JP5467026B2 - Method for evaluating delayed fracture characteristics of PC steel - Google Patents

Method for evaluating delayed fracture characteristics of PC steel Download PDF

Info

Publication number
JP5467026B2
JP5467026B2 JP2010236758A JP2010236758A JP5467026B2 JP 5467026 B2 JP5467026 B2 JP 5467026B2 JP 2010236758 A JP2010236758 A JP 2010236758A JP 2010236758 A JP2010236758 A JP 2010236758A JP 5467026 B2 JP5467026 B2 JP 5467026B2
Authority
JP
Japan
Prior art keywords
steel
delayed fracture
test
hydrogen
test solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010236758A
Other languages
Japanese (ja)
Other versions
JP2012088241A (en
Inventor
順一 児玉
大輔 平上
司 岡村
幹之 市場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neturen Co Ltd
Tokyo Electric Power Co Inc
Nippon Steel Corp
Original Assignee
Neturen Co Ltd
Tokyo Electric Power Co Inc
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neturen Co Ltd, Tokyo Electric Power Co Inc, Nippon Steel Corp filed Critical Neturen Co Ltd
Priority to JP2010236758A priority Critical patent/JP5467026B2/en
Publication of JP2012088241A publication Critical patent/JP2012088241A/en
Application granted granted Critical
Publication of JP5467026B2 publication Critical patent/JP5467026B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、各種コンクリート構造物の補強材として使用されるPC鋼材の遅れ破壊特性を評価する方法に関するものである。   The present invention relates to a method for evaluating delayed fracture characteristics of PC steel used as a reinforcing material for various concrete structures.

コンクリートポールやコンクリート杭に代表されるコンクリート製品には、PC(プレストレストコンクリート)鋼材が補強材として用いられる。PC鋼材には、熱処理によって製造されるJIS G 3137の「細径異形PC鋼棒」、冷間加工によって製造されるJIS G 3538の「PC硬鋼線」がある。細径異形PC鋼棒は、引張強さが1420MPa以上のものが規格化されており、PC硬鋼線では、引張り強さが最大1740MPaまでの高強度材が規格化されている。なお、本発明ではPC鋼棒、PC硬鋼線を総称してPC鋼材と呼ぶ。   For concrete products represented by concrete poles and concrete piles, PC (prestressed concrete) steel is used as a reinforcing material. PC steel includes JIS G 3137 “small-diameter deformed PC steel bar” manufactured by heat treatment and JIS G 3538 “PC hard steel wire” manufactured by cold working. The thin deformed PC steel bar has a standardized tensile strength of 1420 MPa or more, and the PC hard steel wire standardizes a high strength material having a maximum tensile strength of 1740 MPa. In the present invention, PC steel bars and PC hard steel wires are collectively referred to as PC steel materials.

このような高強度のPC鋼材に引張り力が作用し、長期間、使用環境に晒された場合、コンクリート中であっても、いわゆる遅れ破壊が発生することがある。PC鋼材の遅れ破壊は、亀裂等からコンクリート内に雨水が浸入してPC鋼材の表面の腐食が進行し、これに伴ってPC鋼材中に水素が浸入し、破断に至る現象である。このようなPC鋼材の遅れ破壊は、設置後数年から数十年を経て発生することがある。   When a tensile force acts on such high-strength PC steel and is exposed to a use environment for a long time, so-called delayed fracture may occur even in the concrete. Delayed fracture of PC steel is a phenomenon in which rainwater infiltrates into concrete due to cracks and the like, and corrosion of the surface of the PC steel progresses, and hydrogen infiltrates into the PC steel, leading to fracture. Such delayed fracture of PC steel may occur several years to several decades after installation.

一般に、腐食現象は環境によって大きく変化する。したがって、遅れ破壊特性を正確に評価するためには、実際に使用される環境に、使用状態と同等の応力が負荷された試験体を暴露して、破断の発生の有無を見極めることが望ましい。しかし、暴露試験では、遅れ破壊が発生するまでに、数十年も要することから、促進試験による評価が一般的である。例えば、PC鋼材の遅れ破壊特性は、FIP(国際プレストレストコンクリート協会)の基準による評価方法(以下FIP試験と記す)が採用されている。   In general, the corrosion phenomenon varies greatly depending on the environment. Therefore, in order to accurately evaluate the delayed fracture characteristics, it is desirable to determine whether breakage has occurred or not by exposing a test body loaded with a stress equivalent to the usage condition to the environment in which it is actually used. However, in an exposure test, it takes several decades for delayed fracture to occur, so evaluation by an accelerated test is common. For example, an evaluation method based on FIP (International Prestressed Concrete Association) standard (hereinafter referred to as FIP test) is adopted for delayed fracture characteristics of PC steel.

FIP試験は、質量%で20%濃度のNH4SCN水溶液を50℃±1℃に加熱し、溶液中にサンプルを浸漬して破断荷重の0.7〜0.8倍の一定荷重を負荷し、破断時間を測定して、耐遅れ破壊特性を評価する方法である。しかし、FIP試験では、鋼材中に浸入する水素量が短時間で数ppmにまで達するような条件を採用しており、破壊が200時間程度で発生する。したがって、FIP試験の腐食環境は非常に厳しく、数十年を経て、鋼材が破断に至るような水素が鋼材中に導入されるような実環境での耐遅れ破壊特性が正確に評価できるかどうか、疑問である。 In the FIP test, an NH 4 SCN aqueous solution of 20% by mass is heated to 50 ° C. ± 1 ° C., a sample is immersed in the solution, and a constant load 0.7 to 0.8 times the breaking load is applied. In this method, the fracture time is measured to evaluate the delayed fracture resistance. However, in the FIP test, a condition is adopted in which the amount of hydrogen entering the steel material reaches several ppm in a short time, and the breakdown occurs in about 200 hours. Therefore, the corrosive environment of the FIP test is very severe, and whether the delayed fracture resistance in an actual environment where hydrogen that would cause the steel material to break can be accurately evaluated after decades has passed , Doubt.

一方、遅れ破壊発生の原因と考えられている鋼材中の水素量を基準として、鋼材に水素をチャージし、一定荷重を負荷した状態で破断しない水素量を基に遅れ破壊特性を評価する方法が提案されている(例えば、非特許文献1)。しかし、この方法では、鋼材の水素測定を行うための水素分析装置が必要となる。さらに試験中に水素の散逸を防止するために鋼材表面にめっき層を形成する等の処理が必要であり、簡便に遅れ破壊特性を評価するには費用、作業の点で課題がある。   On the other hand, based on the amount of hydrogen in steel, which is considered to be the cause of delayed fracture, a method of evaluating delayed fracture characteristics based on the amount of hydrogen that does not break under a constant load when hydrogen is charged to the steel. It has been proposed (for example, Non-Patent Document 1). However, this method requires a hydrogen analyzer for measuring hydrogen in the steel material. Furthermore, treatment such as forming a plating layer on the surface of the steel material is necessary in order to prevent hydrogen dissipation during the test, and there are problems in terms of cost and work to easily evaluate delayed fracture characteristics.

特許文献1には実環境に近い条件でのボルトの遅れ破壊試験方法が示されている。この方法は使用環境と同一の条件で遅れ破壊試験を行うための治具が提案されている。しかし、このように実環境に近い状態で遅れ破壊試験を行う場合、破断時間は4000〜7000時間にも達し、試験結果を得るのに時間がかかり、結果を迅速に得られないという問題がある。   Patent Document 1 discloses a delayed fracture test method for bolts under conditions close to the actual environment. In this method, a jig for performing a delayed fracture test under the same conditions as the use environment has been proposed. However, when performing a delayed fracture test in a state close to a real environment in this way, the fracture time reaches 4000 to 7000 hours, and it takes time to obtain the test result, and there is a problem that the result cannot be obtained quickly. .

特開2007−199024号公報JP 2007-199024 A

CAMPISIJ VOL.7(1994) 1594−1597CAMSISI VOL. 7 (1994) 1594-1597

従来の遅れ破壊評価方法は、FIP試験のように全く実環境と異なる条件であったり、評価するために専門の装置が必要であったり、評価時間が非常に長くなる等の問題があった。さらに、評価試験方法によって優劣が異なるという結果が得られたり、遅れ破壊の実体と評価結果が一致していないことがあるなど、評価の信頼性が低いという問題があった。そこで、実環境に晒された場合の遅れ破壊特性の評価と同等の結果が得られ、かつ短時間で評価可能な遅れ破壊評価方法の開発が要求されている。   The conventional delayed fracture evaluation method has problems such as the FIP test under completely different conditions from the actual environment, a specialized device is required for the evaluation, and the evaluation time becomes very long. Furthermore, there is a problem that the reliability of the evaluation is low, such as a result that the superiority or inferiority varies depending on the evaluation test method, or the fact that the delayed fracture entity and the evaluation result do not match. Therefore, it is required to develop a delayed fracture evaluation method capable of obtaining results equivalent to the evaluation of delayed fracture characteristics when exposed to a real environment and capable of evaluating in a short time.

本発明は、このような実情に鑑み、実際の鋼材の遅れ破壊の評価結果が実態と一致し、簡便かつ迅速に評価可能な、PC鋼材の遅れ破壊特性評価方法を提供するものである。   In view of such circumstances, the present invention provides a method for evaluating delayed fracture characteristics of PC steel, in which the evaluation results of delayed fracture of actual steel are consistent with the actual situation and can be evaluated easily and quickly.

本発明は、PC鋼材への浸入水素量と、試験溶液の成分、pH、温度、比液量の影響および試験片の形状などの破断促進条件と評価基準について詳細に検討を行い、得られた知見に基づいてなされたものであり、その要旨は以下のとおりである。
(1)一定の荷重を負荷した試験片を試験溶液に浸漬して遅れ破壊特性を評価するPC鋼材の遅れ破壊特性評価方法において、前記試験溶液は、Clイオン濃度:0.1〜1.0g/l、SO4イオン濃度:0.5〜10g/l、SCNイオン濃度:0.1〜3g/lを含み、温度が45〜55℃、pHが6.5〜7.2であり、表面にノッチを形成した試験片を試験溶液に浸漬し、試験溶液の容量を試験溶液に接触している試験片の表面積で除した比液量を5〜30ml/cm2とし、試験期間中試験溶液と大気を遮断するとともに前記試験片に一定の荷重を負荷し、予め定めた限界時間まで破断が発生しない耐破断限界荷重を測定し、該耐破断限界荷重と平滑試験片の大気中での破断荷重との比を求めて限界荷重比とすることを特徴とするPC鋼材の遅れ破壊特性評価方法。
(2)前記試験片のノッチの最大深さが0.2〜0.5mmであることを特徴とする(1)に記載のPC鋼材の遅れ破壊特性評価方法。
(3)前記予め定めた限界時間を200時間以上とすることを特徴とする(1)又は(2)に記載のPC鋼材の遅れ破壊特性評価方法。
The present invention has been obtained by examining in detail the breakage acceleration conditions and evaluation criteria such as the amount of hydrogen penetrating into PC steel, the effects of test solution components, pH, temperature, specific liquid volume, and the shape of the test piece. Based on the findings, the summary is as follows.
(1) In the method for evaluating delayed fracture characteristics of PC steel, in which a test piece loaded with a constant load is immersed in a test solution to evaluate delayed fracture characteristics, the test solution has a Cl ion concentration of 0.1 to 1.0 g. / L, SO 4 ion concentration: 0.5-10 g / l, SCN ion concentration: 0.1-3 g / l, temperature is 45-55 ° C., pH is 6.5-7.2, surface A test piece with a notch formed in the test solution is immersed in the test solution, and the volume of the test solution divided by the surface area of the test piece in contact with the test solution is 5 to 30 ml / cm 2. The test piece is loaded with a constant load, and the breakage limit load at which no breakage occurs until a predetermined limit time is measured. It is characterized by determining the ratio with the load and setting it as the limit load ratio Method for evaluating delayed fracture characteristics of PC steel.
(2) The method for evaluating delayed fracture characteristics of PC steel according to (1), wherein the maximum depth of the notch of the test piece is 0.2 to 0.5 mm.
(3) The method for evaluating delayed fracture characteristics of PC steel according to (1) or (2), wherein the predetermined limit time is 200 hours or more.

本発明によれば、実環境に近い条件の浸入水素量を鋼材に導入し、短時間で遅れ破壊特性の評価が可能で、実製品の破断実態と遅れ破壊特性の評価結果が一致し、簡便かつ短時間でPC鋼材の遅れ破壊の評価が可能となり実際のコンクリート製品の破損を予測できるために産業上の貢献が極めて顕著である。   According to the present invention, the amount of intrusion hydrogen under a condition close to the actual environment is introduced into the steel material, and the delayed fracture characteristics can be evaluated in a short time. In addition, since it is possible to evaluate delayed fracture of PC steel materials in a short time and predict the breakage of actual concrete products, the industrial contribution is extremely remarkable.

試験溶液のpH別の鋼材への水素浸入特性の関係図Relationship diagram of hydrogen penetration characteristics of test solution into steel materials by pH 遅れ破壊破断時間とノッチ深さの関係図Relationship between delayed fracture time and notch depth 限界拡散性水素量と遅れ破壊破断時間の関係Relationship between critical diffusible hydrogen content and delayed fracture time 限界拡散性水素量と遅れ破壊限界破断荷重の関係Relationship between critical diffusible hydrogen content and delayed fracture limit fracture load 試験溶液pHの経時変化Change in pH of test solution over time 本遅れ破壊試験容器の構造例Structure example of this delayed fracture test vessel

PC鋼材の遅れ破壊は、コンクリート製品の補強材として使用され、緊張力が作用しているPC鋼材が、一定時間を経た時点で突然破断する現象である。その原因として、コンクリート製品のひび割れ部を通して雨水が浸透し、局部的に鋼材表面に腐食が発生して、PC鋼材に水素が浸入することが挙げられる。時間の経過にともない水素量が増加すると、PC鋼材が脆化し、破断に至ると考えられる。また、PC鋼材の強度が高いほど遅れ破壊感受性は高くなる。   Delayed fracture of PC steel is a phenomenon in which PC steel, which is used as a reinforcing material for concrete products and is subjected to tension, suddenly breaks after a certain period of time. The cause is that rainwater permeates through the cracked portion of the concrete product, the steel surface is locally corroded, and hydrogen enters the PC steel. If the amount of hydrogen increases with the passage of time, it is considered that the PC steel material becomes brittle and breaks. Moreover, delayed fracture susceptibility increases as the strength of PC steel increases.

一般に、腐食が原因となる現象については、暴露試験による評価が最も現実的であり、信頼性のある方法である。しかし、暴露試験では、PC鋼材が破断するまでに数十年もかかってしまう。一方、FIP試験に代表される促進試験では、短時間でPC鋼材が破断に至るものの、実環境から侵入する水素量に比べて多量の水素が鋼中に侵入してしまう。   In general, for phenomena caused by corrosion, evaluation by an exposure test is the most realistic and reliable method. However, in the exposure test, it takes several decades for the PC steel material to break. On the other hand, in the accelerated test represented by the FIP test, although the PC steel material breaks in a short time, a larger amount of hydrogen enters the steel than the amount of hydrogen entering from the actual environment.

したがって、PC鋼材の遅れ破壊特性を精度よく、かつ効率的に評価するためには、試験片に侵入する水素量が、短時間で、実際に使用される環境から鋼中に侵入する水素量と同等になり、かつ、その後は増加しないことが必要になる。本発明では、PC鋼材に浸入する水素量が、実使用環境から侵入する水素量にほぼ近い値となるように、試験溶液の条件を適正化した。   Therefore, in order to accurately and efficiently evaluate the delayed fracture characteristics of PC steel, the amount of hydrogen that penetrates the test piece is the amount of hydrogen that penetrates into the steel from the environment where it is actually used in a short time. It is necessary to be equal and not increase thereafter. In the present invention, the conditions of the test solution were optimized so that the amount of hydrogen entering the PC steel material was a value that was approximately close to the amount of hydrogen entering from the actual use environment.

鋼材に侵入する水素量及び鋼材の腐食に大きく影響する重要な要因は、試験溶液のpHである。pHが低い場合は鋼中への水素侵入量が増加し、pHが高くなると腐食が抑制されて、鋼中への水素の侵入が抑制される。本発明者らは、Clイオン濃度:0.2g/l、SO4イオン濃度:3g/l、SCNイオン濃度:0.8g/lとし、さらにNaOH水溶液で試験溶液のpHを変化させた試験溶液に鋼材を浸漬し、水素浸入量を測定した。その結果の一例を図1に示す。図1に示すように、溶液pHが5程度では100h経過後もさらに鋼材中への水素の浸入が増加し、実環境での水素侵入状況を再現できないことがわかった。一方、pHを8程度まで増加すると、鋼材への水素浸入が著しく減少し、鋼材が遅れ破壊せず、評価不可能となる。なお、実環境での水素侵入量は0.1〜0.4ppm程度である。 An important factor that greatly affects the amount of hydrogen entering the steel and the corrosion of the steel is the pH of the test solution. When the pH is low, the amount of hydrogen penetrating into the steel is increased, and when the pH is high, corrosion is suppressed and the penetration of hydrogen into the steel is suppressed. The present inventors set the Cl ion concentration: 0.2 g / l, the SO 4 ion concentration: 3 g / l, the SCN ion concentration: 0.8 g / l, and further changing the pH of the test solution with an aqueous NaOH solution. The steel material was immersed in and the amount of hydrogen penetration was measured. An example of the result is shown in FIG. As shown in FIG. 1, it was found that when the solution pH was about 5, the intrusion of hydrogen into the steel material further increased after 100 hours had passed, and the hydrogen intrusion situation in the actual environment could not be reproduced. On the other hand, when the pH is increased to about 8, the hydrogen intrusion into the steel material is remarkably reduced, the steel material is not delayed and destroyed, and evaluation becomes impossible. Note that the hydrogen penetration amount in the actual environment is about 0.1 to 0.4 ppm.

以下、耐遅れ破壊評価方法を検討して図2〜5に示す評価結果を得るに際し、試験溶液として、Clイオン濃度:0.2g/l、SO4イオン濃度:3g/l、SCNイオン濃度:0.8g/lとし、さらにNaOH水溶液でpHを6.9に調整した試験溶液を使用して試験を行った。 Hereinafter, when examining the delayed fracture resistance evaluation method and obtaining the evaluation results shown in FIGS. 2 to 5, as a test solution, Cl ion concentration: 0.2 g / l, SO 4 ion concentration: 3 g / l, SCN ion concentration: The test was conducted using a test solution adjusted to 0.8 g / l and adjusted to pH 6.9 with an aqueous NaOH solution.

破断促進するには負荷荷重を増すか、表面に何らかの欠陥を形成する方法が考えられる。本発明者らは、PC鋼材の遅れ破壊が、比較的、マイルドな腐食環境でも発生することから、PC鋼材の表面に何らかの欠陥が発生しており、少量の水素の侵入によってPC鋼材が破断すると考えた。そこで、本発明者らは、実際にコンクリート構造物からPC鋼材を取り出し、その表面を詳細に観察した。その結果、表面に孔食状の欠陥が形成され、破断に至ることが確認された。   In order to promote breakage, a method of increasing the load or forming some defect on the surface can be considered. Since the delayed fracture of the PC steel occurs even in a relatively mild corrosive environment, the present inventors have generated some defects on the surface of the PC steel, and when the PC steel breaks due to a small amount of hydrogen intrusion. Thought. Therefore, the present inventors actually took out the PC steel material from the concrete structure and observed the surface in detail. As a result, it was confirmed that pitting corrosion-like defects were formed on the surface, leading to fracture.

そこで、実環境の腐食に近い状態を模擬するため、実際の腐食の影響を再現するように、試験片の表面にノッチを形成し、応力集中により破断を促進することにした。ノッチの深さは、応力状態を変化させ、遅れ破壊が発生する水素量に影響を及ぼす重要な因子である。   Therefore, in order to simulate a state close to corrosion in an actual environment, a notch was formed on the surface of the test piece so as to reproduce the effect of actual corrosion, and the fracture was accelerated by stress concentration. The depth of the notch is an important factor that changes the stress state and affects the amount of hydrogen at which delayed fracture occurs.

機械加工で0.1〜0.6mmの深さのVノッチを試験片に形成し、負荷荷重を変えて遅れ破壊が発生するまでの時間を測定した。なお、Vノッチは引張り荷重に対して直角方向に形成した。破断時間とノッチ深さの関係の一例を図2に示す。図2に示すように、ノッチが深い場合は破断時間が短くなり、試験時間を短縮でき、効率的であるが、0.5mmを超える深いノッチでは短時間破断するために試験条件によらず破断時間の差が小さくなるため遅れ破壊特性の評価を行う上で好ましくない。一方、ノッチ深さが0.2mm未満では破断時間が長くなり、評価に時間がかかるとともに鋼材が遅れ破壊しないケースが発生するので好ましくない。   A V-notch having a depth of 0.1 to 0.6 mm was formed on the test piece by machining, and the time until delayed fracture occurred by changing the load was measured. The V notch was formed in a direction perpendicular to the tensile load. An example of the relationship between the fracture time and the notch depth is shown in FIG. As shown in FIG. 2, when the notch is deep, the rupture time is shortened and the test time can be shortened, which is efficient. However, when the notch is deeper than 0.5 mm, it breaks for a short time regardless of the test conditions. Since the time difference is small, it is not preferable in evaluating delayed fracture characteristics. On the other hand, if the notch depth is less than 0.2 mm, the rupture time is long, and it takes time for evaluation and a case where the steel material does not break with delay occurs.

遅れ破壊特性を評価する基準としては一定荷重下での破断時間と、負荷荷重を変えて破断しない限界の荷重で評価することが考えられるが、より鋼材の遅れ破壊特性を正確に評価可能な基準について検討した。   The criteria for evaluating delayed fracture characteristics may be to evaluate the fracture time under a constant load and the limit load that does not break by changing the applied load. Was examined.

FIP試験のように、遅れ破壊特性の評価基準を破断時間とする場合は破断時間が鋼材間で大きく異なるために、時間の経過にともなう鋼材中の水素量の変動影響を受けやすくなる。その結果、図3に示すように、ほぼ同じ限界拡散性水素量の鋼材でも破断時間が大きく変化する。この結果、コンクリート製品の破断実体とは必ずしも一致した傾向が得られない。   When the evaluation criterion of delayed fracture characteristics is the fracture time as in the FIP test, the fracture time varies greatly among the steel materials, so that it is likely to be affected by fluctuations in the amount of hydrogen in the steel material over time. As a result, as shown in FIG. 3, the rupture time varies greatly even with a steel material having substantially the same critical diffusible hydrogen content. As a result, it is not always possible to obtain a tendency that is consistent with the fracture entity of the concrete product.

そこで、本発明では、PC鋼材が水素浸入環境下で破断しない限界の荷重によって遅れ破壊特性を評価することにした。即ち、試験片を試験溶液に浸漬し、一定の荷重を負荷して予め定めた一定時間経過後の破断の有無を見極める。負荷荷重を変化させて試験を繰り返し、遅れ破壊が発生しない限界の荷重を求め、耐破断限界荷重とする。ただし、PC鋼材の高強度化とともに遅れ破壊に対する感受性が高くなる。そこで、本発明では、試験によって求めた耐破断限界荷重を、全く脆化処理を行わない平滑なPC鋼材の破断荷重によって除して正規化し、限界荷重比として評価することにした。限界拡散性水素量の評価については非特許文献1に記載の方法で行った。その結果の一例を図4に示す。本発明の限界荷重比で評価した結果は、限界拡散性水素量を基準として評価した場合の遅れ破壊特性と良く一致し、コンクリート構造物の破損実態に一致する結果となることが確認された。   Therefore, in the present invention, it was decided to evaluate the delayed fracture characteristics by the limit load that does not cause the PC steel material to break in the hydrogen infiltration environment. That is, the test piece is immersed in the test solution, and a predetermined load is applied to determine whether or not there is a break after a predetermined time has elapsed. The test is repeated while changing the applied load, and the limit load at which delayed fracture does not occur is obtained and set as the fracture resistant limit load. However, the sensitivity to delayed fracture increases as the strength of PC steel increases. Therefore, in the present invention, the breaking resistance limit load obtained by the test is normalized by dividing by the breaking load of a smooth PC steel material that is not subjected to embrittlement at all, and evaluated as a limit load ratio. The evaluation of the limit diffusible hydrogen amount was performed by the method described in Non-Patent Document 1. An example of the result is shown in FIG. It was confirmed that the results of the evaluation based on the critical load ratio of the present invention are in good agreement with the delayed fracture characteristics when evaluated based on the critical diffusible hydrogen content, and are consistent with the actual breakage of the concrete structure.

さらに、本発明者らは、試験溶液の経時変化にも着目した。図5に示すように、試験溶液が大気と接触する場合は、時間の経過に伴って空気中の二酸化炭素を吸収し、100時間を超えると、pHが低下することがわかった。そのため、鋼材に浸入する水素の挙動が変化し、遅れ破壊特性が変動することがある。したがって、試験時間が100時間を超える条件では、遅れ破壊特性を安定して評価するためには、空気中の二酸化炭素が試験溶液に溶解しないように、試験溶液を大気から遮断することが好ましい。   Furthermore, the present inventors also focused on the change with time of the test solution. As shown in FIG. 5, when the test solution was in contact with the atmosphere, it was found that the carbon dioxide in the air was absorbed with the passage of time, and the pH was lowered when it exceeded 100 hours. For this reason, the behavior of hydrogen entering the steel material changes, and the delayed fracture characteristics may change. Therefore, under conditions where the test time exceeds 100 hours, in order to stably evaluate delayed fracture characteristics, it is preferable to block the test solution from the atmosphere so that carbon dioxide in the air does not dissolve in the test solution.

以下、本発明について、詳細に説明する。   Hereinafter, the present invention will be described in detail.

Clイオン濃度:
Clイオンは鋼材の腐食促進成分である。Clイオン濃度が、0.1g/l未満では腐食が進行せず、水素の浸入が著しく低下し遅れ破壊が発生しないため破断に至らない。また、1.0g/l超のClイオン濃度を添加しても腐食促進効果が飽和する。したがって、試験溶液のClイオン濃度は、0.1〜1.0g/lとする。
Cl ion concentration:
Cl ion is a corrosion promoting component of steel. When the Cl ion concentration is less than 0.1 g / l, corrosion does not proceed, hydrogen penetration is significantly reduced, and delayed fracture does not occur, so that fracture does not occur. Further, even if a Cl ion concentration exceeding 1.0 g / l is added, the corrosion promoting effect is saturated. Therefore, the Cl ion concentration of the test solution is 0.1 to 1.0 g / l.

SO4イオン濃度:
SO4イオンも鋼材の腐食促進成分であり、Clと複合添加することで、より実環境に近い状態の腐食環境となる。SO4イオン濃度が0.5g/l未満では鋼材の腐食が進まず水素が鋼中に侵入せず、遅れ破壊が発生しない。一方、SO4イオン濃度が10g/lを超えると、鋼中に侵入する水素量が多くなり、実環境からの乖離が顕著になる。したがって、試験溶液のSO4濃度は0.5〜10g/lとする。
SO 4 ion concentration:
SO 4 ions are also a corrosion-promoting component of steel materials, and when added together with Cl, a corrosive environment closer to the actual environment is obtained. When the SO 4 ion concentration is less than 0.5 g / l, the corrosion of the steel material does not proceed and hydrogen does not enter the steel and delayed fracture does not occur. On the other hand, when the SO 4 ion concentration exceeds 10 g / l, the amount of hydrogen that penetrates into the steel increases and the deviation from the actual environment becomes remarkable. Therefore, the SO 4 concentration of the test solution is 0.5 to 10 g / l.

SCNイオン濃度:
SCNイオンは触媒的に作用し、鋼材への水素浸入を促進する。SCNイオンはコンクリート内に浸入した水溶液中から検出されることから、本発明では、実環境を再現するために試験溶液に添加する。SCNイオン濃度が0.1g/l未満では鋼材中への水素侵入が少なく、遅れ破壊が発生しない。一方、SCNイオン濃度が3g/lを超えると、鋼材への水素浸入が著しく増加し、実環境と大きく異なる。したがって、SCNイオン濃度は0.1〜3g/lとする。
SCN ion concentration:
SCN ions act catalytically and promote hydrogen penetration into the steel. Since SCN ions are detected from an aqueous solution infiltrated into the concrete, in the present invention, they are added to the test solution in order to reproduce the actual environment. When the SCN ion concentration is less than 0.1 g / l, hydrogen penetration into the steel material is small, and delayed fracture does not occur. On the other hand, when the SCN ion concentration exceeds 3 g / l, hydrogen intrusion into the steel material is remarkably increased, which is greatly different from the actual environment. Therefore, the SCN ion concentration is 0.1 to 3 g / l.

試験溶液のpH:
pHは、鋼材に侵入する水素量及び鋼材の腐食に大きく影響する重要な要因である。本発明者らの検討により、pHを7前後に調整した溶液では約50時間で鋼材に浸入する水素量が飽和し、一定の水素量での遅れ破壊挙動を評価できることが明らかになった。pHが6.5未満では鋼材の水素侵入量が増加して、遅れ破壊特性の優劣の精度が低下する。一方、pHが7.2を超えると鋼材への水素侵入量が大きく低下し、鋼材に侵入する水素量が飽和するまでに長時間を要する。したがって、本発明では、試験溶液のpHを6.5〜7.2とする。
PH of test solution:
The pH is an important factor that greatly affects the amount of hydrogen entering the steel and the corrosion of the steel. As a result of studies by the present inventors, it has been clarified that in a solution whose pH is adjusted to around 7, the amount of hydrogen entering the steel material is saturated in about 50 hours, and the delayed fracture behavior can be evaluated with a constant amount of hydrogen. When the pH is less than 6.5, the hydrogen penetration amount of the steel material increases, and the superiority or inferior accuracy of the delayed fracture property decreases. On the other hand, when the pH exceeds 7.2, the amount of hydrogen entering the steel material is greatly reduced, and it takes a long time until the amount of hydrogen entering the steel material is saturated. Therefore, in the present invention, the pH of the test solution is set to 6.5 to 7.2.

試験溶液の温度:
試験溶液温度が低い場合は鋼材への水素浸入が少なくなり、高いと侵入水素量が多くなるとともに試験溶液の蒸発により試験条件が変化する。また、試験溶液温度は、試験片の表面での腐食状況にも影響を及ぼすため、一定の範囲内に制御することが必要である。本発明の試験溶液では、温度が50℃になると、実環境から侵入する水素量に近くなる。また、試験溶液温度が変化すると、評価結果のばらつきが大きくなるため、変動の範囲を10℃以内にすることが必要である。したがって、安定した腐食環境で、一定の速度で試験片に水素を侵入させるため、本発明では、試験溶液の温度範囲を45〜55℃とする。
Test solution temperature:
When the test solution temperature is low, hydrogen permeation into the steel material is reduced. When the test solution temperature is high, the amount of invading hydrogen is increased and the test conditions are changed by evaporation of the test solution. Moreover, since the test solution temperature also affects the corrosion state on the surface of the test piece, it must be controlled within a certain range. In the test solution of the present invention, when the temperature reaches 50 ° C., the amount of hydrogen entering from the actual environment is close. In addition, when the test solution temperature changes, the variation in evaluation results increases, so the range of fluctuation must be within 10 ° C. Therefore, in order to allow hydrogen to enter the test piece at a constant rate in a stable corrosive environment, the temperature range of the test solution is set to 45 to 55 ° C. in the present invention.

比液量:
比液量は、試験溶液に浸漬している試験片の単位表面積あたりの試験溶液容量である。試験片及び試験槽の形状、使用する試験溶液の容量から、試験溶液に接触している試験片の表面積を算出し、使用している試験溶液の容量を除することにより、比液量を求めることができる。比液量が30ml/cm2を超えると、長時間、連続的に試験片に水素が侵入するため、遅れ破壊特性の優劣の精度が低下する。一方、比液量が5ml/cm2未満であると、短時間で試験片に水素が侵入しなくなり、鋼材中の水素量も減少し、遅れ破壊破断が発生し難くなる。したがって、短時間で、実環境に近い侵入水素量にするためには、試験溶液の比液量を5〜30ml/cm2とすることが必要である。
Specific liquid volume:
The specific liquid amount is the test solution volume per unit surface area of the test piece immersed in the test solution. Calculate the surface area of the test piece in contact with the test solution from the shape of the test piece and the test tank and the volume of the test solution to be used, and calculate the specific liquid volume by dividing the volume of the test solution in use. be able to. When the specific liquid amount exceeds 30 ml / cm 2 , hydrogen penetrates into the test piece continuously for a long time, so that the accuracy of delayed fracture characteristics is deteriorated. On the other hand, when the specific liquid amount is less than 5 ml / cm 2 , hydrogen does not enter the test piece in a short time, the amount of hydrogen in the steel material also decreases, and delayed fracture breakage hardly occurs. Therefore, in order to make the amount of penetrating hydrogen close to the real environment in a short time, it is necessary to set the specific liquid amount of the test solution to 5 to 30 ml / cm 2 .

試験片のノッチ深さ:
試験片のノッチ深さは、破断を促進させるために応力集中を再現するため、引張り荷重に対して直角方向に形成する。試験片の円周方向の全周に環状ノッチとしても、部分的にノッチを形成してもかまわない。ノッチ深さが0.2mm未満では、破断時間が2000h以上になること、鋼材によっては負荷荷重を高めても破断せず、遅れ破壊の評価が難しくなることがあるので、ノッチ深さの下限を0.2mmとすると好ましい。一方、0.5mmより深いノッチの場合は短時間で破断するものの、荷重比を変えても破断時間の変化が小さくなり、鋼材の遅れ破壊特性の優劣が判断できなくなることがあるため、0.5mmをノッチ深さの上限とすると好ましい。
Notch depth of specimen:
The notch depth of the test piece is formed in a direction perpendicular to the tensile load in order to reproduce the stress concentration in order to promote breakage. An annular notch or a notch may be partially formed on the entire circumference in the circumferential direction of the test piece. If the notch depth is less than 0.2 mm, the fracture time will be 2000 h or more, and depending on the steel material, it will not break even if the load is increased, and it may be difficult to evaluate delayed fracture. 0.2 mm is preferable. On the other hand, a notch deeper than 0.5 mm breaks in a short time, but even if the load ratio is changed, the change in the fracture time becomes small, and the superiority or inferiority of the delayed fracture characteristics of the steel material may not be judged. It is preferable that 5 mm is the upper limit of the notch depth.

なお、鋼材間の遅れ破壊の比較は勿論同一ノッチ深さで行うものであるが、ノッチ深さのばらつきは0.05mm以内とすれば試験結果のばらつきは小さくなるため、±0.05mmが深さばらつきとして好ましく、より好ましくは0.02mmである。   Of course, the comparison of delayed fracture between steel materials is performed at the same notch depth. However, if the variation in notch depth is within 0.05 mm, the variation in test results will be small. It is preferable as the thickness variation, and more preferably 0.02 mm.

遅れ破壊特性の評価基準:
本発明では、遅れ破壊特性の評価基準を破断荷重とする。これは、破断時間による評価の場合、時間の経過にともなって鋼材中の水素量が変動し、コンクリート製品の破断の実体とは必ずしも一致した傾向が得られないためである。本発明では、試験片を試験溶液に浸漬し、一定の荷重を負荷して予め定めた一定時間経過後の破断の有無を見極める。負荷荷重を変化させて試験を繰り返し、遅れ破壊が発生しない限界の荷重を求め、耐破断限界荷重とする。予め定めた一定時間を200時間あるいはそれ以上とすれば、耐破断限界荷重を再現性よく評価することが可能である。この耐破断限界荷重を、予め求めた、ノッチを有しない平滑試験片の大気中での破断荷重で除して、限界荷重比として評価する。平滑試験片は平滑であり、大気中で破断を評価するので、全く脆化処理を行わない試験片に相当する。また平滑試験片はノッチを形成した試験片と同一径とすると好ましい。
Evaluation criteria for delayed fracture characteristics:
In the present invention, the evaluation criterion for delayed fracture characteristics is the fracture load. This is because in the case of the evaluation based on the rupture time, the amount of hydrogen in the steel material fluctuates with the passage of time, and a tendency that does not necessarily coincide with the rupture entity of the concrete product cannot be obtained. In the present invention, a test piece is immersed in a test solution, a constant load is applied, and whether or not there is a fracture after a predetermined time has elapsed is determined. The test is repeated while changing the applied load, and the limit load at which delayed fracture does not occur is obtained and set as the fracture resistant limit load. If the predetermined time is set to 200 hours or more, it is possible to evaluate the fracture limit load with good reproducibility. This breaking resistance limit load is divided by the breaking load in the air of a smooth test piece not having a notch obtained in advance, and evaluated as a limit load ratio. Since the smooth test piece is smooth and breakage is evaluated in the air, it corresponds to a test piece that is not subjected to embrittlement at all. The smooth test piece preferably has the same diameter as the test piece having a notch.

大気との遮断の影響:
本発明の試験溶液は、大気に接触すると空気中の二酸化炭素を吸収し、pHが低下する。そのため、遅れ破壊特性を安定して評価するためには、大気と試験溶液を遮断することが好ましい。大気と試験溶液を遮断する方法は特に限定はされないが、試験容器内にアルゴンなどの不活性ガスを充満させる方法、試験溶液の表面をシール材で覆う方法などが挙げられる。例えば、図6に示すように、試験容器の内壁あるいは試験片が貫通可能な形状とし、大気と遮断するために試験溶液表面に浮かせる構造が好ましい。このような構造にすることにより、試験容器の形状を変えることなく、試験片のサイズによる比液量を一定に制御することが可能となるとともに、試験溶液のpHを安定して維持できる。
Impact of shielding from the atmosphere:
When the test solution of the present invention comes into contact with the atmosphere, it absorbs carbon dioxide in the air and the pH decreases. Therefore, in order to stably evaluate the delayed fracture characteristics, it is preferable to shut off the atmosphere and the test solution. The method for shutting off the atmosphere and the test solution is not particularly limited, and examples thereof include a method of filling the test container with an inert gas such as argon, and a method of covering the surface of the test solution with a sealing material. For example, as shown in FIG. 6, a structure in which the inner wall of the test container or the test piece can be penetrated and floated on the surface of the test solution in order to block it from the atmosphere is preferable. By adopting such a structure, it is possible to control the specific liquid amount according to the size of the test piece to be constant without changing the shape of the test container, and it is possible to stably maintain the pH of the test solution.

表1に示す成分の線径8mmの熱間圧延線材を7mmに伸線した後、高周波加熱によりオーステナイト域まで加熱後、水焼入れし、さらに連続して鋼材を350〜650℃に加熱して焼戻し、引張強さを1450MPaに調整した。試験片の試験溶液に接触する部分の中心部の表面には、環状に角度60度のVノッチを形成した。表2に、ノッチの深さを示す。   A hot-rolled wire rod having a wire diameter of 8 mm having the components shown in Table 1 is drawn to 7 mm, heated to an austenite region by high-frequency heating, then water-quenched, and the steel material is continuously heated to 350 to 650 ° C. and tempered. The tensile strength was adjusted to 1450 MPa. A V-notch having an angle of 60 degrees was formed annularly on the surface of the central portion of the portion of the test piece that contacts the test solution. Table 2 shows the depth of the notches.

Figure 0005467026
Figure 0005467026

Figure 0005467026
Figure 0005467026

試験溶液は、ClイオンとしてKCl、SO4イオンとしてK2SO4、SCNイオンとしてNH4SCNを溶解し、その濃度を調整した。薬剤を溶解した直後の試験溶液のpHは4〜5と低いため、NaOH水溶液で試験溶液のpHを調整した。内径が65mm、溶液充てん部長さが200mmであり、図6に示すように、外周部に温水を循環可能な二重構造の反応容器に試験片をセットした。先に一定荷重を負荷した後に試験溶液を充てんし、二重構造容器外周部を循環させる温水の温度によって、試験溶液温度を調整した。 The test solution, KCl as Cl ions as K 2 SO 4, SCN ions as SO 4 ions by dissolving NH 4 SCN, and adjust the concentration. Since the pH of the test solution immediately after dissolving the drug was as low as 4-5, the pH of the test solution was adjusted with an aqueous NaOH solution. The inner diameter was 65 mm, the solution filling part length was 200 mm, and as shown in FIG. 6, a test piece was set in a double-structured reaction vessel capable of circulating hot water on the outer periphery. The test solution was filled with the test solution after a certain load was applied first, and the test solution temperature was adjusted by the temperature of the hot water circulating through the outer periphery of the double structure container.

試験片に負荷する荷重を変化させて試験を繰り返し行い、遅れ破壊破断しない限界の負荷荷重比を求めた。ここでは破断しない限界の試験時間を200hとした。   The test was repeated by changing the load applied to the test piece, and the limit load ratio was determined so as not to cause delayed fracture. Here, the limit test time without breaking was 200 h.

No.1〜20は本発明の試験条件の範囲でPC鋼材の遅れ破壊特性を評価した結果であり、鋼材の遅れ破壊特性は同一鋼種間で大きな差異はなく、安定した限界荷重比が得られた。また、ノッチ深さが0.2〜0.5mmの範囲では鋼種毎の限界荷重比はB鋼が0.85〜0.9、C鋼が0.7、E鋼が0.65〜0.7、D鋼が0.5〜0.65、A鋼が0.4〜0.5で、遅れ破壊特性の序列はB>C〜E>D>Aとなった。一方、水素基準で評価した限界拡散性水素量は表1に示すとおりであり、限界拡散性水素量での評価の序列はB>C〜E>D>Aであった。即ち、本発明による遅れ破壊評価の序列は水素基準で評価した限界拡散性水素量での評価の序列と概略一致し、実環境での破断実態にほぼ一致する傾向である。ノッチ深さが0.2mm未満あるいは0.5mm超でも鋼材の限界荷重比の序列はB>C>Aでほぼノッチ深さの範囲が一定であれば遅れ破壊特性の序列は変わらない。   No. 1 to 20 are the results of evaluating the delayed fracture characteristics of PC steel materials within the range of the test conditions of the present invention. The delayed fracture characteristics of the steel materials were not significantly different between the same steel types, and a stable limit load ratio was obtained. In addition, in the range where the notch depth is 0.2 to 0.5 mm, the critical load ratio for each steel type is 0.85 to 0.9 for Steel B, 0.7 for Steel C, 0.65 to 0.00 for Steel E. 7, Steel D was 0.5 to 0.65, Steel A was 0.4 to 0.5, and the order of delayed fracture characteristics was B> C to E> D> A. On the other hand, the limit diffusible hydrogen amount evaluated on the basis of hydrogen is as shown in Table 1, and the order of evaluation based on the limit diffusible hydrogen amount was B> C to E> D> A. That is, the rank order of delayed fracture evaluation according to the present invention roughly matches the rank order of the critical diffusible hydrogen amount evaluated based on the hydrogen standard, and tends to substantially match the actual fracture condition in the actual environment. Even if the notch depth is less than 0.2 mm or more than 0.5 mm, the order of the limit load ratio of the steel material is B> C> A and if the range of the notch depth is substantially constant, the order of the delayed fracture characteristics does not change.

一方、本発明の範囲外の比較例では同一鋼種の遅れ破壊特性が大きく変化し、鋼種間の差が検出できず、精度良い評価ができていない。   On the other hand, in the comparative example outside the scope of the present invention, the delayed fracture characteristics of the same steel type change greatly, the difference between the steel types cannot be detected, and accurate evaluation cannot be performed.

比較例のNo.21はClイオンが多く、腐食が進行し低い荷重比で破断した例である。No.22はClイオンが少なく、遅れ破壊試験での限界荷重比が高くなった例である。No.23はSO4イオンが多く、腐食が進行し、低い荷重比で破断した例である。No.24はSO4イオンが少なく、遅れ破壊試験での限界荷重比が高くなった例である。No.25はSCNイオンが多く、腐食が進行し、低い荷重比で破断した例である。No.26はSCNイオンが少なく、遅れ破壊しなかった例である。 Comparative Example No. No. 21 is an example in which there are many Cl ions, corrosion progresses and fractures at a low load ratio. No. No. 22 is an example in which Cl ions are few and the limit load ratio in the delayed fracture test is high. No. No. 23 is an example in which there are many SO 4 ions, corrosion progresses, and fracture occurs at a low load ratio. No. No. 24 is an example in which the SO 4 ions are small and the limit load ratio in the delayed fracture test is high. No. No. 25 is an example in which there are many SCN ions, corrosion progresses, and fracture occurs at a low load ratio. No. No. 26 is an example in which there were few SCN ions and the destruction was not delayed.

No.27は試験溶液温度が低く、限界荷重比が高くなり、No.28は試験溶液温度が高く、限界荷重比が低くなり、同一鋼種で限界荷重比が大きく変化した例である。No.29は試験溶液のpHが高い場合で、鋼材への水素侵入が少なく、限界荷重比が高くなった例である。一方、No.30はpHが本発明の範囲より低く、鋼中への水素侵入量が多くなり、限界荷重比が低くなった例である。No.31は比液量が多く、鋼材に長時間連続して水素が侵入し、限界荷重比が低くなった例である。No.32は比液量が少なく鋼材に侵入する水素量が少なくなり、荷重比が高くなった例である。   No. No. 27 has a low test solution temperature and a high limit load ratio. No. 28 is an example in which the test solution temperature is high, the limit load ratio is low, and the limit load ratio is greatly changed in the same steel type. No. No. 29 is an example in which the pH of the test solution is high, hydrogen penetration into the steel material is small, and the critical load ratio is high. On the other hand, no. No. 30 is an example in which the pH is lower than the range of the present invention, the hydrogen penetration amount into the steel is increased, and the limit load ratio is lowered. No. No. 31 is an example in which the amount of specific liquid is large, hydrogen penetrates into the steel material continuously for a long time, and the limit load ratio becomes low. No. No. 32 is an example in which the amount of hydrogen entering the steel material is small because the amount of specific liquid is small and the load ratio is high.

No.33はノッチを形成しない試験片で遅れ破壊試験を実施した例であり、200時間経過しても破断しなかった例である。No.34は大気と試験溶液が接触する構造の試験容器を使用したため、遅れ破壊試験期間中の試験溶液pHが低下し、限界荷重比が低下した例である。   No. No. 33 is an example in which a delayed fracture test was carried out with a test piece not forming a notch, and it was not broken even after 200 hours. No. No. 34 is an example in which the test solution pH in the delayed fracture test period was lowered and the critical load ratio was lowered because a test container having a structure in which the atmosphere and the test solution were in contact with each other was used.

本発明によれば高強度PC鋼材の遅れ破壊評価が迅速かつ簡便に実施可能となり、かつ実体により近い状態での評価が可能となることにより鋼材の遅れ破壊特性をより正確に評価可能である。コンクリート製品の破損を防止可能となることから産業上の利用可能性が極めて高い。   According to the present invention, delayed fracture evaluation of a high-strength PC steel can be performed quickly and easily, and the evaluation in a state closer to the substance can be performed, whereby the delayed fracture characteristics of the steel can be evaluated more accurately. Since it is possible to prevent the breakage of concrete products, the industrial applicability is extremely high.

Claims (3)

一定の荷重を負荷した試験片を試験溶液に浸漬して遅れ破壊特性を評価するPC鋼材の遅れ破壊特性評価方法において、前記試験溶液は、Clイオン濃度:0.1〜1.0g/l、SO4イオン濃度:0.5〜10g/l、SCNイオン濃度:0.1〜3g/lを含み、温度が45〜55℃、pHが6.5〜7.2であり、表面にノッチを形成した試験片を試験溶液に浸漬し、試験溶液の容量を試験溶液に接触している試験片の表面積で除した比液量を5〜30ml/cm2とし、試験期間中試験溶液と大気を遮断するとともに前記試験片に一定の荷重を負荷し、予め定めた限界時間まで破断が発生しない耐破断限界荷重を測定し、該耐破断限界荷重と平滑試験片の大気中での破断荷重との比を求めて限界荷重比とすることを特徴とするPC鋼材の遅れ破壊特性評価方法。 In the method for evaluating delayed fracture characteristics of PC steel, in which a test piece loaded with a constant load is immersed in a test solution to evaluate delayed fracture characteristics, the test solution has a Cl ion concentration of 0.1 to 1.0 g / l, SO 4 ion concentration: 0.5 to 10 g / l, SCN ion concentration: 0.1 to 3 g / l, temperature is 45 to 55 ° C., pH is 6.5 to 7.2, and notch is formed on the surface. The formed test piece is immersed in the test solution, and the specific solution amount obtained by dividing the volume of the test solution by the surface area of the test piece in contact with the test solution is 5 to 30 ml / cm 2. The test piece is shut off and a constant load is applied to it, and the breaking resistance limit load at which breakage does not occur until a predetermined limit time is measured. PC steel characterized by determining the ratio to the limit load ratio Method for evaluating delayed fracture characteristics of materials. 前記試験片のノッチの最大深さが0.2〜0.5mmであることを特徴とする請求項1記載のPC鋼材の遅れ破壊特性評価方法。   2. The method for evaluating delayed fracture characteristics of PC steel according to claim 1, wherein the maximum depth of the notch of the test piece is 0.2 to 0.5 mm. 前記予め定めた限界時間を200時間以上とすることを特徴とする請求項1又は2に記載のPC鋼材の遅れ破壊特性評価方法。   The method for evaluating delayed fracture characteristics of PC steel according to claim 1 or 2, wherein the predetermined limit time is 200 hours or more.
JP2010236758A 2010-10-21 2010-10-21 Method for evaluating delayed fracture characteristics of PC steel Expired - Fee Related JP5467026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010236758A JP5467026B2 (en) 2010-10-21 2010-10-21 Method for evaluating delayed fracture characteristics of PC steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010236758A JP5467026B2 (en) 2010-10-21 2010-10-21 Method for evaluating delayed fracture characteristics of PC steel

Publications (2)

Publication Number Publication Date
JP2012088241A JP2012088241A (en) 2012-05-10
JP5467026B2 true JP5467026B2 (en) 2014-04-09

Family

ID=46260009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010236758A Expired - Fee Related JP5467026B2 (en) 2010-10-21 2010-10-21 Method for evaluating delayed fracture characteristics of PC steel

Country Status (1)

Country Link
JP (1) JP5467026B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015090314A (en) * 2013-11-06 2015-05-11 日本電信電話株式会社 Hydrogen embrittlement prevention method
CN103698267B (en) * 2013-12-31 2015-10-28 沈阳建筑大学 The apparatus and method of research steel pipe the concrete flexure member performance under load with corrosion
JP6174531B2 (en) * 2014-07-18 2017-08-02 日本電信電話株式会社 Method for producing steel for evaluation
JP6342820B2 (en) * 2015-01-13 2018-06-13 日本電信電話株式会社 Hydrogen embrittlement characteristics evaluation method
JP6267669B2 (en) * 2015-04-07 2018-01-24 日本電信電話株式会社 Evaluation method
JP6352851B2 (en) * 2015-04-15 2018-07-04 日本電信電話株式会社 Hydrogen embrittlement susceptibility evaluation method
JP2016223884A (en) * 2015-05-29 2016-12-28 日本電信電話株式会社 Hydrogen absorption method
JP6350917B2 (en) * 2015-06-12 2018-07-04 日本電信電話株式会社 Hydrogen absorption method
JP6470716B2 (en) * 2016-06-03 2019-02-13 日本電信電話株式会社 Method for calculating test piece area and test cell size in hydrogen embrittlement property evaluation test
JP6973193B2 (en) * 2017-03-22 2021-11-24 日本製鉄株式会社 Hydrogen embrittlement resistance evaluation method
JP6940774B2 (en) * 2018-05-07 2021-09-29 日本電信電話株式会社 Hydrogen intrusion behavior estimation method, hydrogen intrusion behavior estimation device and hydrogen intrusion behavior estimation program

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59226116A (en) * 1983-01-31 1984-12-19 High Frequency Heattreat Co Ltd High tension bolt having characteristics of resistance to delayed fracture and its production
JPH0570890A (en) * 1991-09-11 1993-03-23 Nippon Steel Corp Steel for high strength bolt excellent in delayed fracture resistance
JPH06306543A (en) * 1993-04-15 1994-11-01 Nippon Steel Corp High strength pc wire rod excellent in delayed fracture resistance and its production
JPH0741900A (en) * 1993-07-28 1995-02-10 Nippon Steel Corp High strength pc rod wire excellent in delayed fracture resistance
JP3221309B2 (en) * 1996-01-31 2001-10-22 住友金属工業株式会社 Steel for machine structure and method of manufacturing the same
JPH1136041A (en) * 1997-07-16 1999-02-09 Nkk Corp Production of steel and high strength member excellent in cold-forgability and delayed fracture characteristic
JP3957582B2 (en) * 2002-07-23 2007-08-15 新日本製鐵株式会社 High-strength PC steel bar with excellent delayed fracture characteristics of spot welds and method for producing the same
JP2007199024A (en) * 2006-01-30 2007-08-09 Toyota Motor Corp Method for delayed fracture test on ferrous material, method for delayed fracture of bolt and fixture for delayed fracture test
JP2008151675A (en) * 2006-12-19 2008-07-03 Toyota Motor Corp Device for testing delayed fracture
JP4867638B2 (en) * 2006-12-21 2012-02-01 Jfeスチール株式会社 High-strength bolts with excellent delayed fracture resistance and corrosion resistance
JP2010223945A (en) * 2009-02-27 2010-10-07 Jfe Steel Corp Method for hydrogen charging to material, and method for evaluating hydrogen embrittlement characteristics thereof
JP5345426B2 (en) * 2009-03-18 2013-11-20 日本精工株式会社 Inclusion evaluation method

Also Published As

Publication number Publication date
JP2012088241A (en) 2012-05-10

Similar Documents

Publication Publication Date Title
JP5467026B2 (en) Method for evaluating delayed fracture characteristics of PC steel
Vandermaat et al. Examination of rockbolt stress corrosion cracking utilising full size rockbolts in a controlled mine environment
KR20020018136A (en) Method of designing a shape, working stress and working conditions of a steel member
JP6512154B2 (en) Evaluation method for delayed fracture of metallic materials
JP6693130B2 (en) Method for evaluating hydrogen embrittlement resistance
JP2016057163A (en) Evaluation method of hydrogen embrittlement characteristic of steel material
JP2010054494A (en) Method for evaluating hydrogen cracking resistivity of steel products
Gehlen et al. High‐cycle fatigue behaviour of reinforcing steel under the effect of ongoing corrosion
Han et al. Corrosion fatigue behaviour and microstructural characterisation of G20Mn5QT cast steel in 3.5‐wt% NaCl solution
Tenneti et al. Detection of embrittlement in low alloy steels due to thermal aging by small punch test
JP5774503B2 (en) Method for evaluating delayed fracture characteristics of PC steel
Bautista et al. Selective corrosion of duplex stainless steel bars in acid. Part 2: Effect of the surface strain and numerical analysis
Weng et al. Pit evolution around the fusion line of a NiCrMoV steel welded joint caused by galvanic and stress-assisted coupling corrosion
JP6973193B2 (en) Hydrogen embrittlement resistance evaluation method
Han et al. Detecting critical crevice temperature for duplex stainless steels in chloride solutions
Sun et al. Fatigue experimental analysis and numerical simulation of FSW joints for 2219 Al–Cu alloy
RU2368888C1 (en) Method to check pipes for antirust strength
JP7295412B2 (en) Evaluation method for metallic materials
Hammond et al. Corrosion fatigue of simulated C-Mn steel HAZs in sour produced fluids
Asmara et al. Effects Pre-strain of Carbon Steel on Stress-Strain Diagram in CO2 Environment with the Presence of H2S
Arroyo et al. Analysis of the small punch test capability to evaluate the response of high strength steels facing HIC or SCC
Sanchez et al. Reasons for crack arrest in stress corrosion cracking tests—crack propagation rate in high-strength steels
Melo et al. Structural integrity of HSLA steels under hydrogen embrittlement condition
Salleh et al. Failure modes of hydrogen damage on metal tubes
Mohtadi Bonab Mechanism of failure by hydrogen-induced cracking in pipeline steels

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130513

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131226

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140127

R150 Certificate of patent or registration of utility model

Ref document number: 5467026

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees