor. Control device for permanent magnet type synchronous motor.
請求項1〜5の何れか1項に記載した永久磁石形同期電動機の制御装置において、
前記電動機の熱モデルに基づいて永久磁石磁束の初期設定値からの変化量を演算する手段と、
前記永久磁石磁束の初期設定値からの変化量に基づく補正量により前記永久磁石磁束の初期設定値を補正して永久磁石磁束推定値を演算する第2の永久磁石磁束推定手段と、
前記第1の永久磁石磁束推定手段における補正量と前記第2の永久磁石磁束推定手段における補正量との何れかを選択する手段と、
を備えたことを特徴とする永久磁石形同期電動機の制御装置。
In the control device for a permanent magnet type synchronous motor according to any one of claims 1 to 5,
Means for calculating a change amount from an initial set value of the permanent magnet magnetic flux based on a thermal model of the electric motor;
A second permanent magnet magnetic flux estimating means for correcting an initial set value of the permanent magnet magnetic flux by a correction amount based on an amount of change from an initial set value of the permanent magnet magnetic flux and calculating a permanent magnet magnetic flux estimated value;
Means for selecting one of a correction amount in the first permanent magnet magnetic flux estimation means and a correction amount in the second permanent magnet magnetic flux estimation means;
A control device for a permanent magnet type synchronous motor.
請求項1〜6の何れか1項に記載した永久磁石形同期電動機の制御装置において、
前記電動機の熱モデルに基づいて等価電機子抵抗の初期設定値からの変化量を演算する手段と、
前記等価電機子抵抗の初期設定値からの変化量に基づく補正量により前記等価電機子抵抗の初期設定値を補正して等価電機子抵抗推定値を演算する第2の等価電機子抵抗推定手段と、
前記第1の等価電機子抵抗推定手段における補正量と前記第2の等価電機子抵抗推定手段における補正量との何れかを選択する手段と、
を備えたことを特徴とする永久磁石形同期電動機の制御装置。
In the control device for the permanent magnet type synchronous motor according to any one of claims 1 to 6,
Means for calculating a change amount from an initial setting value of the equivalent armature resistance based on a thermal model of the electric motor;
Second equivalent armature resistance estimation means for calculating an equivalent armature resistance estimation value by correcting the initial setting value of the equivalent armature resistance by a correction amount based on an amount of change from the initial setting value of the equivalent armature resistance; ,
Means for selecting one of a correction amount in the first equivalent armature resistance estimation means and a correction amount in the second equivalent armature resistance estimation means;
A control device for a permanent magnet type synchronous motor.
請求項7記載の永久磁石形同期電動機の制御装置において、
前記等価電機子抵抗の初期設定値からの変化量を演算する手段は、
前記電動機の熱モデルと配線の熱モデルとに基づいて前記等価電機子抵抗の初期設定値からの変化量を演算することを特徴とする永久磁石形同期電動機の制御装置。
In the control device for the permanent magnet type synchronous motor according to claim 7,
Means for calculating the amount of change from the initial set value of the equivalent armature resistance,
A control device for a permanent magnet synchronous motor, wherein an amount of change from an initial set value of the equivalent armature resistance is calculated based on a thermal model of the motor and a thermal model of wiring.
請求項1〜8の何れか1項に記載した永久磁石形同期電動機の制御装置において、
前記電動機の電圧方程式から演算した前記等価電機子抵抗推定値の誤差に基づく補正量により前記等価電機子抵抗の初期設定値を補正して等価電機子抵抗推定値を演算する第3の等価電機子抵抗推定手段と、
前記第1の等価電機子抵抗推定手段における補正量と前記第3の等価電機子抵抗推定手段における補正量との何れかを選択する手段と、
を備えたことを特徴とする永久磁石形同期電動機の制御装置。
In the control device for the permanent magnet type synchronous motor according to any one of claims 1 to 8,
A third equivalent armature that calculates an equivalent armature resistance estimated value by correcting an initial set value of the equivalent armature resistance by a correction amount based on an error of the equivalent armature resistance estimated value calculated from the voltage equation of the motor. Resistance estimation means;
Means for selecting one of a correction amount in the first equivalent armature resistance estimation means and a correction amount in the third equivalent armature resistance estimation means;
A control device for a permanent magnet type synchronous motor.
JP2009191521A 2009-08-21 2009-08-21 Control device for permanent magnet type synchronous motor Active JP5471156B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009191521A JP5471156B2 (en) 2009-08-21 2009-08-21 Control device for permanent magnet type synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009191521A JP5471156B2 (en) 2009-08-21 2009-08-21 Control device for permanent magnet type synchronous motor

Publications (2)

Publication Number Publication Date
JP2011045185A JP2011045185A (en) 2011-03-03
JP5471156B2 true JP5471156B2 (en) 2014-04-16

Family

ID=43832182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009191521A Active JP5471156B2 (en) 2009-08-21 2009-08-21 Control device for permanent magnet type synchronous motor

Country Status (1)

Country Link
JP (1) JP5471156B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101927693B1 (en) * 2012-01-26 2018-12-12 삼성전자 주식회사 Sensorless controlling apparatus and method for motor
JP6676396B2 (en) * 2016-02-05 2020-04-08 住友重機械工業株式会社 Motor driving device and industrial machine using the same
CN111277193B (en) * 2020-03-07 2021-04-06 华中科技大学 Reliability optimization method and system for magnetic pole polarity identification of permanent magnet synchronous motor
DE112020007296T5 (en) 2020-06-05 2023-04-20 Mitsubishi Electric Corporation ENGINE TEMPERATURE AND TORQUE ESTIMATION DEVICE, AND ENGINE CONTROL DEVICE

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3467961B2 (en) * 1995-05-31 2003-11-17 株式会社明電舎 Control device for rotating electric machine
JP4225657B2 (en) * 1999-11-15 2009-02-18 東洋電機製造株式会社 Control device for permanent magnet type synchronous motor
JP4228651B2 (en) * 2002-10-11 2009-02-25 株式会社安川電機 Method and apparatus for controlling IPM motor
JP2008092649A (en) * 2006-09-29 2008-04-17 Yaskawa Electric Corp Controller of ipm motor and control method thereof
JP2009060688A (en) * 2007-08-30 2009-03-19 Fuji Electric Systems Co Ltd Controller for synchronous motors

Also Published As

Publication number Publication date
JP2011045185A (en) 2011-03-03

Similar Documents

Publication Publication Date Title
JP5130031B2 (en) Position sensorless control device for permanent magnet motor
JP5104239B2 (en) Control device for permanent magnet type synchronous motor
JP5781235B2 (en) Synchronous machine controller
JP5176420B2 (en) Sensorless control device for brushless motor
JP4764124B2 (en) Permanent magnet type synchronous motor control apparatus and method
JP5445892B2 (en) Control device for permanent magnet type synchronous motor
JP5223109B2 (en) Control device for permanent magnet type synchronous motor
JP2006304478A (en) Motor drive controller and electric power steering apparatus therewith
JP5193012B2 (en) Motor temperature estimation device
JP5471156B2 (en) Control device for permanent magnet type synchronous motor
JP2009278760A (en) Motor control device and motor control method
JP5731355B2 (en) Control device for induction motor for vehicle drive
JP2009290962A (en) Controller of permanent magnet type synchronous motor
JP5499594B2 (en) Control device for permanent magnet type synchronous motor
JP5446494B2 (en) Control device for permanent magnet type synchronous motor
JP6102516B2 (en) Control method and control device for permanent magnet type synchronous motor
JP2005012856A (en) Speed sensorless vector controller of induction motor
JP2006158046A (en) Sensorless control method and apparatus of ac electric motor
JP5332305B2 (en) Control device for permanent magnet type synchronous motor
JP4273775B2 (en) Magnetic pole position estimation method and control device for permanent magnet type synchronous motor
JP5332301B2 (en) Control device for permanent magnet type synchronous motor
JP5387899B2 (en) Control device for permanent magnet type synchronous motor
JP6108114B2 (en) Control device for permanent magnet type synchronous motor
JP6573213B2 (en) Control device for permanent magnet type synchronous motor
JP6497584B2 (en) Control device for permanent magnet type synchronous motor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5471156

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250